Math 2700-Review for Exam 2

1. Compute the following matrix products, if possible.
a) (7 pts.) $A A^{T}$, where $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1\end{array}\right]$
b) $\left(5\right.$ pts.) $\left[\begin{array}{l}1 \\ 3\end{array}\right]\left[\begin{array}{lll}2 & -1 & 5\end{array}\right]=$
2. (4 pts. each) Let A, B and C be $n \times n$ matrices. For each statement below, indicate whether it is always true or not always true. (No explanation needed.)
a) $(A B) C=A(B C)$
b) $(A+B)^{-1}=A^{-1}+B^{-1} \quad$ (Assume all inverses are defined.)
c) $(A+B)(A-B)=A^{2}-B^{2}$
d) $(A+B)^{T}=A^{T}+B^{T}$.
3. (14 pts.) Find the inverse of the matrix A. Or, if A is not invertible, explain why not.

$$
A=\left[\begin{array}{ccc}
1 & 4 & 5 \\
2 & 9 & 12 \\
1 & 5 & 5
\end{array}\right]
$$

4. Let T be the transformation

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+3 x_{2}-x_{3},-x_{1}+x_{2}-3 x_{3}, 2 x_{1}+5 x_{2}-x_{3}\right)
$$

a) (5 pts.) Find the standard matrix A of T.
b) (12 pts.) Determine whether T is one-to-one, onto, both, or neither. Show all of the details!
5. a) (9 pts.) Find the standard matrix, A, of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which performs a reflection through the line $x_{2}=x_{1}$, followed by a rotation by 90° clockwise about the origin. Explain your method carefully! (A sketch could help.)
b) (7 pts.) Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the mapping which reflects points through the line $x_{1}=1$. Explain why S is NOT a linear transformation. (Show by a specific example which property of a linear transformation fails.)
6. (12 pts.) Suppose the last column of $A B$ is entirely zero but B itself has no column of zeros. What can you say about the columns of A ? Explain as precisely as possible, including appropriate equations.
7. (13 pts.) Suppose A and B are $n \times n$ matrices such that $I+A B$ is invertible. Solve the following system of matrix equations for the matrices X and Y :

$$
\begin{aligned}
& A X+Y=I \\
& X-B Y=I
\end{aligned}
$$

(Hint: This is not a routine 2×2 system of linear equations, because the "coefficients" A and B are matrices rather than numbers. You can NOT assume that A and/or B is invertible, so A^{-1} and B^{-1} may not exist! Furthermore, you can NOT divide by a matrix!)

8. Extra credit!!

a) (6 pts.) Suppose $A(A-3 I)=O$. Does this mean that $A=O$ or $A=3 I$? Give a proof or a counterexample.
b) (6 pts.) Find a natural condition under which $A(A-3 I)=O$ implies that $A=3 I$. Prove that your condition "works".

