On the standard L-function for $\mathrm{GSp}_{2 n} \times \mathrm{GL}_{1}$ and algebraicity of symmetric fourth L-values for GL_{2}

Ameya Pitale ${ }^{1} \cdot$ Abhishek Saha 2 (D) \cdot Ralf Schmidt ${ }^{3}$

Received: 21 February 2020 / Accepted: 6 April 2020
© The Author(s) 2020

Abstract

We prove an explicit integral representation-involving the pullback of a suitable Siegel Eisenstein series-for the twisted standard L-function associated to a holomorphic vectorvalued Siegel cusp form of degree n and arbitrary level. In contrast to all previously proved pullback formulas in this situation, our formula involves only scalar-valued functions despite being applicable to L-functions of vector-valued Siegel cusp forms. The key new ingredient in our method is a novel choice of local vectors at the archimedean place which allows us to exactly compute the archimedean local integral. By specializing our integral representation to the case $n=2$ we are able to prove a reciprocity law-predicted by Deligne's conjecturefor the critical values of the twisted standard L-function for vector-valued Siegel cusp forms of degree 2 and arbitrary level. This arithmetic application generalizes previously proved critical-value results for the full level case. By specializing further to the case of Siegel cusp forms obtained via the Ramakrishnan-Shahidi lift, we obtain a reciprocity law for the critical values of the symmetric fourth L-function of a classical newform.

Keywords Automorphic representation • Doubling method • Eisenstein series • L-function • Pullback formula • Siegel modular form • Special values

Mathematics Subject Classification Primary 11F67; Secondary 11F46 • 11F70

Abstract

Résumé Nous prouvons une représentation intégrale explicite - faisant intervenir le pullback d'une forme modulaire vectorielle de Siegel holomorphe cuspidale de degré n et de niveau arbitraire. Contrairement à toutes les formules de pullback prouvées précédemment dans cette situation, clé de notre méthode est un choix novateur de vecteurs locaux à la place archimédienne, qui nous permet de calculer exactement l'intégrale locale archimédienne. En spécialisant notre représentation intégrale au cas $n=2$ nous sommes en mesure de prouver une loi de réciprocité - prédite par la conjecture de Deligne - pour les valeurs critiques de la fonction L standard

Abhishek Saha abhishek.saha@qmul.ac.uk Extended author information available on the last page of the article

 série de Siegel-Eisenstein appropriée - pour la fonction L standard tordue associée à une notre formule ne fait intervenir que des fonctions à valeurs scalaires, bien qu'étant applicable aux fonctions L de formes modulaires vectorielles de Siegel cuspidales. Le nouvel ingrédienttordue pour les formes modulaires vectorielles de Siegel cuspidales de degré 2 et de niveauarbitraire. Cette application arithmétique généralise certains résultats de valeurs critiques prouvés précédemment dans le cas du niveau 1. En spécialisant de plus au cas des formes modulaires de Siegel cuspidales obtenues par le relèvement de Ramakrishnan-Shahidi, nous obtenons une loi de réciprocité pour les valeurs critiques de la fonction L du quatrième produit symétrique pour une forme primitive ("newform") classique.

Contents

1 Introduction
1.1 Critical L-values
1.2 Integral representations for $\mathrm{GSp}_{2 n} \times \mathrm{GL}_{1}$ and the pullback formula
1.3 The choice of archimedean vectors and our main formula
1.4 Nearly holomorphic modular forms and arithmeticity

2 Preliminaries
2.1 Basic notations and definitions
2.2 Some coset decompositions

3 Eisenstein series and zeta integrals
3.1 Degenerate principal series representations
3.2 Local zeta integrals
3.3 The basic identity

4 The local integral at finite places
4.1 Unramified places
4.2 Ramified places

5 The local integral at a real place
5.1 Holomorphic discrete series representations
5.2 Calculating the integral

The scalar minimal K-type case
Calculation of $B_{\lambda}(s)$ for general Harish-Chandra parameter
6 The global integral representation
6.1 The main result
6.2 A classical reformulation
6.3 Near holomorphy and rationality of Eisenstein series

7 Critical L-values for $\mathrm{GSp}_{4} \times \mathrm{GL}_{1}$
7.1 Preliminaries
7.2 Arithmeticity
7.3 The main result on critical L-values
7.4 Symmetric fourth L-function of GL_{2}

A Haar measures on $\mathrm{Sp}_{2 n}(\mathbb{R})$
A. 1 The $K A K$ measure
A. 2 The Iwasawa measure

References

1 Introduction

1.1 Critical L-values

The critical values of L-functions attached to cohomological cuspidal automorphic representations of algebraic groups are objects of deep arithmetic significance. In particular, it is expected that these values are algebraic numbers up to multiplication by suitable automorphic periods. This is closely related to a famous conjecture of Deligne [12] on the algebraicity of critical values of motivic L-functions up to suitable periods (however, it is often a non-trivial problem to relate the automorphic periods to Deligne's motivic periods).

The simplest case of algebraicity of critical L-values is the (classical) fact that $\frac{\zeta(2 n)}{\pi^{2 n}}$ is a rational number for all positive integers n (the Riemann zeta function $\zeta(s)$ being the L -
function associated to the trivial automorphic representation of GL_{1}). In the case of GL_{2}, Shimura [51-54] and Manin [34] were the first to study the arithmetic of critical L-values. For higher rank groups, initial steps were taken by Harris [21] and Sturm [60] in 1981, who considered automorphic representations of $\mathrm{GSp}_{2 n} \times \mathrm{GL}_{1}$ whose finite part is unramified and whose infinity type is a holomorphic discrete series representation with scalar minimal K-type. Since then, there has been considerable work in this area and algebraicity results for L-values of automorphic representations on various algebraic groups have been proved; the general problem, however, remains very far from being resolved.

In this paper we revisit the case of the standard L-function on $\mathrm{GSp}_{2 n} \times \mathrm{GL}_{1}$. As mentioned earlier, this is the first case outside GL_{2} that was successfully tackled, with the (independent) results of Harris and Sturm back in 1981. However, the automorphic representations considered therein were very special and corresponded, from the classical point of view, to scalar-valued Siegel cusp forms of full level. Subsequent works on the critical L-values of Siegel cusp forms by Böcherer [4], Mizumoto [35], Shimura [58], Böcherer-Schmidt [7], Kozima [31], Bouganis [9] and others strengthened and extended these results in several directions. Nonetheless, a proof of algebraicity of critical L-values for holomorphic forms on $\mathrm{GSp}_{2 n} \times \mathrm{GL}_{1}$ in full generality has not yet been achieved, even for $n=2$.

We prove the following result for $n=2$, which applies to representations whose finite part is arbitrary and whose archimedean part can be (almost) any holomorphic discrete series. ${ }^{1}$
Theorem 1.1 Let $k_{1} \geq k_{2} \geq 3, k_{1} \equiv k_{2}(\bmod 2)$ be integers. For each cuspidal automorphic representation π on $\mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with π_{∞} isomorphic to the holomorphic discrete series representation with highest weight $\left(k_{1}, k_{2}\right)$, there exists a real number $C(\pi)$ with the following properties.
(i) $C(\pi)=C\left(\pi^{\prime}\right)$ whenever π and π^{\prime} are nearly equivalent.
(ii) $C(\pi)=C(\pi \otimes(\psi \circ \mu))$ for any Dirichlet character ψ. Here $\mu: \mathrm{GSp}_{4} \rightarrow \mathrm{GL}_{1}$ denotes the standard multiplier map.
(iii) Let χ be a Dirichlet character satisfying $\chi(-1)=(-1)^{k_{2}}$ and r be an integer such that $1 \leq r \leq k_{2}-2, r \equiv k_{2}(\bmod 2)$. Furthermore, if $\chi^{2}=1$, we assume that $r \neq 1$. Then, for any finite subset S of places of \mathbb{Q} including the archimedean place, and any $\sigma \in \operatorname{Aut}(\mathbb{C})$, we have

$$
\begin{equation*}
\sigma\left(\frac{L^{S}\left(r, \pi \boxtimes \chi, \varrho_{5}\right)}{(2 \pi i)^{3 r} G(\chi)^{3} C(\pi)}\right)=\frac{L^{S}\left(r,{ }^{\sigma} \pi \boxtimes{ }^{\sigma} \chi, \varrho_{5}\right)}{(2 \pi i)^{3 r} G\left({ }^{\sigma} \chi\right)^{3} C\left({ }^{\sigma} \pi\right)}, \tag{1}
\end{equation*}
$$

and therefore in particular

$$
\frac{L^{S}\left(r, \pi \boxtimes \chi, \varrho_{5}\right)}{(2 \pi i)^{3 r} G(\chi)^{3} C(\pi)} \in \mathbb{Q}(\pi, \chi) .
$$

Above, $G(\chi)$ denotes the Gauss sum, $L^{S}\left(s, \pi \boxtimes \chi, \varrho_{5}\right)$ denotes the degree $5 L$-function (after omitting the local factors in S) associated to the representation $\pi \boxtimes \chi$ of $\mathrm{GSp}_{4} \times$ GL_{1}, and $\mathbb{Q}(\pi, \chi)$ denotes the $(C M)$ field generated by χ and the field of rationality for π.
Before going further, we make a few remarks pertaining to the statement above.
Remark 1.2 Note that we can take $S=\{\infty\}$, which gives an algebraicity result for the full finite part of the global L-function. This is an important point because some previous works on this topic $[7,55,58]$ either omit the bad local L-factors, impose some extra conditions on them, or define these bad factors in an ad-hoc manner.

[^0]Remark 1.3 Our proofs show that $C(\pi)=\pi^{2 k_{1}}\langle F, F\rangle$ where F equals a certain nearly holomorphic modular form of scalar weight k_{1}. Alternatively one can take $C(\pi)=$ $\pi^{k_{1}+k_{2}}\left\langle F_{0}, F_{0}\right\rangle$ where F_{0} equals a certain holomorphic vector-valued modular form of weight $\operatorname{det}^{k_{2}} \operatorname{sym}^{k_{1}-k_{2}}$.

Remark 1.4 Observe that the L-function $L\left(s, \pi \boxtimes \chi, \varrho_{5}\right)$ considered above is not equal to the L-function $L\left(s, \pi \otimes(\chi \circ \mu), \varrho_{5}\right)$. In fact, $L\left(s, \pi \boxtimes \chi, \varrho_{5}\right)$ cannot be obtained as the L-function of an automorphic representation on $\operatorname{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$, unless χ is trivial.

Classically, Theorem 1.1 applies to vector-valued holomorphic Siegel cusp forms of weight $\operatorname{det}^{k_{2}} \operatorname{sym}^{k_{1}-k_{2}}$ with respect to an arbitrary congruence subgroup of $\operatorname{Sp}_{4}(\mathbb{Q})$. The only previously known result for critical L-values of holomorphic Siegel cusp forms in the vector-valued case ($k_{1}>k_{2}$) is due to Kozima [31]. Kozima's result only applies to full-level Siegel cusp forms, omits some low-weight cases, and also only deals with the case $\chi=1$. In contrast, our theorem, which relies on an adelic machinery to separate out the difficulties place by place, is more general, especially in that it applies to arbitrary congruence subgroups.

We present an application of Theorem 1.1 to critical values of the symmetric fourth L function of elliptic newforms twisted by odd Dirichlet characters.

Theorem 1.5 Let $k \geq 2$ be even. For each cuspidal, non-dihedral, automorphic representation η on $\mathrm{PGL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with η_{∞} isomorphic to the holomorphic discrete series representation of lowest weight k, there exists a real number $C(\eta)$ with the following properties.
(i) $C(\eta)=C(\eta \otimes \psi)$ for any quadratic Dirichlet character ψ.
(ii) Let χ be an odd Dirichlet character and r be an odd integer such that $1 \leq r \leq k-1$. Furthermore, if $\chi^{2}=1$, we assume that $r \neq 1$. Then, for any finite subset S of places of \mathbb{Q} that includes the archimedean place, and any $\sigma \in \operatorname{Aut}(\mathbb{C})$, we have

$$
\begin{equation*}
\sigma\left(\frac{L^{S}\left(r, \chi \otimes \operatorname{sym}^{4} \eta\right)}{(2 \pi i)^{3 r} G(\chi)^{3} C(\eta)}\right)=\frac{L^{S}\left(r,{ }^{\sigma} \chi \otimes \operatorname{sym}^{4}\left({ }^{\sigma} \eta\right)\right)}{(2 \pi i)^{3 r} G\left({ }^{\sigma} \chi\right)^{3} C\left({ }^{\sigma} \eta\right)} . \tag{2}
\end{equation*}
$$

Our proof of Theorem 1.5 relies on a result of Ramakrishnan and Shahidi [43] which states that given an elliptic cuspidal newform of even weight and trivial nebentypus, there exists a holomorphic vector-valued Siegel cusp form of genus 2 such that the degree 5 standard L-function of the Siegel modular form is equal to the symmetric fourth L-function of the elliptic newform. This allows us to derive Theorem 1.5 from Theorem 1.1. One of the reasons to prove Theorem 1.1 with no restrictions on the non-archimedean components is the incomplete information regarding the congruence subgroup associated to the Siegel modular form in [43].

Theorem 1.1 follows from an explicit integral representation (Theorem 1.6 below) for the standard L-function $L\left(s, \pi \boxtimes \chi, \varrho_{2 n+1}\right)$ on $\mathrm{GSp}_{2 n} \times \mathrm{GL}_{1}$, which may be viewed as the main technical achievement of this paper. While Theorem 1.6 is formally similar to the well-known pullback formula (or doubling method) mechanism, what distinguishes it from previous works is the generality of the setup and the fact that all constants are completely explicit. We remark here that Theorem 1.6 applies to any n; we restrict to $n=2$ only in Sect. 7 of this paper, where we prove Theorem 1.1.

In the rest of this introduction we will explain our approach to some of the points mentioned above.

1.2 Integral representations for $\mathrm{GSp}_{2 n} \times \mathrm{GL}_{1}$ and the pullback formula

The first integral representation for the standard (degree $2 n+1$) L-function for automorphic representations of $\mathrm{GSp}_{2 n} \times \mathrm{GL}_{1}$ was discovered by Andrianov and Kalinin [1] in 1978. The integral representation of Andrianov-Kalinin applied to holomorphic scalar-valued Siegel cusp forms of even degree n with respect to $\Gamma_{0}(N)$ type congruence subgroups, and involved a certain theta series. The results of Harris [21] and Sturm [60] mentioned earlier relied on this integral representation.

A remarkable new integral representation, commonly referred to as the pullback formula, was discovered in the early 1980s by Garrett [17] and involved pullbacks of Eisenstein series. Roughly speaking, the pullback formula in the simplest form says that

$$
\int_{\mathrm{p}_{2 n}(\mathbb{Z}) \backslash \mathbb{H}_{n}} F\left(-\overline{Z_{1}}\right) E_{k}\left(\left[\begin{array}{ll}
Z_{1} & \tag{3}\\
& Z_{2}
\end{array}\right], s\right) d Z_{1} \approx L\left(2 s+k-n, \pi, \varrho_{2 n+1}\right) F\left(Z_{2}\right),
$$

where F is a Siegel cusp form of degree n and full level that is an eigenform for all the Hecke operators, $E_{k}(Z, s)$ is an Eisenstein series of degree $2 n$ and full level (which becomes a holomorphic Siegel modular form of weight k when $s=0), L\left(s, \pi, \varrho_{2 n+1}\right)$ denotes the degree $2 n+1 L$-function for π, and the symbol \approx indicates that we are ignoring some unimportant factors. The pullback formula was applied by Böcherer [4] to prove various results about the functional equation and algebraicity of critical L-values that went well beyond what had been possible by the Andrianov-Kalinin formula. Subsequently, Shimura generalized the pullback formula to a wide variety of contexts (including other groups). We refer to Shimura's books [57,58] for further details.

In the last two decades, the pullback formula has been used to prove a host of results related to the arithmetic and analytic properties of L-functions associated to Siegel cusp forms. However, most of these results involve various kinds of restrictions. To get the most general results possible, it is necessary to extend (3) to (a) incorporate characters, (b) include Siegel cusp forms with respect to arbitrary congruence subgroups, and (c) cover the case of vector-valued Siegel cusp forms. While the first two of these objectives have to a large extent been achieved for scalar-valued Siegel cusp forms, the situation with vector-valued forms is quite different. Following the important work of Böcherer-Satoh-Yamazaki [6], there have been a few results about vector-valued forms by Takei [63], Takayanagi [61,62], Kozima [31,32], and others. However, all these works are valid only for full level Siegel cusp forms and involve strong restrictions on the archimedean type. ${ }^{2}$

On the other hand, Piatetski-Shapiro and Rallis [19,38] discovered a very general identity (the doubling method) on classical groups. When the group is $\mathrm{Sp}_{2 n}$, this is essentially a generalized, adelic version of the pullback formula described above. ${ }^{3}$ However, PiatetskiShapiro and Rallis computed the relevant local integrals only at the unramified places (where they chose the vectors to be the unramified vector). Thus, to get a more explicit integral representation in the general case, it is necessary to make specific choices of vectors at the ramified and archimedean primes such that one can exactly evaluate all the associated local integrals. So far, this has been carried out in very few situations.

In this paper, we begin by reproving the basic identity of Piatetski-Shapiro and Rallis in a somewhat different manner that is more convenient for our purposes. Let π be a cuspidal automorphic representation of $\operatorname{GSp}_{2 n}(\mathbb{A})$ and χ a Hecke character. Our central object of

[^1]investigation is the global integral
\[

$$
\begin{equation*}
Z(s ; f, \phi)(g)=\int_{\mathrm{Sp}_{2 n}(F) \backslash g \cdot \mathrm{Sp}_{2 n}(\mathbb{A})} E^{\chi}((h, g), s, f) \phi(h) d h . \tag{4}
\end{equation*}
$$

\]

Here, $E^{\chi}(-, s, f)$ is an Eisenstein series on $\operatorname{GSp}_{4 n}(\mathbb{A})$ associated to a choice of section $f \in I(\chi, s)$, the pair (h, g) represents an element of $\mathrm{GSp}_{4 n}(\mathbb{A})$ corresponding to the diagonal embedding of elements of $\mathrm{GSp}_{2 n}(\mathbb{A}) \times \mathrm{GSp}_{2 n}(\mathbb{A})$ with the same multiplier, and ϕ is an automorphic form in the space of π. The integral (4) represents a meromorphic function of s on all of \mathbb{C} due to the analytic properties of the Eisenstein series. As we will prove, away from any poles, the function $g \mapsto Z(s ; f, \phi)(g)$ is again an automorphic form in the space of π.

Next, assume that $\phi=\otimes_{v} \phi_{v}$ and $f=\otimes_{v} f_{v}$ are factorizable. We define, for each place v, local zeta integrals

$$
\begin{equation*}
Z_{v}\left(s ; f_{v}, \phi_{v}\right):=\int_{\mathrm{Sp}_{2 n}\left(F_{v}\right)} f_{v}\left(Q_{n} \cdot(h, 1), s\right) \pi_{v}(h) \phi_{v} d h, \tag{5}
\end{equation*}
$$

where Q_{n} is a certain explicit matrix in $\mathrm{GSp}_{4 n}(\mathbb{A})$. It turns out (see Proposition 3.2) that $Z_{v}\left(s ; f_{v}, \phi_{v}\right)$ converges to an element in the space of π_{v} for real part of s large enough.

Our "Basic Identity" (Theorem 3.6) asserts that the automorphic form $Z(s ; f, \phi)$ corresponds to the pure tensor $\otimes_{v} Z_{v}\left(s ; f_{v}, \phi_{v}\right)$. Now assume that, for all v, the vectors ϕ_{v} and the sections f_{v} can be chosen in such a way that $Z_{v}\left(s, f_{v}, \phi_{v}\right)=c_{v}(s) \phi_{v}$ for an explicitly computable function $c_{v}(s)$. Then we obtain a global integral representation

$$
\begin{equation*}
Z(s ; f, \phi)(g)=\left(\prod_{v} c_{v}(s)\right) \phi \tag{6}
\end{equation*}
$$

In this way the Euler product $\prod_{v} c_{v}(s)$, convergent for $\operatorname{Re}(s)$ large enough, inherits analytic properties from the left hand side of (6). If this Euler product, up to finitely many factors and up to "known" functions, represents an interesting L-function, one can thus derive various properties of said L-function.

Our main local task is therefore to choose the vectors ϕ_{v} and the sections f_{v} such that $Z_{v}\left(s, f_{v}, \phi_{v}\right)=c_{v}(s) \phi_{v}$ for an explicitly computable function $c_{v}(s)$. For a "good" non-archimedean place v we will make the obvious unramified choices. The unramified calculation, Proposition 4.1, then shows that

$$
\begin{equation*}
c_{v}(s)=\frac{L\left((2 n+1) s+1 / 2, \pi_{v} \boxtimes \chi_{v}, \varrho_{2 n+1}\right)}{L\left((2 n+1)(s+1 / 2), \chi_{v}\right) \prod_{i=1}^{n} L\left((2 n+1)(2 s+1)-2 i, \chi_{v}^{2}\right)} . \tag{7}
\end{equation*}
$$

If v is non-archimedean and some of the data is ramified, it is possible to choose ϕ_{v} and f_{v} such that $c_{v}(s)$ is a non-zero constant function; see Proposition 4.3. The idea is to choose ϕ_{v} to be invariant under a small enough principal congruence subgroup, and make the support of f_{v} small enough. This idea was inspired by [36].

1.3 The choice of archimedean vectors and our main formula

We now explain our choice of ϕ_{v} and f_{v} at a real place v, which represents one of the main new ideas of this paper. We only treat the case of π_{v} being a holomorphic discrete series representation, since this is sufficient for our application to Siegel modular forms. Assume
first that π_{v} has scalar minimal K-type of weight k, i.e., π_{v} occurs as the archimedean component attached to a classical Siegel cusp form of weight k. Then it is natural to take for ϕ_{v} a vector of weight k (spanning the minimal K-type of π_{v}), and for f_{v} a vector of weight k in $I\left(\chi_{v}, s\right)$. Both ϕ_{v} and f_{v} are unique up to scalars. The local integral in this case is calculated in Proposition 5.5 and turns out to be an exponential times a rational function. The calculation is made possible by the fact that we have a simple formula for the matrix coefficient of ϕ_{v}; see (68).

Now assume that π_{v} is a holomorphic discrete series representation with more general minimal K-type $\rho_{\left(k_{1}, \ldots, k_{n}\right)}$, where $k_{1} \geq \cdots \geq k_{n}>n$; see Sect. 5 for notation. In this case we will not work with the minimal K-type, but with the scalar K-type $\rho_{(k, \ldots, k)}$, where $k:=k_{1}$. We will show in Lemma 5.3 that $\rho_{(k, \ldots, k)}$ occurs in π_{v} with multiplicity one. Let ϕ_{v} be the essentially unique vector spanning this K-type, and let f_{v} again be the vector of weight k in $I\left(\chi_{v}, s\right)$. The function $c_{v}(s)$ in this case is again an exponential times a rational function; see Proposition 5.8. We note that our calculation for general minimal K-type uses the result of the scalar case, so the scalar case cannot be subsumed in the more general case. One difficulty in the general case is that we do not know a formula for the matrix coefficient of ϕ_{v}, or in fact any matrix coefficient. Instead, we use a completely different method, realizing ϕ_{v} as a vector in an induced representation.

Our archimedean calculations require two different integral formulas, which are both expressions for the Haar measure on $\mathrm{Sp}_{2 n}(\mathbb{R})$. The first formula, used in the scalar minimal K-type case, is with respect to the $K A K$ decomposition; see (27). The second formula, used in the general case, is with respect to the Iwasawa decomposition; see (88). We will always normalize the Haar measure on $\mathrm{Sp}_{2 n}(\mathbb{R})$ in the "classical" way, characterized by the property (12). It is necessary for us to determine the precise constants relating the $K A K$ measure and the Iwasawa measure to the classical normalization. This will be carried out in Appendix A.

Finally, combining the archimedean and the non-archimedean calculations, we obtain an explicit formula for the right hand side of (6), which is our aforementioned pullback formula for L-functions on $\mathrm{GSp}_{2 n} \times \mathrm{GL}_{1}$. This is Theorem 6.1 in the main body of the paper; below we state a rough version of this theorem.

Theorem 1.6 Let $\pi \cong \otimes \pi_{p}$ be an irreducible cuspidal automorphic representation of $\mathrm{GSp}_{2 n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ such that π_{∞} is a holomorphic discrete series representation of highest weight $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$, where $k=k_{1} \geq \cdots \geq k_{n}>n$ and all k_{i} have the same parity. Let $\chi=\otimes \chi_{p}$ be a character of $\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}$such that $\chi_{\infty}=\operatorname{sgn}^{k}$. Then we have the identity

$$
\begin{aligned}
Z(s, f, \phi)(g) & =\frac{L^{S}\left((2 n+1) s+1 / 2, \pi \boxtimes \chi, \varrho_{2 n+1}\right)}{L^{S}((2 n+1)(s+1 / 2), \chi) \prod_{j=1}^{n} L^{S}\left((2 n+1)(2 s+1)-2 j, \chi^{2}\right)} \\
& \times i^{n k} \pi^{n(n+1) / 2} c((2 n+1) s-1 / 2) \phi(g),
\end{aligned}
$$

where $c(z)$ is an explicit function that takes non-zero rational values for integers z with $0 \leq z \leq k_{n}-n$ and where $L^{S}(\ldots)$ denotes the global L-functions without the local factors corresponding to a certain (explicit) finite set of places S.

The above formula can be reformulated in a classical language, which takes a similar form to (3) and involves functions $F(Z)$ and $E_{k, N}^{\chi}(Z, s)$ that correspond to ϕ and $E^{\chi}(-, s, f)$ respectively. In fact F and $E_{k, N}^{\chi}(-, s)$ are (scalar-valued) smooth modular forms of weight k (and degrees n and $2 n$ respectively) with respect to suitable congruence subgroups. We refer the reader to Theorem 6.4 for the full classical statement. In all previously proved classical pullback formulas [6,61,62] for $L(s, \pi \boxtimes \chi)$ with π_{∞} a general discrete series
representation, the analogues of F and $E_{k, N}^{\chi}(-, s)$ were vector-valued objects; in contrast, our formula involves only scalar-valued functions. This is a key point of the present work.

We hope that our pullback formula will be useful for arithmetic applications beyond what we pursue in this paper. A particularly fruitful direction might be towards congruence primes and the Bloch-Kato conjecture, extending work of Agarwal, Berger, Brown, Klosin, and others. Initial steps towards this application have already been made by us in [40] where we build upon the results of this paper, and prove p-integrality and cuspidality of pullbacks of the Eisenstein series $E_{k, N}^{\chi}(Z, s)$. It also seems worth mentioning here the recent work of Zheng Liu [33] who uses the doubling method for vector-valued Siegel modular forms and constructs a p-adic L-function.

1.4 Nearly holomorphic modular forms and arithmeticity

To obtain results about the algebraicity of critical L-values, we delve deeper into the arithmetic nature of the two smooth modular forms given above. The general arithmetic principle here is that whenever a smooth modular/automorphic form is holomorphic, or close to being holomorphic, it is likely to have useful arithmetic properties. In this case, if $0 \leq m_{0} \leq \frac{k-n-1}{2}$ is an integer, then Shimura has proved that $E_{k, N}^{\chi}\left(Z,-m_{0}\right)$ is a nearly holomorphic Siegel modular form (of degree $2 n$) with nice arithmetic properties.

The next step is to prove that the inner product of $F(Z)$ and $E_{k, N}^{\chi}\left(Z,-m_{0}\right)$ is $\operatorname{Aut}(\mathbb{C})$ equivariant. It is here that we are forced to assume $n=2$. In this case, our recent investigation of lowest weight modules [39] of $\mathrm{Sp}_{4}(\mathbb{R})$ and in particular the "structure theorem" proved therein allows us to define an $\operatorname{Aut}(\mathbb{C})$ equivariant isotypic projection map from the space of all nearly holomorphic modular forms to the subspace of cusp forms corresponding to a particular infinity-type. Once this is known, Theorem 1.1 follows by a standard linear algebra argument going back at least to Garrett [18].

It is worth contrasting our approach here with previously proved results on the critical L-values of holomorphic vector-valued Siegel cusp forms such as the result of Kozima [31] mentioned earlier. In Kozima's work, the modular forms involved in the integral representation are vector-valued and the cusp form holomorphic; ours involves two scalar-valued modular forms that are not holomorphic. Our approach allows us to incorporate everything smoothly into an adelic setup and exactly evaluate the archimedean integral. But the price we pay is that the arithmeticity of the automorphic forms is not automatic (as we cannot immediately appeal to the arithmetic geometry inherent in holomorphic modular forms). In particular, this is the reason we are forced to restrict ourselves to $n=2$ in the final section of this paper, where we prove Theorem 1.1. We expect that an analogue of the structure theorem for nearly holomorphic forms proved in [39] for $n=2$ should continue to hold for general n. This is the topic of ongoing work of the authors and will lead to an extension of Theorem 1.1 for any n.

2 Preliminaries

2.1 Basic notations and definitions

Let F be a totally real algebraic number field and \mathbb{A} the ring of adeles of F. For a positive integer n let $G_{2 n}$ be the algebraic F-group $\mathrm{GSp}_{2 n}$, whose F-points are given by

$$
G_{2 n}(F)=\left\{g \in \mathrm{GL}_{2 n}(F):{ }^{t} g J_{n} g=\mu_{n}(g) J_{n}, \mu_{n}(g) \in F^{\times}\right\}, \quad J_{n}=\left[\begin{array}{c}
I_{n} \\
-I_{n}
\end{array}\right]
$$

The symplectic group $\mathrm{Sp}_{2 n}$ consists of those elements $g \in G_{2 n}$ for which the multiplier $\mu_{n}(g)$ is 1 . Let $P_{2 n}$ be the Siegel parabolic subgroup of $G_{2 n}$, consisting of matrices whose lower left $n \times n$-block is zero. Let $\delta_{P_{2 n}}$ be the modulus character of $P_{2 n}(\mathbb{A})$. It is given by

$$
\delta_{P_{2 n}}\left(\left[\begin{array}{cc}
A & X \tag{8}\\
v^{\prime} A^{-1}
\end{array}\right]\right)=\left|v^{-\frac{n(n+1)}{2}} \operatorname{det}(A)^{n+1}\right|, \quad \text { where } A \in \mathrm{GL}_{n}(\mathbb{A}), v \in \mathrm{GL}_{1}(\mathbb{A}),
$$

and $|\cdot|$ denotes the global absolute value, normalized in the standard way.
Fix the following embedding of $H_{2 a, 2 b}:=\left\{\left(g, g^{\prime}\right) \in G_{2 a} \times G_{2 b}: \mu_{a}(g)=\mu_{b}\left(g^{\prime}\right)\right\}$ in $G_{2 a+2 b}$:

$$
H_{2 a, 2 b} \ni\left(\left[\begin{array}{lll}
A_{1} & B_{1} \tag{9}\\
C_{1} & D_{1}
\end{array}\right],\left[\begin{array}{lll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]\right) \longmapsto\left[\begin{array}{cccc}
A_{1} & & -B_{1} & \\
-C_{1} & & & B_{2} \\
-C_{1} & & D_{1} & \\
& C_{2} & & D_{2}
\end{array}\right] \in \mathrm{GSp}_{2 a+2 b} .
$$

We will also let $H_{2 a, 2 b}$ denote its image in $G_{2 a+2 b}$.
Let G be any reductive algebraic group defined over F. For a place v of F let $\left(\pi_{v}, V_{v}\right)$ be an admissible representation of $G\left(F_{v}\right)$. If v is non-archimedean, then this means that every vector in V_{v} is smooth, and that for every open-compact subgroup Γ of $G\left(F_{v}\right)$ the space of fixed vectors V_{v}^{Γ} is finite-dimensional. If v is archimedean, then it means that V_{v} is an admissible (\mathfrak{g}, K)-module, where \mathfrak{g} is the Lie algebra of $G\left(F_{v}\right)$ and K is a maximal compact subgroup of $G\left(F_{v}\right)$. We say that π_{v} is unitary if there exists a $G\left(F_{v}\right)$-invariant (non-archimedean case) resp. \mathfrak{g}-invariant (archimedean case) hermitian inner product on V_{v}. In this case, and assuming that π_{v} is irreducible, we can complete V_{v} to a unitary Hilbert space representation \bar{V}_{v}, which is unique up to unitary isomorphism. We can recover V_{v} as the subspace of \bar{V}_{v} consisting of smooth (non-archimedean case) resp. K-finite (archimedean case) vectors.

We define automorphic representations as in [8]. In particular, when we say "automorphic representation of $G(\mathbb{A})$ ", we understand that at the archimedean places we do not have actions of $G\left(F_{v}\right)$, but of the corresponding (\mathfrak{g}, K)-modules. All automorphic representations are assumed to be irreducible. Cuspidal automorphic representations are assumed to be unitary. Any such representation π is isomorphic to a restricted tensor product $\otimes \pi_{v}$, where π_{v} is an irreducible, admissible, unitary representation of $G\left(F_{v}\right)$.

For a place v of F, let $\sigma, \chi_{1}, \ldots, \chi_{n}$ be characters of $F_{v} \times$. We denote by $\chi_{1} \times \cdots \times \chi_{n} \rtimes \sigma$ the representation of $G_{2 n}\left(F_{v}\right)$ parabolically induced from the character

$$
\left[\begin{array}{cccccc}
a_{1} & \cdots & * & * & \cdots & * \tag{10}\\
& \ddots & \vdots & \vdots & & \vdots \\
& & a_{n} & * & \cdots & * \\
& & a_{0} a_{1}^{-1} & & \\
& & & \vdots & \ddots & \\
& & & * & \cdots & a_{0} a_{n}^{-1}
\end{array}\right] \longmapsto \chi_{1}\left(a_{1}\right) \cdots \cdots \chi_{n}\left(a_{n}\right) \sigma\left(a_{0}\right)
$$

of the standard Borel subgroup of $G_{2 n}\left(F_{v}\right)$. Restricting all functions in the standard model of this representation to $\mathrm{Sp}_{2 n}\left(F_{v}\right)$, we obtain a Borel-induced representation of $\mathrm{Sp}_{2 n}\left(F_{v}\right)$ which is denoted by $\chi_{1} \times \cdots \times \chi_{n} \rtimes 1$.

We also define parabolic induction from $P_{2 n}\left(F_{v}\right)$. Let χ and σ be characters of $F_{v}{ }^{\times}$. Then $\chi \rtimes \sigma$ is the representation of $G_{2 n}\left(F_{v}\right)$ parabolically induced from the character

$$
\left[\begin{array}{cc}
A & * \tag{11}\\
& u^{t} A^{-1}
\end{array}\right] \longmapsto \sigma(u) \chi(\operatorname{det}(A))
$$

of $P_{2 n}\left(F_{v}\right)$. The center of $G_{2 n}\left(F_{v}\right)$ acts on $\chi \rtimes \sigma$ via the character $\chi^{n} \sigma^{2}$. Restricting the functions in the standard model of $\chi \rtimes \sigma$ to $\mathrm{Sp}_{2 n}\left(F_{v}\right)$, we obtain the Siegel-induced representation of $\mathrm{Sp}_{2 n}\left(F_{v}\right)$ denoted by $\chi \rtimes 1$.

We fix a Haar measure on $\mathrm{Sp}_{2 n}(\mathbb{R})$, as follows. Let \mathbb{H}_{n} be the Siegel upper half space of degree n, consisting of all complex, symmetric $n \times n$ matrices $X+i Y$ with X, Y real and Y positive definite. The group $\mathrm{Sp}_{2 n}(\mathbb{R})$ acts transitively on \mathbb{H}_{n} in the usual way. The stabilizer of the point $I:=i 1_{n} \in \mathbb{H}_{n}$ is the maximal compact subgroup $K=\operatorname{Sp}_{2 n}(\mathbb{R}) \cap \mathrm{O}(2 n) \cong U(n)$. We transfer the classical $\mathrm{Sp}_{2 n}(\mathbb{R})$-invariant measure on \mathbb{H}_{n} to a left-invariant measure on $\mathrm{Sp}_{2 n}(\mathbb{R}) / K$. We also fix a Haar measure on K so that K has volume 1 . The measures on $\mathrm{Sp}_{2 n}(\mathbb{R}) / K$ and K define a unique Haar measure on $\mathrm{Sp}_{2 n}(\mathbb{R})$. Let F be a measurable function on $\mathrm{Sp}_{2 n}(\mathbb{R})$ that is right K-invariant. Let f be the corresponding function on \mathbb{H}_{n}, i.e., $F(g)=f(g I)$. Then, by these definitions,

$$
\begin{equation*}
\int_{\mathrm{Sp}_{2 n}(\mathbb{R})} F(h) d h=\int_{\mathbb{H}_{n}} f(Z) \operatorname{det}(Y)^{-(n+1)} d X d Y . \tag{12}
\end{equation*}
$$

We shall always use the Haar measure on $\mathrm{Sp}_{2 n}(\mathbb{R})$ characterized by the property (12).
Haar measures on $\mathrm{Sp}_{2 n}(F)$, where F is a non-archimedean field with ring of integers \mathfrak{o}, will be fixed by requiring that the open-compact subgroup $\mathrm{Sp}_{2 n}(\mathfrak{o})$ has volume 1. The Haar measure on an adelic group $\mathrm{Sp}_{2 n}(\mathbb{A})$ will always be taken to be the product measure of all the local measures.

2.2 Some coset decompositions

For $0 \leq r \leq n$, let $\alpha_{r} \in \operatorname{Sp}_{4 n}(\mathbb{Q})$ be the matrix

$$
\alpha_{r}=\left[\begin{array}{cccc}
I_{n} & 0 & 0 & 0 \tag{13}\\
0 & I_{n} & 0 & 0 \\
0 & \widetilde{I}_{r} & I_{n} & 0 \\
\widetilde{I}_{r} & 0 & 0 & I_{n}
\end{array}\right]
$$

where the $n \times n$ matrix \tilde{I}_{r} is given by $\tilde{I}_{r}=\left[\begin{array}{ccc}0_{n-r} & 0 \\ 0 & I_{r}\end{array}\right]$.
Proposition 2.1 We have the double coset decomposition

$$
G_{4 n}(F)=\bigsqcup_{r=0}^{n} P_{4 n}(F) \alpha_{r} H_{2 n, 2 n}(F)
$$

Proof This follows from Shimura [57, Prop. 2.4].
For our purposes, it is nicer to work with the coset representatives $Q_{r}:=\alpha_{r} \cdot\left(I_{4 n-2 r}, J_{r}\right)$ where $J_{r}=\left[\begin{array}{c}I_{r} \\ -I_{r}\end{array}\right]$. It is not hard to see that $\left(I_{4 n-2 r}, J_{r}\right) \in H_{4 n-2 r, 2 r}$ is actually an element of $H_{2 n, 2 n}$, so that

$$
P_{4 n}(F) \alpha_{r} H_{2 n, 2 n}(F)=P_{4 n}(F) Q_{r} H_{2 n, 2 n}(F) .
$$

One can write down the matrix Q_{r} explicitly as follows,

$$
Q_{r}=\left[\begin{array}{cccc}
I_{n} & 0 & 0 & 0 \tag{14}\\
0 & I_{n-r}^{\prime} & 0 & \widetilde{I}_{r} \\
0 & 0 & I_{n} & \widetilde{I}_{r} \\
\widetilde{I}_{r} & -\widetilde{I}_{r} & 0 & I_{n-r}^{\prime}
\end{array}\right],
$$

where $I_{n-r}^{\prime}=I_{n}-\tilde{I}_{r}=\left[\begin{array}{cc}I_{n-r} & 0 \\ 0 & 0\end{array}\right]$.

For $0 \leq r \leq n$, let $P_{2 n, r}$ be the maximal parabolic subgroup (proper if $r \neq n$) of $G_{2 n}$ consisting of matrices whose lower-left $(n+r) \times(n-r)$ block is zero. Its Levi component is isomorphic to $\mathrm{GL}_{n-r} \times G_{r}$. Note that $P_{2 n, 0}=P_{2 n}$ and $P_{2 n, n}=G_{2 n}$. Let $N_{2 n, r}$ denote the unipotent radical of $P_{2 n, r}$.

The next lemma expresses the reason why $\left\{Q_{r}\right\}$ is more convenient than $\left\{\alpha_{r}\right\}$ for the double coset representatives. Let $d: P_{4 n} \rightarrow \mathrm{GL}_{1}$ be the homomorphism defined by

$$
d(p)=v^{-n} \operatorname{det}(A)
$$

for $p=\left[\begin{array}{cc}A & v^{t} A^{-1}\end{array}\right] n^{\prime}$ with $v \in \mathrm{GL}_{1}, A \in \mathrm{GL}_{2 n}$ and $n^{\prime} \in N_{4 n, 0}$. Note that $\delta_{P_{4 n}}(p)=$ $|d(p)|^{2 n+1}$ for $p \in P_{4 n}(\mathbb{A})$.

Lemma 2.2 (i) Let $0 \leq r<n$ and suppose that

$$
p_{1}=\left[\begin{array}{cccc}
g_{1} & & & \\
& I_{r} & & \\
& & t_{1}^{-1} & \\
& & g_{1} & I_{r}
\end{array}\right] \cdot n_{1}, \quad p_{2}=\left[\begin{array}{cccc}
g_{2} & & & \\
& & I_{r} & \\
& & t_{-}^{-1} \\
& & & \\
& & I_{r}
\end{array}\right] \cdot n_{2}, \quad g_{1}, g_{2} \in \mathrm{GL}_{n-r}, \quad n_{1}, n_{2} \in N_{2 n, r}
$$

are certain elements of $P_{2 n, r}$. Then the matrix $X=Q_{r}\left(p_{1}, p_{2}\right) Q_{r}^{-1}$ lies in $P_{4 n}$ and satisfies $d(X)=\operatorname{det}\left(g_{1}\right) \operatorname{det}\left(g_{2}\right)$.
(ii) Let $0 \leq r<n$. Let $x_{1} \in \operatorname{Sp}_{2 r}$ and $x=\left(1, x_{1}\right) \in \operatorname{Sp}_{2 n}$. Then the matrix $X=$ $Q_{r}(x, x) Q_{r}^{-1}$ lies in $P_{4 n}$ and satisfies $d(X)=1$.
(iii) Let $g \in G_{2 n}$. Then the matrix $X=Q_{n}(g, g) Q_{n}^{-1}$ lies in $P_{4 n}$ and satisfies $d(X)=1$.

Proof This follows by direct verification.
Next we provide a set of coset representatives for $P_{4 n}(F) \backslash P_{4 n}(F) Q_{r} H_{2 n, 2 n}(F)$.
Proposition 2.3 For each $0 \leq r \leq n$, we have the coset decomposition

$$
P_{4 n}(F) Q_{r} H_{2 n, 2 n}(F)=\bigsqcup_{\substack{x=\left(1, x_{1}\right) \in \operatorname{SP}_{\mathrm{p}_{2 n}(F)}(F)}} \bigsqcup_{\substack{y \in P_{2 n, r}(F) \backslash G_{2 n}(F) \\ x_{1} \in \mathrm{~S}_{2 r}(F)}} P_{4 n}(F) \cdot Q_{r} \cdot(x y, z),
$$

where we choose the representatives y, z to be in $\mathrm{Sp}_{2 n}(F)$.
Proof This follows from Shimura [57, Prop. 2.7]. Note that the choice of representatives y and z is irrelevant by i) and ii) of Lemma 2.2.

3 Eisenstein series and zeta integrals

3.1 Degenerate principal series representations

Let χ be a character of $F^{\times} \backslash \mathbb{A}^{\times}$. We define a character on $P_{4 n}(\mathbb{A})$, also denoted by χ, by $\chi(p)=\chi(d(p))$. For a complex number s, let

$$
\begin{equation*}
I(\chi, s)=\operatorname{Ind}_{P_{4 n}(\mathbb{A})}^{G_{4 n}(\mathbb{A})}\left(\chi \delta_{P_{4 n}}^{s}\right) . \tag{15}
\end{equation*}
$$

Thus, $f(\cdot, s) \in I(\chi, s)$ is a smooth complex-valued function satisfying

$$
\begin{equation*}
f(p g, s)=\chi(p) \delta_{P_{4 n}}(p)^{s+\frac{1}{2}} f(g, s) \tag{16}
\end{equation*}
$$

for all $p \in P_{4 n}(\mathbb{A})$ and $g \in G_{4 n}(\mathbb{A})$. Note that these functions are invariant under the center of $G_{4 n}(\mathbb{A})$. Let $I_{v}\left(\chi_{v}, s\right)$ be the analogously defined local representation. Using the notation introduced in Sect. 2.1, we have

$$
\begin{equation*}
I_{v}\left(\chi_{v}, s\right)=\left.\chi_{v}|\cdot|\right|_{v} ^{(2 n+1) s} \rtimes \chi_{v}^{-n}|\cdot|_{v}^{-n(2 n+1) s} . \tag{17}
\end{equation*}
$$

We have $I(\chi, s) \cong \otimes I_{v}\left(\chi_{v}, s\right)$ in a natural way. Given $f \in I(\chi, s)$, it follows from iii) of Lemma 2.2 that, for all $h \in \operatorname{Sp}_{2 n}(\mathbb{A})$,

$$
\begin{equation*}
f\left(Q_{n} \cdot(g h, g), s\right)=f\left(Q_{n} \cdot(h, 1), s\right) \quad \text { for } g \in G_{2 n}(\mathbb{A}) \tag{18}
\end{equation*}
$$

We will mostly use this observation in the following form. Let $f_{v} \in I_{v}\left(\chi_{v}, s\right)$ and K a maximal compact subgroup of $\operatorname{Sp}_{2 n}\left(F_{v}\right)$. Then

$$
\begin{equation*}
f_{v}\left(Q_{n} \cdot\left(k_{1} h k_{2}, 1\right), s\right)=f_{v}\left(Q_{n} \cdot(h, 1)\left(k_{2}, k_{1}^{-1}\right), s\right) \quad \text { for } k_{1}, k_{2} \in K \tag{19}
\end{equation*}
$$

and all $h \in \operatorname{Sp}_{2 n}\left(F_{v}\right)$.
In preparation for the next result, and for the unramified calculation in Sect. 4, we recall some facts concerning the unramified Hecke algebra at a non-archimedean place v of F. We fix a uniformizer ϖ of F_{v}. Let $K=\operatorname{Sp}_{2 n}\left(\mathfrak{o}_{v}\right)$. Recall the Cartan decomposition

$$
\begin{equation*}
\operatorname{Sp}_{2 n}(F)=\bigsqcup_{\substack{e_{1}, \ldots, e_{n} \in \mathbb{Z} \\ 0 \leq e_{1} \leq \cdots \leq e_{n}}} K_{e_{1}, \ldots, e_{n}} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{e_{1}, \ldots, e_{n}}=K \operatorname{diag}\left(\varpi^{e_{1}}, \ldots, \varpi^{e_{n}}, \varpi^{-e_{1}}, \ldots, \varpi^{-e_{n}}\right) K . \tag{21}
\end{equation*}
$$

Consider the spherical Hecke algebra \mathcal{H}_{n} consisting of left and right K-invariant compactly supported functions on $\mathrm{Sp}_{2 n}(F)$. The structure of this Hecke algebra is described by the Satake isomorphism

$$
\begin{equation*}
\mathcal{S}: \mathcal{H}_{n} \longrightarrow \mathbb{C}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]^{W} \tag{22}
\end{equation*}
$$

where the superscript W indicates polynomials that are invariant under the action of the Weyl group of $\mathrm{Sp}_{2 n}$. Let $T_{e_{1}, \ldots, e_{n}}$ be the characteristic function of the set $K_{e_{1}, \ldots, e_{n}}$ defined in (21). Then $T_{e_{1}, \ldots, e_{n}}$ is an element of the Hecke algebra \mathcal{H}_{n}. The values $\mathcal{S}\left(T_{e_{1}, \ldots, e_{n}}\right)$ are encoded in the rationality theorem

$$
\begin{equation*}
\sum_{\substack{e_{1}, \ldots, e_{n} \in \mathbb{Z} \\ 0 \leq e_{1} \leq \cdots \leq e_{n}}} \mathcal{S}\left(T_{e_{1}, \ldots, e_{n}}\right) Y^{e_{1}+\cdots+e_{n}}=\frac{1-Y}{1-q^{n} Y} \prod_{i=1}^{n} \frac{1-q^{2 i} Y^{2}}{\left(1-X_{i} q^{n} Y\right)\left(1-X_{i}^{-1} q^{n} Y\right)} \tag{23}
\end{equation*}
$$

This identity of formal power series is the main result of [5].
Let $\chi_{1}, \ldots, \chi_{n}$ be unramified characters of F_{v}^{\times}. Let π be the unramified constituent of $\chi_{1} \times \cdots \times \chi_{n} \rtimes 1$. The numbers $\alpha_{i}=\chi_{i}(\varpi), i=1, \ldots, n$, are called the Satake parameters of π. Let v_{0} be a spherical vector in π. It is unique up to scalars. Hence, if we act on v_{0} by an element T of \mathcal{H}_{n}, we obtain a multiple of v_{0}. This multiple is given by evaluating $\mathcal{S T}$ at the Satake parameters, i.e.,

$$
\begin{equation*}
\int_{\operatorname{Sp}_{2 n}(F)} T(x) \pi(x) v_{0} d x=(\mathcal{S} T)\left(\alpha_{1}, \ldots, \alpha_{n}\right) v_{0} . \tag{24}
\end{equation*}
$$

Now assume that v is a real place. Let $K=\operatorname{Sp}_{2 n}(\mathbb{R}) \cap \mathrm{O}(2 n) \cong U(n)$ be the standard maximal compact subgroup of $\mathrm{Sp}_{2 n}(\mathbb{R})$. Let \mathfrak{g} be the Lie algebra of $\mathrm{Sp}_{2 n}(\mathbb{R})$, and let \mathfrak{a} be the
subalgebra consisting of diagonal matrices. Let Σ be the set of restricted roots with respect to \mathfrak{a}. If e_{i} is the linear map sending $\operatorname{diag}\left(a_{1}, \ldots, a_{n},-a_{1}, \ldots,-a_{n}\right)$ to a_{i}, then Σ consists of all $\pm\left(e_{i}-e_{j}\right)$ for $1 \leq i<j \leq n$ and $\pm\left(e_{i}+e_{j}\right)$ for $1 \leq i \leq j \leq n$. As a positive system we choose

$$
\begin{equation*}
\Sigma^{+}=\left\{e_{j}-e_{i}: 1 \leq i<j \leq n\right\} \cup\left\{-e_{i}-e_{j}: 1 \leq i \leq j \leq n\right\} \tag{25}
\end{equation*}
$$

(what is more often called a negative system). Then the positive Weyl chamber is

$$
\begin{equation*}
\mathfrak{a}^{+}=\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{n},-a_{1}, \ldots,-a_{n}\right): a_{1}<\cdots<a_{n}<0\right\} . \tag{26}
\end{equation*}
$$

By Proposition 5.28 of [29], or Theorem 5.8 in Sect. I. 5 of [24], we have the integration formula

$$
\begin{equation*}
\int_{\operatorname{Sp}_{2 n}(\mathbb{R})} \phi(h) d h=\alpha_{n} \int_{K} \int_{\mathfrak{a}^{+}} \int_{K}\left(\prod_{\lambda \in \Sigma^{+}} \sinh (\lambda(H))\right) \phi\left(k_{1} \exp (H) k_{2}\right) d k_{1} d H d k_{2}, \tag{27}
\end{equation*}
$$

which we will use for continuous, non-negative functions ϕ on $\operatorname{Sp}_{2 n}(\mathbb{R})$. The measure $d H$ in (27) is the Lebesgue measure on $\mathfrak{a}^{+} \subset \mathbb{R}^{n}$. The positive constant α_{n} relates the Haar measure given by the integration on the right hand side to the Haar measure $d h$ on $\mathrm{Sp}_{2 n}(\mathbb{R})$ we fixed once and for all by (12). We will calculate α_{n} explicitly in Appendix A.

3.2 Local zeta integrals

Lemma 3.1 (i) Let v be any place of F and let $f_{v} \in I_{v}\left(\chi_{v}, s\right)$. Then, for $\operatorname{Re}(s)$ large enough, the function on $\mathrm{Sp}_{2 n}\left(F_{v}\right)$ defined by $h \mapsto f_{v}\left(Q_{n} \cdot(h, 1), s\right)$ is in $L^{1}\left(\mathrm{Sp}_{2 n}\left(F_{v}\right)\right)$.
(ii) Let $f \in I(\chi, s)$. Then, for $\operatorname{Re}(s)$ large enough, the function on $\mathrm{Sp}_{2 n}(\mathbb{A})$ defined by $h \mapsto f\left(Q_{n} \cdot(h, 1), s\right)$ is in $L^{1}\left(\operatorname{Sp}_{2 n}(\mathbb{A})\right)$.
Proof Since ii) follows from i) by definition of the adelic measure, we only have to prove the local statement. To ease notation, we will omit all subindices v. Define a function $f^{\prime}(g, s)$ by

$$
\begin{equation*}
f^{\prime}(g, s)=\int_{K} \int_{K}\left|f\left(g\left(k_{2}, k_{1}^{-1}\right), s\right)\right| d k_{1} d k_{2}, \quad g \in G_{4 n}(F) . \tag{28}
\end{equation*}
$$

From (16), we see that

$$
\begin{equation*}
f^{\prime}(p g, s)=\left|\chi(p) \delta_{P_{4 n}}(p)^{s+\frac{1}{2}}\right| f^{\prime}(g, s) \tag{29}
\end{equation*}
$$

for all $p \in P_{4 n}(F)$ and $g \in G_{4 n}(F)$. Equation (19) implies that

$$
\begin{equation*}
\int_{\mathrm{Sp}_{2 n}(F)}\left|f\left(Q_{n} \cdot(h, 1), s\right)\right| d h=\int_{\mathrm{S}_{2 n}(F)}\left|f^{\prime}\left(Q_{n} \cdot(h, 1), s\right)\right| d h . \tag{30}
\end{equation*}
$$

Now assume that v is a non-archimedean place. It follows from (20) that

$$
\begin{align*}
& \int_{\operatorname{SP}_{2_{2 n}}(F)}\left|f^{\prime}\left(Q_{n} \cdot(h, 1), s\right)\right| d h=\sum_{\substack{e_{1}, \ldots, e_{n} \in \mathbb{Z} \\
0 \leq e_{1} \leq \cdots \leq e_{n}}} \int K_{e_{1}, \ldots, e_{n}}\left|f^{\prime}\left(Q_{n} \cdot(h, 1), s\right)\right| d h \\
& \quad=\sum_{\substack{e_{1}, \ldots, e_{n} \in \mathbb{Z} \\
0 \leq e_{1} \leq \cdots \leq e_{n}}} \operatorname{vol}\left(K_{e_{1}, \ldots, e_{n}}\right)\left|f^{\prime}\left(Q_{n} \cdot\left(\operatorname{diag}\left(\varpi^{e_{1}}, \ldots, \varpi^{e_{n}}, \varpi^{-e_{1}}, \ldots, \varpi^{-e_{n}}\right), 1\right), s\right)\right| . \tag{31}
\end{align*}
$$

From (29), we find

$$
\begin{align*}
& f^{\prime}\left(Q_{n} \cdot\left(\operatorname{diag}\left(\varpi^{e_{1}}, \ldots, \varpi^{e_{n}}, \varpi^{-e_{1}}, \ldots, \varpi^{-e_{n}}\right), 1\right), s\right) \\
& \quad=\left(|\chi(\varpi)| q^{-(2 n+1)(\operatorname{Re}(s)+1 / 2)}\right)^{e_{1}+\cdots+e_{n}} f^{\prime}\left(\left[\begin{array}{ccc}
I_{n} & & \\
& I_{n} & \\
A & A & I_{n} \\
A & & I_{n}
\end{array}\right]\left[\begin{array}{ccc}
I_{n} & & \\
& & I_{n} \\
& -I_{n} & \\
& I_{n}
\end{array}\right], s\right) \tag{32}
\end{align*}
$$

with $A=\operatorname{diag}\left(\varpi^{e_{1}}, \ldots, \varpi^{e_{n}}\right)$. By smoothness, the term $f^{\prime}(\ldots)$ in the second line of (32) takes only finitely many values, and can therefore be estimated by a constant C independent of e_{1}, \ldots, e_{n}. Thus

$$
\begin{equation*}
\int_{\substack{\operatorname{Sp}_{2 n}(F)}}\left|f^{\prime}\left(Q_{n} \cdot(h, 1), s\right)\right| d h \leq C \sum_{\substack{e_{1}, \ldots, e_{n} \in \mathbb{Z} \\ 0 \leq e_{1} \leq \cdots \leq e_{n}}} \operatorname{vol}\left(K_{e_{1}, \ldots, e_{n}}\right) c(s)^{e_{1}+\cdots+e_{n}} \tag{33}
\end{equation*}
$$

where $c(s)=|\chi(\varpi)| q^{-(2 n+1)(\operatorname{Re}(s)+1 / 2)}$. Consider the trivial representation $1_{\mathrm{Sp}_{2 n}(F)}$ of $\mathrm{Sp}_{2 n}(F)$. Since it is a subrepresentation of $|\cdot|^{-n} \times \cdots \times|\cdot|^{-1}$, its Satake parameters are $\alpha_{i}=q^{i}$ for $i=1, \ldots, n$. Let v_{0} be a spanning vector of $1_{\mathrm{Sp}_{2 n}(F)}$. Then $T_{e_{1}, \ldots, e_{n}} v_{0}=\operatorname{vol}\left(K_{e_{1}, \ldots, e_{n}}\right) v_{0}$. By (24) it follows that $\operatorname{vol}\left(K_{e_{1}, \ldots, e_{n}}\right)=\mathcal{S}\left(T_{e_{1}, \ldots, e_{n}}\right)\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where $\alpha_{i}=q^{i}$. Substituting $\alpha_{i}=q^{i}$ into (23), we get

$$
\begin{equation*}
\sum_{0 \leq e_{1} \leq \cdots \leq e_{n}} \operatorname{vol}\left(K_{e_{1}, \ldots, e_{n}}\right) Y^{e_{1}+\cdots+e_{n}}=\frac{1-Y}{1-q^{n} Y} \prod_{i=1}^{n} \frac{1+q^{i} Y}{1-q^{n+i} Y}, \tag{34}
\end{equation*}
$$

an identity of formal power series in Y. We see that (33) is convergent if $c(s)$ is sufficiently small, i.e., if $\operatorname{Re}(s)$ is sufficiently large.

Next assume that v is a real place. By (27), (19) and (30),

$$
\begin{equation*}
\int_{\operatorname{Sp}_{2 n}(\mathbb{R})}\left|f\left(Q_{n} \cdot(h, 1), s\right)\right| d h=\alpha_{n} \int_{\mathfrak{a}^{+}}\left(\prod_{\lambda \in \Sigma^{+}} \sinh (\lambda(H))\right)\left|f^{\prime}\left(Q_{n} \cdot(\exp (H), 1), s\right)\right| d H . \tag{35}
\end{equation*}
$$

It follows from (29) that, with $|\chi|=|\cdot|^{d}$ and $H=\operatorname{diag}\left(a_{1}, \ldots, a_{n},-a_{1}, \ldots,-a_{n}\right)$,

$$
f^{\prime}\left(Q_{n} \cdot(\exp (H), 1), s\right)=\left(e^{d+(2 n+1)(\operatorname{Re}(s)+1 / 2)}\right)^{a_{1}+\cdots+a_{n}} f^{\prime}\left(\left[\begin{array}{ccc}
I_{n} & & \tag{36}\\
& I_{n} & \\
& A & I_{n} \\
A & & I_{n}
\end{array}\right]\left[\begin{array}{ccc}
I_{n} & & \\
& & I_{n} \\
& -I_{n} & I_{n}
\end{array}\right], s\right)
$$

with $A=\operatorname{diag}\left(e^{a_{1}}, \ldots, e^{a_{n}}\right)$. Since the a_{i} 's are negative, the term $f^{\prime}(\ldots)$ on the right hand side can be estimated by a constant C. Hence

$$
\begin{equation*}
\int_{\mathrm{SP}_{2 n}(\mathbb{R})}\left|f\left(Q_{n} \cdot(h, 1), s\right)\right| d h \leq \alpha_{n} C \int_{\mathfrak{a}^{+}}\left(\prod_{\lambda \in \Sigma^{+}} \sinh (\lambda(H))\right) c(s)^{a_{1}+\cdots+a_{n}} d H, \tag{37}
\end{equation*}
$$

where $c(s)=e^{d+(2 n+1)(\operatorname{Re}(s)+1 / 2)}$. Writing out the expressions for $\sinh (\lambda(H))$, it is easy to see that the integral on the right converges for real part of s large enough.
Proposition 3.2 Let χ be a character of $F^{\times} \backslash \mathbb{A}^{\times}$.
(i) For a place v of F let $f_{v} \in I_{v}\left(\chi_{v}, s\right)$. Let $\left(\pi_{v}, V_{v}\right)$ be an admissible, unitary representation of $\mathrm{Sp}_{2 n}\left(F_{v}\right)$. If $\operatorname{Re}(s)$ is sufficiently large, then the integral

$$
\begin{equation*}
Z_{v}\left(s ; f_{v}, w_{v}\right):=\int_{\mathrm{Sp}_{2 n}\left(F_{v}\right)} f_{v}\left(Q_{n} \cdot(h, 1), s\right) \pi_{v}(h) w_{v} d h \tag{38}
\end{equation*}
$$

converges absolutely to an element of \bar{V}_{v}, for any w_{v} in the Hilbert space completion \bar{V}_{v}. If w_{v} is in V_{v}, then so is $Z_{v}\left(s ; f_{v}, w_{v}\right)$.
(ii) Let $\pi \cong \otimes \pi_{v}$ be a cuspidal, automorphic representation of $G_{2 n}(\mathbb{A})$. Let V be the space of automorphic forms on which π acts. If $\operatorname{Re}(s)$ is sufficiently large, then the function

$$
\begin{equation*}
g \longmapsto \int_{\operatorname{Sp}_{2 n}(\mathbb{A})} f\left(Q_{n} \cdot(h, 1), s\right) \phi(g h) d h \tag{39}
\end{equation*}
$$

is an element of V, for every $\phi \in V$. If $f=\otimes f_{v}$ with $f_{v} \in I_{v}\left(\chi_{v}, s\right)$, and if ϕ corresponds to the pure tensor $\otimes w_{v}$, then the function (39) corresponds to the pure tensor $\otimes Z_{v}\left(s ; f_{v}, w_{v}\right)$.

Proof (i) The absolute convergence follows from Lemma 3.1 i). The second assertion can be verified in a straightforward way using (19).
(ii) Lemma 3.1 ii) implies that the integral

$$
\begin{equation*}
\int_{\mathrm{SP}_{2 n}(\mathbb{A})} f\left(Q_{n} \cdot(h, 1), s\right)(R(h) \phi) d h, \tag{40}
\end{equation*}
$$

where R denotes right translation, converges absolutely to an element in the Hilbert space completion \bar{V} of V. With the same argument as in the local case we see that this element has the required smoothness properties that make it an automorphic form, thus putting it into V. Evaluating at g, we obtain the first assertion. The second assertion follows by applying a unitary isomorphism $\pi \cong \otimes \pi_{v}$ to (40).

3.3 The basic identity

Let $I(\chi, s)$ be as in (15), and let $f(\cdot, s)$ be a section whose restriction to the standard maximal compact subgroup of $G_{4 n}(\mathbb{A})$ is independent of s. Consider the Eisenstein series on $G_{4 n}(\mathbb{A})$ which, for $\operatorname{Re}(s)>\frac{1}{2}$, is given by the absolutely convergent series

$$
\begin{equation*}
E(\mathbf{g}, s, f)=\sum_{\gamma \in P_{4 n}(F) \backslash G_{4 n}(F)} f(\gamma \mathbf{g}, s), \tag{41}
\end{equation*}
$$

and defined by analytic continuation outside this region. Let π be a cuspidal automorphic representation of $G_{2 n}(\mathbb{A})$. Let V_{π} be the space of cuspidal automorphic forms realizing π. For any automorphic form ϕ in V_{π} and any $s \in \mathbb{C}$ define a function $Z(s ; f, \phi)$ on $G_{2 n}(F) \backslash G_{2 n}(\mathbb{A})$ by

$$
\begin{equation*}
Z(s ; f, \phi)(g)=\int_{\operatorname{Sp}_{2_{n}}(F) \backslash g \cdot \operatorname{Sp}_{2_{2 n}(\mathbb{A})}} E((h, g), s, f) \phi(h) d h . \tag{42}
\end{equation*}
$$

Remark 3.3 Note that $g \cdot \operatorname{Sp}_{2 n}(\mathbb{A})=\left\{h \in G_{2 n}(\mathbb{A}): \mu_{n}(h)=\mu_{n}(g)\right\}$.
Remark 3.4 $E(g, s, f)$ is slowly increasing away from its poles and ϕ is rapidly decreasing. So $Z(s ; f, \phi)(g)$ converges absolutely for $s \in \mathbb{C}$ away from the poles of the Eisenstein series and defines an automorphic form on $G_{2 n}$. We will see soon that $Z(s ; f, \phi)$ in fact belongs to V_{π}.

Using Propositions 2.1 and 2.3, we conclude that $Z(s ; f, \phi)(g)=\sum_{r=0}^{n} Z_{r}(s ; f, \phi)(g)$, where
$Z_{r}(s ; f, \phi)(g)=\int_{\operatorname{Sp}_{2 n}(F) \backslash g \cdot \operatorname{Sp}_{2_{2 n}(\mathbb{A})}} \sum_{\substack{x=\left(1, x_{1}\right) \in \mathrm{Sp}_{2 n}(F) \\ x_{1} \in \mathrm{Sp}_{2 r}(F)}} \sum_{\substack{ \\z \in P_{2 n, r}(F) \backslash G_{2 n}(F) \\ z \in P_{2 n, r}(F) \backslash G_{2 n}(F)}} f\left(Q_{r} \cdot(x y h, z g), s\right) \phi(h) d h$.
Proposition 3.5 Let $0 \leq r<n$. Then $Z_{r}(s ; f, \phi)(g)=0$.
Proof Let $N_{2 n, r}$ be the unipotent radical of the maximal parabolic subgroup $P_{2 n, r}$. Let $P_{2 n, r}^{\prime}=$ $P_{2 n, r} \cap \mathrm{Sp}_{2 n}$. Then

$$
\begin{aligned}
& Z_{r}(s ; f, \phi)(g)=\int_{\substack{\mathrm{Sp}_{2 n}(F) \backslash g \cdot \mathrm{Sp}_{2 n}(\mathbb{A})}} \sum_{\substack{x=\left(1, x_{1}\right) \in \mathrm{S}_{2 n}(F) \\
x_{1} \in \mathrm{SP}_{2 r}(F)}} \sum_{\substack{y \in P_{2 n}^{\prime}, r \\
z \in P_{2 n, r}(F) \backslash \mathrm{S}_{2 n}(F)}} f\left(Q_{r} \cdot(x y h, z g), s\right) \phi(h) d h \\
& =\int_{P_{2 n, r}^{\prime}(F) \backslash g \cdot \operatorname{Sp}_{2_{2 n}(\mathbb{A})}} \sum_{\substack{x=\left(1, x_{1}\right) \in \mathrm{Sp}_{2 n}(F) \\
x_{1} \in \mathrm{~S}_{2 r}(F)}} \sum_{z \in P_{2 n, r}(F) \backslash G_{2 n}(F)} f\left(Q_{r} \cdot(x h, z g), s\right) \phi(h) d h \\
& =\int_{N_{2 n, r}(\mathbb{A})\left(P_{2 n, r}^{\prime}(F) \backslash g \cdot S_{P_{2 n}}(\mathbb{A})\right.} \int_{N_{2 n, r}(F) \backslash N_{2 n, r}(\mathbb{A})} \sum_{x, z} f\left(Q_{r} \cdot(x n h, z g), s\right) \phi(n h) d n d h .
\end{aligned}
$$

Since the element x normalizes $N_{2 n, r}(\mathbb{A})$ and $N_{2 n, r}(F)$, we can commute x and n. Then n can be omitted by i) of Lemma 2.2. Hence
$Z_{r}(s ; f, \phi)(g)=\int_{N_{2 n, r}(\mathbb{A}) P_{2 n, r}^{\prime}(F) \backslash g \cdot \operatorname{Sp}_{2 n}(\mathbb{A})} \int_{N_{2 n, r}(F) \backslash N_{2 n, r}(\mathbb{A})}\left(\sum_{x, z} f\left(Q_{r} \cdot(x h, z g), s\right)\right) \phi(n h) d n d h$,
and the cuspidality of ϕ implies that this is zero.
For the following theorem, which is the main result of this section, recall the local integrals defined in (38).

Theorem 3.6 (Basic identity) Let $\phi \in V_{\pi}$ be a cusp form which corresponds to a pure tensor $\otimes_{v} \phi_{v}$ via the isomorphism $\pi \cong \otimes \pi_{v}$. Assume that $f \in I(\chi, s)$ factors as $\otimes f_{v}$ with $f_{v} \in I\left(\chi_{v}, s\right)$. Let the function $Z(s ; f, \phi)$ on $G_{2 n}(F) \backslash G_{2 n}(\mathbb{A})$ be defined as in (42). Then $Z(s ; f, \phi)$ also belongs to V_{π} and corresponds to the pure tensor $\otimes_{v} Z_{v}\left(s ; f_{v}, \phi_{v}\right)$.

Proof By Proposition 3.5, we have that $Z(s ; f, \phi)(g)=Z_{n}(s ; f, \phi)(g)$. But

$$
\begin{aligned}
Z_{n}(s ; f, \phi)(g) & =\int_{\operatorname{Sp}_{2 n}(F) \backslash g \cdot \operatorname{Sp}_{2 n}(\mathbb{A})} \sum_{x \in \operatorname{Sp}_{2 n}(F)} f\left(Q_{n} \cdot(x h, g), s\right) \phi(h) d h \\
& =\int_{g \cdot \operatorname{Sp}_{2 n}(\mathbb{A})} f\left(Q_{n} \cdot(h, g), s\right) \phi(h) d h \\
& =\int_{\operatorname{Sp}_{2 n}(\mathbb{A})} f\left(Q_{n} \cdot(h, 1), s\right) \phi(g h) d h,
\end{aligned}
$$

where the last step follows from (18). The theorem now follows from Proposition 3.2.
Our goal will be to choose, at all places, the vectors ϕ_{v} and the sections f_{v} in such a way that $Z_{v}\left(s, f_{v}, \phi_{v}\right)=c_{v}(s) \phi_{v}$ for an explicitly computable function $c_{v}(s)$.

4 The local integral at finite places

In this section we define suitable local sections and calculate the local integrals (38) for all finite places v. We will drop the subscript v throughout. Hence, let F be a non-archimedean local field of characteristic zero. Let \mathfrak{o} be its ring of integers, ω a uniformizer, and $\mathfrak{p}=\varpi \mathfrak{o}$ the maximal ideal.

4.1 Unramified places

We begin with the unramified case. Let χ be an unramified character of F^{\times}, and let π be a spherical representation of $G_{2 n}(F)$. Let $f \in I(\chi, s)$ be the normalized unramified vector, i.e., $f: G_{4 n} \rightarrow \mathbb{C}$ is given by

$$
f\left(\left[\begin{array}{cc}
A & * \tag{43}\\
u^{\prime} A^{-1}
\end{array}\right] k\right)=\chi\left(u^{-n} \operatorname{det}(A)\right)\left|u^{-n} \operatorname{det}(A)\right|^{(2 n+1)(s+1 / 2)}
$$

for $A \in \mathrm{GL}_{2 n}(F), u \in F^{\times}$and $k \in G_{4 n}(\mathfrak{o})$. Let v_{0} be a spherical vector in π. We wish to calculate the local integral

$$
\begin{equation*}
Z\left(s ; f, v_{0}\right)=\int_{\mathrm{Sp}_{2 n}(F)} f\left(Q_{n} \cdot(h, 1), s\right) \pi(h) v_{0} d h . \tag{44}
\end{equation*}
$$

Let $\sigma, \chi_{1}, \ldots, \chi_{n}$ be unramified characters of F^{\times}such that π is the unique spherical constituent of $\chi_{1} \times \cdots \times \chi_{n} \rtimes \sigma$. Let $\alpha_{i}=\chi_{i}(\varpi), i=1, \ldots, n$, and $\alpha_{0}=\sigma(\varpi)$ be the Satake parameters of π. The dual group of $\mathrm{GSp}_{2 n} \times \mathrm{GL}_{1}$ is $\mathrm{GSpin}_{2 n+1}(\mathbb{C}) \times \mathrm{GL}_{1}(\mathbb{C})$. There is a natural map $\varrho_{2 n+1}: \operatorname{GSpin}_{2 n+1}(\mathbb{C}) \rightarrow \mathrm{SO}_{2 n+1}(\mathbb{C}) \rightarrow \mathrm{GL}_{2 n+1}(\mathbb{C})$. Consequently we get a tensor product map from $\operatorname{GSpin}_{2 n+1}(\mathbb{C}) \times \mathrm{GL}_{1}(\mathbb{C})$ into $\mathrm{GL}_{2 n+1}(\mathbb{C})$ which we denote also by $\varrho_{2 n+1}$. The L-function $L\left(s, \pi \boxtimes \chi, \varrho_{2 n+1}\right)$ is then given as follows,

$$
\begin{equation*}
L\left(s, \pi \boxtimes \chi, \varrho_{2 n+1}\right)=\frac{1}{1-\chi(\varpi) q^{-s}} \prod_{i=1}^{n} \frac{1}{\left(1-\chi(\varpi) \alpha_{i} q^{-s}\right)\left(1-\chi(\varpi) \alpha_{i}^{-1} q^{-s}\right)} . \tag{45}
\end{equation*}
$$

We also define $L(s, \chi)=\left(1-\chi(\varpi) q^{-s}\right)^{-1}$, as usual.
Proposition 4.1 Using the above notations and hypotheses, the local integral (44) is given by

$$
Z\left(s ; f, v_{0}\right)=\frac{L\left((2 n+1) s+1 / 2, \pi \boxtimes \chi, \varrho_{2 n+1}\right)}{L((2 n+1)(s+1 / 2), \chi) \prod_{i=1}^{n} L\left((2 n+1)(2 s+1)-2 i, \chi^{2}\right)} v_{0}
$$

for real part of s large enough.
Proof The calculation is similar to that in the proof of Lemma 3.1. By (20), (19) and (32),

$$
\begin{aligned}
Z\left(s ; f, v_{0}\right) & \left.=\sum_{\substack{e_{1}, \ldots, e_{n} \in \mathbb{Z} \\
0 \leq e_{1} \leq \cdots \leq e_{n}}} f\left(Q_{n} \cdot \operatorname{diag}\left(\varpi^{e_{1}}, \ldots, \varpi^{e_{n}}, \varpi^{-e_{1}}, \ldots, \varpi^{-e_{n}}\right), 1\right), s\right) \int_{K_{e_{1}}, \ldots, e_{n}} \pi(h) v_{0} d h \\
& =\sum_{\substack{e_{1}, \ldots, e_{n} \in \mathbb{Z} \\
0 \leq e_{1} \leq \cdots \leq e_{n}}}\left(\chi(\varpi) q^{-(2 n+1)(s+1 / 2)}\right)^{e_{1}+\cdots+e_{n}} T_{e_{1}, \ldots, e_{n}} v_{0},
\end{aligned}
$$

where $T_{e_{1}, \ldots, e_{n}} v_{0}$ is the Hecke operator introduced in Sect. 3.2. The restriction of $\pi \operatorname{to~}_{2 n}(F)$ equals the spherical constituent of $\chi_{1} \times \cdots \times \chi_{n} \rtimes 1$, which has Satake parameters $\alpha_{i}=\chi_{i}(\varpi)$. The assertion now follows from (24) and (23).

4.2 Ramified places

Now we deal with the ramified places. For a non-negative integer m, let $\Gamma_{2 n}\left(\mathfrak{p}^{m}\right)=\{g \in$ $\left.\mathrm{Sp}_{2 n}(\mathfrak{o}): g \equiv I_{2 n} \bmod \mathfrak{p}^{m}\right\}$.

Lemma 4.2 Let m be a positive integer. Let $p \in P_{4 n}(F)$ and $h \in \operatorname{Sp}_{2 n}(F)$ be such that $Q_{n}^{-1} p Q_{n}(h, 1) \in \Gamma_{4 n}\left(\mathfrak{p}^{m}\right)$. Then $h \in \Gamma_{2 n}\left(\mathfrak{p}^{m}\right)$ and $p \in P_{4 n}(F) \cap \Gamma_{4 n}\left(\mathfrak{p}^{m}\right)$.

Proof Since Q_{n} normalizes $\Gamma_{4 n}\left(\mathfrak{p}^{m}\right)$, the hypothesis is equivalent to $p Q_{n}(h, 1) Q_{n}^{-1} \in$ $\Gamma_{4 n}\left(\mathfrak{p}^{m}\right)$. Write $p=\left[\begin{array}{c}* * \\ g\end{array}\right]$ with $g=\left[\begin{array}{lll}g_{1} & g_{2} \\ g_{3} & g_{4}\end{array}\right] \in \mathrm{GL}_{2 n}(F)$ and $h=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$. Then

$$
\left[\begin{array}{ccc}
* * & * & * \tag{46}\\
* * & * & * \\
g_{1} & g_{2} \\
g_{3} & g_{4}
\end{array}\right]\left[\begin{array}{ccc}
A & & -B \\
-C & I_{n}-D & D \\
A-I_{n} & B & -B
\end{array}\right] \in I_{4 n}\left(\mathfrak{p}^{m}\right)
$$

From the last two rows and last three columns we get

$$
\begin{array}{ll}
g_{1}\left(I_{n}-D\right)+g_{2} B \in M_{n}\left(\mathfrak{p}^{m}\right), & g_{1} D-g_{2} B \in I_{n}+M_{n}\left(\mathfrak{p}^{m}\right), \quad g_{2} \in M_{n}\left(\mathfrak{p}^{m}\right), \\
g_{3}\left(I_{n}-D\right)+g_{4} B \in M_{n}\left(\mathfrak{p}^{m}\right), & g_{3} D-g_{4} B \in M_{n}\left(\mathfrak{p}^{m}\right), \tag{48}
\end{array} g_{4} \in I_{n}+M_{n}\left(\mathfrak{p}^{m}\right), ~ \$, ~
$$

where $M_{n}\left(\mathfrak{p}^{m}\right)$ is the set of $n \times n$ matrices with entries in \mathfrak{p}^{m}. Hence $g \in I_{2 n}+M_{2 n}\left(\mathfrak{p}^{m}\right)=$ $\Gamma_{2 n}\left(\mathfrak{p}^{m}\right)$. Multiplying (46) from the left by p^{-1} and looking at the lower left block, we see that $\left[\begin{array}{cc}-C & I_{n}-D \\ A-I_{n} & B\end{array}\right] \in M_{2 n}\left(\mathfrak{p}^{m}\right)$, i.e., $h \in \Gamma_{2 n}\left(\mathfrak{p}^{m}\right)$. Then it follows from (46) that $p \in \Gamma_{4 n}\left(\mathfrak{p}^{m}\right)$.

Let m be a positive integer such that $\left.\chi\right|_{\left(1+\mathfrak{p}^{m}\right) \cap \mathfrak{o}^{\times}}=1$. Let $f(g, s)$ be the unique function on $G_{4 n}(F) \times \mathbb{C}$ such that
(i) $f(p k, s)=\chi(p) \delta_{P_{4 n}}(p)^{s+\frac{1}{2}}$ for all $p \in P_{4 n}(F)$ and $k \in \Gamma_{4 n}\left(\mathfrak{p}^{m}\right)$.
(ii) $f(g, s)=0$ if $g \notin P_{4 n}(F) \Gamma_{4 n}\left(\mathfrak{p}^{m}\right)$.

It is easy to see that f is well-defined. Evidently, $f \in I(\chi, s)$. Furthermore, for each $h \in$ $G_{4 n}(\mathfrak{o})$, define $f^{(h)} \in I(\chi, s)$ by the equation

$$
f^{(h)}(g, s)=f\left(g h^{-1}, s\right) .
$$

Proposition 4.3 Let π be any irreducible admissible representation of $G_{2 n}(F)$. Let m be a positive integer such that $\left.\chi\right|_{\left(1+\mathfrak{p}^{m}\right) \cap \cap^{\times}}=1$ and such that there exists a vector ϕ in π fixed by $\Gamma_{2 n}\left(\mathfrak{p}^{m}\right)$. Let $\tau \in \mathfrak{o}^{\times}$and $Q_{\tau}:=\left[\begin{array}{ccc}\tau I_{2 n} & \\ & I_{2 n}\end{array}\right] Q_{n}\left[\begin{array}{cc}\tau^{-1} I_{2 n} & \\ & I_{2 n}\end{array}\right]$. Then $Z\left(s ; f^{\left(Q_{\tau}\right)}, \phi\right)=$ $\chi(\tau)^{-n} r_{m} \phi$, where $r_{m}=\operatorname{vol}\left(\Gamma_{2 n}\left(\mathfrak{p}^{m}\right)\right)$ is a non-zero rational number depending only on m.

Proof By definition,

$$
Z\left(s ; f^{\left(Q_{\tau}\right)}, \phi\right)=\int_{\mathrm{Sp}_{2 n}(F)} f\left(Q_{n} \cdot(h, 1) Q_{\tau}^{-1}, s\right) \pi(h) \phi d h
$$

The integrand vanishes unless

$$
\begin{equation*}
Q_{n} \cdot(h, 1) Q_{\tau}^{-1}=p \gamma \tag{49}
\end{equation*}
$$

for some $p \in P_{4 n}(F)$ and $\gamma \in \Gamma_{4 n}\left(\mathfrak{p}^{m}\right)$. Put $t=\left[\begin{array}{ll}\tau I_{n} & \\ & I_{n}\end{array}\right]$. Then (49) is equivalent to

$$
\left(Q_{n}(t, t) Q_{n}^{-1}\right)\left(t^{-1}, t^{-1}\right) p^{-1} Q_{n}(h, 1) Q_{n}^{-1}=\gamma^{\prime}
$$

for some $\gamma^{\prime} \in \Gamma_{4 n}\left(\mathfrak{p}^{m}\right)$. Put $p^{\prime}=\left(Q_{n}(t, t) Q_{n}^{-1}\right)\left(t^{-1}, t^{-1}\right) p^{-1}$. By the last part of Lemma 2.2, $p^{\prime} \in P_{4 n}(F)$ with $\chi\left(p^{\prime}\right)=\chi(p)^{-1} \chi(\tau)^{-n}$. Now, using Lemma 4.2, we conclude that $\chi(p)=\chi(\tau)^{-n}$ and $h \in \Gamma_{2 n}\left(\mathfrak{p}^{m}\right)$. So we obtain

$$
\begin{equation*}
\int_{\mathrm{Sp}_{2 n}(F)} f\left(Q_{n}(h, 1) Q^{-1}, s\right) \pi(h) \phi d h=\chi(\tau)^{-n} \int_{\Gamma_{2 n}\left(\mathfrak{p}^{m}\right)} \pi(h) \phi d h . \tag{50}
\end{equation*}
$$

This last integral equals $\operatorname{vol}\left(\Gamma_{2 n}\left(\mathfrak{p}^{m}\right)\right) \phi$, completing the proof.
We end this subsection with an alternate definition of the function $f(g, s)$ defined above. Define the Siegel-type congruence subgroup $\Gamma_{0,4 n}\left(\mathfrak{p}^{m}\right)=\left\{g \in \operatorname{Sp}_{4 n}(\mathfrak{o}): g \equiv\left[\begin{array}{c}* \\ 0_{2 n} *\end{array}\right] \bmod \right.$ $\left.\mathfrak{p}^{m}\right\}$, and for any $k \in \Gamma_{0,4 n}\left(\mathfrak{p}^{m}\right)$, we denote $\chi(k)=\chi(\operatorname{det}(A))$ if $k=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$. It is easy to check now that $f(g, s)$ is the unique function such that
(i) $f(p k, s)=\chi(p) \chi(k) \delta_{P_{4 n}}(p)^{s+\frac{1}{2}}$ for all $p \in P_{4 n}(F)$ and $k \in \Gamma_{0,4 n}\left(\mathfrak{p}^{m}\right)$.
(ii) $f(g, s)=0$ if $g \notin P_{4 n}(F) \Gamma_{0,4 n}\left(\mathfrak{p}^{m}\right)$.

The main difference between the above description and our original definition is that it uses the Siegel type congruence subgroup rather than the principal congruence subgroup. The fact that makes this alternate description possible is that $P_{4 n}(F) \Gamma_{0,4 n}\left(\mathfrak{p}^{m}\right)=P_{4 n}(F) \Gamma_{4 n}\left(\mathfrak{p}^{m}\right)$. In particular, this shows that our local section $f(g, s)$ is essentially identical to that used by Shimura $[55,58]$ in his work on Eisenstein series, which will be a key point for us later on.

5 The local integral at a real place

5.1 Holomorphic discrete series representations

We provide some preliminaries on holomorphic discrete series representations of $\mathrm{Sp}_{2 n}(\mathbb{R})$. We fix the standard maximal compact subgroup

$$
K=K^{(n)}=\left\{\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right] \in \mathrm{GL}_{2 n}(\mathbb{R}): A^{t} A+B^{t} B=1, A^{t} B=B^{t} A\right\} .
$$

We have $K \cong U(n)$ via $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right] \mapsto A+i B$. Let

$$
j(g, Z)=\operatorname{det}(C Z+D) \quad \text { for } g=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \in \operatorname{Sp}_{2 n}(\mathbb{R})
$$

and Z in the Siegel upper half space \mathbb{H}_{n}. Then, for any integer k, the map

$$
\begin{equation*}
K \ni g \longmapsto j(g, I)^{-k}, \quad \text { where } I=i I_{n}, \tag{51}
\end{equation*}
$$

is a character of K.
Let \mathfrak{h} be the compact Cartan subalgebra and e_{1}, \ldots, e_{n} the linear forms on the complexification $\mathfrak{h C}$ defined in [2]. A system of positive roots is given by $e_{i} \pm e_{j}$ for $1 \leq i<j \leq n$ and $2 e_{j}$ for $1 \leq j \leq n$. The positive compact roots are the $e_{i}-e_{j}$ for $1 \leq i<j \leq n$. The K-types are parametrized by the analytically integral elements $k_{1} e_{1}+\cdots+k_{n} e_{n}$, where the k_{i} are integers with $k_{1} \geq \cdots \geq k_{n}$. We write $\rho_{\mathbf{k}}, \mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$, for the K-type with highest weight $k_{1} e_{1}+\cdots+k_{n} e_{n}$. If $k_{1}=\cdots=k_{n}=k$, then $\rho_{\mathbf{k}}$ is the K_{∞}-type given in (51); we simply write ρ_{k} in this case.

The holomorphic discrete series representations of $\mathrm{Sp}_{2 n}(\mathbb{R})$ are parametrized by elements $\lambda=\ell_{1} e_{1}+\cdots+\ell_{n} e_{n}$ with integers $\ell_{1}>\cdots>\ell_{n}>0$. The representation corresponding to the Harish-Chandra parameter λ contains the K-type $\rho_{\mathbf{k}}$, where $\mathbf{k}=\lambda+\sum_{j=1}^{n} j e_{j}$, with multiplicity one; see Theorem 9.20 of [29]. We denote this representation by $\dot{\pi}_{\lambda}$ or by $\pi_{\mathbf{k}}$;
sometimes one or the other notation is more convenient. If $\mathbf{k}=(k, \ldots, k)$ with a positive integer $k>n$, then we also write π_{k} for $\pi_{\mathbf{k}}$.

Let $G_{2 n}(\mathbb{R})^{+}$be the index two subgroup of $G_{2 n}(\mathbb{R})$ consisting of elements with positive multiplier. We may extend a holomorphic discrete series representation $\dot{\pi}_{\lambda}$ of $\operatorname{Sp}_{2 n}(\mathbb{R})$ in a trivial way to $G_{2 n}(\mathbb{R})^{+} \cong \operatorname{Sp}_{2 n}(\mathbb{R}) \times \mathbb{R}_{>0}$. This extension induces irreducibly to $G_{2 n}(\mathbb{R})$. We call the result a holomorphic discrete series representation of $G_{2 n}(\mathbb{R})$ and denote it by the same symbol $\dot{\pi}_{\lambda}$ (or $\pi_{\mathbf{k}}$). These are the archimedean components of the automorphic representations corresponding to vector-valued holomorphic Siegel modular forms of degree n.

Lemma 5.1 Let $\lambda=\ell_{1} e_{1}+\cdots+\ell_{n} e_{n}$ with integers $\ell_{1}>\cdots>\ell_{n}>0$.
(i) The holomorphic discrete series representation $\dot{\pi}_{\lambda}$ of $\mathrm{Sp}_{2 n}(\mathbb{R})$ embeds into

$$
\begin{equation*}
\operatorname{sgn}^{\ell_{n}+n}|\cdot|^{\ell_{n}} \times \cdots \times \operatorname{sgn}^{\ell_{1}+1}|\cdot|^{\ell_{1}} \rtimes 1, \tag{52}
\end{equation*}
$$

and in no other principal series representation of $\mathrm{Sp}_{2 n}(\mathbb{R})$.
(ii) The holomorphic discrete series representation $\dot{\pi}_{\lambda}$ of $G_{2 n}(\mathbb{R})$ embeds into

$$
\begin{equation*}
\operatorname{sgn}^{\ell_{n}+n}|\cdot|^{\ell_{n}} \times \cdots \times \operatorname{sgn}^{\ell_{1}+1}|\cdot|^{\ell_{1}} \rtimes \operatorname{sgn}^{\varepsilon}|\cdot|^{-\frac{1}{2}\left(\ell_{1}+\cdots+\ell_{n}\right)}, \tag{53}
\end{equation*}
$$

where ε can be either 0 or 1 , and in no other principal series representation of $G_{2 n}(\mathbb{R})$.
Proof i) follows from the main result of [64]. Part ii) can be deduced from i), observing that the holomorphic discrete series representations of $G_{2 n}(\mathbb{R})$ are invariant under twisting by the sign character.

Lemma 5.2 Let k be a positive integer. Consider the degenerate principal series representation of $G_{2 n}(\mathbb{R})$ given by

$$
\begin{equation*}
J(s):=\operatorname{sgn}^{k}|\cdot|^{s-\frac{n+1}{2}} \rtimes \operatorname{sgn}^{\varepsilon}|\cdot|^{\frac{n(n+1)}{4}-\frac{n s}{2}}, \tag{54}
\end{equation*}
$$

where $\varepsilon \in\{0,1\}$. Then $J(s)$ contains the holomorphic discrete series representation π_{k} of $G_{2 n}(\mathbb{R})$ as a subrepresentation if and only if $s=k$.

Proof By infinitesimal character considerations, we only need to prove the "if" part. Since π_{k} is invariant under twisting by sgn, we may assume that $\varepsilon=0$. Consider the Borel-induced representation

$$
\begin{equation*}
J^{\prime}(s):=\operatorname{sgn}^{k}|\cdot|^{s-n} \times \operatorname{sgn}^{k}|\cdot|^{s-n+1} \times \cdots \times \operatorname{sgn}^{k}|\cdot|^{s-1} \rtimes|\cdot|^{\frac{n(n+1)}{4}-\frac{n s}{2}} . \tag{55}
\end{equation*}
$$

By Lemma 5.1 ii$), \pi_{k}$ is a subrepresentation of $J^{\prime}(k)$. Since $|\cdot|^{s-n} \times|\cdot|^{s-n+1} \times \cdots \times|\cdot|^{s-1}$ contains the trivial representation of $\mathrm{GL}_{n}(\mathbb{R})$ twisted by $|\cdot|^{s-\frac{n+1}{2}}$, it follows that $J(s) \subset J^{\prime}(s)$. Let f_{s} be the function on $G_{2 n}(\mathbb{R})$ given by

$$
f_{s}\left(\left[\begin{array}{cc}
A & * \tag{56}\\
u^{t} A^{-1}
\end{array}\right] g, s\right)=\operatorname{sgn}^{k}(\operatorname{det}(A))|u|^{-\frac{n s}{2}}|\operatorname{det}(A)|^{s} j(g, I)^{-k}
$$

for $A \in \mathrm{GL}_{n}(\mathbb{R}), u \in \mathbb{R}^{\times}$and $g \in K$. Then f_{s} is a well-defined element of $J(s)$. Since f_{s} is the unique up to multiples vector of weight k in $J^{\prime}(s), \pi_{k}$ lies in the subspace $J(k)$ of $J^{\prime}(k)$.

Our method to calculate the local archimedean integrals (38) will work for holomorphic discrete series representations $\dot{\pi}_{\lambda}$, where $\lambda=\ell_{1} e_{1}+\cdots+\ell_{n} e_{n}$ with $\ell_{1}>\cdots>\ell_{n}>0$ satisfies

$$
\begin{equation*}
\ell_{j}-\ell_{j-1} \text { is odd for } 2 \leq j \leq n \tag{57}
\end{equation*}
$$

Equivalently, we work with the holomorphic discrete series representations $\pi_{\mathbf{k}}$, where $\mathbf{k}=$ $k_{1} e_{1}+\cdots+k_{n} e_{n}$ with $k_{1} \geq \cdots \geq k_{n}>n$ and all k_{i} of the same parity; this last condition can be seen to be equivalent to (57). An example for λ satisfying (57) is $(k-1) e_{1}+\cdots+(k-n) e_{n}$, the Harish-Chandra parameter of π_{k}. The next lemma implies that whenever (57) is satisfied, then $\dot{\pi}_{\lambda}$ contains a convenient scalar K-type to work with.

Lemma 5.3 Assume that $\lambda=\ell_{1} e_{1}+\cdots+\ell_{n} e_{n}$ with $\ell_{1}>\cdots>\ell_{n}>0$ satisfying (57). Let m be a non-negative, even integer. Then the holomorphic discrete series representation $\dot{\pi}_{\lambda}$ contains the K-type

$$
\begin{equation*}
\rho_{\mathbf{m}}, \quad \mathbf{m}=\left(\ell_{1}+1+m\right)\left(e_{1}+\cdots+e_{n}\right), \tag{58}
\end{equation*}
$$

with multiplicity one.
Proof By Theorem 8.1 of [29] we need only show that $\rho_{\mathbf{m}}$ occurs in $\dot{\pi}_{\lambda}$. We will use induction on n. The result is obvious for $n=1$. Assume that $n>1$, and that the assertion has already been proven for $n-1$.

Using standard notations as in [2], we have $\mathfrak{g}_{\mathbb{C}}=\mathfrak{p}_{\mathbb{C}}^{-} \oplus \mathfrak{k}_{\mathbb{C}} \oplus \mathfrak{p}_{\mathbb{C}}^{+}$. The universal enveloping algebra of $\mathfrak{p}_{\mathbb{C}}^{+}$is isomorphic to the symmetric algebra $S\left(\mathfrak{p}_{\mathbb{C}}^{+}\right)$. We have $\dot{\pi}_{\lambda} \cong S\left(\mathfrak{p}_{\mathbb{C}}^{+}\right) \otimes \rho_{\lambda}$ as K-modules. Let I be the subalgebra of $S\left(\mathfrak{p}_{\mathbb{C}}^{+}\right)$spanned by the highest weight vectors of its K-types. By Theorem A of [27], there exists in I an element D_{+}of weight $2\left(e_{1}+\cdots+e_{n}\right)$. By the main result of [25], the space of K-highest weight vectors of $\dot{\pi}_{\lambda}$ is acted upon freely by I. It follows that we need to prove our result only for $m=0$.

We will use the Blattner formula proven in [22]. It says that the multiplicity with which $\rho_{\mathbf{m}}$ occurs in $\dot{\pi}_{\lambda}$ is given by

$$
\begin{equation*}
\operatorname{mult}_{\lambda}(\mathbf{m})=\sum_{w \in W_{K}} \varepsilon(w) Q\left(w\left(\mathbf{m}+\rho_{c}\right)-\lambda-\rho_{n}\right) . \tag{59}
\end{equation*}
$$

Here, W_{K} is the compact Weyl group, which in our case is isomorphic to the symmetric group S_{n}, and ε is the sign character on W_{K}; the symbols ρ_{c} and ρ_{n} denote the half sums of the positive compact and non-compact roots, respectively; and $Q(\mu)$ is the number of ways to write μ as a sum of positive non-compact roots. In our case

$$
\begin{equation*}
\rho_{c}=\frac{1}{2} \sum_{j=1}^{n}(n+1-2 j) e_{j}, \quad \rho_{n}=\frac{n+1}{2} \sum_{j=1}^{n} e_{j} . \tag{60}
\end{equation*}
$$

Hence

$$
\begin{align*}
\operatorname{mult}_{\lambda}(\mathbf{m}) & =\sum_{\sigma \in S_{n}} \varepsilon(\sigma) Q\left(\sigma\left(\left(\ell_{1}+1+m\right) \sum_{j=1}^{n} e_{j}+\frac{1}{2} \sum_{j=1}^{n}(n+1-2 j) e_{j}\right)-\lambda-\frac{n+1}{2} \sum_{j=1}^{n} e_{j}\right) \\
& =\sum_{\sigma \in S_{n}} \varepsilon(\sigma) Q\left(\sum_{j=1}^{n}\left(\ell_{1}+1+m-\ell_{j}\right) e_{j}-\sigma\left(\sum_{j=1}^{n} j e_{j}\right)\right) . \tag{61}
\end{align*}
$$

Now assume that $m=0$. Then

$$
\begin{equation*}
\operatorname{mult}_{\lambda}(\mathbf{m})=\sum_{\sigma \in S_{n}} \varepsilon(\sigma) Q\left(\sum_{j=1}^{n}\left(\ell_{1}+1-\ell_{j}\right) e_{j}-\sigma\left(\sum_{j=1}^{n} j e_{j}\right)\right) . \tag{62}
\end{equation*}
$$

If $\sigma(1) \neq 1$, then the coefficient of e_{1} is negative, implying that $Q(\ldots)=0$. Hence

$$
\begin{align*}
\operatorname{mult}_{\lambda}(\mathbf{m}) & =\sum_{\substack{\sigma \in S_{n} \\
\sigma(1)=1}} \varepsilon(\sigma) Q\left(\sum_{j=2}^{n}\left(\ell_{1}+1-\ell_{j}\right) e_{j}-\sigma\left(\sum_{j=2}^{n} j e_{j}\right)\right) \\
& =\sum_{\substack{\sigma \in S_{n} \\
\sigma(1)=1}} \varepsilon(\sigma) Q\left(\sum_{j=1}^{n-1}\left(\ell_{1}-\ell_{j+1}\right) e_{j+1}-\sigma\left(\sum_{j=1}^{n-1} j e_{j+1}\right)\right) . \tag{63}
\end{align*}
$$

If we set $e_{j}^{\prime}=e_{j+1}$ and $m^{\prime}=\ell_{1}-\ell_{2}-1$, then this can be written as

$$
\begin{equation*}
\operatorname{mult}_{\lambda}(\mathbf{m})=\sum_{\sigma \in S_{n-1}} \varepsilon(\sigma) Q\left(\sum_{j=1}^{n-1}\left(\ell_{2}+1+m^{\prime}-\ell_{j+1}\right) e_{j}^{\prime}-\sigma\left(\sum_{j=1}^{n-1} j e_{j}^{\prime}\right)\right) . \tag{64}
\end{equation*}
$$

We see that this is the formula (61), with $n-1$ instead of n and m^{\prime} instead of m; note that m^{\prime} is even and non-negative by our hypotheses. There are two different Q-functions involved, for n and for $n-1$, but since the argument of Q in (63) has no e_{1}, we may think of it as the Q-function for $n-1$. Therefore (64) represents the multiplicity of the $K^{(n-1)}$-type $\left(\ell_{2}+1+m^{\prime}\right)\left(e_{1}^{\prime}+\cdots+e_{n-1}^{\prime}\right)$ in the holomorphic discrete series representation $\dot{\pi}_{\lambda^{\prime}}$ of $\mathrm{Sp}_{2(n-1)}(\mathbb{R})$, where $\lambda^{\prime}=\ell_{2} e_{1}^{\prime}+\cdots+\ell_{n} e_{n-1}^{\prime}$. By induction hypothesis, this multiplicity is 1 , completing our proof.

5.2 Calculating the integral

In the remainder of this section we fix a real place v and calculate the local archimedean integral (38) for a certain choice of vectors f and w. To ease notation, we omit the subscript v. We assume that the underlying representation π of $G_{2 n}(\mathbb{R})$ is a holomorphic discrete series representation $\dot{\pi}_{\lambda}$, where $\lambda=\ell_{1} e_{1}+\cdots+\ell_{n} e_{n}$ with $\ell_{1}>\cdots>\ell_{n}>0$ satisfies (57). Set $k=\ell_{1}+1$. By Lemma 5.3, the K-type ρ_{k} appears in π with multiplicity 1 . Let w_{λ} be a vector spanning this one-dimensional K-type. We choose $w=w_{\lambda}$ as our vector in the zeta integral $Z(s, f, w)$.

To explain our choice of f, let $J(s)$ be the degenerate principal series representation of $G_{4 n}(\mathbb{R})$ defined in Lemma 5.2 (hence, we replace n by $2 n$ in (54)). We see from (17) that $I\left(\operatorname{sgn}^{k}, s\right)$ equals $J\left((2 n+1)\left(s+\frac{1}{2}\right)\right)$ for appropriate $\varepsilon \in\{0,1\}$. Let $f_{k}(\cdot, s)$ be the vector spanning the K-type $K^{(2 n)} \ni g \longmapsto j(g, I)^{-k}$ and normalized by $f_{k}(1, s)=1$. Explicitly,

$$
f_{k}\left(\left[\begin{array}{cc}
A & * \tag{65}\\
u^{t} A^{-1}
\end{array}\right] g, s\right)=\operatorname{sgn}^{k}(\operatorname{det}(A)) \operatorname{sgn}^{n k}(u)\left|u^{-n} \operatorname{det}(A)\right|^{(2 n+1)\left(s+\frac{1}{2}\right)} j(g, I)^{-k}
$$

for $A \in \mathrm{GL}_{2 n}(\mathbb{R}), u \in \mathbb{R}^{\times}$and $g \in K^{(2 n)}$. Then $f=f_{k}$ is the section which we will put in our local archimedean integral $Z(s, f, w)$.

Thus consider $Z\left(s, f_{k}, w_{\lambda}\right)$. By Proposition 3.2 i$)$, this integral is a vector in π. The observation (19), together with the transformation properties of f_{k}, imply that for $g \in K$

$$
\begin{equation*}
\pi(g) Z\left(s, f_{k}, w_{\lambda}\right)=j(g, I)^{-k} Z\left(s, f_{k}, w_{\lambda}\right) \tag{66}
\end{equation*}
$$

Since the K-type ρ_{k} occurs only once in π, it follows that

$$
\begin{equation*}
Z\left(s, f_{k}, w_{\lambda}\right)=B_{\lambda}(s) w_{\lambda} \tag{67}
\end{equation*}
$$

for a constant $B_{\lambda}(s)$ depending on s and the Harish-Chandra parameter λ. The rest of this section is devoted to calculating $B_{\lambda}(s)$ explicitly.

The scalar minimal K-type case

We first consider the case $\lambda=(k-1) e_{1}+\cdots+(k-n) e_{n}$ with $k>n$. Then $\dot{\pi}_{\lambda}=\pi_{k}$, the holomorphic discrete series representation of $G_{2 n}(\mathbb{R})$ with minimal K-type ρ_{k}. Let w_{k} be a vector spanning this minimal K-type. Let \langle,$\rangle be an appropriately normalized invariant$ hermitian inner product on the space of π_{k} such that $\left\langle w_{k}, w_{k}\right\rangle=1$. As proved in the appendix of [30], we have the following simple formula for the corresponding matrix coefficient,

$$
\left\langle\pi_{k}(h) w_{k}, w_{k}\right\rangle= \begin{cases}\frac{\mu_{n}(h)^{n k / 2} 2^{n k}}{\operatorname{det}(A+D+i(C-B))^{k}} & \text { for } \mu(h)>0 \tag{68}\\ 0 & \text { for } \mu(h)<0\end{cases}
$$

Here, $h=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in G_{2 n}(\mathbb{R})$. We will need the following result.
Lemma 5.4 For a complex number z, let

$$
\begin{equation*}
\gamma_{n}(z)=\int_{T}\left(\prod_{1 \leq i<j \leq n}\left(t_{i}^{2}-t_{j}^{2}\right)\right)\left(\prod_{j=1}^{n} t_{j}\right)^{-z-n} d \mathbf{t}, \tag{69}
\end{equation*}
$$

where $d \mathbf{t}$ is the Lebesgue measure and

$$
\begin{equation*}
T=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: t_{1}>\cdots>t_{n}>1\right\} . \tag{70}
\end{equation*}
$$

Then, for real part of z large enough,

$$
\begin{equation*}
\gamma_{n}(z)=\prod_{m=1}^{n}(m-1)!\prod_{j=1}^{m} \frac{1}{z-m-1+2 j} . \tag{71}
\end{equation*}
$$

Proof After some straightforward variable transformations, our integral reduces to the Selberg integral; see [50] or [14].

Proposition 5.5 Assume that $k>n$ and $\lambda=(k-1) e_{1}+\cdots+(k-n) e_{n}$, so that $\dot{\pi}_{\lambda}=\pi_{k}$. Then

$$
\begin{equation*}
B_{\lambda}(s)=\frac{\pi^{n(n+1) / 2}}{\prod_{m=1}^{n}(m-1)!} i^{n k} 2^{-n(2 n+1) s+3 n / 2} \gamma_{n}\left((2 n+1) s-\frac{1}{2}+k\right), \tag{72}
\end{equation*}
$$

where γ_{n} is the rational function (71).
Proof Taking the inner product with w_{k} on both sides of (67), we obtain

$$
\begin{equation*}
B_{\lambda}(s)=\int_{\mathrm{Sp}_{2 n}(\mathbb{R})} f_{k}\left(Q_{n} \cdot(h, 1), s\right)\left\langle\pi_{k}(h) w_{k}, w_{k}\right\rangle d h . \tag{73}
\end{equation*}
$$

Since the integrand is left and right K-invariant, we may apply the integration formula (27). Thus

$$
\begin{equation*}
B_{\lambda}(s)=\alpha_{n} \int_{\mathfrak{a}^{+}}\left(\prod_{\lambda \in \Sigma^{+}} \sinh (\lambda(H))\right) f_{k}\left(Q_{n} \cdot(\exp (H), 1), s\right)\left\langle\pi_{k}(\exp (H)) w_{k}, w_{k}\right\rangle d H \tag{74}
\end{equation*}
$$

This time we work with the positive system $\Sigma^{+}=\left\{e_{i}-e_{j}: 1 \leq i<j \leq n\right\} \cup\left\{e_{i}+e_{j}\right.$: $1 \leq i \leq j \leq n\}$, so that

$$
\begin{equation*}
\mathfrak{a}^{+}=\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{n},-a_{1}, \ldots,-a_{n}\right): a_{1}>\cdots>a_{n}>0\right\} . \tag{75}
\end{equation*}
$$

The function f_{k} in (74) can be evaluated as follows,

$$
\begin{aligned}
& f_{k}\left(Q_{n} \cdot(\exp (H), 1), s\right)=f_{k}\left(\left[\begin{array}{llll}
I_{n} & & \\
& I_{n} & \\
I_{n} & I_{n} & \\
I_{n} & & I_{n}
\end{array}\right]\left[\begin{array}{lll}
I_{n} & & \\
& & I_{n} \\
& -I_{n}
\end{array}\right] \cdot(\exp (H), 1), s\right) \\
& =i^{n k} f_{k}\left(\left[\begin{array}{llll}
I_{n} & & & \\
& I_{n} & & \\
& I_{n} & I_{n} \\
I_{n} & & I_{n}
\end{array}\right]\left[\begin{array}{cccc}
A & & & \\
& I_{n} & & \\
& & A^{-1} & \\
& & & I_{n}
\end{array}\right], s\right) \quad\left(A=\left[\begin{array}{cccc}
e^{a_{1}} & & & \\
& & & \\
& & & \\
& & & e^{a_{n}}
\end{array}\right]\right) \\
& =i^{n k} e^{\left(a_{1}+\cdots+a_{n}\right)(2 n+1)\left(s+\frac{1}{2}\right)} f_{k}\left(\left[\begin{array}{cccc}
I_{n} & & \\
& I_{n} & \\
& A & \\
A & & I_{n} & \\
& & I_{n}
\end{array}\right], s\right) \text {. }
\end{aligned}
$$

Now use

$$
\left[\begin{array}{cc}
\begin{array}{c}
a^{1} \\
e^{j_{j}}
\end{array} & \tag{76}\\
\hline
\end{array}\right]=\left[\begin{array}{c}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
y^{1 / 2} & \\
& y^{-1 / 2}
\end{array}\right] r(\theta), \quad r(\theta)=\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right],
$$

with

$$
\begin{equation*}
x=\frac{e^{a_{j}}}{1+e^{2 a_{j}}}, \quad y=\frac{1}{1+e^{2 a_{j}}}, \quad e^{i \theta}=\frac{1-i e^{a_{j}}}{\left(1+e^{2 a_{j}}\right)^{1 / 2}} . \tag{77}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
f_{k}\left(Q_{n} \cdot(\exp (H), 1), s\right)=i^{n k} \prod_{j=1}^{n}\left(e^{a_{j}}+e^{-a_{j}}\right)^{-(2 n+1)\left(s+\frac{1}{2}\right)} . \tag{78}
\end{equation*}
$$

Substituting this and (68) into (74), we get after some simplification

$$
\begin{aligned}
\alpha_{n}^{-1} B_{\lambda}(s)= & i^{n k} 2^{-n(2 n+1)\left(s+\frac{1}{2}\right)+n} \\
& \times \int_{\mathfrak{a}^{+}} \prod_{1 \leq i<j \leq n}\left(\cosh \left(a_{i}\right)^{2}\right. \\
& \left.-\cosh \left(a_{j}\right)^{2}\right) \prod_{j=1}^{n} \cosh \left(a_{j}\right)^{-(2 n+1) s+\frac{1}{2}-n-k} \prod_{j=1}^{n} \sinh \left(a_{j}\right) d H .
\end{aligned}
$$

Now introduce the new variables $t_{j}=\cosh \left(a_{j}\right)$. The domain \mathfrak{a}^{+}turns into the domain T defined in (70). We get

$$
\begin{equation*}
B_{\lambda}(s)=\alpha_{n} i^{n k} 2^{-n(2 n+1)\left(s+\frac{1}{2}\right)+n} \int_{T}\left(\prod_{1 \leq i<j \leq n}\left(t_{i}^{2}-t_{j}^{2}\right)\right)\left(\prod_{j=1}^{n} t_{j}\right)^{-(2 n+1) s+\frac{1}{2}-n-k} d \mathbf{t} . \tag{79}
\end{equation*}
$$

Thus our assertion follows from Lemma 5.4 and the value of α_{n} given in (142).

Calculation of $B_{\lambda}(s)$ for general Harish-Chandra parameter

Now consider a general $\lambda=\ell_{1} e_{1}+\cdots+\ell_{n} e_{n}$ for which the condition (57) is satisfied. By (53), we may embed $\dot{\pi}_{\lambda}$ into

$$
\begin{equation*}
\operatorname{sgn}^{k}|\cdot|^{\ell_{n}} \times \cdots \times \operatorname{sgn}^{k}|\cdot|^{\ell_{1}} \rtimes|\cdot|^{-\frac{1}{2}\left(\ell_{1}+\cdots+\ell_{n}\right)} . \tag{80}
\end{equation*}
$$

In this induced model, the weight k vector w_{λ} in $\dot{\pi}_{\lambda}$ has the formula

$$
\begin{align*}
w_{\lambda}\left(\left[\begin{array}{ccccc}
a_{1} & \cdots & * & * & \cdots \\
& \ddots & \vdots & \vdots & \\
& & & \\
& & a_{n} & * & \cdots \\
& & a_{0} a_{1}^{-1} & & * \\
& & & \vdots & \ddots \\
& & & \cdots & \cdots \\
& & & & a_{0} a_{n}^{-1}
\end{array}\right] g\right) & =\operatorname{sgn}\left(a_{1} \cdots \cdots a_{n}\right)^{k}\left|a_{0}\right|^{-\frac{1}{2}\left(\ell_{1}+\cdots+\ell_{n}\right)-\frac{n(n+1)}{4}} \\
& \left(\prod_{j=1}^{n}\left|a_{j}\right|^{\ell_{n+1-j}+n+1-j}\right) j(g, I)^{-k} \tag{81}
\end{align*}
$$

for $a_{1}, \ldots, a_{n} \in \mathbb{R}^{\times}$and $g \in K^{(n)}$. Evaluating (67) at 1 , we get

$$
\begin{equation*}
B_{\lambda}(s)=\int_{\operatorname{Sp}_{2 n}(\mathbb{R})} f_{k}\left(Q_{n} \cdot(h, 1), s\right) w_{\lambda}(h) d h . \tag{82}
\end{equation*}
$$

Recall the beta function

$$
\begin{equation*}
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} . \tag{83}
\end{equation*}
$$

One possible integral representation for the beta function is

$$
\begin{equation*}
B(x, y)=\int_{0}^{\infty} \frac{a^{x-1}}{(a+1)^{x+y}} d a=2 \int_{0}^{\infty} \frac{a^{x-y}}{\left(a+a^{-1}\right)^{x+y}} d^{\times} a \quad \text { for } \operatorname{Re}(x), \operatorname{Re}(y)>0 \tag{84}
\end{equation*}
$$

For $s \in \mathbb{C}$ and $m \in \mathbb{Z}$, let

$$
\begin{equation*}
\beta(m, s)=B\left(\left(n+\frac{1}{2}\right) s+\frac{1}{4}+\frac{m}{2},\left(n+\frac{1}{2}\right) s+\frac{1}{4}-\frac{m}{2}\right) . \tag{85}
\end{equation*}
$$

Lemma 5.6 We have

$$
\begin{equation*}
B_{\lambda}(s)=i^{n k}\left(\prod_{j=1}^{n} \beta\left(\ell_{j}, s\right)\right) C_{k}(s), \tag{86}
\end{equation*}
$$

where

$$
C_{k}(s)=\int_{\tilde{N}_{1}} \int_{\tilde{N}_{2}} f_{k}\left(\left[\begin{array}{cccc}
I_{n} & I_{n} & \tag{87}\\
& t_{t} & \\
V & X & I_{n} & \\
V & I_{n}
\end{array}\right], s\right) d X d V
$$

depends only on $k=\ell_{1}+1$. Here, \tilde{N}_{1} is the space of upper triangular nilpotent matrices of size $n \times n$, and \tilde{N}_{2} is the space of symmetric $n \times n$ matrices.

Proof In this proof we write $f_{k}(h)$ instead of $f_{k}(h, s)$ for simplicity. We will use the Iwasawa decomposition to calculate the integral (82). By Proposition A.2, the relevant integration formula for right $K^{(n)}$-invariant functions φ is

$$
\begin{equation*}
\int_{\mathrm{SP}_{2 n}(\mathbb{R})} \varphi(h) d h=2^{n} \int_{A} \int_{N} \varphi(a n) d n d a, \tag{88}
\end{equation*}
$$

where N is the unipotent radical of the Borel subgroup, $d n$ is the Lebesgue measure, $A=$ $\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{n}, a_{1}^{-1}, \ldots, a_{n}^{-1}\right): a_{1}, \ldots, a_{n}>0\right\}$, and $d a=\frac{d a_{1}}{a_{1}} \cdots \frac{d a_{n}}{a_{n}}$. Thus, using (81),

$$
\begin{align*}
B_{\lambda}(s) & =2^{n} \int_{A} \int_{N} f_{k}\left(Q_{n} \cdot(a n, 1)\right) w_{\lambda}(\text { an }) d n d a \\
& =2^{n} \int_{A} \int_{N}\left(\prod_{j=1}^{n} a_{j}^{\ell_{n+1-j}+n+1-j}\right) f_{k}\left(Q_{n} \cdot(a n, 1)\right) d n d a . \tag{89}
\end{align*}
$$

We have $N=N_{1} N_{2}$, where

$$
N_{1}=\left\{\left[\begin{array}{cc}
U & \tag{90}\\
& { }^{t} U^{-1}
\end{array}\right]: U \text { upper triangular unipotent }\right\}, \quad N_{2}=\left\{\left[\begin{array}{cc}
I_{n} & X \\
I_{n}
\end{array}\right]: X \text { symmetric }\right\} .
$$

Write further $a=\left[\begin{array}{cc}D & \\ & D^{-1}\end{array}\right]$ with $D=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$. Then

$$
\begin{align*}
& =i^{n k}\left|a_{1} \cdots \cdots a_{n}\right|^{(2 n+1)\left(s+\frac{1}{2}\right)} f_{k}\left(\left[\begin{array}{cccc}
I_{n} & & \\
& I_{n} & \\
& D & \\
D & & I_{n} & \\
& & I_{n}
\end{array}\right]\left[\begin{array}{cccc}
U & & & \\
& I_{n} & & \\
& & { }^{t} U^{-1} & \\
& & & I_{n}
\end{array}\right]\left[\begin{array}{llll}
I_{n} & -X & \\
& & I_{n} & \\
& & I_{n} & \\
& & & I_{n}
\end{array}\right]\right) . \tag{91}
\end{align*}
$$

We will use the identity

$$
\left[\begin{array}{cc}
1 \tag{92}\\
a_{j} & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & x_{j} \\
1
\end{array}\right]\left[\begin{array}{lll}
y_{j}^{1 / 2} & & \\
& y_{j}^{-1 / 2}
\end{array}\right] r\left(\theta_{i}\right)
$$

with

$$
\begin{equation*}
x_{j}=\frac{a_{j}}{1+a_{j}^{2}}, \quad y_{j}=\frac{1}{1+a_{j}^{2}}, \quad e^{i \theta_{j}}=\frac{1-i a_{j}}{\left(1+a_{j}^{2}\right)^{1 / 2}} \tag{93}
\end{equation*}
$$

Let

$$
Y=\left[\begin{array}{lll}
y_{1}^{1 / 2} & & \tag{94}\\
& \ddots & \\
& & y_{n}^{1 / 2}
\end{array}\right], \quad C=\left[\begin{array}{lll}
\cos \left(\theta_{1}\right) & & \\
& \ddots & \\
& & \cos \left(\theta_{n}\right)
\end{array}\right], \quad S=\left[\begin{array}{ll}
\sin \left(\theta_{1}\right) & \\
& \ddots \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
\left.\theta_{n}\right)
\end{array}\right] .
$$

Then

$$
\left[\begin{array}{llll}
I_{n} & & \tag{95}\\
& I_{n} & \\
& D & I_{n} \\
D & & I_{n}
\end{array}\right]=\left[\begin{array}{cccc}
Y & & & * \\
& Y & * & \\
& & Y^{-1} & \\
& & & Y^{-1}
\end{array}\right]\left[\begin{array}{cccc}
C & & & \\
& C & S \\
-S & & \\
-S & & \\
& &
\end{array}\right],
$$

and thus

Write $U=I_{n}+V$, so that V is upper triangular nilpotent. A calculation confirms that
where $Z=-(1+S V S)^{-1} S V C$ and $p=\left[\begin{array}{cc}B & * \\ t_{t^{-1}}\end{array}\right]$ with $\operatorname{det}(B)=1$. Hence

Let \tilde{N}_{1} be the Euclidean space of upper triangular nilpotent real matrices of size $n \times n$. Then it is an exercise to verify that

$$
\begin{equation*}
\varphi \longmapsto \int_{\tilde{N}_{1}} \varphi\left(I_{n}+V\right) d V \tag{99}
\end{equation*}
$$

where $d V$ is the Lebesgue measure, defines a Haar measure on the group of upper triangular unipotent real matrices. (Use the fact that $V \mapsto U V$ defines an automorphism of \tilde{N} of determinant 1 , for every upper triangular unipotent U.)

Therefore, as we integrate (98) over N_{1}, we may treat V as a Euclidean variable. We then have to consider the Jacobian of the change of variables $V \mapsto Z$. It is not difficult to show that this Jacobian is $\prod_{j=1}^{n} \sin \left(\theta_{j}\right)^{j-n} \cos \left(\theta_{j}\right)^{1-j}$. Substituting from (93), we find

$$
\begin{equation*}
\left|\prod_{j=1}^{n} \sin \left(\theta_{j}\right)^{j-n} \cos \left(\theta_{j}\right)^{1-j}\right|=\left(\prod_{j=1}^{n} a_{j}\right)^{-\frac{n+1}{2}}\left(\prod_{j=1}^{n} a_{j}^{j}\right)\left(\prod_{j=1}^{n} \frac{1}{a_{j}+a_{j}^{-1}}\right)^{\frac{1-n}{2}} . \tag{100}
\end{equation*}
$$

Using the above and some more matrix identities, we get

$$
\begin{align*}
\int_{N_{1}} \int_{N_{2}} f_{k}\left(Q_{n} \cdot\left(a n_{1} n_{2}, 1\right)\right) d n_{1} d n_{2}= & i^{n k}\left(\prod_{j=1}^{n} \frac{1}{a_{j}+a_{j}^{-1}}\right)^{(2 n+1) s+\frac{1}{2}}\left(\prod_{j=1}^{n} a_{j}\right)^{-n-1}\left(\prod_{j=1}^{n} a_{j}^{j}\right) \\
& \times \int_{\tilde{N}_{1}} \int_{\tilde{N}_{2}} f_{k}\left(\left[\begin{array}{ccc}
I_{n} & I_{n} & \\
& { }^{t_{V}} & \\
V_{n} & \\
V_{n} & I_{n}
\end{array}\right]\left[\begin{array}{ccc}
I_{n} & & \\
I_{n} & \\
& I_{n} \\
x_{n} & I_{n}
\end{array}\right]\right) d X d V . \quad \text { (101) } \tag{101}
\end{align*}
$$

This last integral is the $C_{k}(s)$ defined in (87). Going back to (89) and using (84), we have

$$
\begin{align*}
B_{\lambda}(s) & =2^{n} \int_{A} \int_{N_{1}} \int_{N_{2}}\left(\prod_{j=1}^{n} a_{j}^{\ell_{n+1-j}+n+1-j}\right) f_{k}\left(Q_{n} \cdot\left(a n_{1} n_{2}, 1\right)\right) d n_{2} d n_{1} d a \\
& =2^{n} i^{n k} \int_{A}\left(\prod_{j=1}^{n} a_{j}^{\ell_{n+1-j}}\right)\left(\prod_{j=1}^{n} \frac{1}{a_{j}+a_{j}^{-1}}\right)^{(2 n+1) s+\frac{1}{2}} d a \cdot C_{k}(s) \\
& =i^{n k} \prod_{j=1}^{n}\left(B\left(\left(n+\frac{1}{2}\right) s+\frac{1}{4}+\frac{\ell_{j}}{2},\left(n+\frac{1}{2}\right) s+\frac{1}{4}-\frac{\ell_{j}}{2}\right)\right) \cdot C_{k}(s) . \tag{102}
\end{align*}
$$

This concludes the proof.
Lemma 5.7 The function $C_{k}(s)$ defined in (87) is given by

$$
\begin{equation*}
C_{k}(s)=\frac{\pi^{n(n+1) / 2}}{\prod_{m=1}^{n}(m-1)!} 2^{-n(2 n+1) s+3 n / 2} \frac{\gamma_{n}\left((2 n+1) s-\frac{1}{2}+k\right)}{\prod_{j=1}^{n} \beta(k-j, s)}, \tag{103}
\end{equation*}
$$

where γ_{n} is the rational function from Lemma 5.4, and $\beta(m, s)$ is defined in (85).

Proof Consider $\lambda=(k-1) e_{1}+\cdots+(k-n) e_{n}$. Then

$$
\begin{equation*}
B_{\lambda}(s)=\frac{\pi^{n(n+1) / 2}}{\prod_{m=1}^{n}(m-1)!} i^{n k} 2^{-n(2 n+1) s+3 n / 2} \gamma_{n}\left((2 n+1) s-\frac{1}{2}+k\right), \tag{104}
\end{equation*}
$$

by Proposition 5.5. On the other hand,

$$
\begin{equation*}
B_{\lambda}(s)=i^{n k}\left(\prod_{j=1}^{n} \beta(k-j, s)\right) C_{k}(s) \tag{105}
\end{equation*}
$$

by Lemma 5.6. The assertion follows by comparing the two expressions.
Proposition 5.8 Let $\lambda=\ell_{1} e_{1}+\cdots+\ell_{n} e_{n}, \ell_{1}>\cdots>\ell_{n}>0$, be a Harish-Chandra parameter for which the condition (57) is satisfied. Denote $k_{j}=\ell_{j}+j$ and $k=k_{1}$. Let $\pi=\dot{\pi}_{\lambda}$ be the corresponding holomorphic discrete series representation of $G_{2 n}(\mathbb{R})$ and let w_{λ} be a vector in π spanning the K-type ρ_{k}. Let f_{k} be the element of $I\left(\operatorname{sgn}^{k}, s\right)$ given by (65). Then

$$
Z\left(s, f_{k}, w_{\lambda}\right)=i^{n k} \pi^{n(n+1) / 2} A_{\mathbf{k}}((2 n+1) s-1 / 2) w_{\lambda}
$$

with the function $A_{\mathbf{k}}(z)$ is defined as

$$
\begin{equation*}
A_{\mathbf{k}}(z)=2^{-n(z-1)}\left(\prod_{j=1}^{n} \prod_{i=1}^{j} \frac{1}{z+k-1-j+2 i}\right)\left(\prod_{j=1}^{n} \prod_{i=0}^{\frac{k-k_{j}}{2}-1} \frac{z-(k-1-j-2 i)}{z+(k-1-j-2 i)}\right) \tag{106}
\end{equation*}
$$

Proof By Lemmas 5.6 and 5.7, $Z\left(s, f_{k}, w_{\lambda}\right)=B_{\lambda}(s) w_{\lambda}$ with

$$
\begin{equation*}
B_{\lambda}(s)=i^{n k} \frac{\pi^{n(n+1) / 2}}{\prod_{m=1}^{n}(m-1)!} 2^{-n(2 n+1) s+3 n / 2} \gamma_{n}\left((2 n+1) s-\frac{1}{2}+k\right) \prod_{j=1}^{n} \frac{\beta\left(\ell_{j}, s\right)}{\beta(k-j, s)} \tag{107}
\end{equation*}
$$

Inductively one confirms the identity

$$
\begin{equation*}
B(x+m, y-m)=B(x, y) \prod_{i=0}^{m-1} \frac{x+i}{y-i-1} \tag{108}
\end{equation*}
$$

for any integer $m \geq 0$. Use the abbreviation $t=\left(n+\frac{1}{2}\right) s+\frac{1}{4}$. Applying the above formula with $m=\frac{k-k_{j}}{2}$, which by (57) is a non-negative integer, and replacing i by $m-1-i$, we get

$$
\begin{equation*}
\frac{\beta\left(\ell_{j}, s\right)}{\beta(k-j, s)}=\prod_{i=0}^{m-1} \frac{t-\frac{\ell_{j}}{2}-m+i}{t+\frac{\ell_{j}}{2}+m-1-i} . \tag{109}
\end{equation*}
$$

The result follows by using formula (71) for γ_{n}.
Remark 5.9 Using (106), one can check that $A_{\mathbf{k}}(t)$ is a non-zero rational number for any integer t satisfying $0 \leq t \leq k_{n}-n$.

6 The global integral representation

6.1 The main result

Consider the global field $F=\mathbb{Q}$ and its ring of adeles $\mathbb{A}=\mathbb{A} \mathbb{Q}$. All the results are easily generalizable to a totally real number field. Let $\pi \cong \otimes \pi_{p}$ be a cuspidal automorphic representation of $G_{2 n}(\mathbb{A})$. We assume that π_{∞} is a holomorphic discrete series representation $\pi_{\mathbf{k}}$ with $\mathbf{k}=k_{1} e_{1}+\cdots+k_{n} e_{n}$, where $k_{1} \geq \cdots \geq k_{n}>n$ and all k_{i} have the same parity. (From now on it is more convenient to work with the minimal K-type \mathbf{k} rather than the Harish-Chandra parameter λ.) We set $k=k_{1}$. Let $\chi=\otimes \chi_{p}$ be a character of $\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}$such that $\chi_{\infty}=\operatorname{sgn}^{k}$. Let $N=\prod_{p \mid N} p^{m_{p}}$ be an integer such that

- For each finite prime $p \nmid N$ both π_{p} and χ_{p} are unramified.
- For a prime $p \mid N$, we have $\left.\chi_{p}\right|_{\left(1+p^{m_{p}} \mathbb{Z}_{p}\right) \cap \mathbb{Z}_{p}^{\times}}=1$ and π_{p} has a vector ϕ_{p} that is right invariant under the principal congruence subgroup $\Gamma_{2 n}\left(p^{m_{p}}\right)$ of $\operatorname{Sp}_{2 n}\left(\mathbb{Z}_{p}\right)$.

Let ϕ be a cusp form in the space of π corresponding to a pure tensor $\otimes \phi_{p}$, where the local vectors are chosen as follows. For $p \nmid N$ choose ϕ_{p} to be a spherical vector; for a $p \mid N$ choose ϕ_{p} to be a vector right invariant under $\Gamma_{2 n}\left(p^{m_{p}}\right)$; and for $p=\infty$ choose ϕ_{∞} to be a vector in π_{∞} spanning the K_{∞}-type ρ_{k}; see Lemma 5.3. Let $f=\otimes f_{p} \in I(\chi, s)$ be composed of the following local sections. For a finite prime $p \nmid N$ let f_{p} be the spherical vector normalized by $f_{p}(1)=1$; for $p \mid N$ choose f_{p} as in Sect. 4.2 (with the positive integer m of that section equal to the m_{p} above); and for $p=\infty$, choose f_{∞} by (65). Define $L^{N}\left(s, \pi \boxtimes \chi, \varrho_{2 n+1}\right)=\prod_{\substack{p \nmid N \\ p \neq \infty}} L\left(s, \pi_{p} \boxtimes \chi_{p}, \varrho_{2 n+1}\right)$, where the local factors on the right are given by (45).

Next, for any $h \in \prod_{p<\infty} \operatorname{Sp}_{4 n}\left(\mathbb{Z}_{p}\right)$, define $f^{(h)}(g, s)=f\left(g h^{-1}, s\right)$. Let Q denote the element Q_{n} embedded diagonally in $\prod_{p<\infty} \operatorname{Sp}_{4 n}\left(\mathbb{Z}_{p}\right)$, and for any $\tau \in \hat{\mathbb{Z}}^{\times}=\prod_{p<\infty} \mathbb{Z}_{p}^{\times}$, let $Q_{\tau}=\left[\begin{array}{cc}\tau I_{2 n} & \\ & I_{2 n}\end{array}\right] Q\left[\begin{array}{ccc}\tau^{-1} I_{2 n} & \\ & & I_{2 n}\end{array}\right]$. We can now state our global integral representation.

Theorem 6.1 Let the notation be as above. Then the function $L^{N}\left(s, \pi \boxtimes \chi, \varrho_{2 n+1}\right)$ can be analytically continued to a meromorphic function of s with only finitely many poles. Furthermore, for all $s \in \mathbb{C}$ and $g \in G_{2 n}(\mathbb{A})$, and any $\tau \in \hat{\mathbb{Z}}^{\times}$,

$$
\begin{align*}
Z\left(s, f^{\left(Q_{\tau}\right)}, \phi\right)(g) & =\frac{L^{N}\left((2 n+1) s+1 / 2, \pi \boxtimes \chi, \varrho_{2 n+1}\right)}{L^{N}((2 n+1)(s+1 / 2), \chi) \prod_{j=1}^{n} L^{N}\left((2 n+1)(2 s+1)-2 j, \chi^{2}\right)} \\
& \times i^{n k} \chi(\tau)^{-n} \pi^{n(n+1) / 2}\left(\prod_{p \mid N} \operatorname{vol}\left(\Gamma_{2 n}\left(p^{m p}\right)\right)\right) A_{\mathbf{k}}((2 n+1) s-1 / 2) \phi(g), \tag{110}
\end{align*}
$$

with the rational function $A_{\mathbf{k}}(z)$ defined as in Proposition 5.8.
Proof By Theorem 3.6, Propositions 4.1, 4.3 and 5.8, the Eq. (110) is true for all $\operatorname{Re}(s)$ sufficiently large. Since the left side defines a meromorphic function of s for each g, it follows that the right side can be analytically continued to a meromorphic function of s such that (110) always holds.

Remark 6.2 Let

$$
\begin{equation*}
\Gamma_{\mathbb{R}}(s)=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right), \quad \Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s) \tag{111}
\end{equation*}
$$

Define $\varepsilon, \varepsilon_{0} \in\{0,1\}$ by $\chi(-1)=(-1)^{\varepsilon}$ and $\varepsilon_{0} \equiv \varepsilon+n \bmod 2$. Using

$$
\begin{equation*}
L\left(s, \pi_{\infty} \boxtimes \chi_{\infty}, \varrho_{2 n+1}\right)=\Gamma_{\mathbb{R}}\left(s+\varepsilon_{0}\right) \prod_{j=1}^{n} \Gamma_{\mathbb{C}}\left(s+k_{i}-i\right), \tag{112}
\end{equation*}
$$

a calculation shows that, with $z=(2 n+1) s-1 / 2$,

$$
\begin{align*}
& \frac{L\left((2 n+1) s+1 / 2, \pi_{\infty} \boxtimes \chi_{\infty}, \varrho_{2 n+1}\right)}{L\left((2 n+1)(s+1 / 2), \chi_{\infty}\right) \prod_{j=1}^{n} L\left((2 n+1)(2 s+1)-2 j, \chi_{\infty}^{2}\right)} \\
& \quad=\kappa 2^{-n z} \frac{\prod_{j=1}^{n} \prod_{i=0}^{k_{j}-n-1}(z+1+n+i-j)}{\prod_{i=0}^{\left(n+\varepsilon-\varepsilon_{0}\right) / 2-1}\left(z+1+\varepsilon_{0}+2 i\right)} \\
& \quad=\kappa 2^{-n z} \frac{\prod_{j=1}^{n}(z+j)}{\prod_{i=0}^{\left(n+\varepsilon-\varepsilon_{0}\right) / 2-1}\left(z+1+\varepsilon_{0}+2 i\right)} \prod_{j=1}^{n} \prod_{i=1}^{k_{j}-n-1}(z+1+n+i-j), \tag{113}
\end{align*}
$$

where

$$
\kappa=2^{\frac{n(n+1)}{2}} \pi^{n^{2}+\frac{n+\varepsilon-\varepsilon_{0}}{2}}(2 \pi)^{-\sum_{j=1}^{n} k_{j}} .
$$

Evidently, the quotient in (113) is a polynomial in z. There is no obvious relationship of the polynomial in (113) with the function $A_{\mathbf{k}}(z)$ defined in (106).

6.2 A classical reformulation

We now rewrite the above theorem in classical language. For any congruence subgroup Γ of $\mathrm{Sp}_{2 n}(\mathbb{R})$ with the symmetry property $\left[\begin{array}{cc}-I_{n} & \\ { }_{n} & I_{n}\end{array}\right] \Gamma\left[\begin{array}{cc}-I_{n} & \\ & I_{n}\end{array}\right]=\Gamma$, let $C_{k}^{\infty}(\Gamma)$ be the space of smooth functions $F: \mathbb{H}_{n} \rightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
F(\gamma Z)=j(\gamma, Z)^{k} F(Z) \quad \text { for all } \gamma \in \Gamma . \tag{114}
\end{equation*}
$$

For any $F \in C_{k}^{\infty}(\Gamma)$, there is an element $\bar{F} \in C_{k}^{\infty}(\Gamma)$ defined via $\bar{F}(Z)=\overline{F(-\bar{Z})}$. Given functions F_{1}, F_{2} in $C_{k}^{\infty}(\Gamma)$, we define the Petersson inner product $\left\langle F_{1}, F_{2}\right\rangle$ by

$$
\left\langle F_{1}, F_{2}\right\rangle=\operatorname{vol}\left(\Gamma \backslash \mathbb{H}_{n}\right)^{-1} \int_{\Gamma \backslash \mathbb{H}_{n}} \operatorname{det}(Y)^{k} F_{1}(Z) \overline{F_{2}(Z)} d Z,
$$

whenever the integral converges. Above, $d Z$ is any $\operatorname{Sp}_{2 n}(\mathbb{R})$-invariant measure on \mathbb{H}_{n} (it is equal to $c \operatorname{det}(Y)^{-(n+1)} d X d Y$ for some constant $\left.c\right)$.

Note that our definition of the Petersson inner product does not depend on the normalization of measure (the choice of c), and is also not affected by different choices of Γ. Note also that

$$
\begin{equation*}
\left\langle F_{1}, F_{2}\right\rangle=\overline{\left\langle\bar{F}_{1}, \bar{F}_{2}\right\rangle} \tag{115}
\end{equation*}
$$

Now, let Φ be an automorphic form on $G_{2 n}(\mathbb{A})$ such that $\Phi(g h)=j(h, I)^{-k} \Phi(g)$ for all $h \in K_{\infty}^{(n)} \cong U(n)$. Then we can define a function $F(Z)$ on the Siegel upper half space \mathbb{H}_{n} by

$$
\begin{equation*}
F(Z)=j(g, I)^{k} \Phi(g) \tag{116}
\end{equation*}
$$

where g is any element of $\mathrm{Sp}_{2 n}(\mathbb{R})$ with $g(I)=Z$. If Γ_{p} is an open-compact subgroup of $G_{2 n}\left(\mathbb{Q}_{p}\right)$ such that Φ is right invariant under Γ_{p} for all p, then it is easy to check that $F \in C_{k}^{\infty}(\Gamma)$ where $\Gamma=\operatorname{Sp}_{2 n}(\mathbb{Q}) \cap \prod_{p<\infty} \Gamma_{p}$.

We apply this principle to our Eisenstein series $E(g, s, f)$, where f is the global section constructed in Sect. 6.1. Consider

$$
\begin{equation*}
E_{k, N}^{\chi}(Z, s):=j(g, I)^{k} E\left(g, \frac{2 s}{2 n+1}+\frac{k}{2 n+1}-\frac{1}{2}, f\right), \tag{117}
\end{equation*}
$$

where g is any element of $\mathrm{Sp}_{4 n}(\mathbb{R})$ with $g(I)=Z$. Since the series defining $E(g, s, f)$ converges absolutely for $\operatorname{Re}(s)>\frac{1}{2}$, it follows that the series defining $E_{k, N}^{\chi}(Z, s)$ converges absolutely whenever $2 \operatorname{Re}(s)+k>2 n+1$. More generally, for any $h \in \prod_{p<\infty} \operatorname{Sp}_{4 n}\left(\mathbb{Z}_{p}\right)$ and g as above, define

$$
\begin{equation*}
E_{k, N}^{\chi}(Z, s ; h)=j(g, I)^{k} E\left(g, \frac{2 s+k}{2 n+1}-\frac{1}{2}, f^{(h)}\right)=j(g, I)^{k} E\left(g h^{-1}, \frac{2 s+k}{2 n+1}-\frac{1}{2}, f\right) . \tag{118}
\end{equation*}
$$

By the invariance properties of our local sections and by analytic continuation, it follows that for all s and all h as above, we have $E_{k, N}^{\chi}(Z, s ; h) \in C_{k}^{\infty}\left(\Gamma_{4 n}(N)\right)$. As usual, $\Gamma_{4 n}(N)=$ $\left\{g \in \operatorname{Sp}_{4 n}(\mathbb{Z}): g \equiv I_{4 n}(\bmod N)\right\}$ is the principal congruence subgroup of level N.

It is instructive to write down the functions $E_{k, N}^{\chi}(Z, s ; h)$ classically. First of all, a standard calculation shows that

$$
\begin{equation*}
E_{k, N}^{\chi}(Z, s ; h)=\left(\left.E_{k, N}^{\chi}\right|_{k} h_{0}\right)(Z, s):=j\left(h_{0}, Z\right)^{-k} E_{k, N}^{\chi}\left(h_{0} Z, s\right), \tag{119}
\end{equation*}
$$

where (using strong approximation) we let h_{0} be an element of $\operatorname{Sp}_{4 n}(\mathbb{Z})$ such that $h_{0}^{-1} h \in$ $\prod_{p \mid N} \Gamma_{4 n}\left(p^{m_{p}}\right) \prod_{p \nmid N} \operatorname{Sp}_{4 n}\left(\mathbb{Z}_{p}\right)$. This enables us to reduce to the case $h=1$ for many properties. We now write down the classical definition in this case, i.e., for $E_{k, N}^{\chi}(Z, s)$. Let $P_{4 n}^{\prime}(\mathbb{Z})=P_{4 n}(\mathbb{Q}) \cap \mathrm{Sp}_{4 n}(\mathbb{Z})$. Using the relevant definitions and the explication of the local sections $f_{p}\left(\gamma_{p}, s\right)$ at the end of Sect. 4.2, it follows that for $2 \operatorname{Re}(s)+k>2 n+1$,

$$
E_{k, N}^{\chi}(Z, s)=\sum_{\gamma=\left[\begin{array}{cc}
A & B \tag{120}\\
C & D
\end{array}\right] \in P_{4 n}^{\prime}(\mathbb{Z}) \backslash \Gamma_{0,4 n}(N)}\left(\prod_{p \mid N} \chi_{p}(\operatorname{det}(A))\right) \operatorname{det}(\operatorname{Im}(\gamma Z))^{s} j(\gamma, Z)^{-k}
$$

Remark 6.3 Shimura defined certain Eisenstein series on symplectic and unitary groups over number fields [55-58] and proved various properties about them. Following the notation of [58, Sect. 17], we denote Shimura's Eisenstein series by $E(z, s ; k, \chi, N)$. A comparison of [58, (16.40)] and (120) shows that

$$
\begin{equation*}
E_{k, N}^{\chi}(Z, s)=E(z, s+k / 2 ; k, \chi, N) . \tag{121}
\end{equation*}
$$

The above identity can also be proved adelically, by comparing the alternate description of our section at ramified places (see end of Sect. 4.2) with Shimura's section (see Sect. 16.5 of [58]).

Combining (120) with (119), we can now write down a similar expansion for $E_{k, N}^{\chi}(Z, s ; h)$ for each $h \in \prod_{p<\infty} \operatorname{Sp}_{4 n}\left(\mathbb{Z}_{p}\right)$. Note that if Q is the element defined immediately above Theorem 6.1, then $E_{k, N}^{\chi}(Z, s ; Q)=j\left(Q_{n}, Z\right)^{-k} E_{k, N}^{\chi}\left(Q_{n} Z, s\right)$.

Let π and ϕ be as in Sect. 6.1. Let $F(Z)$ be the function on \mathbb{H}_{n} corresponding to the automorphic form ϕ via (116). Then $F, \bar{F} \in C_{k}^{\infty}\left(\Gamma_{2 n}(N)\right)$ and both these functions are rapidly decreasing at infinity (as ϕ is a cusp form). For $Z_{1}, Z_{2} \in \mathbb{H}_{n}$, and $h \in \prod_{p<\infty} \operatorname{Sp}_{4 n}\left(\mathbb{Z}_{p}\right)$, write $E_{k, N}^{\chi}\left(Z_{1}, Z_{2}, s ; h\right)$ for $E_{k, N}^{\chi}\left(\left[\begin{array}{ll}Z_{1} & \\ & Z_{2}\end{array}\right], s ; h\right)$. Using adelic-to-classical arguments similar to Theorem 6.5.1 of [45], we can now write down the classical analogue of Theorem 6.1.

Theorem 6.4 Let the element Q_{τ} for each $\tau \in \hat{\mathbb{Z}}^{\times}$be as defined just before Theorem 6.1, and let $E_{k, N}^{\chi}\left(Z, s ; Q_{\tau}\right)$ be as defined in (118). Let $F(Z), \bar{F}(Z)$ be as defined above. Then we have the relation

$$
\begin{aligned}
& \left\langle E_{k, N}^{\chi}\left(-, Z_{2}, \frac{n}{2}-\frac{k-s}{2} ; Q_{\tau}\right), \bar{F}\right\rangle \\
& \quad=\frac{L^{N}\left(s, \pi \boxtimes \chi, \varrho_{2 n+1}\right)}{L^{N}(s+n, \chi) \prod_{j=1}^{n} L^{N}\left(2 s+2 j-2, \chi^{2}\right)} \times A_{\mathbf{k}}(s-1) \\
& \quad \times \prod_{p \mid N} \operatorname{vol}\left(\Gamma_{2 n}\left(p^{m_{p}}\right)\right) \times \frac{\chi(\tau)^{-n} i^{n k} \pi^{n(n+1) / 2}}{\operatorname{vol}\left(\operatorname{Sp}_{2 n}(\mathbb{Z}) \backslash \operatorname{Sp}_{2 n}(\mathbb{R})\right)} \times F\left(Z_{2}\right),
\end{aligned}
$$

with the rational function $A_{\mathbf{k}}(z)$ defined as in Proposition 5.8.
Corollary 6.5 Let r be a positive integer satisfying $1 \leq r \leq k_{n}-n, r \equiv k_{n}-n(\bmod 2)$. Then
$\left\langle E_{k, N}^{\chi}\left(-, Z_{2}, \frac{n}{2}-\frac{k-r}{2} ; Q_{\tau}\right), \bar{F}\right\rangle=\frac{i^{n k} \chi(\tau)^{-n} c_{k, r, n, N} L^{N}\left(r, \pi \boxtimes \chi, \varrho_{2 n+1}\right)}{L^{N}(r+n, \chi) \prod_{j=1}^{n} L^{N}\left(2 r+2 j-2, \chi^{2}\right)} F\left(Z_{2}\right)$,
where $c_{k, r, n, N}=\frac{\pi^{n(n+1) / 2} \prod_{p \mid N} \operatorname{vol}\left(\Gamma_{2 n}\left(p^{m p}\right)\right)}{\operatorname{vol}\left(\mathrm{Sp}_{2 n}(\mathbb{Z}) \backslash \mathrm{Sp}_{2 n}(\mathbb{R})\right)} \times A_{\mathbf{k}}(r-1)$ is a non-zero rational number.

6.3 Near holomorphy and rationality of Eisenstein series

In this section, we will prove two important properties of the Eisenstein series $E_{k, N}^{\chi}(Z,-$ $\left.m_{0} ; h\right)$ for certain non-negative integers m_{0}. These are stated as Propositions 6.6 and 6.8.

For each positive integer r, let $N\left(\mathbb{H}_{r}\right)$ be the space of nearly holomorphic functions on \mathbb{H}_{r}. By definition, these are the functions which are polynomials in the entries of $\operatorname{Im}(Z)^{-1}$ with holomorphic functions on \mathbb{H}_{r} as coefficients. For each discrete subgroup Γ of $\mathrm{Sp}_{2 r}(\mathbb{R})$, let $N_{k}(\Gamma)$ be the space of all functions F in $N\left(\mathbb{H}_{r}\right)$ that satisfy $F(\gamma Z)=j(\gamma, Z)^{k} F(Z)$ for all $Z \in \mathbb{H}_{r}$ and $\gamma \in \Gamma$ (if $r=1$, we also need an additional "no poles at cusps" condition, as explained in [39]). The spaces $N_{k}(\Gamma)$ are known as nearly holomorphic modular forms of weight k for Γ. We let $M_{k}(\Gamma) \subset N_{k}(\Gamma)$ denote the usual space of holomorphic modular forms of weight k for Γ. The following important result is due to Shimura.

Proposition 6.6 Suppose that $k \geq n+1$ and let $h \in \prod_{p<\infty} \operatorname{Sp}_{4 n}\left(\mathbb{Z}_{p}\right)$. If $k=n+1$, assume further that $\chi^{2} \neq 1$. Then $E_{k, N}^{\chi}(Z, 0 ; h)$ is a holomorphic Siegel modular form of degree $2 n$ and weight k with respect to the principal congruence subgroup $\Gamma_{4 n}(N)$ of $\operatorname{Sp}_{4 n}(\mathbb{R})$. More generally, let $0 \leq m_{0} \leq \frac{k}{2}-\frac{n+1}{2}$ be an integer, and exclude the case $m_{0}=\frac{k}{2}-\frac{n+1}{2}, \chi^{2}=1$. Then

$$
E_{k, N}^{\chi}\left(Z,-m_{0} ; h\right) \in N_{k}\left(\Gamma_{4 n}(N)\right) .
$$

Proof If $h=1$, this is a special case of Theorem 17.9 of [58] (see Remark 6.3). The proof for general h is now an immediate consequence of (119).

Remark 6.7 In the absolutely convergent range $k \geq 2 n+2,0 \leq m_{0} \leq \frac{k}{2}-n-1$, the above proposition can also be proved directly, using the expansion (120). To go beyond the realm of absolute convergence, one needs delicate results involving analytic behavior of Fourier coefficients of Eisenstein series, which have been done by Shimura.

Next, for any nearly holomorphic modular form $F \in N_{k}(\Gamma)$ and $\sigma \in \operatorname{Aut}(\mathbb{C})$ we let ${ }^{\sigma} F$ denote the nearly holomorphic modular form obtained by letting σ act on the Fourier coefficients of F. Note that if σ is complex conjugation then ${ }^{\sigma} F$ equals \bar{F}. Denote

$$
h_{\tau}:=\left[\begin{array}{ccc}
\tau I_{2 n} & \\
& & I_{2 n}
\end{array}\right] h\left[\begin{array}{lll}
\tau^{-1} & I_{2 n} & \\
& & I_{2 n}
\end{array}\right] .
$$

We will prove the following result.
Proposition 6.8 Let the setup be as in Proposition 6.6. Let $\sigma \in \operatorname{Aut}(\mathbb{C})$, and let $\tau \in \hat{\mathbb{Z}}^{\times}$ be the element corresponding to σ via the natural map $\operatorname{Aut}(\mathbb{C}) \rightarrow \operatorname{Gal}(\mathbb{Q} a b / \mathbb{Q}) \simeq \hat{\mathbb{Z}}^{\times}$. (Concretely, this means that for each positive integer $m, \sigma\left(e^{2 \pi i / m}\right)=e^{2 \pi i t / m}$ where $t \equiv \tau$ $\bmod m$.) Then

$$
{ }^{\sigma} E_{k, N}^{\chi}\left(Z,-m_{0} ; h\right)=\frac{\sigma\left(\pi^{2 m_{0} n}\right)}{\pi^{2 m_{0} n}} E_{k, N}^{\sigma} \chi\left(Z,-m_{0} ; h_{\tau}\right) .
$$

Proof We will prove the result in several steps.
Lemma 6.9 (Feit) Assume that $k \geq n+1$, and exclude the case $k=n+1, \chi^{2}=1$. Then ${ }^{\sigma} E_{k, N}^{\chi}(Z, 0)=E_{k, N}^{\sigma}(Z, 0)$. In other words, Proposition 6.8 holds for $m_{0}=0, h=1$.

Proof This is Theorem 15.1 of [13].
The next step is to extend the above lemma to the case of general h. This follows from a very general lemma of Shimura. For any Siegel modular form $F \in M_{k}\left(\Gamma_{2 r}(N)\right)$ and any $h \in \prod_{p<\infty} \operatorname{Sp}_{2 r}\left(\mathbb{Z}_{p}\right)$, define $\left.F\right|_{k} h \in M_{k}\left(\Gamma_{2 r}(N)\right)$ by $\left.F\right|_{k} h:=\left.F\right|_{k} h_{0}$ where we choose h_{0} to be any element of $\operatorname{Sp}_{2 r}(\mathbb{Z})$ with $\left(h_{0}^{-1} h\right)_{p} \in \Gamma_{2 r}(N)$ for all p. Note that $\left.E_{k, N}^{\chi}(Z, 0)\right|_{k} h=$ $E_{k, N}^{\chi}(Z, 0 ; h)$.

Lemma 6.10 (Shimura) Let σ, τ be as in Proposition 6.8. Then, for all $h \in \prod_{p<\infty} \operatorname{Sp}_{2 r}\left(\mathbb{Z}_{p}\right)$, and $F \in M_{k}\left(\Gamma_{2 r}(N)\right)$, we have ${ }^{\sigma}\left(\left.F\right|_{k} h\right)=\left.\left({ }^{\sigma} F\right)\right|_{k} h_{\tau}$.

Proof This is immediate from Lemma 10.5 of [58] and its proof.
Combining the above two lemmas, since $k-2 m_{0} \geq n+1$, we see now that

$$
\begin{equation*}
{ }^{\sigma} E_{k-2 m_{0}, N}^{\chi}(Z, 0 ; h)=E_{k-2 m_{0}, N}^{\sigma}\left(Z, 0 ; h_{\tau}\right) \tag{122}
\end{equation*}
$$

for all k, m_{0}, χ as in Proposition 6.6. Next, we need the Maass-Shimura differential operator Δ_{k}^{p} which is defined in [56, 4.10a] or [58, p. 146]. Note that Δ_{k}^{p} takes $N_{k}(\Gamma)$ to $N_{k+2 p}(\Gamma)$. By [58, (17.21)] we obtain

$$
\begin{equation*}
\Delta_{k-2 m_{0}}^{m_{0}}\left(E_{k-2 m_{0}, N}^{\chi}(Z, 0 ; h)\right)=d E_{k, N}^{\chi}\left(Z,-m_{0} ; h\right), \tag{123}
\end{equation*}
$$

where d is a non-zero rational number. (Note here that the differential operator Δ_{k}^{p} commutes with the action of h). Finally, we have the identity (see equation (1) of [9]):

$$
\begin{equation*}
{ }^{\sigma}\left(\pi^{-2 m_{0} n} \Delta_{k-2 m_{0}}^{m_{0}} F\right)=\Delta_{k-2 m_{0}}^{m_{0}}\left(\pi^{-2 m_{0} n}{ }^{\sigma} F\right) . \tag{124}
\end{equation*}
$$

Combining (122), (123), and (124), we conclude the proof of Proposition 6.8.
Remark 6.11 In the special case $m_{0}=0, k \geq 2 n+2$, where the Eisenstein series is holomorphic and absolutely convergent, Proposition 6.8 also appears in [18, p. 461].

7 Critical L-values for $\mathbf{G S p}_{\mathbf{4}} \times \mathbf{G L}_{\mathbf{1}}$

7.1 Preliminaries

For the algebraicity results of critical values of L-functions, we will use [39]. Since the results of [39] are available only for $n=2$, we will assume $n=2$ throughout this section. Let ℓ, m be non-negative integers with m even and $\ell \geq 3$. We put $\mathbf{k}=(\ell+m) e_{1}+\ell e_{2}$ and $k=\ell+m$. For each integer $N=\prod_{p} p^{m_{p}}$, we let $\Pi_{N}(\mathbf{k})$ denote the set of all cuspidal automorphic representations $\pi \cong \otimes \pi_{p}$ of $G_{4}(\mathbb{A})$ such that π_{∞} equals the holomorphic discrete series representation $\pi_{\mathbf{k}}$ and such that for each finite prime p, π_{p} has a vector right invariant under the principal congruence subgroup $\Gamma_{4}\left(p^{m_{p}}\right)$ of $\operatorname{Sp}_{4}\left(\mathbb{Z}_{p}\right)$. We put $\Pi(\mathbf{k})=\bigcup_{N} \Pi_{N}(\mathbf{k})$.

We say that a character $\chi=\otimes \chi_{p}$ of $\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}$is a Dirichlet character if χ_{∞} is trivial on $\mathbb{R}_{>0}$. Any such χ gives rise to a homomorphism $\tilde{\chi}:\left(\mathbb{Z} / N_{\chi} \mathbb{Z}\right)^{\times} \rightarrow \mathbb{C}^{\times}$, where N_{χ} denotes the conductor of χ. Concretely ${ }^{4}$ the map $\tilde{\chi}$ is given by $\tilde{\chi}(a)=\prod_{p \mid N_{\chi}} \chi_{p}^{-1}(a)$. Given a Dirichlet character χ, we define the corresponding Gauss sum by $G(\chi)=\sum_{n \in\left(\mathbb{Z} / N_{\chi} \mathbb{Z}\right)^{\times}} \tilde{\chi}(n) e^{2 \pi i n / N_{\chi}}$.

Lemma 7.1 Let χ, χ^{\prime} be Dirichlet characters. Given $\sigma \in \operatorname{Aut}(\mathbb{C})$, let $\tau \in \hat{\mathbb{Z}}^{\times}$be as in Proposition 6.8. The following hold:
(i) $\sigma(G(\chi))={ }^{\sigma} \chi(\tau) G\left({ }^{\sigma} \chi\right)$.
(ii) $\sigma\left(\frac{G\left(\chi \chi^{\prime}\right)}{G(\chi) G\left(\chi^{\prime}\right)}\right)=\frac{\left.G{ }^{(} \chi^{\sigma} \chi^{\prime}\right)}{G\left({ }^{(} \chi\right) G\left({ }^{\sigma} \chi^{\prime}\right)}$.

Proof This is a special case of Lemma 8 of [53].
Let \mathcal{X}_{N} be the set of all Dirichlet characters χ such that $\chi_{\infty}=\operatorname{sgn}^{\ell}$ and $N_{\chi} \mid N$. We denote $\mathcal{X}=\bigcup_{N} \mathcal{X}_{N}$. For any $\pi \in \Pi_{N}(\mathbf{k}), \chi \in \mathcal{X}_{N}$, and any positive integer r, we define, following the notation of Corollary 6.5,

$$
C_{N}(\pi, \chi, r):=(-1)^{k} \pi^{2 r+4-2 k} c_{k, r, 2, N} \frac{L^{N}\left(r, \pi \boxtimes \chi, \varrho_{5}\right)}{L^{N}(r+2, \chi) L^{N}\left(2 r, \chi^{2}\right) L^{N}\left(2 r+2, \chi^{2}\right)}
$$

The reader should not be confused by the two different π (one the constant, the other an automorphic representation) appearing in the above definition.

For the rest of this paper, we also make the following assumption (which is forced upon us as we need to use results of Shimura where this assumption appears):

$$
\begin{equation*}
r=1 \Longrightarrow \chi^{2} \neq 1 \tag{125}
\end{equation*}
$$

The reader might wonder if $C_{N}(\pi, \chi, r)$ can be infinite. It turns out that (125) eliminates that possibility. First of all, any $\pi \in \Pi_{N}(\mathbf{k})$ is either of generic type (meaning, it lifts to a cusp form on GL_{4}), or of endoscopic (Yoshida) type, or of P-CAP (Saito-Kurokawa) type. (CAP representations of Soudry type or Howe-Piatetski-Shapiro type do not occur if $\ell \geq 3$.) In each case, we have precise information about the possible poles of $L\left(r, \pi \boxtimes \chi, \varrho_{5}\right)$; see [49]. It follows that if π is generic, then $L^{N}\left(r, \pi \boxtimes \chi, \varrho_{5}\right)$ is finite for all $r \geq 1$. On the other hand, for π either endoscopic or P-CAP, $L^{N}\left(r, \pi \boxtimes \chi, \varrho_{5}\right)$ is finite for $r>1$ and $L^{N}\left(1, \pi \boxtimes \chi, \varrho_{5}\right)=\infty \Rightarrow \chi=1$. In particular, assumption (125) implies that $C_{N}(\pi, \chi, r)$ is finite in all cases considered by us.

Recall that $N_{k}\left(\Gamma_{4}(N)\right)$ denotes the (finite-dimensional) space of nearly holomorphic modular forms of weight k for the subgroup $\Gamma_{4}(N)$ of $\mathrm{Sp}_{4}(\mathbb{Z})$. Let V_{N} be the subset of $N_{k}\left(\Gamma_{4}(N)\right)$

[^2]consisting of those forms F which are cuspidal and for which the corresponding function Φ_{F} on $\mathrm{Sp}_{4}(\mathbb{R})$ generates an irreducible representation isomorphic to $\pi_{\mathbf{k}}$. By Theorem 4.8 and Proposition 4.28 of [39], V_{N} is a subspace of $N_{k}\left(\Gamma_{4}(N)\right)$ and isomorphic to the space $S_{\ell, m}\left(\Gamma_{4}(N)\right)$ of holomorphic vector-valued cusp forms of weight $\operatorname{det}^{\ell} \operatorname{sym}^{m}$ for $\Gamma_{4}(N)$; indeed $V_{N}=U^{m / 2}\left(S_{\ell, m}\left(\Gamma_{4}(N)\right)\right)$, where U is the differential operator defined in Section 3.4 of [39]. We put $V=\bigcup_{N} V_{N}$ and $N_{k}=\bigcup_{N} N_{k}\left(\Gamma_{4}(N)\right)$.

As in [39], we let $\mathfrak{p}_{\ell, m}^{\circ}$ denote the orthogonal projection map from N_{k} to V; note that it takes $N_{k}\left(\Gamma_{4}(N)\right)$ to V_{N} for each N. Let $1 \leq r \leq \ell-2, r \equiv \ell(\bmod 2)$ be an integer and $\chi \in \mathcal{X}_{N}$; also suppose that (125) holds. Then $E_{k, N}^{\chi}\left(Z_{1}, Z_{2}, 1-\frac{k-r}{2} ; Q_{\tau}\right) \in N_{k}\left(\Gamma_{4}(N)\right) \otimes N_{k}\left(\Gamma_{4}(N)\right)$ for each $\tau \in \hat{\mathbb{Z}}^{\times}$. In fact, it can be shown that $E_{k, N}^{\chi}\left(Z_{1}, Z_{2}, 1-\frac{k-r}{2} ; Q_{\tau}\right)$ is cuspidal in each variable using methods very similar to [18], but we will not need this. We define

$$
\begin{equation*}
G_{k, N}^{\chi}\left(Z_{1}, Z_{2}, r ; Q_{\tau}\right):=\pi^{2 r+4-2 k} \times\left(\mathfrak{p}_{\ell, m}^{\circ} \otimes \mathfrak{p}_{\ell, m}^{\circ}\right)\left(E_{k, N}^{\chi}\left(Z_{1}, Z_{2}, 1-\frac{k-r}{2} ; Q_{\tau}\right)\right) . \tag{126}
\end{equation*}
$$

If $F \in V$ is such that (the adelization of) F generates a multiple of an irreducible (cuspidal, automorphic) representation of $G_{4}(\mathbb{A})$, then we let π_{F} denote the representation associated to F. Note that the set of automorphic representations π_{F} obtained this way as F varies in V_{N} is precisely equal to the set $\Pi_{N}(\mathbf{k})$ defined above. For each $\pi \in \Pi(\mathbf{k})$, we let $V_{N}(\pi)$ denote the π-isotypic part of V_{N}. Precisely, this is the subspace consisting of all those F in V_{N} such that all irreducible constituents of the representation generated by (the adelization of) F are isomorphic to π. Note that $V_{N}(\pi)=\{0\}$ unless $\pi \in \Pi_{N}(\mathbf{k})$. We have an orthogonal direct sum decomposition

$$
\begin{equation*}
V_{N}=\bigoplus_{\pi \in \Pi_{N}(\mathbf{k})} V_{N}(\pi) \tag{127}
\end{equation*}
$$

We define $V(\pi)=\bigcup_{N} V_{N}(\pi)$. Therefore we have $V=\bigoplus_{\pi \in \Pi(\mathbf{k})} V(\pi)$. Now, let \mathfrak{B} be any orthogonal basis of V_{N} formed by taking a union of orthogonal bases from the right side of (127). Thus each $F \in \mathfrak{B}$ belongs to $V_{N}(\pi)$ for some $\pi \in \Pi_{N}(\mathbf{k})$. From Corollary 6.5, Proposition 6.6, and (115), we deduce the following key identity:

$$
\begin{align*}
G_{k, N}^{\chi}\left(Z_{1}, Z_{2}, r ; Q_{\tau}\right) & =\chi(\tau)^{-2} \sum_{F \in \mathfrak{B}} C_{N}\left(\pi_{F}, \chi, r\right) \frac{F\left(Z_{1}\right) \bar{F}\left(Z_{2}\right)}{\langle F, F\rangle} \\
& =\chi(\tau)^{-2} \sum_{\pi \in \Pi_{N}(\mathbf{k})} C_{N}(\pi, \chi, r) \sum_{\substack{F \in \mathfrak{B} \\
F \in V_{N}(\pi)}} \frac{F\left(Z_{1}\right) \bar{F}\left(Z_{2}\right)}{\langle F, F\rangle} . \tag{128}
\end{align*}
$$

7.2 Arithmeticity

Throughout this section, we assume that $1 \leq r \leq \ell-2, r \equiv \ell(\bmod 2)$, and that (125) holds.

Lemma 7.2 For all $\sigma \in \operatorname{Aut}(\mathbb{C})$,

$$
{ }^{\sigma} G_{k, N}^{\chi}\left(Z_{1}, Z_{2}, r ; Q\right)=G_{k, N}^{\sigma} \chi\left(Z_{1}, Z_{2}, r ; Q_{\tau}\right)
$$

Proof Recall that $G_{k, N}^{\chi}\left(Z_{1}, Z_{2}, r ; Q_{\tau}\right)$ is defined by (126). So the corollary follows from Proposition 6.8 (taking $h=Q$) and the fact that the map $\mathfrak{p}_{\ell, m}^{\circ}$ commutes with the action of $\operatorname{Aut}(\mathbb{C})$ (see Proposition 5.17 of [39]). Note that the power of π is introduced in (126) precisely to cancel with the power of π in Proposition 6.8.

Let $\sigma \in \operatorname{Aut}(\mathbb{C})$. For $\pi \in \Pi_{N}(\mathbf{k})$, we let ${ }^{\sigma} \pi \in \Pi_{N}(\mathbf{k})$ be the representation obtained by the action of σ, and we let $\mathbb{Q}(\pi)$ denote the field of rationality of π; see the beginning of Section 3.4 of [46]. If σ is the complex conjugation, then we denote ${ }^{\sigma} \pi=\bar{\pi}$. It is known that $\mathbb{Q}(\pi)$ is a $C M$ field and $\mathbb{Q}(\bar{\pi})=\mathbb{Q}(\pi)$. We use $\mathbb{Q}(\pi, \chi)$ to denote the compositum of $\mathbb{Q}(\pi)$ and $\mathbb{Q}(\chi)$. Note that

$$
\begin{equation*}
F \in V_{N}(\pi) \Longrightarrow{ }^{\sigma} F \in V_{N}\left({ }^{\sigma} \pi\right) . \tag{129}
\end{equation*}
$$

This follows from Theorem 4.2.3 of [3] (see the proof of Proposition 3.13 of [46]) together with the fact that the U operator commutes with σ. In particular, the space $V_{N}(\pi)$ is preserved under the action of the group $\operatorname{Aut}(\mathbb{C} / \mathbb{Q}(\pi))$. Using Lemma 3.17 of [46], it follows that the space $V_{N}(\pi)$ has a basis consisting of forms whose Fourier coefficients are in $\mathbb{Q}(\pi)$. In particular there exists some F satisfying the conditions of the next proposition.

Proposition 7.3 Let $\pi \in \Pi_{N}(\mathbf{k}), \chi \in \mathcal{X}_{N}$, and $F \in V_{N}(\pi)$. Suppose that the Fourier coefficients of F lie in a CM field. Then for any $\sigma \in \operatorname{Aut}(\mathbb{C})$ we have

$$
\sigma\left(\frac{G\left(\chi^{2}\right) C_{N}(\pi, \chi, r)}{\langle F, F\rangle}\right)=\frac{G\left({ }^{\sigma} \chi^{2}\right) C_{N}\left({ }^{\sigma} \pi,{ }^{\sigma} \chi, r\right)}{\left\langle{ }^{\sigma} F,{ }^{\sigma} F\right\rangle} .
$$

Proof Let us complete F to an orthogonal basis $\mathfrak{B}=\left\{F=F_{1}, F_{2}, \ldots, F_{r}\right\}$ of $V_{N}(\pi)$. Let $\mathfrak{B}^{\prime}=\left\{G_{1}, \ldots, G_{r}\right\}$ be any orthogonal basis for $V_{N}\left({ }^{\sigma} \pi\right)$. Given σ, let τ be as in Proposition 6.8. Using (128), (129), and Lemma 7.2, and comparing the $V_{N}\left({ }^{\sigma} \pi\right)$ components, we see that

$$
\sigma\left(C_{N}(\pi, \chi, r)\right) \sum_{i} \frac{{ }^{\sigma} F_{i}\left(Z_{1}\right)^{\sigma} \bar{F}_{i}\left(Z_{2}\right)}{\sigma\left(\left\langle F_{i}, F_{i}\right\rangle\right)}={ }^{\sigma} \chi^{-2}(\tau) C_{N}\left({ }^{\sigma} \pi,{ }^{\sigma} \chi, r\right) \sum_{i} \frac{G_{i}\left(Z_{1}\right) \bar{G}_{i}\left(Z_{2}\right)}{\left\langle G_{i}, G_{i}\right\rangle} .
$$

Taking inner products of each side with ${ }^{\sigma} F_{1}$ (in the variable Z_{1}) we deduce that

$$
\sigma\left(C_{N}(\pi, \chi, r)\right) \sum_{i} \frac{\left\langle{ }^{\sigma} F_{i},{ }^{\sigma} F_{1}\right\rangle}{\sigma\left(\left\langle F_{i}, F_{i}\right\rangle\right)}{ }^{\sigma} \bar{F}_{i}\left(Z_{2}\right)={ }^{\sigma} \chi{ }^{-2}(\tau) C_{N}\left({ }^{\sigma} \pi,{ }^{\sigma} \chi, r\right)^{\bar{\sigma} F_{1}}\left(Z_{2}\right)
$$

Note that $\overline{{ }^{\sigma} F_{1}}={ }^{\sigma} \bar{F}_{1}$ by our hypothesis on the Fourier coefficients of F being in a CM field. Comparing the coefficients of ${ }^{\sigma} \bar{F}_{1}\left(Z_{2}\right)$ on each side and using Lemma 7.1, we conclude the desired equality.

7.3 The main result on critical L-values

For each $p \mid N$, we define the local L-factor $L\left(s, \pi_{p} \boxtimes \chi_{p}, \varrho_{5}\right)$ via the local Langlands correspondence [15]. In particular, $L\left(s, \pi_{p} \boxtimes \chi_{p}, \varrho_{5}\right)$ is just a local L-factor for $\mathrm{GL}_{5} \times \mathrm{GL}_{1}$. This definition also works at the good places, and indeed coincides with what we previously defined. For any finite set of places S of \mathbb{Q}, including the archimedean place, we define the global L-function

$$
L^{S}\left(s, \pi \boxtimes \chi, \varrho_{5}\right)=\prod_{p \notin S} L\left(s, \pi_{p} \boxtimes \chi_{p}, \varrho_{5}\right) .
$$

Using the Langlands parameter given in Sect. 3.2 of [48] and the explicit form of the map ϱ_{5} given in Appendix A. 7 of [44], one finds that the archimedean factor is given by

$$
\begin{equation*}
L\left(s, \pi_{\infty} \boxtimes \chi_{\infty}, \varrho_{5}\right)=\Gamma_{\mathbb{R}}(s+\epsilon) \Gamma_{\mathbb{C}}(s+\ell+m-1) \Gamma_{\mathbb{C}}(s+\ell-2), \tag{130}
\end{equation*}
$$

with $\Gamma_{\mathbb{R}}, \Gamma_{\mathbb{C}}$ as in (111), and

$$
\epsilon= \begin{cases}0 & \text { if } \chi(-1)=1, \text { i.e. } \ell \text { is even; } \\ 1 & \text { if } \chi(-1)=-1, \text { i.e. } \ell \text { is odd. }\end{cases}
$$

The completed L-function satisfies a functional equation with respect to $s \rightarrow 1-s$ according to Theorem 60 of [10]. Hence, the critical points of $L\left(s, \pi \boxtimes \chi, \varrho_{5}\right)$ are precisely those integers r for which neither $L\left(s, \pi_{\infty} \boxtimes \chi_{\infty}, \varrho_{5}\right)$ nor $L\left(1-s, \pi_{\infty} \boxtimes \chi_{\infty}, \varrho_{5}\right)$ have a pole at $s=r$. Using the well known information on poles of gamma functions, we conclude that the set of critical points for $L\left(s, \pi \boxtimes \chi, \varrho_{5}\right)$ are given by integers r such that

$$
\begin{equation*}
\{1 \leq r \leq \ell-2: r \equiv \ell \quad(\bmod 2)\} \cup\{-\ell+3 \leq r \leq 0: r \equiv \ell+1 \quad(\bmod 2)\} . \tag{131}
\end{equation*}
$$

Remark 7.4 The critical points as written above in (131) crucially use the fact that m is even, $\ell \geq 3, \chi_{\infty}(-1)=(-1)^{\ell}$. Without these assumptions, the critical points can change. For example, consider the case where we keep ℓ, m as above, but assume that χ is even, i.e., $\chi_{\infty}(-1)=1$. In this case, the critical points for $L\left(s, \pi \boxtimes \chi, \varrho_{5}\right)$ become

$$
\begin{equation*}
\{2 \leq r \leq \ell-2: r \equiv 0 \quad(\bmod 2)\} \cup\{-\ell+2 \leq r \leq 0: r \equiv 1 \quad(\bmod 2)\}, \tag{132}
\end{equation*}
$$

which may differ from (131).
In the following theorem, we will obtain an algebraicity result for the special value of the L-function at the critical points in the right half plane. The analogous result for the critical points in the left half plane can be obtained from the functional equation in Theorem 60 of [10].

Theorem 7.5 Let ℓ, m, \mathbf{k} be as in Sect. 7. Let $\pi \in \Pi(\mathbf{k})$, and let $F \in V(\pi)$ be such that its Fourier coefficients lie in a CM field. Let S be any finite set of places of \mathbb{Q} containing the infinite place, $\chi \in \mathcal{X}, r$ be an integer satisfying $1 \leq r \leq \ell-2, r \equiv \ell(\bmod 2)$. In the special case that ℓ is odd and $r=1$, assume that $\chi^{2} \neq 1$. Then for any $\sigma \in \operatorname{Aut}(\mathbb{C})$, we have

$$
\begin{equation*}
\sigma\left(\frac{L^{S}\left(r, \pi \boxtimes \chi, \varrho_{5}\right)}{(2 \pi i)^{2 k+3 r} G(\chi)^{3}\langle F, F\rangle}\right)=\frac{L^{S}\left(r,{ }^{\sigma} \pi \boxtimes^{\sigma} \chi, \varrho_{5}\right)}{(2 \pi i)^{2 k+3 r} G\left({ }^{\sigma} \chi\right)^{3}\left\langle{ }^{\sigma} F,{ }^{\sigma} F\right\rangle} . \tag{133}
\end{equation*}
$$

Proof Let $\chi \in \mathcal{X}$. We choose some N such that $F \in V_{N}(\pi)$ and $\chi \in \mathcal{X}_{N}$. By Proposition 7.3,

$$
\begin{align*}
\sigma & \left(\frac{G\left(\chi^{2}\right) L^{N}\left(r, \pi \boxtimes \chi, \varrho_{5}\right)}{\pi^{2 k-2 r-4} L^{N}(r+2, \chi) L^{N}\left(2 r, \chi^{2}\right) L^{N}\left(2 r+2, \chi^{2}\right)\langle F, F\rangle}\right) \tag{134}\\
& =\frac{G\left({ }^{\sigma} \chi^{2}\right) L^{N}\left(r,{ }^{\sigma} \pi \boxtimes{ }^{\sigma} \chi, \varrho_{5}\right)}{\pi^{2 k-2 r-4} L^{N}\left(r+2,{ }^{\sigma} \chi\right) L^{N}\left(2 r,{ }^{\sigma} \chi^{2}\right) L^{N}\left(2 r+2,{ }^{\sigma} \chi^{2}\right)\left\langle{ }^{\sigma} F,{ }^{\sigma} F\right\rangle} .
\end{align*}
$$

For any Dirichlet character ψ, we have the following fact (see [53, Lemma 5]) for any positive integer t satisfying $\psi(-1)=(-1)^{t}$:

$$
\begin{equation*}
\sigma\left(\frac{L^{N}(t, \psi)}{(2 \pi i)^{t} G(\psi)}\right)=\frac{L^{N}\left(t,{ }^{\sigma} \psi\right)}{(2 \pi i)^{t} G\left({ }^{\sigma} \psi\right)} . \tag{135}
\end{equation*}
$$

Using this (with $\psi=\chi$ and χ^{2}) and Lemma 7.1 ii), we get from (134) that

$$
\begin{equation*}
\sigma\left(\frac{L^{N}\left(r, \pi \boxtimes \chi, \varrho_{5}\right)}{(2 \pi i)^{2 k+3 r} G(\chi)^{3}\langle F, F\rangle}\right)=\frac{L^{N}\left(r,{ }^{\sigma} \pi \boxtimes^{\sigma} \chi, \varrho_{5}\right)}{(2 \pi i)^{2 k+3 r} G\left({ }^{\sigma} \chi\right)^{3}\left\langle{ }^{\sigma} F,{ }^{\sigma} F\right\rangle} . \tag{136}
\end{equation*}
$$

For any prime p, it follows from Lemma 4.6 of [11] that

$$
\begin{equation*}
\sigma\left(L\left(r, \pi_{p} \boxtimes \chi_{p}, \varrho_{5}\right)\right)=L\left(r,{ }^{\sigma} \pi_{p} \boxtimes^{\sigma} \chi_{p}, \varrho_{5}\right) . \tag{137}
\end{equation*}
$$

Hence we can replace L^{N} by L^{S} in (136), obtaining the desired identity.
Remark 7.6 In view of (131), Theorem 7.5 obtains an algebraicity result for the special value of the L-function at all the critical points in the right half plane, except in the special case where ℓ is odd and χ is quadratic, in which case our theorem cannot handle the critical point $s=1$. The reason for this omission is subtle, and is related to the fact that the normalization of the Eisenstein series corresponding to this point involves the factor $L\left(1, \chi^{2}\right)$ which has a pole when $\chi^{2}=1$. Consequently the required arithmetic results for the Eisenstein series are unavailable in this case.

Further, as mentioned earlier, the analogous result for the critical points in the left half plane can be obtained from the functional equation in Theorem 60 of [10].

In summary, Theorem 7.5 (together with the functional equation) covers all the critical L-values, except in the special case when ℓ is odd and χ is quadratic, in which case the critical L-values at $s=0$ and $s=1$ are not covered.

Remark 7.7 Let F be as in the Theorem 7.5. By the results of [39], we know that $F=U^{m / 2} F_{0}$ where F_{0} is a holomorphic vector-valued Siegel cusp form. Using Lemma 4.16 of [39], we have moreover the equality $\left\langle F_{0}, F_{0}\right\rangle=c_{\ell, m}\langle F, F\rangle$ for some constant $c_{\ell, m}$ that depends only on ℓ and m. By restricting to the special case of a full-level vector valued Siegel cusp form of weight $\operatorname{det}^{\ell}$ sym m, and comparing Theorem 7.5 with the result of [31], we see that $c_{\ell, m}$ is a rational multiple of π^{m}. Hence in the theorem above, the term $\langle F, F\rangle$ can be replaced by $\pi^{-m}\left\langle F_{0}, F_{0}\right\rangle$.

Definition 7.8 For two representations π_{1}, π_{2} in $\Pi(\mathbf{k})$, we write $\pi_{1} \approx \pi_{2}$ if there is a Hecke character ψ of $\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}$such that π_{1} is nearly equivalent to $\pi_{2} \otimes \psi$.

Note that if such a ψ as above exists, then ψ_{∞} must be trivial on $\mathbb{R}_{>0}$ and therefore ψ must be a Dirichlet character. The relation \approx clearly gives an equivalence relation on $\Pi(\mathbf{k})$. For any $\pi \in \Pi(\mathbf{k})$, let $[\pi]$ denote the class of π, i.e., the set of all representations π_{0} in $\Pi(\mathbf{k})$ satisfying $\pi_{0} \approx \pi$. For any integer N, we define the subspace $V_{N}([\pi])$ of V_{N} to be the (direct) sum of all the subspaces $V_{N}\left(\pi_{0}\right)$ where π_{0} ranges over all the inequivalent representations in $[\pi] \cap \Pi_{N}(\mathbf{k})$.

Corollary 7.9 Let $\pi_{1}, \pi_{2} \in \Pi(\mathbf{k})$ be such that $\pi_{1} \approx \pi_{2}$. Let $F_{1} \in V\left(\pi_{1}\right)$ and $F_{2} \in V\left(\pi_{2}\right)$ have coefficients in a CM field. Then for all $\sigma \in \operatorname{Aut}(\mathbb{C})$, we have

$$
\sigma\left(\frac{\left\langle F_{1}, F_{1}\right\rangle}{\left\langle F_{2}, F_{2}\right\rangle}\right)=\frac{\left\langle{ }^{\sigma} F_{1},{ }^{\sigma} F_{1}\right\rangle}{\left\langle{ }^{\sigma} F_{2},{ }^{\sigma} F_{2}\right\rangle} .
$$

Proof By assumption, there is a character ψ and a set S of places containing the infinite place, such that $\pi_{1, p} \simeq \pi_{2, p} \otimes \psi_{p}$ for all $p \notin S$. We fix any character $\chi \in \mathcal{X}$. Note that $L\left(s, \pi_{1, p} \boxtimes \chi_{p}, \varrho_{5}\right)=L\left(s, \pi_{1, p} \boxtimes \chi_{p}, \varrho_{5}\right)$ for all $p \notin S$, as the representation ϱ_{5} factors through PGSp_{4} and therefore is blind to twisting by ψ. Applying Theorem 7.5 twice at the point $r=\ell-2$, first with (π_{1}, F_{1}), and then with $\left(\pi_{2}, F_{2}\right)$, and dividing the two equalities, we get the desired result.

We can now prove Theorem 1.1. For each $\pi \in \Pi(\mathbf{k})$ we need to define a quantity $C(\pi)$ that has the properties claimed in Theorem 1.1. The first two properties required by Theorem 1.1
can be summarized as saying that $C(\pi)$ depends only on the class [π] of π. For each $\pi \in$ $\Pi(\mathbf{k})$, we let $N([\pi])$ denote the smallest integer such that $[\pi] \cap \Pi_{N([\pi])}(\mathbf{k}) \neq \emptyset$. Next, note that if $\pi_{1} \approx \pi_{2}$, then for any $\sigma \in \operatorname{Aut}(\mathbb{C}),{ }^{\sigma} \pi_{1} \approx{ }^{\sigma} \pi_{2}$. Thus for any class [π] and any $\sigma \in \operatorname{Aut}(\mathbb{C})$, we have a well-defined notion of the class ${ }^{\sigma}[\pi]=\left[{ }^{\sigma} \pi\right]$. Let $\mathbb{Q}([\pi])$ denote the fixed field of the set of all automorphisms of \mathbb{C} such that ${ }^{\sigma}[\pi]=[\pi]$. Clearly the field $\mathbb{Q}([\pi])$ is contained in $\mathbb{Q}\left(\pi_{0}\right)$ for any $\pi_{0} \in[\pi]$. It is also clear that $N\left({ }^{\sigma}[\pi]\right)=N([\pi])$ and $\mathbb{Q}\left({ }^{\sigma}[\pi]\right)=\sigma(\mathbb{Q}([\pi]))$ for any $\sigma \in \operatorname{Aut}(\mathbb{C})$.

The space $V_{N([\pi])}([\pi])$ is preserved under the action of $\operatorname{Aut}(\mathbb{C} / \mathbb{Q}([\pi]))$ and therefore has a basis consisting of forms with coefficients in $\mathbb{Q}([\pi])$. Suppose that G is a non-zero element of $V_{N([\pi])}([\pi])$ whose Fourier coefficients lie in $\mathbb{Q}([\pi])$. Then for any $\sigma \in \operatorname{Aut}(\mathbb{C}),{ }^{\sigma} G$ is an element of $V_{N(\sigma[\pi])}\left({ }^{\sigma}[\pi]\right)$ whose Fourier coefficients lie in $\mathbb{Q}\left({ }^{\sigma}[\pi]\right)$. Moreover, if σ, τ are elements of $\operatorname{Aut}(\mathbb{C})$ such that ${ }^{\sigma}[\pi]={ }^{\tau}[\pi]$, then ${ }^{\sigma} G={ }^{\tau} G$. It follows that for each class $[\pi]$, we can choose a non-zero element $G_{[\pi]} \in V_{N([\pi])}([\pi])$ such that the following two properties hold:
(i) The Fourier coefficients of $G_{[\pi]}$ lie in $\mathbb{Q}([\pi])$.
(ii) $G^{\sigma}[\pi]={ }^{\sigma} G_{[\pi]}$.

We do not require that the adelization of $G_{[\pi]}$ should generate an irreducible representation.
Finally, for any $\pi \in \Pi(\mathbf{k})$ we define

$$
C(\pi)=(2 \pi i)^{2 k}\left\langle G_{[\pi]}, G_{[\pi]}\right\rangle .
$$

By construction, $C(\pi)$ depends only on the class $[\pi]$ of π. So we only need to prove (1). The following lemma is key.

Lemma 7.10 Let π, F be as in Theorem 7.5. Then for all $\sigma \in \operatorname{Aut}(\mathbb{C})$,

$$
\sigma\left(\frac{\langle F, F\rangle}{\left\langle G_{[\pi]}, G_{[\pi]}\right\rangle}\right)=\frac{\left\langle{ }^{\sigma} F,{ }^{\sigma} F\right\rangle}{\left\langle{ }^{\sigma} G_{[\pi]},{ }^{\sigma} G_{[\pi]}\right\rangle} .
$$

Proof Write $G_{[\pi]}=F_{1}+F_{2}+\cdots+F_{t}$ where $F_{i} \in V\left(\pi_{i}\right)$ for inequivalent representations $\pi_{i} \in[\pi]$. Note that the spaces $V\left(\pi_{i}\right)$ are mutually orthogonal and hence

$$
\left\langle G_{[\pi]}, G_{[\pi]}\right\rangle=\sum_{i=1}^{t}\left\langle F_{i}, F_{i}\right\rangle, \quad\left\langle{ }^{\sigma} G_{[\pi]},{ }^{\sigma} G_{[\pi]}\right\rangle=\sum_{i=1}^{t}\left\langle{ }^{\sigma} F_{i},{ }^{\sigma} F_{i}\right\rangle .
$$

So the desired result would follow immediately from Corollary 7.9 provided we can show that each F_{i} has coefficients in a CM field.

Indeed, let K be the compositum of all the fields $\mathbb{Q}\left(\pi_{i}\right)$. Thus K is a CM field containing $\mathbb{Q}([\pi])$. For any $\sigma \in \operatorname{Aut}(\mathbb{C} / K)$, we have ${ }^{\sigma} G_{[\pi]}=G_{[\pi]}$ and ${ }^{\sigma} F_{i} \in V\left(\pi_{i}\right)$. As the spaces $V\left(\pi_{i}\right)$ are all linearly independent, it follows that ${ }^{\sigma} F_{i}=F_{i}$ and therefore each F_{i} has coefficients in a CM field.

The proof of (1) follows by combining Theorem 7.5 and Lemma 7.10.

7.4 Symmetric fourth L-function of GL_{2}

Let k be an even positive integer and M any positive integer. Let f be an elliptic cuspidal newform of weight k, level M and trivial nebentypus that is not of dihedral type. According to Theorem A' and Theorem C of [43], there exists a cuspidal automorphic representation π of $\mathrm{GSp}_{4}(\mathbb{A})$, the so-called sym ${ }^{3}$ lift, such that
(i) π_{∞} is the holomorphic discrete series representation with highest weight $(2 k-1, k+1)$,
(ii) for $p \nmid M$, the local representation π_{p} is unramified,
(iii) the L-functions have the following relation.

$$
L\left(s, \pi, \varrho_{5}\right)=L\left(s, \operatorname{sym}^{4} f\right) .
$$

The condition that f has trivial nebentypus and even weight k is an essential hypothesis in the results of [43]. Note that π corresponds to a holomorphic vector-valued Siegel cusp form F_{0} with weight $\operatorname{det}^{k+1} \operatorname{sym}^{k-2}$. Hence, $\ell=k+1$ and $m=k-2$ in this case. Let χ be a Dirichlet character in \mathcal{X}. Since k is even, we get $\chi(-1)=(-1)^{k+1}=-1$, i.e., $\chi_{\infty}=$ sgn. We have

$$
\begin{equation*}
L\left(s, \pi \boxtimes \chi, \varrho_{5}\right)=L\left(s, \chi \otimes \operatorname{sym}^{4} f\right) . \tag{138}
\end{equation*}
$$

Here, on the right hand side, we have the L-function of GL_{5} given by the symmetric fourth power of f (see [28]), twisted by the character χ. By Lemma 1.2.1 of [47], the archimedean L-factor of $L\left(s, \chi \otimes \operatorname{sym}^{4} f\right)$ coincides with (130) with $\ell=k+1, m=k-2$, as expected. By (131), the critical points for $L\left(s, \chi \otimes \operatorname{sym}^{4} f\right)$ are given by

$$
\begin{equation*}
\{-k+2,-k, \ldots,-2,0 ; 1,3, \ldots, k-3, k-1\} . \tag{139}
\end{equation*}
$$

Remark 7.11 As pointed out in Remark 7.4, the above calculation of the critical set uses the fact that χ is an odd Dirichlet character. If instead χ were an even Dirichlet character (for example if we were to take χ to be trivial), then the critical set would become

$$
\{-k+3,-k+5, \ldots,-1 ; 2,4, \ldots, k-2\}
$$

which involves a shift from (139) in each half-plane.
In the following theorem, we will obtain an algebraicity result for the special value of the L-function at all the critical points in the right half plane, except possibly for the point 1 . The analogous result for the critical points in the left half plane can be obtained from the standard functional equation [20] of $\mathrm{GL}_{5} L$-functions.

Theorem 7.12 Let f be an elliptic cuspidal newform of even weight k and trivial nebentypus; assume that f is not of dihedral type. Let π be the Ramakrishnan-Shahidi lift of f to GSp_{4}, and let $F \in V(\pi)$ be such that its Fourier coefficients lie in a CM field. Let S be any finite set of places of \mathbb{Q} containing the infinite place, χ be an odd Dirichlet character, and r be an odd integer satisfying $1 \leq r \leq k-1$. If $r=1$, assume $\chi^{2} \neq 1$. Then for any $\sigma \in \operatorname{Aut}(\mathbb{C})$, we have

$$
\begin{equation*}
\sigma\left(\frac{L^{S}\left(r, \chi \otimes \operatorname{sym}^{4} f\right)}{(2 \pi i)^{4 k-2+3 r} G(\chi)^{3}\langle F, F\rangle}\right)=\frac{L^{S}\left(r,{ }^{\sigma} \chi \otimes \operatorname{sym}^{4}\left({ }^{\sigma} f\right)\right)}{(2 \pi i)^{4 k-2+3 r} G\left({ }^{\sigma} \chi\right)^{3}\left\langle{ }^{\sigma} F,{ }^{\sigma} F\right\rangle} \tag{140}
\end{equation*}
$$

Proof This theorem follows from Theorem 7.5 and (138).
Proof of Theorem 1.5 This follows similarly, only using Theorem 1.1 rather than Theorem 7.5.

Remark 7.13 As noted earlier, the hypothesis that k is even and f has trivial nebentypus is necessary since we are using the results of [43]. The hypothesis that χ is odd is a consequence of our definition of \mathcal{X} and ultimately goes back to our construction of the Eisenstein series (specifically, the definition of the vector f_{k} from Sect. 5.2 , which is otherwise not welldefined).

Remark 7.14 Deligne's famous conjecture on critical values of motivic L-functions predicts an algebraicity result for the critical values of $L\left(s, \chi \otimes \operatorname{sym}^{m} f\right)$ for each positive integer m. For $m=1$ this was proved by Shimura [54], for $m=2$ by Sturm [59], and for $m=3$ by Garrett-Harris [16]. In the case $m=4$, and f of full level, Ibukiyama and Katsurada [26] proved a formula for $L\left(s, \operatorname{sym}^{4} f\right)$ which implies algebraicity. Assuming functoriality, the expected algebraicity result for the critical values of $L\left(s, \chi \otimes \operatorname{sym}^{m} f\right)$ was proved for all odd m by Raghuram [41]. To the best of our knowledge, the results of this paper represent the first advances in the case $m=4$ for general newforms f.

However, Deligne's conjecture is in the motivic world and it is a non-trivial problem to relate Deligne's motivic period to our period in (140) which involves the Petersson norm $\langle F, F\rangle$. One way to ask for compatibility of our result with Deligne's conjecture is via twisted L-values. ${ }^{5}$ Let f be as in Theorem 7.12, χ_{1}, χ_{2} be two odd Dirichlet characters, and let r be an integer as in Theorem 7.12. Then Deligne's conjecture, together with expected properties on the behavior of periods of motives twisted by Artin motives implies that (see [42, Conjecture 7.1]):

$$
\begin{equation*}
\frac{L_{\mathrm{f}}\left(r, \chi_{1} \otimes \operatorname{sym}^{4} f\right) G\left(\chi_{2}\right)^{3}}{L_{\mathrm{f}}\left(r, \chi_{2} \otimes \operatorname{sym}^{4} f\right) G\left(\chi_{1}\right)^{3}} \in \mathbb{Q}\left(f, \chi_{1}, \chi_{2}\right) \tag{141}
\end{equation*}
$$

On the other hand, (141) is also an immediate consequence of (140). This shows the compatibility of Theorem 7.12 with Deligne's conjecture.

Finally, we note that Theorem 7.12 does not cover the case of dihedral forms; however, Deligne's conjecture is known for all symmetric power L-functions of a dihedral form as explained in Section 4 of [42].

Acknowledgements We would like to thank A. Raghuram for helpful comments regarding the subject of this paper. A.S. acknowledges the support of the EPSRC Grant EP/L025515/1.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Haar measures on $\mathbf{S p}_{\mathbf{2 n}}(\mathbb{R})$

This appendix will furnish proofs for the constants appearing in the integration formulas (27) and (88). The symbol K denotes the maximal compact subgroup $\mathrm{Sp}_{2 n}(\mathbb{R}) \cap \mathrm{O}(2 n)$ of $\mathrm{Sp}_{2 n}(\mathbb{R})$.

A. 1 The KAK measure

Recall that we have fixed the "classical" Haar measure on $\mathrm{Sp}_{2 n}(\mathbb{R})$ characterized by the property (12). There is also the " $K A K$ measure" given by the integral on the right hand side of (27).

[^3]Proposition A. 1 The constant α_{n} in (27) is given by

$$
\begin{equation*}
\alpha_{n}=\frac{(4 \pi)^{n(n+1) / 2}}{\prod_{m=1}^{n}(m-1)!} . \tag{142}
\end{equation*}
$$

Proof The proof consists of evaluating both sides of (27) for the function

$$
F\left(\left[\begin{array}{cc}
A & B \tag{143}\\
C & D
\end{array}\right]\right)=\frac{2^{2 n k}}{|\operatorname{det}(A+D+i(C-B))|^{2 k}} .
$$

Note that this function is the square of the absolute value of the matrix coefficient appearing in (68). Hence the integrals will be convergent as long as $k>n$. The function $f(Z)$ on \mathbb{H}_{n} corresponding to F is given by

$$
\begin{align*}
f(Z) & =F\left(\left[\begin{array}{cc}
1 & X \\
1
\end{array}\right]\left[\begin{array}{c}
Y^{1 / 2} \\
Y^{-1 / 2}
\end{array}\right]\right) \\
& =\frac{2^{2 n k}}{\left|\operatorname{det}\left(Y^{1 / 2}+Y^{-1 / 2}-i X Y^{-1 / 2}\right)\right|^{2 k}} \\
& =\frac{2^{2 n k} \operatorname{det}(Y)^{k}}{\left|\operatorname{det}\left(1_{n}+Y-i X\right)\right|^{2 k}} . \tag{144}
\end{align*}
$$

Hence, by (12),

$$
\begin{equation*}
\int_{\mathrm{Sp}_{2 n}(\mathbb{R})} F(g) d g=2^{2 n k} \int_{\mathbb{H}_{n}} \frac{\operatorname{det}(Y)^{k-n-1}}{\left|\operatorname{det}\left(1_{n}+Y-i X\right)\right|^{2 k}} d X d Y . \tag{145}
\end{equation*}
$$

We now employ the following integral formula. For a matrix X, denote by $[X]_{p}$ the upper left block of size $p \times p$ of X. For $j=1, \ldots, n$ let $\lambda_{j}, \sigma_{j}, \tau_{j}$ be complex numbers, and set $\lambda_{n+1}=\sigma_{n+1}=\tau_{n+1}=0$. Then, by (0.11) of [37],

$$
\begin{align*}
& \int_{\mathbb{H}_{n}} \prod_{j=1}^{n} \frac{\operatorname{det}[Y]_{j}^{\lambda_{j}-\lambda_{j+1}}}{\operatorname{det}\left[1_{n}+Y+i X\right]_{j}^{\sigma_{j}-\sigma_{j+1}} \operatorname{det}\left[1_{n}+Y-i X\right]_{j}^{\tau_{j}-\tau_{j+1}}} \operatorname{det}(Y)^{-(n+1)} d X d Y \\
& \quad=\prod_{m=1}^{n} \frac{2^{2-\sigma_{m}-\tau_{m}+n-m} \pi^{m} \Gamma\left(\lambda_{m}-(n+m) / 2\right) \Gamma\left(\sigma_{m}+\tau_{m}-\lambda_{m}-(n-m) / 2\right)}{\Gamma\left(\sigma_{m}-(n-m) / 2\right) \Gamma\left(\tau_{m}-(n-m) / 2\right)}, \tag{146}
\end{align*}
$$

provided the integral is convergent. We will only need the special case where all λ_{j} are equal to some λ, all σ_{j} are equal to some σ, and all τ_{j} are equal to some τ. In this case the formula says that

$$
\begin{align*}
& \int_{\mathbb{H}_{n}} \frac{\operatorname{det}(Y)^{\lambda}}{\operatorname{det}\left(1_{n}+Y+i X\right)^{\sigma} \operatorname{det}\left(1_{n}+Y-i X\right)^{\tau}} \operatorname{det}(Y)^{-(n+1)} d X d Y \\
& \quad=2^{-(\sigma+\tau) n+n(n+3) / 2} \pi^{n(n+1) / 2} \prod_{m=1}^{n} \frac{\Gamma(\lambda-(n+m) / 2) \Gamma(\sigma+\tau-\lambda-(n-m) / 2)}{\Gamma(\sigma-(n-m) / 2) \Gamma(\tau-(n-m) / 2)} . \tag{147}
\end{align*}
$$

If we set $\lambda=\sigma=\tau=k$, we obtain precisely the integral (145). Hence,

$$
\begin{align*}
\int_{G} F(g) d g & =2^{n(n+3) / 2} \pi^{n(n+1) / 2} \prod_{m=1}^{n} \frac{\Gamma(k-(n+m) / 2)}{\Gamma(k-(n-m) / 2)} \\
& =2^{n(n+2)} \pi^{n(n+1) / 2} \prod_{m=1}^{n} \prod_{j=1}^{m} \frac{1}{2 k-n-m-2+2 j} . \tag{148}
\end{align*}
$$

Next we evaluate the right hand side RHS of (27). With the same calculation as in the proof of Proposition 5.5, we obtain

$$
\begin{equation*}
\text { RHS }=\alpha_{n} 2^{n} \int_{T}\left(\prod_{1 \leq i<j \leq n}\left(t_{i}^{2}-t_{j}^{2}\right)\right)\left(\prod_{j=1}^{n} t_{j}\right)^{1-2 k} d \mathbf{t}, \tag{149}
\end{equation*}
$$

with T as in (70). Thus, by Lemma 5.4,

$$
\begin{equation*}
\text { RHS }=\alpha_{n} 2^{n} \prod_{m=1}^{n}(m-1)!\prod_{j=1}^{m} \frac{1}{2 k-n-m-2+2 j} . \tag{150}
\end{equation*}
$$

Our assertion now follows by comparing (148) and (150).

A. 2 The Iwasawa measure

In this section we will prove the integration formula (88) in the proof of Lemma 5.6. It is well known that the formula holds up to a constant, but we would like to know this constant precisely.

Let T be the group of real upper triangular $n \times n$ matrices with positive diagonal entries. Then $T=A N_{1}$, where A is the group of $n \times n$ diagonal matrices with positive diagonal entries, and N_{1} is the group of $n \times n$ upper triangular matrices with 1 's on the diagonal. We will put the following left-invariant Haar measure on T,

$$
\begin{equation*}
\int_{T} \phi(h) d h=2^{n} \int_{A} \int_{N_{1}} \phi(a n) d n d a, \tag{151}
\end{equation*}
$$

where $d n$ is the Lebesgue measure, and $d a=\frac{d a_{1}}{a_{1}} \cdots \frac{d a_{n}}{a_{n}}$ for $a=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$. Let P_{+} be the set of positive definite $n \times n$ matrices. We endow P_{+}with the Lebesgue measure $d Y$, which also occurs in (12).

Lemma A. 2 The map

$$
\begin{equation*}
\alpha: T \longrightarrow P_{+}, \quad h \longmapsto h^{t} h \tag{152}
\end{equation*}
$$

is an isomorphism of smooth manifolds. For a measurable function φ on P_{+}, we have

$$
\begin{equation*}
\int_{T} \varphi\left(h^{t} h\right) d h=\int_{P_{+}} \varphi(Y) \operatorname{det}(Y)^{-\frac{n+1}{2}} d Y . \tag{153}
\end{equation*}
$$

Here dh is the measure defined by (151), and dY is the Lebesgue measure on the open subset P_{+}of $\operatorname{Sym}_{n}(\mathbb{R})$.

Proof By Proposition 5.3 on page 272/273 of [23], the map (152) is a diffeomorphism. The proof of formula (153) is an exercise using the tranformation formula from multivariable calculus.

Proposition A. 2 Let dh be the Haar measure on $\mathrm{Sp}_{2 n}(\mathbb{R})$ characterized by the property (12). Then, for any measurable function F on $\mathrm{Sp}_{2 n}(\mathbb{R})$,

$$
\begin{equation*}
\int_{\mathrm{Sp}_{2 n}(\mathbb{R})} F(h) d h=2^{n} \int_{A} \int_{N} \int_{K} F(a n k) d k d n d a, \tag{154}
\end{equation*}
$$

where N is the unipotent radical of the Borel subgroup, $d n$ is the Lebesgue measure, $A=$ $\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{n}, a_{1}^{-1}, \ldots, a_{n}^{-1}\right): a_{1}, \ldots, a_{n}>0\right\}$, and $d a=\frac{d a_{1}}{a_{1}} \cdots \frac{d a_{n}}{a_{n}}$.

Proof It is well known that the right hand side defines a Haar measure $d^{\prime} h$ on $\mathrm{Sp}_{2 n}(\mathbb{R})$. To prove that $d^{\prime} h=d h$, it is enough to consider K-invariant functions F. For such an F, let f be the corresponding function on \mathbb{H}_{n}, i.e., $f(g I)=F(g)$. Let N_{1} and N_{2} be as in (90), so that $N=N_{1} N_{2}$. By identifying elements of A and N_{1} with their upper left block, our notations are consistent with those used in (151). We calculate

$$
\begin{aligned}
\int_{G} F(g) d^{\prime} g & =2^{n} \int_{A} \int_{N_{1}} \int_{N_{2}} \int_{K} F\left(a n_{1} n_{2} k\right) d k d n_{2} d n_{1} d a \\
& =2^{n} \iint_{A} \int_{N_{1}} \int_{N_{2}} F\left(n_{2} a n_{1}\right) \operatorname{det}(a)^{-(n+1)} d n_{2} d n_{1} d a .
\end{aligned}
$$

In the last step we think of a as its upper left $n \times n$ block when we write $\operatorname{det}(a)$. Continuing, we get

$$
\begin{aligned}
\int_{G} F(g) d^{\prime} g & =2^{n} \iint_{A} \int_{N_{1}} F\left(\left[\begin{array}{c}
1 X \\
1
\end{array}\right] a n_{1}\right) \operatorname{det}(a)^{-(n+1)} d X d n_{1} d a \\
& =2^{n} \iint_{A} \int_{N_{1}} \int_{\operatorname{Sym}_{n}(\mathbb{R})} f\left(X+a n_{1} I\right) \operatorname{det}(a)^{-(n+1)} d X d n_{1} d a \\
& =2^{n} \iint_{A} \int_{N_{1}} f\left(X+i\left(a n_{1}\right)^{t}\left(a n_{1}\right)\right) \operatorname{det}(a)^{-(n+1)} d X d n_{1} d a .
\end{aligned}
$$

In the last step, again, we identify a and n_{1} with their upper left blocks. By (151), we obtain

$$
\begin{aligned}
\int_{G} F(g) d^{\prime} g & =\int_{T} \int_{\operatorname{Sym}_{n}(\mathbb{R})} f\left(X+i h^{t} h\right) \operatorname{det}(h)^{-(n+1)} d X d h \\
& =\int_{T} \int_{\operatorname{Sym}_{n}(\mathbb{R})} f\left(X+i h^{t} h\right) \operatorname{det}\left(h^{t} h\right)^{-\frac{n+1}{2}} d X d h \\
& =\int_{P_{+}} \int_{\operatorname{Sym}_{n}(\mathbb{R})} f(X+i Y) \operatorname{det}(Y)^{-(n+1)} d X d Y .
\end{aligned}
$$

where in the last step we applied Lemma A.2. Using (12), we see $\int_{G} F(g) d^{\prime} g=\int_{G} F(g) d g$, as asserted.

References

1. Andrianov, A.N., Kalinin, V.L.: Analytic properties of standard zeta-functions of Siegel modular forms. Mat. Sb. (N.S.), 106(148)(3):323-339, 495 (1978)
2. Asgari, M., Schmidt, R.: Siegel modular forms and representations. Manuscripta Math. 104(2), 173-200 (2001)
3. Blasius, D., Harris, M., Ramakrishnan, D.: Coherent cohomology, limits of discrete series, and Galois conjugation. Duke Math. J. 73(3), 647-685 (1994)
4. Böcherer, S.: Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe. J. Reine Angew. Math. 362, 146-168 (1985)
5. Böcherer, S.: Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe. Abh. Math. Sem. Univ. Hamburg 56, 35-47 (1986)
6. Böcherer, S., Satoh, T., Yamazaki, T.: On the pullback of a differential operator and its application to vector valued Eisenstein series. Comment. Math. Univ. St. Paul. 41(1), 1-22 (1992)
7. Böcherer, S., Schmidt, C.-G.: p-adic measures attached to Siegel modular forms. Ann. Inst. Fourier (Grenoble) 50(5), 1375-1443 (2000)
8. Borel, A., Jacquet, H.: Automorphic forms and automorphic representations. In: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 189-207. Amer. Math. Soc., Providence, R.I., 1979. With a supplement "On the notion of an automorphic representation" by R. P. Langlands
9. Bouganis, T.: On special L-values attached to Siegel modular forms. In: Iwasawa theory 2012, volume 7 of Contrib. Math. Comput. Sci. Springer, Heidelberg, pp. 135-176 (2014)
10. Cai, Y., Friedberg, S., Kaplan, E.: Doubling constructions: local and global theory, with an application to global functoriality for non-generic cuspidal representations. Preprint (2018). arXiv:1802.02637 [math.NT]
11. Clozel, L.: Motifs et formes automorphes: applications du principe de fonctorialité. In: Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), volume 10 of Perspect. Math. Academic Press, Boston, pp 77-159 (1990)
12. Deligne, P.: Valeurs de fonctions L et périodes d'intégrales. In: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pp. 313-346. Amer. Math. Soc., Providence, R.I., : With an appendix by N. Koblitz and A, Ogus (1979)
13. Feit, P.: Poles and residues of Eisenstein series for symplectic and unitary groups. Mem. Amer. Math. Soc., 61(346):iv+89 (1986)
14. Forrester, P.J., Warnaar, S.O.: The importance of the Selberg integral. Bull. Am. Math. Soc. (N.S.) 45(4), 489-534 (2008)
15. Wee Teck Gan and Shuichiro Takeda: The local Langlands conjecture for GSp(4). Ann. Math. (2) 173(3), 1841-1882 (2011)
16. Garrett, P., Harris, M.: Special values of triple product L-functions. Am. J. Math. 115(1), 161-240 (1993)
17. Garrett, P.B.: Pullbacks of Eisenstein series; applications. In: Automorphic forms of several variables (Katata, 1983), volume 46 of Progr. Math. Birkhäuser, pp 114-137 (1984)
18. Garrett, P.B.: On the arithmetic of Siegel-Hilbert cuspforms: Petersson inner products and Fourier coefficients. Invent. math. 107(3), 453-481 (1992)
19. Gelbart, S., Piatetski-Shapiro, I., Rallis, S.: Explicit constructions of automorphic L-functions. Lecture Notes in Mathematics, vol. 1254. Springer, Berlin (1987)
20. Godement, R., Jacquet, H.: Zeta functions of simple algebras. Lecture Notes in Mathematics, vol. 260. Springer, Berlin-New York (1972)
21. Harris, M.: Special values of zeta functions attached to Siegel modular forms. Ann. Sci. École Norm. Sup. (4) 14(1), 77-120 (1981)
22. Hecht, H., Schmid, W.: A proof of Blattner's conjecture. Invent. Math. 31(2), 129-154 (1975)
23. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, volume 80 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London (1978)
24. Helgason, S.: Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions. Number 83. American Mathematical Soc. (1984)
25. Howe, R., Kraft, H.: Principal covariants, multiplicity-free actions, and the K-types of holomorphic discrete series. In Geometry and representation theory of real and p-adic groups (Córdoba, 1995), volume 158 of Progr. Math. Birkhäuser, Boston, pp. 147-161 (1998)
26. Ibukiyama, T., Katsurada, H.: Exact critical values of the symmetric fourth L function and vector valued Siegel modular forms. J. Math. Soc. Jpn. 66(1), 139-160 (2014)
27. Johnson, K.: On a ring of invariant polynomials on a Hermitian symmetric space. J. Algebra 67(1), 72-81 (1980)
28. Kim, H.H.: Functoriality for the exterior square of GL_{4} and the symmetric fourth of GL_{2}. J. Am. Math. Soc., 16(1):139-183 (2003). With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak
29. Knapp, A.: Representation theory of semisimple groups, volume 36 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ. An overview based on examples (1986)
30. Knightly, A., Li, C.: On the distribution of Satake parameters for Siegel modular forms. Doc. Math. 24, 677-747 (2019)
31. Kozima, N.: On special values of standard L-functions attached to vector valued Siegel modular forms. Kodai Math. J. 23(2), 255-265 (2000)
32. Kozima, N.: Garrett's pullback formula for vector valued Siegel modular forms. J. Numb. Theory 128(2), 235-250 (2008)
33. Liu, Z.: Nearly Overconvergent Forms and p-adic L-Functions for Symplectic Groups. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-Columbia University (2016)
34. Manin, J.: Periods of cusp forms, and p-adic Hecke series. Mat. Sb. (N.S.) 92(134), 378-401 (1973). 503
35. Mizumoto, S.: Poles and residues of standard L-functions attached to Siegel modular forms. Math. Ann. 289(4), 589-612 (1991)
36. Morimoto, K.: On L-functions for Quaternion Unitary Groups of Degree 2 and $G L(2)$ (with an appendix by M. Furusawa and A. Ichino). Int. Math. Res. Not. IMRN (2013)
37. Neretin, Y.: Matrix analogues of the B-function, and the Plancherel formula for Berezin kernel representations. Mat. Sb. 191(5), 67-100 (2000)
38. Piatetski-Shapiro, I., Rallis, S.: L-functions of automorphic forms on simple classical groups. In: Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., pages 251-261. Horwood, Chichester (1984)
39. Pitale, A., Saha, A., Schmidt, R.: Lowest weight modules of $\mathrm{Sp}_{4}(\mathbb{R})$ and nearly holomorphic Siegel modular forms. to appear in Kyoto J. Math
40. Pitale, A., Saha, A., Schmidt, R.: Integrality and cuspidality of pullbacks of nearly holomorphic Siegel Eisenstein series. arXiv preprint arXiv:1912.08730 (2019)
41. Raghuram, A.: On the special values of certain Rankin-Selberg L-functions and applications to odd symmetric power L-functions of modular forms. Int. Math. Res. Not. IMRN 2, 334-372 (2010)
42. Raghuram, A., Shahidi, F.: Functoriality and special values of L-functions. In: Eisenstein series and applications, volume 258 of Progr. Math. Birkhäuser, Boston, pp 271-293 (2008)
43. Ramakrishnan, D., Shahidi, F.: Siegel modular forms of genus 2 attached to elliptic curves. Math. Res. Lett. 14(2), 315-332 (2007)
44. Roberts, B., Schmidt, R.: Local newforms for GSp (4). Lecture Notes in Mathematics, vol. 1918. Springer, Berlin (2007)
45. Saha, A.: Pullbacks of Eisenstein series from $\operatorname{GU}(3,3)$ and critical L-values for $\operatorname{GSp}(4) \times \operatorname{GL}(2)$. Pac. J. Math. 246(2), 435-486 (2010)
46. Saha, A.: On ratios of Petersson norms for Yoshida lifts. Forum Math. 27(4), 2361-2412 (2015)
47. Schmidt, R.: On the Archimedean Euler factors for spin L-functions. Abh. Math. Sem. Univ. Hamburg 72, 119-143 (2002)
48. Schmidt, R.: Archimedean aspects of Siegel modular forms of degree 2. Rocky Mountain. J. Math. 47(7), 2381-2422 (2017)
49. Schmidt, R.: Packet structure and paramodular forms. Trans. Am. Math. Soc. 370(5), 3085-3112 (2018)
50. Selberg, A.: Bemerkninger om et multipelt integral. Norsk Mat. Tidsskr. 26, 71-78 (1944)
51. Shimura, G.: Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Jpn. 11, 291-311 (1959)
52. Shimura, G.: On some arithmetic properties of modular forms of one and several variables. Ann. Math. (2) 102(3), 491-515 (1975)
53. Shimura, G.: The special values of the zeta functions associated with cusp forms. Commun. Pure Appl. Math. 29(6), 783-804 (1976)
54. Shimura, G.: On the periods of modular forms. Math. Ann. 229(3), 211-221 (1977)
55. Shimura, G.: On Eisenstein series. Duke Math. J. 50(2), 417-476 (1983)
56. Shimura, G.: Nearly holomorphic functions on Hermitian symmetric spaces. Math. Ann. 278(1-4), 1-28 (1987)
57. Shimura, G.: Euler products and Eisenstein series, volume 93 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1997)
58. Shimura, G.: Arithmeticity in the theory of automorphic forms. Mathematical Surveys and Monographs, vol. 82. American Mathematical Society, Providence (2000)
59. Sturm, J.: Special values of zeta functions, and Eisenstein series of half integral weight. Am. J. Math. 102(2), 219-240 (1980)
60. Sturm, J.: The critical values of zeta functions associated to the symplectic group. Duke Math. J. 48(2), 327-350 (1981)
61. Takayanagi, H.: Vector-valued Siegel modular forms and their L-functions; application of a differential operator. Jpn. J. Math. (N.S.) 19(2), 251-297 (1993)
62. Takayanagi, H.: On standard L-functions attached to alt ${ }^{n-1}\left(\mathbf{C}^{n}\right)$-valued Siegel modular forms. Osaka J. Math. 32(3), 547-563 (1995)
63. Takei, Y.: On algebraicity of vector valued Siegel modular forms. Kodai Math. J. 15(3), 445-457 (1992)
64. Yamashita, H.: Highest weight vectors for the principal series of semisimple Lie groups and embeddings of highest weight modules. J. Math. Kyoto Univ. 29(1), 165-173 (1989)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Ameya Pitale ${ }^{1} \cdot$ Abhishek Saha 2 © \cdot Ralf Schmidt ${ }^{3}$
1 University of Oklahoma, Norman, USA
2 Queen Mary University of London, London, UK
3 University of North Texas, Denton, USA

[^0]: ${ }^{1}$ We omit the ones that do not contribute to cohomology, namely those with $k_{1} \not \equiv k_{2}(\bmod 2)$.

[^1]: 2 There is also a survey talk by Böcherer (Hakuba, 2012) on the pullback formula for more general vectorvalued forms, but it still restricts to full level and does not incorporate characters.
 ${ }^{3}$ However, at least in the original formulation, the doubling method did not incorporate characters.

[^2]: ${ }^{4}$ In fact, the map $\chi \mapsto \tilde{\chi}$ gives a bijection between Dirichlet characters in our sense and primitive Dirichlet characters in the classical sense.

[^3]: 5 We thank the referee for pointing this out to us.

