Math 2700 - Review for Exam 3 (April 2014)

1. (11 pts.) Find the determinant of the matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 5 & 3 \\
3 & 0 & 2 & 4 \\
-1 & 2 & 1 & 4 \\
1 & 0 & -2 & 0
\end{array}\right]
$$

You may use any method, but make sure that each step can be clearly understood!
2. (8 pts.) Show that if A is an invertible matrix, then A^{17} is also invertible.
3. (10 pts.) Let A be a 4×4 square matrix with $\operatorname{det} A=3$, and suppose the following elementary row operations transform A into a matrix B :

1. Add two times row 1 to row 3 .
2. Interchange row 2 and row 4.
3. Subtract three times row 2 from row 3 .
4. Multiply row 3 by 2 .
5. Multiply row 4 by -1 .

Find $\operatorname{det} B$. Explain your reasoning!
4. Let A be an 8×5 matrix.
a) (6 pts.) Could the rank of A possibly be 6 ? Explain briefly.
b) (6 pts.) If you knew that $\operatorname{dim} \operatorname{Nul} A=1$, how many rows of all zeros would an echelon form of A have? Explain briefly.
5. Let

$$
A=\left[\begin{array}{ccccc}
-1 & 3 & 1 & -2 & -5 \\
0 & 1 & 1 & 0 & 2 \\
4 & -7 & 1 & 6 & 0
\end{array}\right]
$$

a) (7 pts .) Find a basis for $\operatorname{Nul} A$, and give the dimension of $\operatorname{Nul} A$.
b) (7 pts.) Find a basis for $\operatorname{Col} A$, and give the dimension of $\operatorname{Col} A$.
6. (6 pts. each) Determine whether each set is a subspace of \mathbb{R}^{3}. You may use a theorem from the book, but your argument must be clear and complete.
a) $H=\left\{\left[\begin{array}{c}s+2 t \\ -t \\ -4 s+3 t\end{array}\right]: s, t\right.$ in $\left.\mathbb{R}\right\}$
b) $K=\left\{\left[\begin{array}{c}a+b \\ a-3 \\ 2 a-5 b\end{array}\right]: a, b\right.$ in $\left.\mathbb{R}\right\}$
7. (10 pts.) Find a basis for the set of all vectors of the form

$$
\left[\begin{array}{c}
a-2 b+5 c \\
2 a+5 b-8 c \\
-a-4 b+7 c \\
3 a+b+c
\end{array}\right]
$$

(Be careful!)
8. (10 pts.) Let H be the set of all 3×3 symmetric matrices (i.e. matrices A such that $A^{T}=A$). Show that H is a subspace of $M_{3 \times 3}$.
9. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{1}$ be the mapping $T(\mathbf{p})=\mathbf{p}(0)+\mathbf{p}(1) t$.
a) (5 pts.) Show that T is a linear transformation.
b) (5 pts.) Find a basis for the kernel of T.
c) (5 pts.) Prove that the range of T is all of \mathbb{P}_{1}.
(Hint: a typical element of \mathbb{P}_{1} is of the form $a+b t$. Construct a polynomial $\mathbf{p}(t)$ in \mathbb{P}_{2} such that $\mathbf{p}(0)=a$ and $\mathbf{p}(1)=b$.)
10. Let $A=\left[\begin{array}{cc}2 & 1 \\ 7 & -4\end{array}\right]$. Find the eigenvalues of A, and find at least one eigenvector for each eigenvalue.
11. Given that 4 is an eigenvalue of the matrix

$$
A=\left[\begin{array}{ccc}
5 & -3 & 2 \\
-2 & 10 & -4 \\
-1 & 3 & 2
\end{array}\right]
$$

find a basis for the corresponding eigenspace.
12. Extra credit!! Given subspaces H and K of a vector space V, the sum of H and K, written $H+K$, is the set of all vectors that can be written as the sum of one vector in H and one vector in K. That is,

$$
H+K=\{\mathbf{w}: \mathbf{w}=\mathbf{u}+\mathbf{v} \text { for some } \mathbf{u} \text { in } H \text { and some } \mathbf{v} \text { in } K\}
$$

a) (5 pts.) Show that $H+K$ is a subspace of V.
b) (5 pts.) Determine whether H a subspace of $H+K$.

