Math 2700 - Review for Final Exam (April 2013)

SHOW ALL YOUR WORK! NO WORK=NO CREDIT!!

1. Find the value of h such that the columns of

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 5 \\
0 & 3 & h \\
2 & 4 & -6
\end{array}\right]
$$

are linearly dependent.
2. Find the general solution of the following system of equations in parametric vector form:

$$
\begin{aligned}
x_{1}+2 x_{2}-3 x_{3}+x_{4} & =1 \\
-x_{1}-x_{2}+4 x_{3}-x_{4} & =6 \\
-2 x_{1}-4 x_{2}+7 x_{3}-x_{4} & =1
\end{aligned}
$$

3. Let T be a linear transformation from \mathbb{R}^{7} into \mathbb{R}^{5}, with standard matrix A.
a) How many columns does A have?
b) Could the rank of A be 6 ? Why/why not?
c) Suppose the rank of A is 5 . Explain why this means that T is onto.
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that reflects a point through the line $x_{2}=x_{1}$.
a) Find a nonzero vector \mathbf{x} such that $T(\mathbf{x})=\mathbf{x}$.
b) Find a nonzero vector \mathbf{x} such that $T(\mathbf{x})=-\mathbf{x}$.
c) What are the eigenvalues of A, the standard matrix of T ? (It is NOT necessary to compute A !)
5. Let

$$
A=\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 9 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right], \quad B=\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
0 & 0 & 3 & -1 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Assume that A and B are row equivalent. (They are.)
a) Give $\operatorname{rank} A$ and $\operatorname{dim} \operatorname{Nul} A$.
b) Find bases for $\operatorname{Col} A$ and $\operatorname{Nul} A$.
6. Calculate the determinant. You may use any method, but make sure that each step can be clearly understood!
$\left|\begin{array}{lllc}0 & 1 & 2 & 3 \\ 1 & 3 & 3 & 4 \\ 2 & 4 & 7 & 11 \\ 3 & 3 & 3 & 3\end{array}\right|=$
7. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{P}_{1}$ be the mapping

$$
T(x, y, z)=(x+y+z)+(x-y-z) t
$$

a) Show that T is a linear transformation.
b) Find a basis for the kernel of T.
8. Let $A=\left[\begin{array}{cc}2 & 1 \\ 7 & -4\end{array}\right]$. Find the eigenvalues of A, and find at least one eigenvector for each eigenvalue.
9. Suppose A, B and X are matrices such that A, X, and $I+A X$ are invertible, and suppose that

$$
\begin{equation*}
(I+A X)^{-1}=X^{-1} B \tag{1}
\end{equation*}
$$

a) Explain why B is invertible.
b) Solve the equation (1) for X. If you need the inverse of a matrix, explain why that matrix is invertible.
10. Diagonalize the matrix

$$
A=\left[\begin{array}{ccc}
-1 & 3 & 3 \\
6 & 2 & -3 \\
-12 & 6 & 11
\end{array}\right]
$$

if possible, given that the eigenvalues of A are 2 and 5 .
11. Let \mathbb{P}_{3} denote the vector space of all polynomials with real coefficients of degree at most 3 . Let H be the subset of \mathbb{P}_{3} of odd polynomials, that is, $\mathbf{p} \in H$ if and only if $\mathbf{p}(-t)=-\mathbf{p}(t)$ for every t in \mathbb{R}.

Show that H is a subspace of \mathbb{P}_{3} and give a basis for H.

12. Extra credit!!

Prove that for every square matrix A, A^{T} and A have the same eigenvalues. (Hint: show that A^{T} has the same characteristic polynomial as A.)

