1. Write the negation of each statement:
a) 7 is prime and 8 is a perfect square.
b) If $x<2$, then $f(x)>10$.
c) $\forall \varepsilon>0, \exists \delta>0 \ni|x|<\delta$ implies $x^{2}<\varepsilon$
2. Construct a truth table for the statement $[\sim p \wedge(p \vee q)] \Rightarrow q$.
3. For each $n \in \mathbb{N}$, let $A_{n}=(-1 / n, 1]$.
a) $\bigcup_{n=1}^{\infty} A_{n}=$
b) $\bigcap_{n=1}^{\infty} A_{n}=$
4. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
a) Prove that if $g \circ f$ is injective, then f is injective.
b) Give an example of sets A, B and C and functions $f: A \rightarrow B$ and $g: B \rightarrow C$ such that $g \circ f$ is surjective, but f is not surjective.
5. Define the symmetric difference $A \Delta B$ of subsets of a universal set U by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Prove that for all subsets A, B and C of U,

$$
A \Delta C \subseteq(A \Delta B) \cup(B \Delta C)
$$

6. Let $\mathbb{Q}^{+}=\{r \in \mathbb{Q}: r>0\}$. Prove that \mathbb{Q}^{+}is countable, by showing a way to enumerate (list) all of its elements.
7. Prove by induction that

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}
$$

for every $n \in \mathbb{N}$ with $n \geq 2$.
8. For each of the following sets, give the supremum, the maximum, the infimum and the minimum, or write "does not exist".
a) $(0,100)$
b) $\{1 / n: n \in \mathbb{N}\}$
c) $\{|x|:-2 \leq x<3\}$.
9. a) State the definition of a boundary point.
b) State the definition of an interior point.
c) Find the interior and the boundary of the set $S=(0,1) \cup\{r \in \mathbb{Q}: r>1\}$. Explain your answer carefully!
10. Specify an open cover of the interval $[0,5)$ that does not have a finite subcover. Explain.
11. Consider the statement (in which x, y and z are real numbers):

$$
\begin{equation*}
\exists x \ni \forall y, \exists z \ni x^{2}+1=y z \tag{1}
\end{equation*}
$$

a) State the negation of statement (1).
b) Determine whether statement (1) is true or false. Explain as precisely as possible!
12. State the completeness axiom for \mathbb{R}.
13. Prove using an $\varepsilon-\delta$ argument: If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are both continuous at $a \in \mathbb{R}$, then $f+g$ is continuous at a.
14. Prove that if a nonempty set S in \mathbb{R} is bounded above, then $\sup (S)$ is a boundary point of S.
15. State whether each set below is countable or uncountable.
a) \mathbb{Z}
b) $[1,2)$
c) $\{r+\sqrt{2} \mid r \in \mathbb{Q}\}$
d) $\{1,2,3\}$
16. Prove using ONLY the definition of a compact set (NOT the Heine-Borel theorem!) that if S and T are compact sets, then $S \cup T$ is compact.

