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Abstract. Let E be a coanalytic equivalence relation on a Polish space X and

(An)n∈ω a sequence of analytic subsets of X. We prove that if lim supn∈K An

meets uncountably many E-equivalence classes for every K ∈ [ω]ω , then there
exists a K ∈ [ω]ω such that

⋂
n∈K An contains a perfect set of pairwise E-

inequivalent elements.

1. Introduction

Let (An)n∈ω be a sequence of sets and K ∈ [ω]ω an infinite subset of ω. The limit
superior lim supn∈K An is the set of all elements which belong to An for infinitely
many n ∈ K. Laczkovich [6] showed that for every sequence (An)n∈ω of Borel sets
in a Polish space, if lim supn∈K An is uncountable for every K ∈ [ω]ω, then there
exists a K ∈ [ω]ω such that

⋂
n∈K An is uncountable. Komjáth [5] generalized this

result to the case where the sets (An)n∈ω are analytic. Note that by the perfect set
property of analytic sets, if

⋂
n∈K An is uncountable, then it contains a perfect set.

Balcerzak and G la̧b [1] extended these results to Fσ equivalence relations in the
following way.

Definition. An equivalence relation E on a Polish space X is has the Laczkovich-
Komjáth property if for every sequence (An)n∈ω of analytic subsets of X such that
lim supn∈K An meets uncountably many E-equivalence classes for every K ∈ [ω]ω,
there exists a K ∈ [ω]ω such that

⋂
n∈K An contains a perfect set of pairwise E-

inequivalent elements.

In this terminology, Komjáth has shown that the identity relation = has the
Laczkovich–Komjáth property. Balcerzak and G la̧b [1] proved that every Fσ equiv-
alence relation has the Laczkovich–Komjáth property. In this paper, we generalize
this to coanalytic equivalence relations.

Theorem 1. Every coanalytic equivalence relation on a Polish space has the Lacz-
kovich–Komjáth property.

A fundamental result on coanalytic equivalence relations is Silver’s theorem: a
coanalytic equivalence relation either has only countably many equivalence classes,
or else there exists a perfect set of pairwise inequivalent elements. Silver’s original
proof [9] used forcing. Harrington (unpublished) later gave a simpler (forcing) proof

2000 Mathematics Subject Classification. Primary 03E15, 54H05; Secondary 28A05.
Key words and phrases. Limit superior of a sequence of sets, coanalytic equivalence relations,

Laczkovich–Komjáth property.
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using effective descriptive set theory, which nowadays is usually cast in terms of the
Gandy–Harrington topology. We will use similar methods and assume familiarity
with effective descriptive set theory throughout the paper.

An introduction to effective descriptive set theory is given in [7], where the
reader can also find the topological version of Harrington’s proof. The review in
[4] provides details on the Gandy–Harrington topology and strong Choquet games.
Instead of strong Choquet games, we will make use of the set of low elements,
which is a Polish space in the Gandy–Harrington topology. We will summarize
the technical facts we use later on. Further details can be found in [2], which also
provides another source on effective descriptive set theory.

This paper is organized as follows. In Section 2 we review a well-known coding
mechanism for Π1

1 and ∆1
1 sets, mainly to fix notation and establish the uniformity

of a diagonal intersection operator. In Section 3, we provide details on canonical
cofinal sequences as developed in [3]. We use these sequences in Section 4 to prove
our main technical result. Finally, we derive our main theorem in Section 5, where
we also derive a parametric version of the theorem, as was done by Balcerzak and
G la̧b [1].

2. Coding Π1
1 and ∆1

1 sets

In this section we review a well-known coding mechanism for Π1
1 and ∆1

1 sets,
mainly to fix notation. A good introduction can be found in [4, Section 3.2], where
the notion of uniformity is also discussed. We will need the uniformity of a diagonal
intersection operation. Since this operation is not canonical, we provide a little more
of the details.

A product space is any X = X0 × · · · ×Xn (with the product topology), where
each factor is either ω or ωω. For every product space X there is a UX ⊆ ω ×X
such that UX ∈ Π1

1 and for any A ⊆ X, A ∈ Π1
1 iff ∃n(A = UXn ). Such a set UX is

called a universal Π1
1 set. A Π1

1 code for A ⊆ X is any n ∈ ω such that A = UXn .
There exists a collection {UX} of universal Π1

1 sets with the following additional
property: for any m ∈ ω and any product space X there is a recursive function
Sm,X : ωm+1 → ω such that

(e, k1, . . . , km, x) ∈ Uω
m×X ⇔ (Sm,X(e, k1, . . . , km), x) ∈ UX .

Such a collection is called a good universal system. For the rest of this paper, fix a
good universal system {UX} for Π1

1. This good universal system can be used to code
∆1

1 subsets, which we now describe. This coding is always relative to a particular
product space X. When there is no danger of confusion, we will drop the superscript
in UX . For every k ∈ ω, fix a recursive bijection (n1, . . . , nk) 7→ 〈n1, . . . , nk〉
between ωk and ω. Define

(〈m,n〉 , x) ∈ U0 ⇔ (m,x) ∈ U,
(〈m,n〉 , x) ∈ U1 ⇔ (n, x) ∈ U.

Then U0, U1 ∈ Π1
1. By the reduction property for Π1

1 sets, there are Π1
1 sets U∗0 , U

∗
1 ⊆

ω × X such that U∗0 ∪ U∗1 = U0 ∪ U1 and U∗0 ∩ U∗1 = ∅. Let P = U∗0 and S =
(ω ×X) \ U∗1 . Define

〈m,n〉 ∈ C ⇔ ∀x ∈ X((〈m,n〉 , x) ∈ U∗0 ∨ (〈m,n〉 , x) ∈ U∗1 )
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Then C ∈ Π1
1. For all n ∈ C,

Pn = Sn := Dn.

A ∆1
1 code for A ⊆ X is any n ∈ C such that A = Dn. In that case, (n)0 is a Π1

1

code for A and (n)1 is a Π1
1 code for X \ A. Conversely, if m,n ∈ ω are Π1

1 codes
for A and X \A, respectively, then 〈m,n〉 is a ∆1

1 code for A. It is important that
the set C of ∆1

1 codes is Π1
1 and that operations hold effectively in the codes, in the

following way.

Example. Given ∆1
1 codes m,n ∈ C for A,B ⊆ X, we can effectively compute a

∆1
1 code for A \B. To see this, define

(m,n, x) ∈ Z0 ⇔ x ∈ Dm ∧ x 6∈ Dn,

(m,n, x) ∈ Z1 ⇔ x 6∈ Dm ∨ x ∈ Dn.

Clearly, Z0, Z1 ∈ Π1
1. Let e0, e1 be their respective Π1

1 codes. Then for i = 0, 1,

(m,n, x) ∈ Zi ⇔ (ei,m, n, x) ∈ Uω
2×X ⇔ (S2,X(ei,m, n), x) ∈ UX .

Also, Z0 = (ω2 ×X) \ Z1. Thus,〈
S2,X(e0,m, n), S2,X(e1,m, n)

〉
is a ∆1

1 code for A \B.

Similar uniformities hold for all basic set-theoretic operations. We will need the
uniformity of a diagonal intersection operator, which we define next. Recall that
when H,K ∈ [ω]ω, H ⊆∗ K denotes that H is almost contained in K, i.e. K \H is
finite.

Definition. For a (finite or infinite) sequence (Kn) of infinite subsets of ω with
Kn ⊆∗ Km for n > m, define 4Kn by m ∈ 4Kn iff there exists m0 < m1 <
· · · < mk = m such that m0 is the least element of K0, m1 is the least element of
K0 ∩ K1 such that m1 > m0, . . . , mk is the least element of K0 ∩ · · · ∩ Kk such
that mk > mk−1.

Note that 4Kn ⊆∗ Km for all m. To obtain the desired uniformity for this
diagonal intersection operation, we need to assume that the sequence of ∆1

1 codes
for (Kn) is effective. One way to formalize this is to let n ∈ C∗ iff

(1) n ∈ Cω,
(2) Dω

n is infinite,
(3) ∀m(m ∈ Dω

n ⇒ (m)1 ∈ Cω), and
(4) ∀i∃!m(m ∈ Dω

n ∧ (m)0 = i).
Informally, n ∈ C∗ iff n is a ∆1

1 code for an infinite subset of ω of the form
{〈i, ni〉 : i ∈ ω, ni ∈ C}. Clearly, C∗ ∈ Π1

1.

Lemma 2. There is a function Diag : ω → ω which is ∆1
1 on C∗ such that whenever

n ∈ C∗ is a code for an infinite ∆1
1 subset {〈i, ni〉 : i ∈ ω, ni ∈ C} of ω, Diag(n) is

a ∆1
1 code for 4Dω

ni .

Proof. It suffices to find Π1
1 codes e0 and e1 for 4Dω

ni and ω \ 4Dω
ni , respectively,

because 〈e0, e1〉 will then be a ∆1
1 code for 4Dω

ni . We need the following 3 auxiliary
functions:

(1) There is a recursive function u : ω → ω such that whenever n = 〈n0, . . . , nk〉
is a finite sequence of ∆1

1 codes, u(n) is a ∆1
1 code for Dω

n0
∩ · · · ∩Dω

nk
.
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(2) There is a ∆1
1 on the codes function i : ω × ω → ω such that whenever

n ∈ C∗, i(n, j) is the (unique) m ∈ ω such that 〈j,m〉 ∈ Dω
n .

(3) There is a ∆1
1 on the codes function µ : ω × ω → ω such that whenever n

is a ∆1
1 code for an infinite subset of ω, µ(n, j) is the least element of Dω

n

greater than or equal to j.
Now define

(n,m) ∈ Z0 ⇔ n ∈ C∗ ∧ ∃ 〈m0, . . . ,mk〉 (m0 < · · · < mk ∧mk = m∧
m0 = µ(u(〈i(n, 0)〉), 0) ∧m1 = µ(u(〈i(n, 0), i(n, 1)〉),m0 + 1)∧

· · · ∧mk = µ(u(〈i(n, 0), . . . , i(n, k)〉),mk−1 + 1)).

Then Z0 ∈ Π1
1. Pick a Π1

1 code e0 for Z0. Similarly, we can write down a Π1
1

definition for Z1 = C∗ \ Z0 and pick a Π1
1 code e1. The rest of the argument is as

in the Example. �

Now that we have established the uniformity of this diagonal intersection opera-
tor, we will use it implicitly. Finally, for codes h, k ∈ Cω, we write h ⊆∗ k iff the set
coded by h is almost contained in the set coded by k. Writing out the definitions,
we see that h ⊆∗ k is ∆1

1 on the set Cω of codes.

3. Canonical cofinal sequences

For w ∈ 2ω, define a binary relation <w on a subset of ω by

m <w n⇔ w(〈m,n〉) = 1.

The domain of <w is the set

dom(<w) = {n ∈ ω : ∃m ∈ ω(m <w n or n <w m)}.

Let LO denote the set of all w ∈ 2ω such that<w is a linear order, and let LO∗ denote
the set of all w ∈ LO such that <w has a least element and every n ∈ dom(<w) has
an immediate successor n+

<w . For w ∈ LO, let |<w| denote the order type of <w.
The next lemma shows that in a uniform way, we can effectively obtain a canonical
cofinal sequence in <w given w ∈ LO∗.

Lemma 3 (Gao–Jackson–Laczkovich–Mauldin [3]). There is a ∆1
1 function

Cof : {(w, n, j) ∈ LO∗ × ω2 : n ∈ dom(<w)} → ω

such that
(1) if w ∈ LO∗, n ∈ dom(<w) and j ∈ ω, then Cof(w, n, j) ∈ dom(<w) and

Cof(w, n, j) <w n, unless n is the <w-least element;
(2) if w ∈ LO∗ and n ∈ dom(<w) has an immediate predecessor in <w, then

Cof(w, n, j)+
w = n for all j ∈ ω;

(3) if w ∈ LO∗, n ∈ dom(<w) is not <w-least and n does not have an immediate
predecessor in <w, then
(a) if j < j′, then Cof(w, n, j) <w Cof(w, n, j′), and
(b) for any q ∈ dom(<w) with q <w n there is a j ∈ ω such that q <w

Cof(w, n, j). �

We also need a variation of this lemma for Π1
1 norms, whose proof uses the same

ideas. Recall that a Π1
1-norm on a pointset P ∈ Π1

1 is a function ϕ from P into



THE LACZKOVICH–KOMJÁTH PROPERTY FOR Π1
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the ordinals On such that there exist binary relations <∗ϕ and ≤∗ϕ in Π1
1 with the

following properties:

x ≤∗ϕ y ⇔ P (x) ∧ (¬P (y) ∨ ϕ(x) ≤ ϕ(y)),

x <∗ϕ y ⇔ P (x) ∧ (¬P (y) ∨ ϕ(x) < ϕ(y)).

Recall that WO denotes the set of all w ∈ LO such that <w is a well-order. Every
Π1

1 set P ⊆ ω admits a Π1
1-norm ϕ : P → ωCK

1 , where

ωCK
1 = sup{|<w| : w ∈WO is recursive},

see for example [8, Section 4B].

Lemma 4. Let ϕ be a Π1
1-norm on a Π1

1 set P ⊆ ω. There is a Π1
1 function

Cof : ω → ω such that
(1) for all j ∈ ω, Cof(j) ∈ P ;
(2) if j < j′, then Cof(j) <∗ϕ Cof(j′) unless Cof(j) is <ϕ-maximal.
(3) for any q ∈ P , there is an j ∈ ω such that q <∗ϕ Cof(j) unless q is <ϕ-

maximal.

Proof. We define the function Cof by induction on j. Let p0 = Cof(0) be the
least integer in P . Assume we have defined pj = Cof(j). If pj is <ϕ-maximal, let
pj+1 = pj . Otherwise, let pj+1 = Cof(j + 1) be the smallest integer in P such that
pj < pj+1 and pj <

∗
ϕ pj+1. Since n = pj+1 iff n ∈ P and pj < n and pj <

∗
ϕ n and

∀m(pj < m < n⇒ m ≤∗ϕ pj), this defines a Π1
1 function. To see that (3) holds, let

q ∈ P be a nonmaximal element. Since the sequence (pj)j∈ω is strictly increasing
in the natural order < on ω, there is a least integer j such that pj ≤ q < pj+1.
Because pj+1 is the least integer larger than pj such that pj <∗ϕ pj+1, we cannot
have pj <∗ϕ q. Hence, q ≤∗ϕ pj <∗ϕ pj+1. �

4. A completely good pair

Suppose E is a Π1
1 equivalence relation on ωω. A key idea in Harrington’s proof

of Silver’s dichotomy is to consider the set

W = {x ∈ ωω : there is no ∆1
1 set D such that x ∈ D ⊆ [x]E}.

A computation shows that W is Σ1
1. Moreover, when E has uncountably many

equivalence classes, W 6= ∅ and every nonempty Σ1
1 subset X ⊆W meets uncount-

ably many E-equivalence classes. In fact, a nonempty Σ1
1 subset X ⊆ ωω meets

uncountably many E-equivalence classes iff X ∩W 6= ∅.
We will establish the following corresponding result in our context.

Proposition 5. Let E be a Π1
1 equivalence relation on ωω and (An)n∈ω a se-

quence of uniformly Σ1
1 subsets of ωω. If lim supn∈K An meets uncountably many

E-equivalence classes for every K ∈ [ω]ω, then there exists a nonempty Σ1
1 set

V ⊆ ωω and a ∆1
1 set H ∈ [ω]ω such that for every nonempty Σ1

1 set X ⊆ V
and every ∆1

1 set K ∈ [H]ω the set X ∩ lim supn∈K An meets uncountably many
E-equivalence classes.

We call such a pair (V,H) completely good. The rest of this section is devoted to
the proof of Proposition 5 and a further refinement. In contrast with Harrington’s
proof, we need a recursive construction of transfinite length, in which we remove
all possible ‘bad pairs’ one by one.
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Definition. We say that n = 〈y, k〉 ∈ ω is a bad pair if the following properties
hold:

(1) y ∈ Cωω and k ∈ Cω,
(2) Dω

k ∈ [ω]ω, and
(3) Dωω

y ∩ lim supn∈Dωk An meets only countably many E-equivalence classes,
i.e. Dωω

y ∩W ∩ lim supn∈Dωk An = ∅.

It is clear from this definition that the set P ⊆ ω of all bad pairs is Π1
1. Let

ϕ : P → ωCK
1 be a Π1

1-norm on P . Define a well-order on P by

m <ϕ n⇔ ϕ(m) < ϕ(n) ∨ (ϕ(m) = ϕ(n) ∧m < n)

and let ≤∗ϕ be the Π1
1 relation given by

m ≤∗ϕ n⇔ P (m) ∧ (¬P (n) ∨ ϕ(m) ≤ ϕ(n)).

For the rest of the paper, let Cof : ω → ω be Π1
1 function related to ϕ and P as

given by Lemma 4.
Denote by Cω∞ the set of all n ∈ Cω such that Dω

n ∈ [ω]ω. Then Cω∞ is Π1
1. Given

an h ∈ Cω∞, we define the next bad pair relative to h to be the <ϕ-least 〈y, k〉 ∈ P
such that k ⊆∗ h. Set R(h, 〈y, k〉) iff 〈y, k〉 is the next bad pair relative to h.

Lemma 6. The relation R ⊆ ω × ω is Π1
1. Moreover, R is a ∆1

1 function on the
set B = {h ∈ ω : h ∈ Cω∞ ∧ ∃n(R(h, n))}.

Proof. We have R(h, 〈y, k〉) iff

h ∈ Cω∞ ∧ 〈y, k〉 ∈ P ∧ k ⊆∗ h ∧ ∀y′, k′ ∈ ω (〈y, k〉 6≤∗ϕ 〈y′, k′〉 ⇒ k′ 6⊆∗ h)).

This is a Π1
1 definition. If R(h, n) holds, then n is the unique such integer. Thus,

for h ∈ B, ¬R(h, n) ⇔ ∃m(R(h,m) ∧ n 6= m), which is Π1
1. Hence, R is ∆1

1 on
B. �

Similarly, given a Π1
1 set A ⊆ P we define the next bad pair in A relative to

h to be the <ϕ-least 〈y, k〉 ∈ A such that k ⊆∗ h. The corresponding version of
Lemma 6 still holds.

Initial segments of the recursive construction can be coded by reals, as follows.
Recall that WOα = {w ∈WO : |<w| = α} and for α < ωCK

1 , we have WOα ∈ ∆1
1.

Definition. Let α < ωCK
1 . A real z ∈ ωω is α-adequate if z = 〈w, v, h〉, where

w ∈ 2ω, v ∈ ωω, and h ∈ ωω, and the following conditions are satisfied:
(1) w ∈WOα,
(2) if n 6∈ dom(<w), then v(n) = h(n) = 0,
(3) the <w-least element is the <ϕ-least element,
(4) if n ∈ dom(<w) is a <w-successor (say n = m+

<w), then the following holds:
(a) n = 〈y, k〉 is the next bad pair relative to h(m) such that 〈y, k〉 6∈

dom(<w) � n,
(b) v(n) is a canonical code for Dωω

v(m) \D
ωω

y ,
(c) h(n) = k.

(5) if n ∈ dom(<w) is a <w-limit, then with v′ the canonical code for⋂
j∈ω

Dωω

v(Cof(w,n,j))

and h′ the canonical code for 4j∈ωDω
h(Cof(w,n,j)), the following holds:
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(a) n = 〈y, k〉 is the next pair relative to h′ such that 〈y, k〉 6∈ dom(<w) � n,
(b) v(n) is the canonical code for Dωω

v′ \Dωω

y , and
(c) h(n) = k.

Some comments on these conditions: (1) says that z represents the construction
up to stage α, (2) is needed only to ensure that there can be at most one α-adequate
real for every α < ωCK

1 , (3), (4a), and (5a) state that <w represents the order in
which the bad pairs are picked in our construction and that we pick a new bad pair
at each stage, and conditions (4b,c) and (5b,c) require v(n) and h(n) to be codes
for the correct sets whenever n ∈ dom(<w).

We call a real adequate if it is α-adequate for some α < ωCK
1 .

Lemma 7. The set of all adequate reals is Π1
1.

Proof. Replace condition (1) above with condition (1)′ w ∈WO<ωCK
1

, which is Π1
1.

Conditions (2) and (3) are arithmetical. For (4), n is a <w-successor, n = (m)+
<w ,

and (4b, c) are arithmetical predicates, while (4a) is Π1
1. Thus, (4) is Π1

1. Similarly,
(5) is Π1

1. �

It is immediate from the definition of α-adequate that for each α < ωCK
1 , if there

is an α-adequate real, then this real is unique; denote it by zα.

Lemma 8. Every adequate real is ∆1
1.

Proof. Let zα be α-adequate for some fixed α < ωCK
1 . Then z = 〈w, v, h〉 equals zα

iff z satisfies conditions (1) through (5). The first 3 conditions are ∆1
1. Conditions

(4) and (5) are Π1
1, because (4a) and (5a) contain a predicate R(n, h), i.e. n is the

next bad pair relative to h (where h = h(m) in 4a and h = h′ in 5a). However, since
z is given, we know that this h is an element of B = {h ∈ ω : h ∈ Cω∞∧∃n(R(h, n))}.
By Lemma 6, R is ∆1

1 on B. Thus, conditions (4) and (5) are ∆1
1 in this case. �

Finally, we define V ⊆ ωω and H ∈ [ω]ω as follows. Let x ∈ V iff

∀z ∈ ∆1
1(z = 〈w, v, h〉 adequate⇒ ∀n(n ∈ dom(<w)⇒ x ∈ Dωω

v(n)))

and n ∈ H iff

∃z ∈ ∆1
1(z = 〈w, v, h〉 is adequate ∧

∀j ≤ n(Cof(j) ∈ dom(<w)⇒ n ∈ 4j≤n h(Cof(j))).

Equivalently by Lemma 8, n ∈ H iff

∀z ∈ ∆1
1(z = 〈w, v, h〉 is adequate ∧

∀j ≤ n(Cof(j) ∈ dom(<w)⇒ n ∈ 4j≤n h(Cof(j))).

Lemma 9. V ∈ Σ1
1 and H ∈ ∆1

1. Moreover, V 6= ∅ and H ∈ [ω]ω.

Proof. By Kleene’s restricted quantification theorem (see for example [8, Theorem
4D.3]), V ∈ Σ1

1. (Note: if the construction stops below ωCK
1 , then V is actually ∆1

1

but we will not need that fact.) Similarly, the first definition of H is Π1
1 and the

second definition is Σ1
1. Therefore, H ∈ [ω]ω is ∆1

1. We show that V 6= ∅.
Suppose towards a contradiction that V = ∅. Then for every x ∈ ωω there is an

α < ωCK
1 and a k ∈ ω such that for zα = 〈wα, vα, hα〉, we have k ∈ dom(<wα) and
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x 6∈ Dωω

vα(k). For k ∈ dom(<wα), denote by yα(k) the code for the set removed at
that stage. By assumption,

ωω =
⋃

α<ωCK
1

⋃
k∈dom(<wα )

Dωω

yα(k).

Since H ⊆∗ Dω
hα(k) for every k ∈ dom(<wα),

lim sup
n∈H

An ⊆ lim sup
n∈Dω

hα(k)

An.

In particular for every k ∈ dom(<wα),

Dωω

yα(k) ∩ lim sup
n∈H

An ⊆ Dωω

yα(k) ∩ lim sup
n∈Dω

hα(k)

An.

Hence,

lim sup
n∈H

An =
⋃

α<ωCK
1

⋃
k∈dom(<wα )

Dωω

yα(k) ∩ lim sup
n∈H

An

⊆
⋃

α<ωCK
1

⋃
k∈dom(<wα )

Dωω

yα(k) ∩ lim sup
n∈Dω

hα(k)

An

meets only countably many E-equivalence classes, a contradiction. Thus, V 6=
∅. �

We now verify that the pair (V,H) is indeed completely good. In the proof of the
next lemma we use the following observation. Let z = 〈w, v, h〉 be an adequate real.
If m <w n, then m,n ∈ P and ϕ(m) < ϕ(n). This is the case, because whenever
〈y, k〉 is a bad pair such that k ⊆∗ h(n), also k ⊆∗ h(m), since h(n) ⊆∗ h(m).

Lemma 10. If X ⊆ V is a nonempty Σ1
1 set and K ∈ [H]ω a ∆1

1 set, then
X ∩ lim supn∈K An meets uncountably many E-classes.

Proof. SupposeX∩lim supn∈K An meets only countably many E-equivalence classes,
i.e. X ∩ lim supn∈K An ∩W = ∅. By Σ1

1-separation, there is a ∆1
1 set Y ⊆ ωω such

that X ⊆ Y and Y ∩ lim supn∈K An ∩W = ∅. Let y, k be a code for Y,K, respec-
tively. Clearly, 〈y, k〉 is a bad pair.

First, suppose the construction halted at stage α < ωCK
1 . Let z = 〈w, v, h〉 be

the unique α-adequate real. The construction stops only if there does not exists
a next bad pair which we have not picked already. Since 〈y, k〉 is a bad pair such
that k ⊆∗ h(n) for every n ∈ dom(<wα), there must be an n ∈ dom(<wα) such
that n = 〈y, k〉, i.e. we picked 〈y, k〉 at that stage (otherwise, we can extend the
construction by picking it now). But then Dωω

v(n)∩D
ωω

y = ∅, which implies V ∩Y = ∅
and so V ∩X = ∅.

Second, suppose the construction continued all the way up to ωCK
1 . Then there

exists an α < ωCK
1 such that α > ϕ(〈y, k〉). Let z = 〈w, v, h〉 be α-adequate. By

the observation above, the pair 〈y, k〉 was considered, hence n ∈ dom(<wα) such
that n = 〈y, k〉. Again, this implies V ∩X = ∅. �

This finishes the proof of Proposition 5. We now derive a further refinement. A
second key element of Harrington’s proof is that E is meager on W ×W , when W
is given the (subspace) Gandy–Harrington topology τGH. This is the topology on
ωω generated by the Σ1

1 sets. Although ωω with the Gandy–Harrington topology
is not metrizable, it is strong Choquet and this enables one to redo the familiar
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construction of a perfect set of inequivalent elements, using a winning strategy for
the second player. While this approach would also work in our case, we will use the
set Xlow of low elements instead. This makes the construction in the proof of the
main theorem more transparent, at the cost of some technicalities which we now
summarize.

Let Xlow = {x ∈ ωω : ωCK(x)
1 = ωCK

1 }. We will use the following facts about W ,
Xlow, and τGH:

(1) W and Xlow are both nonempty Σ1
1 sets,

(2) Xlow is dense in τGH and (Xlow, τGH) is a Polish space, and
(3) a nonempty Σ1

1 set A ⊆ ωω meets uncountably many E-equivalence classes
iff A ∩W 6= ∅ iff A ∩W ∩Xlow 6= ∅.

Proofs of these facts can be found in [2].

Proposition 11. Let E be a Π1
1 equivalence relation on ωω and (An)n∈ω a se-

quence of uniformly Σ1
1 subsets of ωω. If lim supn∈K An meets uncountably many

E-equivalence classes for every K ∈ [ω]ω, then there exists a completely good pair
(V,H) such that V is a Polish space in the Gandy–Harrington topology τGH and E
is meager on V × V (with the product topology τGH × τGH).

Proof. Let (V,H) be the completely good pair given by Proposition 5. Using the
facts stated above, it is easy to see that (V ∩W ∩ Xlow, H) is a completely good
pair with the required additional properties. �

5. Proof of the main theorem

We now prove an effective version of Theorem 1. By the usual relativization and
transfer arguments, this implies our main result.

Theorem 12. Let E be a Π1
1 equivalence relation on ωω and (An)n∈ω a sequence

of uniformly Σ1
1 subsets of ωω. If lim supn∈K An meets uncountably many E-

equivalence classes for every K ∈ [ω]ω, then there exists a K ∈ [ω]ω such that⋂
n∈K An contains a perfect set of pairwise E-inequivalent elements.

Proof. Let (V,H) be the completely good pair given by Proposition 11. Since E is
meager on V × V in the Gandy-Harrington topology τGH, we can fix an increasing
sequence (Fn)n∈ω of τGH-closed nowhere dense sets such that E ⊆

⋃
n∈ω Fn. We

may assume that the diagonal {(x, x) : x ∈ V } is contained in F0. We will recur-
sively define a strictly increasing sequence j0 < j1 < · · · of natural numbers and a
Cantor scheme (Xs)s∈2<ω of nonempty Σ1

1 subsets of V such that for all s, t ∈ 2<ω,
(1) Xsa0, Xsa1 ⊆ Xs, Xsa0 ∩Xsa1 = ∅, and diam(Xs) ≤ 2− lh(s),
(2) if s 6= t ∈ 2n+1, then Xs ×Xt ∩ Fn = ∅, and
(3) if s ∈ 2n, then Xs ⊆ Aj0 ∩ · · · ∩Ajn .

Note that in (1), the closures and diameter are relative to (V, τGH). Once this
construction is completed, let K = {j0, j1, . . . } and

P =
⋃
σ∈2ω

⋂
n∈ω

Xσ�n.

It is easy to see that P ⊆
⋂
n∈K An is nonempty perfect set of pairwise E-

inequivalent elements.
Without loss of generality we may assume that A0 = ωω. Start the construction

with j0 = 0 and X∅ = ωω. Suppose we have defined natural numbers j0 < · · · < jn
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and nonempty Σ1
1 sets Xs ⊆ Aj0 ∩ · · · ∩ Ajn for s ∈ 2n satisfying the requirements

above. By intersecting with sufficiently small basic open neigbhorhoods, we can
split each Xs into disjoint nonempty Σ1

1 sets Xsa0 and Xsa1 satisfying requirement
(1). Since Fn is closed nowhere dense, given any pair s 6= t ∈ 2n+1 we can shrink
Xs and Xt so that Xs×Xt∩Fn = ∅. After finitely many iterations, we have defined
Xs for s ∈ 2n+1 satisfying requirements (1) and (2).

Claim. There is an j > jn such that Xs ∩Aj 6= ∅ for all s ∈ 2n+1.

Proof. Suppose towards a contradiction that for every j > jn there is an s ∈ 2n+1

such that Xs ∩ Aj = ∅. Define a binary relation R ⊆ ω × 2n+1 by R(j, s) ⇔
Xs ∩ Aj = ∅. Since R is Π1

1, there is a ∆1
1 uniformizing function f : ω → 2n+1. By

the pigeonhole principle, there is an s ∈ 2n+1 such that {j ∈ ω : f(j) = s} ∩H is
infinite. Pick such an s ∈ 2n+1. Then K = {j ∈ ω : j ∈ H and f(j) = s} is ∆1

1,
K ∈ [H]ω, and Xs ∩

⋃
n∈K An = ∅. This implies that Xs ∩ lim supn∈K An = ∅,

contradicting the fact that (V,H) is a completely good pair. �

To complete this step in the construction, let jn+1 = j and intersect each Xs

with Ajn+1 . This finishes the proof of Theorem 12. �

The following parametric version of the Laczkovich–Komjáth property was also
considered by Balcerzak and G la̧b.

Definition. An equivalence relation E on a Polish space Y has the parametric
Laczkovich–Komjáth property if for every uncountable Polish space X and every
sequence (An)n∈ω of analytic subsets of X × Y , if lim supn∈K An(x) meets un-
countably many E-equivalence classes for every x ∈ X and K ∈ [ω]ω, then there
exists a K ∈ [ω]ω and a perfect set P ⊆ X such that

⋂
n∈K An(x) meets perfectly

many E-equivalence classes for each x ∈ P .

Theorem 13 (Balcerzak–G la̧b [1]). If E has the Laczkovich–Komjáth property and
for every analytic set A ⊆ X ×X, the set

{x ∈ X : Ax meets uncountably many E-equivalence classes}
is analytic, then E has the parametric Lackovich–Komjáth property. �

Proposition 14. Every coanalytic equivalence relation on a Polish space has the
parametric Laczkovic–Komjáth property.

Proof. Let E be a coanalytic equivalence relation on a Polish space X and A ⊆
X × X an analytic subset. Without loss of generality we may assume E is a Π1

1

equivalence relation on X = ωω and A ⊆ ωω × ωω is Σ1
1. Since A is Σ1

1, each
section Ax is Σ1

1 as well. Hence, Ax meets uncountably many E-equivalence classes
iff Ax ∩W 6= ∅. Thus,

{x ∈ ωω : Ax meets uncountably many E-equivalence classes}
is Σ1

1. Hence, E has the parametric Laczkovich–Komjáth property by Theorem 1
and Theorem 13. �
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