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Let π be a cuspidal, automorphic representation of GSp4 attached
to a Siegel modular form of degree 2. We refine the method of
Furusawa [M. Furusawa, On L-functions for GSp(4) × GL(2) and
their special values, J. Reine Angew. Math. 438 (1993) 187–218]
to obtain an integral representation for the degree-8 L-function
L(s,π × τ ), where τ runs through certain cuspidal, automorphic
representation of GL2. Our calculations include the case of any
representation with unramified central character for the p-adic
components of τ , and a wide class of archimedean types including
Maaß forms. As an application we obtain a special value result for
L(s,π × τ ).

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let π = ⊗
πν and τ = ⊗

τν be irreducible, cuspidal, automorphic representations of GSp4(A)

and GL2(A), respectively. Here, A is the ring of adeles of a number field F . We want to investigate
the degree eight twisted L-functions L(s,π × τ ) of π and τ , which are important for a number of
reasons. For example, when π and τ are obtained from holomorphic modular forms, then Deligne
[8] has conjectured that a finite set of special values of L(s,π × τ ) are algebraic up to certain period
integrals. Another very important application is the conjectured Langlands functorial transfer of π to
an automorphic representation of GL4(A). One approach to obtain the transfer to GL4(A) is to use the
converse theorem due to Cogdell and Piatetski-Shapiro [6], which requires precise information about
the L-functions L(s,π × τ ).

In the special case that π is generic, Asgari and Shahidi [2] have been successful in obtaining the
above transfer using the converse theorem. They analyze the twisted L-functions using the Langlands–
Shahidi method. In this method, one has to consider a larger group in which GSp4 is embedded and

* Corresponding author.
E-mail addresses: ameya@math.ou.edu (A. Pitale), rschmidt@math.ou.edu (R. Schmidt).
0022-314X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2009.01.017

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:ameya@math.ou.edu
mailto:rschmidt@math.ou.edu
http://dx.doi.org/10.1016/j.jnt.2009.01.017


A. Pitale, R. Schmidt / Journal of Number Theory 129 (2009) 1272–1324 1273
then use the representation π to construct an Eisenstein series on the larger group. Then the L-
functions are obtained in the constant and non-constant terms of the Eisenstein series. Unfortunately,
this method only works when π is generic. It is known that if π is obtained from a holomorphic
Siegel modular form then it is not generic.

Another method to understand L-functions is via integral representations. For this method one
constructs an integral that is Eulerian, i.e., one that can be written as an infinite product of local
integrals, Z(s) =∏

ν Zν(s). Then the local integrals are computed to obtain the local L-functions. In
many of the constructions, the local calculations are done only when all the local data is unramified.
This gives information about the partial L-functions, which already leads to remarkable applications.
The calculations for the ramified data are unfortunately often very involved and not available in the
literature. (For more on integral representations of L-functions, see [11,12,21].)

In the GSp4 and GSp4 ×GL2 case, Novodvorsky, Piatetski-Shapiro and Soudry (see [18,20,22]) were
the first ones to construct integral representations for L(s,π × τ ). Their constructions were for the
special case when π is either generic or has a special Bessel model. Examples of Siegel modular
forms which do not have a special Bessel model have been constructed by Schulze-Pillot [29]. The
first construction of an integral representation for L(s,π × τ ) with no restriction on the Bessel model
of π is the work of Furusawa [9]. In this remarkable paper, Furusawa embeds GSp4 in a unitary
group GU(2,2) and constructs an Eisenstein series on GU(2,2) using the GL2 representation τ . He
then integrates the Eisenstein series against a vector in π . He shows that this integral is Eulerian
and, when the local data is unramified, he computes the local integral to obtain the local L-function
L(s,πν × τν) up to a normalizing factor. He also calculates the archimedean integral for the case that
both π and τ are holomorphic of the same weight. Thus, Furusawa obtains an integral representation
for the completed L-function L(s,π × τ ) in the case when π and τ are obtained from holomorphic
modular forms of full level and same weight. He uses this to obtain a special value result, which
fits into the context of Deligne’s conjectures, and to prove meromorphic continuation and functional
equation for the L-function. The main limitation of [9] is that, if we fix a Siegel modular form, then
the results allow us to obtain information on a very small family of twists only, namely those coming
from elliptic modular forms of full level and the same weight as the Siegel modular form, which is a
finite dimensional vector space.

For the applications that we discussed above, we need twists of π by all representations τ of GL2,
i.e., twists by all GL2 modular forms, holomorphic or non-holomorphic, of arbitrary weight and level.
For this purpose, one needs to compute the non-archimedean local integral obtained in [9] when the
local representation τν is ramified. Also, one needs to extend Furusawa’s archimedean calculation to
include more general archimedean representations.

In this paper, we will compute the local non-archimedean integral from [9] in the case when τν

is any irreducible, admissible representation with unramified central character. We will also compute
the archimedean integral for a larger family of archimedean representations τ∞ .

Before we state the results of this paper, let us recall the integral representation of [9] in some
more detail. Let L be a quadratic extension of the number field F , and let GU(2,2) be the unitary
group defined using the field L. Let P be the standard maximal parabolic subgroup of the unitary
group GU(2,2) with a non-abelian radical. Given an irreducible, admissible representation τ of GL2(A)

and suitable characters χ and χ0 of A×
L , one considers an induced representation I(s,χ,χ0, τ ) from

P to GU(2,2), where s is a complex parameter. Let f (g, s) be an analytic family in I(s,χ,χ0, τ ).
Define an Eisenstein series on GU(2,2) by the formula

E(g, s) = E(g, s; f ) =
∑

γ ∈P (F )\GU(2,2)(F )

f (γ g, s), g ∈ GU(2,2)(A).

For an automorphic form φ in the space of π , consider the integral

Z(s) = Z(s, f , φ̄) =
∫

Z(A)GSp (F )\GSp (A)

E(h, s; f )φ̄(h)dh. (1)
4 4
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In [9], Furusawa has shown that these integrals have the following two important properties.

(i) There is a “basic identity”

Z(s) =
∫

R(A)\GSp4(A)

W f (ηh, s)B φ̄ (h)dh, (2)

where R ⊂ GSp(4) is a Bessel subgroup of the Siegel parabolic subgroup, η is a certain fixed
element, B φ̄ corresponds to φ̄ in the Bessel model for π , and W f is a function on GU(2,2)

obtained from the Whittaker model of τ and depending on the section f used to define the
Eisenstein series.

(2) Z(s) is Eulerian, i.e.,

Z(s) =
∏
ν

Zν(s) =
∏
ν

∫
R(Fν )\GSp4(Fν )

Wν(ηh, s)Bν(h)dh. (3)

In Theorems 3.8.1 and 3.8.2 below we show that the local integral can be computed to give L(3s +
1
2 , π̃ν × τ̃ν ) up to a normalizing factor.

Theorem 1. Let Fν be a non-archimedean local field with characteristic zero. Let πν be an unramified, irre-
ducible, admissible representation of GSp4(Fν). Let τν be an irreducible, admissible, generic representation of
GL2(Fν) with unramified central character and conductor pn, n � 1. Then we can make a choice of vectors Wν

and Bν such that the local integral in (3) is given by

Zν(s) =
⎧⎨⎩

L(3s+ 1
2 ,π̃ν×τ̃ν )

L(3s+1,τν×A I(Λν)×(χν |
F×
ν

))
if n = 1;

1 if n � 2.

Here, Λν is the Bessel character on L×
ν used to define the Bessel model Bν , and AI(Λν) is the representation

of GL2(Fν) obtained from Λν by automorphic induction.

Note that, for n � 2 in the above theorem, we have L(s,πν × τν) = 1, and hence the integral
Zν(s) indeed computes the L-function. We point out that the ramified calculation is not a trivial
generalization of the unramified calculation in [9]. There are two main steps. First is the choice of
the vector Wν and Bν – making the “correct” choice of local vectors to be used to compute the local
integral is delicate and, probably, is the main contribution of this paper. For example, we will have
to make a choice of local compact subgroup K #(Pn), for which the Borel congruence subgroup turns
out to be too small, while the Klingen congruence subgroup is too large; the group we will work
with lies in between these two natural congruence subgroups. Secondly, the actual computation of
the local integral is complicated and depends heavily on the structure theory of the groups involved.
We will explain this in detail in Section 3.

In Theorem 4.4.1, we compute the local archimedean integral in the following cases:

(i) π∞ is the holomorphic discrete series representation of GSp4(R) with trivial central character and
Harish-Chandra parameter (l − 1, l − 2). This is the archimedean component of the automorphic
representations generated by Siegel modular forms of weight l.

(ii) τ∞ is either a principal series representation of GL2(R) whose K -types have the same parity as
l or is a holomorphic discrete series representation of GL2(R) with lowest weight l2 satisfying
l2 � l and l2 ≡ l (mod 2).

This extends the calculations in [9], where τ∞ is only allowed to be a holomorphic discrete series
representation with lowest weight l.
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Putting together the local computations we get the following global result (see Theorem 5.3.1).

Theorem 2. Let Φ be a cuspidal Siegel eigenform of weight l with respect to Sp4(Z) (satisfying the two mild
assumptions formulated in Section 5.1). Let N be any positive integer. Let f be a cuspidal Maaß eigenform of
weight l1 ∈ Z with respect to Γ0(N). If (the adelic function corresponding to) f lies in a holomorphic discrete
series representation with lowest weight l2 , then assume that l2 � l. Let πΦ and τ f be the corresponding
cuspidal automorphic representations of GSp4(AQ) and GL2(AQ), respectively. Then a choice of local vectors
can be made such that the global integral Z(s) defined in (1) is given by

Z(s) = κ∞(s)κN (s)
L(3s + 1

2 ,πΦ × τ f )

ζ(6s + 1)L(3s + 1, τ f × AI(Λ))
, (4)

where κ∞(s) and κN (s) are explicitly known factors obtained from the local computations.

Using (4), we get the following special value result (see Theorem 5.4.4).

Theorem 3. Let Φ be a cuspidal Siegel eigenform of weight l with respect to Sp4(Z) (satisfying the two mild
assumptions formulated in Section 5.1). Let N be any positive integer. Let Ψ be a holomorphic, cuspidal Hecke
eigenform of weight l with respect to Γ0(N). Then

L( l
2 − 1,πΦ × τΨ )

π5l−8(Φ,Φ)2(Ψ,Ψ )1
∈ Q.

Note that in [3], using a completely different method, special value results in the spirit of Deligne’s
conjectures were proven under the assumption that Ψ is a cusp form with respect to SL2(Z) with
weight k � 2l − 2, where l is the weight of the Siegel modular form Φ . Since the results of [3] cannot
be applied to modular forms with respect to congruence subgroups, there is no overlap of [3] with
this paper.

This paper is organized as follows. In Section 2 we make the basic definitions and describe the
setup for the local integrals from (3) for a non-archimedean local field F of characteristic zero or
F = R. We use the fact that the basic local setup is uniform and can be stated in full generality. The
main input of the local integrals are the choices of the functions W and B from (3). In Sections 3
and 4 we consider the non-archimedean and archimedean case, respectively. We make the choice of
the appropriate functions W and B and compute the local integrals. In Section 5, we consider the
global situation corresponding to modular forms on GSp4 and GL2. We use the local calculations from
Sections 3 and 4 to obtain an integral representation for the global L-function. Finally, in Section 5.4,
we use the global theorem to obtain a special values result.

After the completion of this work it has been brought to our attention that there is some over-
lap with the doctoral thesis [26] of Abhishek Saha. Amongst the differences, Saha has obtained an
interpretation of the integral representation for the L-function due to Furusawa using pullbacks of
Eisenstein series on GU(3,3), and can also include GSp4 Steinberg representations under certain con-
ditions.

Finally, we would like to thank A. Raghuram for many helpful discussions and for pointing out a
gap in an earlier draft of the paper.

2. General setup

In this section, we give the basic definitions and set up the data required to compute the local in-
tegrals. Let F be a non-archimedean local field of characteristic zero, or F = R. We fix three elements
a,b, c ∈ F such that d := b2 − 4ac �= 0. Let

L =
{

F (
√

d) if d /∈ F ×2,
×2

(5)

F ⊕ F if d ∈ F .
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In case L = F ⊕ F , we consider F diagonally embedded. If L is a field, we denote by x̄ the Galois
conjugate of x ∈ L over F . If L = F ⊕ F , let (x, y) = (y, x). In any case we let N(x) = xx̄ and tr(x) = x+ x̄.

2.1. The unitary group

We define the symplectic and unitary similitude groups by

H(F ) = GSp4(F ) := {
g ∈ GL4(F ): t g J g = μ(g) J , μ(g) ∈ F ×},

G(F ) = GU(2,2; L) := {
g ∈ GL4(L): t ḡ J g = μ(g) J , μ(g) ∈ F ×},

where J = [ 12
−12

]
. Note that H(F ) = G(F ) ∩ GL4(F ). As a minimal parabolic subgroup we choose the

subgroup of all matrices that become upper triangular after switching the last two rows and last two
columns. Let P be the standard maximal parabolic subgroup of G(F ) with a non-abelian unipotent
radical. Let P = MN be the Levi decomposition of P . We have M = M(1)M(2) , where

M(1)(F ) =

⎧⎪⎨⎪⎩
⎡⎢⎣

ζ

1
ζ̄−1

1

⎤⎥⎦ : ζ ∈ L×

⎫⎪⎬⎪⎭ , (6)

M(2)(F ) =

⎧⎪⎨⎪⎩
⎡⎢⎣

1
α β

μ
γ δ

⎤⎥⎦ ∈ G(F )

⎫⎪⎬⎪⎭ , (7)

N(F ) =

⎧⎪⎨⎪⎩
⎡⎢⎣

1 z
1

1
−z̄ 1

⎤⎥⎦
⎡⎢⎣

1 w y
1 ȳ

1
1

⎤⎥⎦ : w ∈ F , y, z ∈ L

⎫⎪⎬⎪⎭ . (8)

For a matrix in M(2)(F ) as the one above, the unitary conditions are equivalent to μ = μ̄ (i.e.,
μ ∈ F ×), μ = ᾱδ − βγ̄ , ᾱγ = γ̄ α and δ̄β = β̄δ. In addition, we have ᾱβ = β̄α, δ̄γ = γ̄ δ, ᾱδ = δ̄α,
γ̄ β = β̄γ . Hence the following holds.

Lemma 2.1.1. Let

⎡⎢⎣
1

α β

μ
γ δ

⎤⎥⎦
be an element of M(2)(F ), as above. Then the quotient of any two entries of the matrix

[ α β

γ δ

]
, if defined, lies

in F . Hence, if λ is any invertible entry of
[ α β

γ δ

]
, then

[
α β

γ δ

]
= λ

[
α/λ β/λ

γ /λ δ/λ

]
︸ ︷︷ ︸

∈GL2(F )

.

Consequently, the map
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L× × GL2(F ) −→ M(2)(F ),

(
λ,

[
α β

γ δ

])
�−→

⎡⎢⎣
1

λα λβ

N(λ)(αδ − βγ )

λγ λδ

⎤⎥⎦ , (9)

is surjective with kernel {(λ,λ−1): λ ∈ F ×}.

The modular factor of the parabolic P is given by

δP

⎛⎜⎝
⎡⎢⎣

ζ

1
ζ̄−1

1

⎤⎥⎦
⎡⎢⎣

1
α β

μ
γ δ

⎤⎥⎦
⎞⎟⎠= ∣∣N(ζ )μ−1

∣∣3 (μ = ᾱδ − βγ̄ ), (10)

where | · | is the normalized absolute value on F .

2.2. The Bessel subgroup

Recall that we fixed three elements a,b, c ∈ F such that d = b2 − 4ac �= 0. Let

S =
[

a b
2

b
2 c

]
, ξ =

[ b
2 c

−a −b
2

]
.

Then F (ξ) = F + F ξ is a two-dimensional F -algebra isomorphic to L. If L = F (
√

d) is a field, then an

isomorphism is given by x + yξ �→ x + y
√

d
2 . If L = F ⊕ F , then an isomorphism is given by x + yξ �→

(x + y
√

d
2 , x − y

√
d

2 ). The determinant map on F (ξ) corresponds to the norm map on L. Let

T (F ) = {
g ∈ GL2(F ): t g Sg = det(g)S

}
.

One can check that T (F ) = F (ξ)× . Note that T (F ) ∼= L× via the isomorphism F (ξ) ∼= L. We consider
T (F ) a subgroup of H(F ) = GSp4(F ) via

T (F ) � g �−→
[

g
det(g) t g−1

]
∈ H(F ).

Let

U (F ) =
{[

12 X
12

]
∈ GSp4(F ): t X = X

}
and R(F ) = T (F )U (F ). We call R(F ) the Bessel subgroup of GSp4(F ) (with respect to the given data
a,b, c). Let ψ be any non-trivial character F → C× . Let θ : U (F ) → C× be the character given by

θ

([
1 X

1

])
= ψ

(
tr(S X)

)
. (11)

Explicitly,

θ

⎛⎜⎝
⎡⎢⎣

1 x y
1 y z

1

⎤⎥⎦
⎞⎟⎠= ψ(ax + by + cz). (12)
1
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We have θ(t−1ut) = θ(u) for all u ∈ U (F ) and t ∈ T (F ). Hence, if Λ is any character of T (F ), then the
map tu �→ Λ(t)θ(u) defines a character of R(F ). We denote this character by Λ ⊗ θ .

2.3. Parabolic induction from P (F ) to G(F )

Let (τ , Vτ ) be an irreducible, admissible representation of GL2(F ), and let χ0 be a character of
L× such that χ0|F × coincides with ωτ , the central character of τ . Then the representation (λ, g) �→
χ0(λ)τ (g) of L× × GL2(F ) factors through {(λ,λ−1): λ ∈ F ×}, and consequently, by Lemma 2.1.1,
defines a representation of M(2)(F ) on the same space Vτ . Let us denote this representation by χ0 ×τ .
Every irreducible, admissible representation of M(2)(F ) is of this form. If Vτ is a space of functions
on GL2(F ) on which GL2(F ) acts by right translation, then χ0 × τ can be realized as a space of
functions on M(2)(F ) on which M(2)(F ) acts by right translation. This is accomplished by extending
every W ∈ Vτ to a function on M(2)(F ) via

W (λg) = χ0(λ)W (g), λ ∈ L×, g ∈ GL2(F ). (13)

If Vτ is the Whittaker model of τ with respect to the character ψ , then the extended functions W
satisfy the transformation property

W

⎛⎜⎝
⎡⎢⎣

1
1 x

1
1

⎤⎥⎦ g

⎞⎟⎠= ψ(x)W (g), x ∈ F , g ∈ M(2)(F ). (14)

If s is a complex parameter, χ is any character of L× , and χ0 × τ is a representation of M(2)(F ) as
above, we denote by I(s,χ,χ0, τ ) the representation of G(F ) obtained by parabolic induction from
the representation of P (F ) = M(F )N(F ) given on the Levi part by⎡⎢⎣

ζ

1
ζ̄−1

1

⎤⎥⎦
⎡⎢⎣

1
λα λβ

N(λ)(αδ − βγ )

λγ λδ

⎤⎥⎦
�−→ ∣∣N(ζλ−1)(αδ − βγ )−1

∣∣3s
χ(ζ )χ0(λ)τ

([
α β

γ δ

])
.

Explicitly, the space of I(s,χ,χ0, τ ) consists of functions f : G(F ) → Vτ with the transformation
property

f

⎛⎜⎝
⎡⎢⎣

ζ

1
ζ̄−1

1

⎤⎥⎦
⎡⎢⎣

1
λα λβ

N(λ)(αδ − βγ )

λγ λδ

⎤⎥⎦ g

⎞⎟⎠
= ∣∣N(ζλ−1)(αδ − βγ )−1

∣∣3(s+ 1
2 )

χ(ζ )χ0(λ)τ

([
α β

γ δ

])
f (g). (15)

Now assume that Vτ is the Whittaker model of τ with respect to the character ψ of F . If we associate
to each f as above the function on G(F ) given by W #

f (g) = f (g)(1), then we obtain another model

of I(s,χ,χ0, τ ) consisting of functions W # : G(F ) → C. These functions satisfy

W #

⎛⎜⎝
⎡⎢⎣

ζ

1
ζ̄−1

1

⎤⎥⎦
⎡⎢⎣

1
λ

N(λ)

λ

⎤⎥⎦ g

⎞⎟⎠
= ∣∣N(ζλ−1)∣∣3(s+ 1

2 )
χ(ζ )χ0(λ)W #(g), ζ, λ ∈ L×, (16)
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and

W #

⎛⎜⎝
⎡⎢⎣

1 z
1

1
−z̄ 1

⎤⎥⎦
⎡⎢⎣

1 w y
1 ȳ x

1
1

⎤⎥⎦ g

⎞⎟⎠= ψ(x)W #(g), w, x ∈ F , y, z ∈ L. (17)

The following lemma gives a transformation property of W # under the action of the elements of the
Bessel subgroup R(F ).

Lemma 2.3.1. Let (τ , Vτ ) be a generic, irreducible, admissible representation of GL2(F ). We assume that Vτ

is the Whittaker model of τ with respect to the non-trivial character ψ−c(x) = ψ(−cx) of F . Let χ and χ0
be characters of L× such that χ0|F × = ωτ . Let W #(·, s) : G(F ) → C be a function in the above model of the
induced representation I(s,χ,χ0, τ ), where s is a complex parameter. Let θ be the character of U (F ) defined
in (11). Let Λ be the character of L× ∼= T (F ) given by

Λ(ζ) = χ(ζ̄ )−1χ0(ζ )−1. (18)

Let

η =
⎡⎢⎣

1 0
α 1

1 −ᾱ
0 1

⎤⎥⎦ , where α :=
{

b+√
d

2c if L is a field,( b+√
d

2c , b−√
d

2c

)
if L = F ⊕ F .

(19)

Then

W #(ηtuh, s) = Λ(t)−1θ(u)−1W #(ηh, s) (20)

for t ∈ T (F ), u ∈ U (F ) and h ∈ G(F ).

Proof. If L is a field, then the proof is word for word the same as on pp. 197/198 of [9]. The case
L = F ⊕ F requires the only modification that the element ζ = x + y

2

√
d is to be replaced by ζ =

x + y
2 (

√
d,−√

d). �
2.4. The local integral

Let (π, Vπ ) be an irreducible, admissible representation of H(F ) = GSp4(F ). Let the Bessel sub-
group R(F ) be as defined in Section 2.2; it depends on the given data a,b, c ∈ F . We assume that Vπ

is a Bessel model for π with respect to the character Λ ⊗ θ of R(F ). Hence, Vπ consists of functions
B : H(F ) → C satisfying the Bessel transformation property

B(tuh) = Λ(t)θ(u)B(h) for t ∈ T (F ), u ∈ U (F ), h ∈ H(F ).

Let (τ , Vτ ) be a generic, irreducible, admissible representation of GL2(F ) such that Vτ is the ψ−c-
Whittaker model of τ (we assume c �= 0). Let χ0 be a character of L× such that χ0|F × = ωτ . Let χ
be the character of L× for which (18) holds. Let W #(·, s) be an element of I(s,χ,χ0, τ ) for which
the restriction of W #(·, s) to the standard maximal compact subgroup of G(F ) (see below for more
details) is independent of s, i.e., W #(·, s) is a “flat section” of the family of induced representations
I(s,χ,χ0, τ ). By Lemma 2.3.1 it is meaningful to consider the integral

Z(s) =
∫

R(F )\H(F )

W #(ηh, s)B(h)dh. (21)
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In the following we shall compute these integrals for certain choices of W # and B . We shall only con-
sider GSp4(F ) representations π that are relevant for the global application to Siegel modular forms
we have in mind. In the real case we shall assume that π is a holomorphic discrete series represen-
tation and that B corresponds to the highest weight vector. In the p-adic case we shall assume that
π is an unramified representation and that B corresponds to the spherical vector.

The generic GL2(F ) representation τ , however, will be only mildly restricted in the real case, and,
in the p-adic case, will be any representation with an unramified central character. In the real case,
the function W # will be constructed from a certain vector of the “correct” weight in Vτ . In the
p-adic case, the function W # will be constructed from the local newform in Vτ . In each case our
calculations will show that the integral (21) converges absolutely for Re(s) large enough and has
meromorphic continuation to all of C. Our choice of W # will be such that Z(s) is closely related to
the local L-factor L(s,π × τ ). Note that the integral (21) has been calculated in [9] for π and τ both
holomorphic discrete series representations with related lowest weights in the real case and π and τ
both unramified representations in the p-adic case.

3. Local non-archimedean theory

In this section, we evaluate (21) in the non-archimedean setting. The key steps are the choices of
the vector W # and the actual computation of the integral Z(s).

3.1. Setup

Let F be a non-archimedean local field of characteristic zero. Let o, p, � , q be the ring of integers,
prime ideal, uniformizer and cardinality of the residue class field o/p, respectively. Recall that we fix
three elements a,b, c ∈ F such that d := b2 − 4ac �= 0. Let L be as in (5). We shall make the following
assumptions:

(A1) a,b ∈ o and c ∈ o× .
(A2) If d /∈ F ×2, then d is the generator of the discriminant of L/F . If d ∈ F ×2, then d ∈ o× .

Remark. In [9, p. 198], Furusawa makes a stronger assumption on a,b, c, namely,
[ a b/2

b/2 c

] ∈ M2(o).

However, it is necessary to make the weaker assumption a,b, c ∈ o for the global integral calculation
(4.5) in [9, p. 210] to be valid for D ≡ 3 (mod 4). (This is because the matrix S(−D) on p. 208 is
not in M2(o2) for D ≡ 3 (mod 4).) One can check that the non-archimedean unramified calculation in
[9] is valid with the weaker assumption a,b, c ∈ o. Hence, the global result of [9] is still valid but the
assumptions (A1) and (A2) above are the correct ones.

We set the Legendre symbol as follows,

(
L

p

)
:=
⎧⎨⎩

−1, if d /∈ F ×2, d /∈ p (the inert case),

0, if d /∈ F ×2, d ∈ p (the ramified case),

1, if d ∈ F ×2 (the split case).

(22)

If L is a field, then let oL be its ring of integers. If L = F ⊕ F , then let oL = o ⊕ o. Note that x ∈ oL if
and only if N(x), tr(x) ∈ o. If L is a field then we have x ∈ o

×
L if and only if N(x) ∈ o× . If L is not a

field then x ∈ oL , N(x) ∈ o× implies that x ∈ o
×
L = o× ⊕ o× . Let �L be the uniformizer of oL if L is a

field and set �L = (�,1) if L is not a field. Note that, if ( L
p
) �= −1, then N(�L) ∈ �o× . Let

ξ0 :=
{ −b+√

d
2 if L is a field,(−b+√

d , −b−√
d ) if L = F ⊕ F ,

(23)
2 2
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and

α :=
{

b+√
d

2c if L is a field,( b+√
d

2c , b−√
d

2c

)
if L = F ⊕ F .

(24)

We fix the following ideal in oL ,

P := poL =

⎧⎪⎪⎨⎪⎪⎩
pL if

( L
p

)= −1,

p2
L if

( L
p

)= 0,

p ⊕ p if
( L

p

)= 1.

(25)

Here, pL is the maximal ideal of oL when L is a field extension. Note that P is prime only if ( L
p
) = −1.

We have Pn ∩ o = pn for all n � 0. We now state a number-theoretic lemma which will be crucial in
Section 3.6.

Lemma 3.1.1. Let notations be as above.

(i) The elements 1 and ξ0 constitute an integral basis of L/F (i.e., a basis of the free o-module oL ). The ele-
ments 1 and α also constitute an integral basis of L/F .

(ii) There exists no x ∈ o such that α + x ∈ P.

Proof. (i) Since c ∈ o× and b ∈ o, the second assertion of (i) follows from the first one. To prove the
first assertion, first note that ξ0 satisfies ξ2

0 + ξ0b + ac = 0, and therefore belongs to oL . Since the
claim is easily verified if L = F ⊕ F , we will assume that L is a field. Let A, B ∈ F be such that 1 and
ξ1 := A + B

√
d is an integral basis of L/F . Then

det

([
1 ξ1
1 ξ̄1

])2

= 4B2d

generates the discriminant of L/F . Since d also generates the discriminant by assumption (A2), it
follows that 2B ∈ o

×
F . Dividing ξ1 by this unit, we may assume ξ1 = A + 1

2

√
d for some A ∈ F . Now

let us represent ξ0 in this integral basis,

ξ0 = x + yξ1, x, y ∈ oF ,

i.e.,

−b + √
d

2
= x + y

(
A + 1

2

√
d

)
.

Comparing coefficients, we get y = 1 and A = − b
2 − x. We may modify ξ1 by adding the integral

element x and still obtain an integral basis. But ξ1 + x = ξ0, and the assertion follows.
(ii) Let X ⊂ oL/P be the image of the injection

o/p −→ oL/P.

Note that the field on the left-hand side has q elements, and the ring on the right-hand side has q2

elements, for any value of ( L
p
). Our claim is equivalent to the statement that ᾱ, the image of α in
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oL/P, does not lie in the subring X of oL/P. Assume that ᾱ ∈ X . By (i), any element z ∈ oL can be
(uniquely) written as

z = xα + y, x, y ∈ o.

Applying the projection to oL/P, it follows that z̄ = x̄ᾱ + ȳ ∈ X . This is a contradiction, since z̄ runs
through all elements of oL/P, but X is a proper subset. �

Note that, via the identification T (F ) = L× described in Section 2.2, the element ξ0 corresponds to
the matrix

[ 0 c
−a −b

]
. Therefore, by Lemma 3.1.1(i),

oL = o ⊕ oξ0 =
{[

x yc
−ya x − yb

]
: x, y ∈ o

}
. (26)

Since c is assumed to be a unit, it follows that

oL = T (F ) ∩ M2(o) and o
×
L = T (F ) ∩ GL2(o). (27)

3.2. The spherical Bessel function

Let (π, Vπ ) be an unramified, irreducible, admissible representation of GSp4(F ). Then π can be
realized as the unramified constituent of an induced representation of the form χ1 × χ2 � σ , where
χ1, χ2 and σ are unramified characters of F ×; here, we used the notation of [27] for parabolic
induction. Let

γ (1) = χ1χ2σ , γ (2) = χ1σ , γ (3) = σ , γ (4) = χ2σ .

Then γ (1)γ (3) = γ (2)γ (4) is the central character of π . The numbers γ (1)(�), . . . , γ (4)(�) are the
Satake parameters of π . The degree-4 L-factor of π is given by

∏4
i=1(1 − γ (i)(�)q−s)−1.

Let Λ be any character of T (F ) ∼= L× . We assume that Vπ is the Bessel model with respect to the
character Λ ⊗ θ of R(F ); see Section 2.2. Let B ∈ Vπ be a spherical vector. By [32, Propositions 2–5],
we have B(1) �= 0. It follows from B(1) �= 0 and (27) that necessarily Λ|o×

L
= 1. For l,m ∈ Z let

h(l,m) =
⎡⎢⎣

� 2m+l

�m+l

1
�m

⎤⎥⎦ . (28)

Then, as in (3.4.2) of [9],

H(F ) =
⊔
l∈Z

⊔
m�0

R(F )h(l,m)K H , K H = GSp4(o). (29)

The double cosets on the right-hand side are pairwise disjoint. Since B transforms on the left under
R(F ) by the character Λ ⊗ θ and is right K H -invariant, it follows that B is determined by the values
B(h(l,m)). By Lemma 3.4.4 of [9] we have B(h(l,m)) = 0 for l < 0, so that B is determined by the
values B(h(l,m)) for l,m � 0.

In [32, 2–4], Sugano has given a formula for B(h(l,m)) in terms of a generating function. It turns
out that for our purposes we only require the values B(h(l,0)). In this special case Sugano’s formula
reads

∑
l�0

B
(
h(l,0)

)
yl = 1 − A5 y − A2 A4 y2

Q (y)
, (30)
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Table 1 ( L
p

)= −1
( L

p

)= 0
( L

p

)= 1

A2 q−2Λ(�) q−2Λ(�) q−2Λ(�)

A4 q−2 0 −q−2

A5 0 q−2Λ(�L) q−2
(
Λ(�L) + Λ

(
��−1

L

))
H(y) 1 − q−4Λ(�)y2 1 − q−2Λ(�L)y 1 − q−2

(
Λ(�L) + Λ

(
��−1

L

))
y + q−4Λ(�)y2

where

Q (y) =
4∏

i=1

(
1 − γ (i)(�)q−3/2 y

)
, (31)

and where A2, A4, A5 are given in Table 1. Set H(y) = 1 − A5 y − A2 A4 y2.

3.3. The local compact subgroup

We define congruence subgroups of GL2(F ), as follows. For n = 0 let K (1)(p0) = GL2(o). For n > 0
let

K (1)
(
pn)= GL2(F ) ∩

[
o× o

pn o×
]

. (32)

The following result is well known (see [5,7]).

Theorem 3.3.1. Let (τ , V ) be a generic, irreducible, admissible representation of GL2(F ) with unramified cen-
tral character. Then the spaces

V (n) = {
v ∈ V : τ (g)v = v for all g ∈ K (1)

(
pn)}

are non-zero for n large enough. If n is minimal with V (n) �= 0, then dim(V (n)) = 1.

If n is minimal such that V (n) �= 0, then pn is called the conductor of τ . In this section we shall
define a family K #(Pn), n � 0, of compact-open subgroups of G(F ), the relevance of which is as
follows. Recall that our goal is to evaluate integrals of the form

Z(s) =
∫

R(F )\H(F )

W #(ηh, s)B(h)dh, (33)

where W #(·, s) is a section in a family of induced representations I(s,χ,χ0, τ ). The choice of the
function W #(·, s) is crucial for our purposes. We will define it in such a way that W #(·, s) is sup-
ported on M(F )N(F )K #(Pn), where pn is the conductor of the GL2(F ) representation τ .

Recall that P = poL . Let

I :=

⎧⎪⎨⎪⎩g ∈ GU(2,2;oL): g ≡
⎡⎢⎣

∗ 0 ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗

⎤⎥⎦ (mod P)

⎫⎪⎬⎪⎭ (34)
0 0 0 ∗



1284 A. Pitale, R. Schmidt / Journal of Number Theory 129 (2009) 1272–1324
be the Iwahori subgroup and

Kl
(
Pn) :=

⎧⎪⎨⎪⎩g ∈ GU(2,2;oL): g ≡
⎡⎢⎣

∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

⎤⎥⎦ (
mod Pn)

⎫⎪⎬⎪⎭ (35)

be the Klingen congruence subgroup. We define K #(P0) := GU(2,2;oL), and for n � 1

K #(Pn) := I ∩ Kl
(
Pn)= GU(2,2;oL) ∩

⎡⎢⎢⎢⎣
o
×
L Pn oL oL

oL o
×
L oL oL

P Pn o
×
L oL

Pn Pn Pn o
×
L

⎤⎥⎥⎥⎦ . (36)

Furthermore, let

K #(pn) := K #(Pn)∩ GSp4(F ) = GSp4(o) ∩

⎡⎢⎢⎣
o× pn o o

o o× o o

p pn o× o

pn pn pn o×

⎤⎥⎥⎦ . (37)

Note that K #(P) = I . The GL2 congruence subgroup K (1)(pn) defined above can be embedded into
K #(Pn) in the following way,

[
α β

γ δ

]
�−→

⎡⎢⎣
1

α β

μ
γ δ

⎤⎥⎦ , where μ = αδ − βγ . (38)

It follows from Lemma 2.1.1 that the map

o
×
L × GL2(o) −→ M(2)(F ) ∩ GL4(oL),

(
λ,

[
α β

γ δ

])
�−→

⎡⎢⎣
1

λα λβ

N(λ)(αδ − βγ )

λγ λδ

⎤⎥⎦ , (39)

is surjective with kernel {(λ,λ−1): λ ∈ o
×
F }.

3.4. The function W #

We shall now define the specific function W #(·, s) for which we shall evaluate the integral (33).
Let (τ , Vτ ) be a generic, irreducible, admissible representation of GL2(F ) with unramified central
character. We assume that Vτ is the Whittaker model of τ with respect to the character of F given
by ψ−c(x) = ψ(−cx). Let pn be the conductor of τ . Let W (0) ∈ V (n) be the local newform, i.e., the
essentially unique non-zero K (1)(pn) invariant vector in Vτ . We can make it unique by requiring that
W (0)(1) = 1, since this value is known to be non-zero.

We choose any character χ0 of L× such that

χ0|F × = ωτ and χ0|o× = 1. (40)

L
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If ( L
p
) = −1, there is only one such character, but in the other cases the choice of χ0 is not unique.

We extend W (0) to a function on M(2)(F ) via

W (0)(ag) = χ0(a)W (0)(g), a ∈ L×, g ∈ GL2(F ) (41)

(see (9)). It follows from (39) that

W (0)(gκ) = W (0)(g), for g ∈ M(2)(F ) and κ ∈ M(2)(F ) ∩ K #(Pn). (42)

As in Section 3.2, let (π, Vπ ) be an unramified, irreducible, admissible representation of GSp4(F ),
where Vπ is the Bessel model for π with respect to the character Λ⊗ θ of R(F ) = T (F )U (F ). As was
pointed out in Section 3.2, the character Λ is necessarily unramified. Let χ be the character of L×
given by

χ(ζ ) = Λ(ζ̄ )−1χ0(ζ̄ )−1, (43)

so that (18) holds.
Given a complex number s, there exists a unique function W #(·, s) : G(F ) → C with the following

properties.

(i) If g /∈ M(F )N(F )K #(Pn), then W #(g, s) = 0.
(ii) If g = mnk with m ∈ M(F ), n ∈ N(F ), k ∈ K #(Pn), then W #(g, s) = W #(m, s).

(iii) For ζ ∈ L× and
[ α β

γ δ

] ∈ M(2)(F ),

W #

⎛⎜⎝
⎡⎢⎣

ζ

1
ζ̄−1

1

⎤⎥⎦
⎡⎢⎣

1
α β

μ
γ δ

⎤⎥⎦ , s

⎞⎟⎠= ∣∣N(ζ ) · μ−1
∣∣3(s+1/2)

χ(ζ )W (0)

([
α β

γ δ

])
. (44)

Here μ = ᾱδ − βγ̄ .

To verify that such a function exists, use (42) and(
M(F )N(F )

)∩ K #(Pn)= (
M(F ) ∩ K #(Pn))(N(F ) ∩ K #(Pn)).

Also, one has to use the fact that χ |o×
L

= 1. Note that W #(·, s) is an element of the induced repre-

sentation I(s,χ,χ0, τ ) discussed in Section 2.3. In particular, Lemma 2.3.1 applies. Note that if n = 0,
i.e., if τ is unramified, then W #(·, s) coincides with the function W v (·, s) defined on p. 200 of [9].

3.5. Basic local integral computation

Let W #(·, s) be the element of I(s,χ,χ0, τ ) defined in the previous section. Let B be the spherical
vector in the Λ ⊗ θ Bessel model of the unramified representation π of GSp4(F ), as in Section 3.2.
We shall compute the integral

Z(s) =
∫

R(F )\H(F )

W #(ηh, s)B(h)dh. (45)

By Lemma 2.3.1, the integral (45) is well-defined. By (29) and the fact that B(h(l,m)) = 0 for l < 0
[9, Lemma 3.4.4], we have



1286 A. Pitale, R. Schmidt / Journal of Number Theory 129 (2009) 1272–1324
Z(s) =
∑

l,m�0

∫
R(F )\R(F )h(l,m)K H

W #(ηh, s)B(h)dh

=
∑

l,m�0

∫
h(l,m)−1 R(F )h(l,m)∩K H \K H

W #(ηh(l,m)h, s
)

B
(
h(l,m)h

)
dh

=
∑

l,m�0

B
(
h(l,m)

) ∫
h(l,m)−1 R(F )h(l,m)∩K H \K H

W #(ηh(l,m)h, s
)

dh. (46)

The function W # is only invariant under K #(Pn). Since our integral (46) is over elements of H(F ),
all that is relevant is that W # is invariant under the group K #(pn) defined in (37). Let us abbreviate
Kl,m := h(l,m)−1 R(F )h(l,m) ∩ K H . Suppose we had a system of representatives {si} for the double
coset space Kl,m \ K H/K #(pn) (it will depend on l and m, of course). Then, from (46),

Z(s) =
∑

l,m�0

∑
i

B
(
h(l,m)

) ∫
Kl,m\Kl,m si K #(pn)

W #(ηh(l,m)h, s
)

dh

=
∑

l,m�0

∑
i

B
(
h(l,m)

)
W #(ηh(l,m)si, s

) ∫
Kl,m\Kl,msi K #(pn)

dh. (47)

In practice it will be difficult to obtain the system {si}. However, we can save some work by exploiting
the fact that W # is supported on the small subset M(F )N(F )K #(Pn) of G(F ). Hence, we shall proceed
as follows.

Step 1. First we determine a preliminary decomposition

K H =
⋃

j

Kl,ms′
j K #(pn), (48)

which is not necessarily disjoint. We may assume that the s′
j are taken from the system of rep-

resentatives for K H/K #(pn) to be determined in the next section (but some of these will be
absorbed in Kl,m , so that we get an initial reduction).

Step 2. Then we consider the values W #(ηh(l,m)s′
j, s). If ηh(l,m)s′

j /∈ M(F )N(F )K #(Pn), then s′
j

makes no contribution to the integral (46). Therefore, all that is relevant is the subset {s′′
j } ⊂ {s′

j}
of representatives for which ηh(l,m)s′′

j ∈ M(F )N(F )K #(Pn). Hence we consider the set

S :=
⋃

j

Kl,ms′′
j K #(pn).

Step 3. Now, from this much smaller set of representatives {s′′
j } we determine a subset {s′′′

j } such that
this union becomes disjoint:

S =
⊔

j

Kl,ms′′′
j K #(pn).

The integral (46) is then given by

Z(s) =
∑

l,m�0

∑
j

B
(
h(l,m)

)
W #(ηh(l,m)s′′′

j , s
) ∫

Kl,m\Kl,m s′′′j K #(pn)

dh. (49)
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Finally, we have to compute the volumes, evaluate W #, and carry out the summations with the help
of Sugano’s formula (30).

3.6. Double coset decomposition

3.6.1. The cosets K #(p0)/K #(pn)

We need to determine representatives for the coset space

K #(p0)/K #(pn), where K #(p0)= K H = GSp4(o). (50)

Note that this coset space is isomorphic to

K #
1

(
p0)/K #

1

(
pn), where K #

1

(
pn)= K #(pn)∩ {g ∈ H(F ): μ(g) = 1

}
. (51)

Let

s1 =
⎡⎢⎣

1
1

1
1

⎤⎥⎦ , s2 =
⎡⎢⎣

1
1

−1
1

⎤⎥⎦ . (52)

It follows from the Bruhat decomposition for Sp(4,o/p) that

K #(p0)= K #(p1) �
⊔

x∈o/p

⎡⎢⎣
1
x 1

1 −x
1

⎤⎥⎦ s1 K #(p1) �
⊔

x∈o/p

⎡⎢⎣
1 x

1
1

1

⎤⎥⎦ s2 K #(p1) (53)

�
⊔

x,y∈o/p

⎡⎢⎣
1
x 1 y

1 −x
1

⎤⎥⎦ s1s2 K #(p1) �
⊔

x,y∈o/p

⎡⎢⎣
1 x y

1 y
1

1

⎤⎥⎦ s2s1 K #(p1) (54)

�
⊔

x,y,z∈o/p

⎡⎢⎣
1 y
x 1 y xy + z

1 −x
1

⎤⎥⎦ s1s2s1 K #(p1) �
⊔

x,y,z∈o/p

⎡⎢⎣
1 x y

1 y z
1

1

⎤⎥⎦ s2s1s2 K #(p1) (55)

�
⊔

w,x,y,z∈o/p

⎡⎢⎣
1 x y
w 1 wx + y wy + z

1 −w
1

⎤⎥⎦ s1s2s1s2 K #(p1). (56)

Let n � 1. It is easy to see that

K #(p1)=
⊔

w,y,z∈o/pn−1

⎡⎢⎣
1 w�

1
1

−w� 1

⎤⎥⎦
⎡⎢⎣

1
1

y� 1
y� z� 1

⎤⎥⎦ K #(pn). (57)

Let {ri} be the system of representatives for K #(p0)/K #(p1) determined in (53)–(56). Combining these
with (57) we get

K H =
⊔

i

⊔
w,y,z∈o/pn−1

ri

⎡⎢⎣
1 w�

1
1

⎤⎥⎦
⎡⎢⎣

1
1

y� 1

⎤⎥⎦ K #(pn). (58)
−w� 1 y� z� 1
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Recall that we are interested in the double cosets Kl,m \ K H/K #(pn), where Kl,m =
h(l,m)−1 R(F )h(l,m) ∩ K H .

3.6.2. Step 1: Preliminary decomposition

Observe that Kl,m contains all elements

[
1 o o

1 o o
1

1

]
. From (58) we therefore get the following pre-

liminary decomposition, which is not disjoint:

K H =
⋃

y,z,w∈o/pn−1

Kl,m

⎡⎢⎣
1 w�

1
1

−w� 1

⎤⎥⎦
⎡⎢⎣

1
1

y� 1
y� z� 1

⎤⎥⎦ K #(pn) (59)

∪
⋃

w∈o/pn

⋃
y,z∈o/pn−1

Kl,m

⎡⎢⎣
1
w 1

1 −w
1

⎤⎥⎦
⎡⎢⎣

1
1

z� y� 1
y� 1

⎤⎥⎦ s1 K #(pn) (60)

∪
⋃

w,y,z∈o/pn−1

Kl,m

⎡⎢⎣
1

1
w� 1

w� 1

⎤⎥⎦
⎡⎢⎣

1 y�
1

1
z� −y� 1

⎤⎥⎦ s2 K #(pn) (61)

∪
⋃

w∈o/pn

⋃
y,z∈o/pn−1

Kl,m

⎡⎢⎣
1
w 1

1 −w
1

⎤⎥⎦
⎡⎢⎣

1
1

y� z� 1
z� 1

⎤⎥⎦ s1s2 K #(pn) (62)

∪
⋃

w∈o/pn−1

Kl,m

⎡⎢⎣
1 w�

1
1

−w� 1

⎤⎥⎦ s2s1 K #(pn) (63)

∪
⋃

w∈o/pn

Kl,m

⎡⎢⎣
1
w 1

1 −w
1

⎤⎥⎦ s1s2s1 K #(pn) (64)

∪
⋃

w∈o/pn−1

Kl,m

⎡⎢⎣
1 w�

1
1

−w� 1

⎤⎥⎦ s2s1s2 K #(pn) (65)

∪
⋃

w∈o/pn

Kl,m

⎡⎢⎣
1
w 1

1 −w
1

⎤⎥⎦ s1s2s1s2 K #(pn). (66)

3.6.3. Step 2: Support of W #

We assumed that c ∈ o× , so that α ∈ oL . We have ηh(l,m) = h(l,m)ηm , where for m � 0 we let

ηm =
⎡⎢⎣

1
α�m 1

1 −ᾱ�m

1

⎤⎥⎦ . (67)

Fix l,m � 0, and let r run through the representatives for Kl,m \ K H/K #(pn) from (59)–(66). In view
of (49) we want to find out for which r is ηh(l,m)r ∈ M(F )N(F )K #(Pn), since this set is the support
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of W #. Since h(l,m) ∈ M(F ), this is equivalent to ηmr ∈ M(F )N(F )K #(Pn). Hence, this condition
depends only on m � 0 and not on the integer l.

(i) Let r =
⎡⎣ 1 w�

1
1

−w� 1

⎤⎦⎡⎣ 1
1

y� 1
y� z� 1

⎤⎦ with w, y, z ∈ o/pn−1. Suppose ηmr = m̃ñk with m̃ ∈ M(F ),

ñ ∈ N(F ) and k ∈ K #(Pn). Let A = (m̃ñ)−1ηmr. Looking at the (3,2) and (3,3) coefficient of A
we get

y + �m+1αwy − �mαz ∈ Pn−1, and hence α�m(� wy − z) + y ∈ Pn−1.

If ν(� wy − z) < n −m − 1 then α + y/(�m(� wy − z)) ∈ P, which contradicts Lemma 3.1.1(ii).
Hence, ν(� wy − z) � n − m − 1, which implies �m(� wy − z) ∈ pn−1. It follows that y ∈ pn−1.
To summarize, necessary conditions for A ∈ K #(Pn) are y = 0 and z ∈ (pn−m−1 ∩ o)/pn−1. The
following matrix identity shows that these are also sufficient conditions:

ηmr =
⎡⎢⎣

a−1

a
ā

� zā−1 ā−1

⎤⎥⎦
⎡⎢⎣

1 � wa
1

1
−� wā 1

⎤⎥⎦

×
⎡⎢⎣

1
�mαa−1 1

−�m+1ᾱzā−1 1 −�mᾱā−1

−�m+1αza−1 1

⎤⎥⎦ ∈ M(F )N(F )K #(Pn), (68)

where a = 1 + �m+1αw ∈ o
×
L . Hence, the values of w, y, z for which ηmr ∈ M(F )N(F )K #(Pn)

are

w ∈ o/pn−1, y = 0, z ∈ (pn−m−1 ∩ o
)
/pn−1.

(ii) Let r =
⎡⎣ 1

w 1
1 −w

1

⎤⎦⎡⎣ 1
1

z� y� 1
y� 1

⎤⎦ s1 with w ∈ o/pn and y, z ∈ o/pn−1. Suppose ηmr = m̃ñk with

m̃ ∈ M(F ), ñ ∈ N(F ) and k ∈ K #(Pn). Let A = (m̃ñ)−1ηmr. Looking at the (3,2) and (3,3) coeffi-
cients of A we get

β := �mα + w ∈ o
×
L and �mαy + wy − z ∈ Pn−1.

If ν(y) < n − m − 1, then α + (wy − z)/(�m y) ∈ P, which contradicts Lemma 3.1.1(ii). Hence,
ν(y) � n − m − 1, which implies wy − z ∈ Pn−1. We may therefore assume that z = wy. To
summarize, necessary conditions for A ∈ K #(Pn) are �mα + w ∈ o

×
L , y ∈ (pn−m−1 ∩ o)/pn−1

and z = wy. The following matrix identity shows that these are also sufficient conditions:

ηmr =
⎡⎢⎣

−β−1

β

−β̄

� wyβ̄−1 β̄−1

⎤⎥⎦
⎡⎢⎣

1 −β

1
1
β̄ 1

⎤⎥⎦

×
⎡⎢⎣

1
β−1 1

−� yβ̄−1 �m+1ᾱyβ̄−1 1 −β̄−1

�m+1αyβ−1 1

⎤⎥⎦ ∈ M(F )N(F )K #(Pn). (69)
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Hence, the values of w, y, z for which ηmr ∈ M(F )N(F )K #(Pn) are as follows.
(a) If m = 0, then all w ∈ o/pn such that α + w ∈ o

×
L and y = z = 0.

(b) If m > 0, then all w ∈ o× , y ∈ (pn−m−1 ∩ o)/pn−1 and z = wy.

(iii) Let r =
⎡⎣ 1

1
w� 1

w� 1

⎤⎦⎡⎣ 1 y�
1

1
z� −y� 1

⎤⎦ s2 with w, y, z ∈ o/pn−1.

Then ηmr /∈ M(F )N(F )K #(Pn), since the (3,3)-coefficient divided by the (3,1)-coefficient of any
matrix product of the form ñ−1m̃−1ηmr, m̃ ∈ M(F ), ñ ∈ N(F ), is in oL .

(iv) Let r =
⎡⎣ 1

w 1
1 −w

1

⎤⎦⎡⎣ 1
1

y� z� 1
z� 1

⎤⎦ s1s2 with w ∈ o/pn and y, z ∈ o/pn−1.

Then ηmr /∈ M(F )N(F )K #(Pn), since the (3,3)-coefficient of any product of the form ñ−1m̃−1ηmr,
m̃ ∈ M(F ), ñ ∈ N(F ), is in P.

(v) Let r =
⎡⎣ 1 w�

1
1

−w� 1

⎤⎦ s2s1 with w ∈ o/pn−1.

Then ηmr /∈ M(F )N(F )K #(Pn), since the (4,1)-coefficient of any product of the form ñ−1m̃−1ηmr,
m̃ ∈ M(F ), ñ ∈ N(F ), is in o

×
L .

(vi) Let r =
⎡⎣ 1

w 1
1 −w

1

⎤⎦ s1s2s1 with w ∈ o/pn . Suppose ηmr = m̃ñk with m̃ ∈ M(F ), ñ ∈ N(F ) and

k ∈ K #(Pn). Let A = (m̃ñ)−1ηmr. Looking at the (3,2) and (3,3) coefficients of A we get �mα+
w ∈ Pn . If m < n, then we get α + w/�m ∈ P which contradicts Lemma 3.1.1(ii). Hence m � n,
which implies that w ∈ Pn . We may therefore assume that w = 0. To summarize, necessary
conditions for A ∈ K #(Pn) are m � n and w = 0. The following matrix identity shows that these
are also sufficient conditions:

ηmr =
⎡⎢⎣

1
1

1
−1

⎤⎥⎦
⎡⎢⎣

1
1

�mᾱ 1
�mα 1

⎤⎥⎦ ∈ M(F )N(F )K #(Pn). (70)

(vii) Let r =
⎡⎣ 1 w�

1
1

−w� 1

⎤⎦ s2s1s2 with w ∈ o/pn−1.

Then ηmr /∈ M(F )N(F )K #(Pn), since the (3,3)-coefficient of any product of the form ñ−1m̃−1ηmr,
m̃ ∈ M(F ), ñ ∈ N(F ), is zero.

(viii) Let r =
⎡⎣ 1

w 1
1 −w

1

⎤⎦ s1s2s1s2 with w ∈ o/pn .

Then ηmr /∈ M(F )N(F )K #(Pn), since the (3,3)-coefficient of any product of the form ñ−1m̃−1ηmr,
m̃ ∈ M(F ), ñ ∈ N(F ), is zero.

Let us summarize the double cosets that can possibly make a non-trivial contribution to the inte-
gral (49).

⋃
w∈o/pn−1

z∈(pn−m−1∩o)/pn−1

Kl,m

⎡⎢⎣
1 w�

1
1

−w� 1

⎤⎥⎦
⎡⎢⎣

1
1

1
z� 1

⎤⎥⎦ K #(pn) for l,m � 0, (71)
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⋃
w∈o/pn

�mα+w∈o
×
L

y∈(pn−m−1∩o
)
/pn−1

Kl,m

⎡⎢⎣
1
w 1

1 −w
1

⎤⎥⎦
⎡⎢⎣

1
1

yw� y� 1
y� 1

⎤⎥⎦ s1 K #(pn) for l,m � 0, (72)

Kl,ms1s2s1 K #(pn) for l � 0, m � n. (73)

3.6.4. Step 3: Disjointness of double cosets
We will now investigate the overlap between double cosets in (71), (72) and (73). First we will

consider the case m = 0.

Equivalences among double cosets from (71) with m = 0
For w ∈ o/pn−1, set β = c + b(� w) + a(� w)2 ∈ o× . Let g = [ x+yb/2 yc

−ya x−yb/2

]
with y = � w and

x = c + yb/2. Then we have the matrix identity

h(l,0)−1
[

g
det(g) t g−1

]
h(l,0) =

⎡⎢⎣
1 w�

1
1

−w� 1

⎤⎥⎦
⎡⎢⎣

β

−a� w c
c a� w

β

⎤⎥⎦ .

The rightmost matrix above is in K #(pn), so that

⋃
w∈o/pn−1

Kl,0

⎡⎢⎣
1 w�

1
1

−w� 1

⎤⎥⎦ K #(pn)= Kl,0 K #(pn) for all l � 0. (74)

Equivalences among double cosets from (74) and (72) with m = 0
Let w ∈ o/pn be such that α + w ∈ o

×
L . Set β = a + bw + cw2. Let g = [ x+yb/2 yc

−ya x−yb/2

]
with y = 1

and x = −(cw + b/2). Then we have the matrix identity

h(l,0)−1
[

g
det(g) t g−1

]
h(l,0)

⎡⎢⎣
1
w 1

1 −w
1

⎤⎥⎦ s1 =
⎡⎢⎣

c
−(b + cw) −β

β −(b + cw)

−c

⎤⎥⎦ .

The matrix on the right-hand side is in K #(pn) if β ∈ o× . We will now show that the condition
α + w ∈ o

×
L forces β ∈ o× . First observe the identity

a + bw + cw2 = −c(α + w)
(
α − (

w + bc−1)).
If β ∈ p, then it would follow that α − (w + bc−1) ∈ poL = P. By Lemma 3.1.1(ii), this is impossible. It
follows that indeed β ∈ o× , so that all double cosets in (72) with m = 0 are equivalent to the double
coset in (74).

Equivalence among double cosets from (71) or (72) and (73) with m > 0
Let h1 be a double coset representative from either (71) or (72), and let h2 be a double coset

representative from (73). Then, in either case, the double cosets are not equivalent, since, for any
r ∈ R(F ) the (2,2) coordinate of the matrix h−1

2 h(l,m)−1rh(l,m)h1 is in p.
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Equivalence among double cosets from (71) and (72) with m > 0
For m > 0 the condition �mα + w ∈ o

×
L in (72) is equivalent to w ∈ o× . Hence let w ∈ o× and

z ∈ (pn−m−1 ∩o)/pn−1. Let β1 = a� 2m +b�m +c, β2 = a� 2m +b�m +cw and β3 = a� 2m +bw�m +
cw2. We have β1, β2, β3 ∈ o× . Let g = [ x+yb/2 yc

−ya x−yb/2

]
with y = �m(1 − w)/β3 and x = β2/β3 − by/2.

Then we have the matrix identity

h(l,m)−1
[

g
det(g) t g−1

]
h(l,m)

⎡⎢⎣
1
1 1

1 −1
1

⎤⎥⎦
⎡⎢⎣

1
1

z�/w z�/w 1
z�/w 1

⎤⎥⎦ s1

=
⎡⎢⎣

1
w 1

1 −w
1

⎤⎥⎦
⎡⎢⎣

1
1

zw� z� 1
z� 1

⎤⎥⎦ s1κ,

where

κ =

⎡⎢⎢⎢⎢⎣
1 0 0 0

c(1−w)
β3

β1
β3

0 0

cz�(w2−1)
wβ3

−�m+1 z(w−1)(b+a�m)
wβ3

β1
β3

c(w−1)
β3

−�m+1 z(w−1)(bw+a�m)
wβ3

−�m+1 z(w−1)(bw+a�m(1+w))
wβ3

0 1

⎤⎥⎥⎥⎥⎦ ∈ K #(pn).

Hence

⋃
w∈o/pn

w∈o×
z∈(pn−m−1∩o)/pn−1

Kl,m

⎡⎢⎣
1
w 1

1 −w
1

⎤⎥⎦
⎡⎢⎣

1
1

zw� z� 1
z� 1

⎤⎥⎦ s1 K #(pn)

=
⋃

z∈(pn−m−1∩o)/pn−1

Kl,m

⎡⎢⎣
1
1 1

1 −1
1

⎤⎥⎦
⎡⎢⎣

1
1

z� z� 1
z� 1

⎤⎥⎦ s1 K #(pn). (75)

Now let w ∈ o/pn−1 and z ∈ (pn−m−1 ∩ o)/pn−1. Set β = c + (�m+1 w)b + (�m+1 w)2a ∈ o× . Let g1 =[ x1+y1b/2 y1c
−y1a x1−y1b/2

]
with y1 = �m+1 w/β and x1 = 1 − by1/2 − a�m+1 wy1. Then we have the matrix

identity

h(l,m)−1
[

g1
det(g1)

t(g1)
−1

]
h(l,m)

⎡⎢⎣
1

1
1

z� 1

⎤⎥⎦

=
⎡⎢⎣

1 w�
1

1

⎤⎥⎦
⎡⎢⎣

1
1

1

⎤⎥⎦κ1,
−w� 1 z� 1
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where

κ1 =

⎡⎢⎢⎣
1

−a� 2m+1 w/β c/β

a� 2+2m wz/β c/β a� 2m+1 w/β

a� 2+2m wz/β � 2+m w(b + a�m+1 w)z/β 1

⎤⎥⎥⎦ ∈ K #(pn).
Hence

⋃
w∈o/pn−1

z∈(pn−m−1∩o)/pn−1

Kl,m

⎡⎢⎣
1 w�

1
1

−w� 1

⎤⎥⎦
⎡⎢⎣

1
1

1
z� 1

⎤⎥⎦ K #(pn)

=
⋃

z∈(pn−m−1∩o)/pn−1

Kl,m

⎡⎢⎣
1

1
1

z� 1

⎤⎥⎦ K #(pn). (76)

We will now show that the double cosets in (75) are all equivalent to double cosets in (76). Given
z ∈ (pn−m−1 ∩ o)/pn−1, let g2 = [ x2+y2b/2 y2c

−y2a x2−y2b/2

]
with y2 = �m and x2 = −(c + by2/2). Then we

have the matrix identity

h(l,m)−1
[

g1
det(g1)

t(g1)
−1

]
h(l,m)

⎡⎢⎣
1
1 1

1 −1
1

⎤⎥⎦
⎡⎢⎣

1
1

z� z� 1
z� 1

⎤⎥⎦ s1

=
⎡⎢⎣

1
1

1
z� 1

⎤⎥⎦κ2,

where

κ2 =

⎡⎢⎢⎣
c

−c − b�m −c − b�m − a� 2m

−�(c + b�m)z a� 1+2mz c + b�m + a� 2m −c − b�m

b�m+1z �m+1(b + a�m)z 0 −c

⎤⎥⎥⎦ ∈ K #(pn).
We conclude that, for m > 0 and any l � 0, the double cosets in (71) and (72) are all contained in the
union

⋃
z∈(pn−m−1∩o)/pn−1

Kl,m

⎡⎢⎣
1

1
1

z� 1

⎤⎥⎦ K #(pn). (77)

Equivalence among double cosets from (77) with m > 0
Finally, we have to determine any equivalences amongst the double cosets in (77). Fix l � 0 and

m > 0, and let

h1 =
⎡⎢⎣

1
1

1

⎤⎥⎦ , h2 =
⎡⎢⎣

1
1

1

⎤⎥⎦

z1� 1 z2� 1
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with z1, z2 ∈ (pn−m−1 ∩ o)/pn−1. We want to see if we can find r = [ g g X

det(g) t g−1

] ∈ R(F ) such that

A = h−1
1 h(l,m)−1rh(l,m)h2 ∈ K #(pn);

here, g = [ x+yb/2 yc
−ya x−yb/2

] ∈ T (F ) and X = [ e f
f g

]
with e, f , g ∈ F . Suppose such an r exists. Looking at

the (1,3), (1,4), (2,3) and (2,4) coefficient of A we get[
x + yb/2 yc

−ya x − yb/2

][
e f
f g

]
∈
[

pl+2m pl+m

pl+m pl

]
.

Looking at the (1,1), (1,2), (1,4) and (3,3) coefficient of A, we see that

x ± by/2 ∈ o×, y ∈ pm and hence

[
e f
f g

]
∈
[

pl+2m pl+m

pl+m pl

]
.

Looking at the (4,2) coefficient of A, we get

(x − by/2)z1 + � 1−l(g(x − by/2) − af y
)
z1z2 − (x + by/2)z2 ∈ pn−1. (78)

From this it follows that ν(z1) = ν(z2). Using y ∈ pm , it further follows that

(z1 − z2) + �−l g(� z1z2) ∈ pn−1 (79)

(first add byz2 to both sides of (78), then divide by the unit x − by/2). Let ν(z1) = ν(z2) = j. Write
zi = � jui for i = 1,2, where ui ∈ o× . If 2 j + 1 � n − 1, then (79) implies that z1 = z2; hence we get
disjoint double cosets in this case. If 2 j + 1 < n − 1, then (79) implies that u1 − u2 ∈ p j+1. This is a
necessary condition for the coincidence of double cosets. We will now show that it is sufficient. So,
suppose that u1 − u2 ∈ p j+1. Set g = � l(z2 − z1)/(� z1z2) ∈ pl and e = f = 0. Then there is a matrix
identity

h(l,m)−1
[

I2 X
I2

]
h(l,m)

⎡⎢⎣
1

1
1

z2� 1

⎤⎥⎦=
⎡⎢⎣

1
1

1
z1� 1

⎤⎥⎦
⎡⎢⎢⎣

1
u2
u1

z2−z1
� z1 z2

1
u1
u2

⎤⎥⎥⎦ ,

where the rightmost matrix lies in K #(pn). We therefore get the disjoint union

⋃
z∈(pn−m−1∩o)/pn−1

Kl,m

⎡⎢⎣
1

1
1

z� 1

⎤⎥⎦ K #(pn)

=
⊔

z∈(pn−m−1∩o∩p
[ n−1

2 ]
)/pn−1

Kl,m

⎡⎢⎣
1

1
1

z� 1

⎤⎥⎦ K #(pn)

�
[ n−3

2 ]⊔
j=max(n−m−1,0)

⊔
u∈o×/(1+p j+1)

Kl,m

⎡⎢⎣
1

1
1

u� j+1 1

⎤⎥⎦ K #(pn).
The following proposition summarizes our results in this section.
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Proposition 3.6.1. Let l,m � 0. The following are the disjoint double cosets in Kl,m \ K H/K #(pn) that can
possibly make a non-trivial contribution to the integral (49).

⊔
z∈(pn−m−1∩o∩p

[ n−1
2 ]

)/pn−1

Kl,m

⎡⎢⎣
1

1
1

z� 1

⎤⎥⎦ K #(pn) for l,m � 0, (80)

[ n−3
2 ]⊔

j=max(n−m−1,0)

⊔
u∈o×/(1+p j+1)

Kl,m

⎡⎢⎣
1

1
1

u� j+1 1

⎤⎥⎦ K #(pn) for l,m � 0, (81)

Kl,ms1s2s1 K #(pn) for l � 0, m � n. (82)

For n = 1 this reduces to

Kl,m K #(p) for l,m � 0, (83)

Kl,ms1s2s1 K #(p) for l � 0, m � 1. (84)

3.7. Volume computations

With a view towards the integral (49), we will now compute the volumes of the sets Kl,m \
Kl,m AK #(pn), where A is one of the representatives of the disjoint double cosets in (80), (81) or
(82). Let χ1 : Kl,m \ K H → C be the characteristic function of Kl,m \ Kl,m AK #(pn), and let δ1 : K H → C
be the characteristic function of AK #(pn).

Lemma 3.7.1. For all g ∈ K H we have∫
Kl,m

δ1(tg)dt = χ1(ġ)

∫
Kl,m∩(AK #(pn)A−1)

dt, (85)

where ġ denotes the image of g in Kl,m \ K H .

Proof. First assume that g /∈ Kl,m AK #(pn). Then tg /∈ AK #(pn) for all t ∈ Kl,m , and hence the left-hand
side is zero. The right-hand side is also zero by definition of χ1. Thus the equality holds under our
assumption. Now assume that g ∈ Kl,m AK #(pn). In this case χ1(ġ) = 1. Write g = kAκ with k ∈ Kl,m
and κ ∈ K #(pn). We have

tg ∈ AK #(pn) ⇐⇒ tkAκ ∈ AK #(pn) ⇐⇒ tkA ∈ AK #(pn)
⇐⇒ tk ∈ AK #(pn)A−1 ⇐⇒ t ∈ (AK #(pn)A−1)k−1.

Hence the left-hand side equals ∫
Kl,m∩(AK #(pn)A−1)k−1

dt.

But since k ∈ Kl,m , this integral equals
∫

K ∩(AK #(pn)A−1)
dt . This proves the lemma. �
l,m
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Integrating both sides of (85) over Kl,m \ K H , we obtain∫
K H

δ1(g)dg =
( ∫

Kl,m\Kl,m AK #(p)

dh

)( ∫
Kl,m∩(AK #(p)A−1)

dt

)
, (86)

so that ∫
Kl,m\Kl,m AK #(pn)

dh = vol
(

K #(pn))( ∫
Kl,m∩(AK #(pn)A−1)

dt

)−1

. (87)

Note that

vol
(

K #(pn))= q − 1

q3(n−1)(q + 1)(q4 − 1)
(88)

from (58) and the fact that vol(K H ) = 1. Hence we are reduced to computing

V (l,m, A) :=
∫

Kl,m∩(AK #(pn)A−1)

dt. (89)

3.7.1. Volume corresponding to double cosets (80) and (81)

In this case A =
⎡⎣ 1

1
1

z� 1

⎤⎦ for z ∈ (pn−m−1 ∩ o)/pn−1. We need to calculate the volume of the set

h(l,m)−1 R(F )h(l,m)∩ AK #(pn)A−1. Let ν(z) = j with j � n − 1. Conjugation of h(l,m)−1 R(F )h(l,m)∩
AK #(pn)A−1 with an element of the form diag(1,1, u, u), where u ∈ o× , leaves R(F ) and K #(pn)

unchanged and results in replacing z by uz without any change in the volume. We may therefore
assume that z = � j . Since j � n − 1, it is clear that

AK #(pn)A−1 ⊂ K #(p j+1). (90)

If we write an element of R(F ) as tn with t = [ x+by/2 yc
−ya x−by/2

] ∈ T (F ) and n = [ 12 X
12

]
, X = [ e f

f g

]
, then

(90) gives the following necessary condition for h(l,m)−1tnh(l,m) ∈ AK #(pn)A−1,[
x + by/2 yc�−m

−ya�m x − by/2

]
∈
[

o× p j+1

o o×
]

⊂ GL2(o) and X ∈
[

p2m+l pm+l

pm+l pl

]
. (91)

Set B = A−1h(l,m)−1tnh(l,m)A. We want to find further necessary conditions for B ∈ K #(pn). Looking
at the (4,2) coefficient of B , we get

�−l g(x + by/2)� 2+2 j ∈ pn, and hence g ∈ pn−2−2 j+l. (92)

Using the (4,3) coefficient of B , we get

� lcy + � j+1 f (x ± by/2) ∈ pn+m+l. (93)

A direct computation shows that the conditions (91), (92) and (93) are also sufficient to conclude
that B ∈ K #(pn). Note that � lcy + � j+1 f (x + by/2) ∈ pn+m+l and y ∈ pm+ j+1 implies that f ∈ pm+l

and � lcy + � j+1 f (x − by/2) ∈ pn+m+l . To summarize, the following are the necessary and sufficient
conditions on t and n for h(l,m)−1tnh(l,m) ∈ AK #(pn)A−1.
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y ∈ pm+ j+1, x ± by/2 ∈ o×,

e ∈ p2m+l, g ∈ pn−2−2 j+l ∩ pl, � lcy + � j+1 f (x + by/2) ∈ pn+m+l. (94)

For fixed values of x, y satisfying the first two conditions, we are interested in

V X := vol
({

(e, f , g) ∈ F 3: e ∈ p2m+l, g ∈ pn−2−2 j+l ∩ pl, � lcy + � j+1 f (x + by/2) ∈ pn+m+l})
= vol

({
(e, f , g) ∈ F 3: e ∈ p2m+l, g ∈ pn−2−2 j+l ∩ pl, f ∈ pn+m+l− j−1 − � l− j−1cy(x + by/2)−1})

= vol
({

(e, f , g) ∈ F 3: e ∈ p2m+l, g ∈ pn−2−2 j+l ∩ pl, f ∈ pn+m+l− j−1}).
Note that if j � [n−3

2 ], then n − 2 − 2 j � 0, and if j � [n−1
2 ], then n − 2 − 2 j � 0. Hence, the above

volume is

V X =
{

q−2n−3m−3l+3 j+3, if j �
[n−3

2

];
q−n−3m−3l+ j+1, if j �

[n−1
2

]
.

(95)

So far we have V (l,m, A) = V −1
X vol(Tm, j)

−1, where Tm, j := T (F ) ∩ [�m+ j

1

][
o× p

o o×
][

�−m− j

1

]
.

Lemma 3.7.2. For any m � 0 and any j we have

vol(Tm, j)
−1 =

(
1 −

(
L

p

)
q−1

)
qm+ j+1.

Proof. Note that the group T (F ) ∩ [
�m+ j

1

]
GL2(o)

[
�−m− j

1

]
lies in o

×
L , since the determinants of

these matrices lie in o× and the trace lies in o. As in [9, p. 202], we define a subring om+ j of oL by

om+ j := oL ∩
[
�m+ j

1

]
M2(o)

[
�−m− j

1

]
.

In addition, we define a smaller subring

o′
m+ j := oL ∩

[
�m+ j

1

][
o p

o o

][
�−m− j

1

]
.

We normalize the measure so that vol(o×
L ) = 1. Hence, we have

( ∫
T (F )∩[�m+ j

1

][o× p

o o×
][�−m− j

1

] dt

)−1

= (
o
×
L : (o′

m+ j

)×)
.

From (26) we have the integral basis oL = o + oξ0 = {[ x yc
−ya x−yb

]
x, y ∈ o}, where ξ0 = [ 0 c

−a −b

]
. Such

an element lies in
[
�m+ j

1

]
M2(o)

[
�−m− j

1

]
if and only if y ∈ pm+ j . Similarly, such an element lies in[

�m+ j

1

][ o p

o o

][
�−m− j

1

]
if and only if y ∈ pm+ j+1. Therefore,

om+ j = {
x + �m+ j yξ0: x, y ∈ o

}
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and

o′
m = {

x + �m+ j+1 yξ0: x, y ∈ o
}
.

Hence o′
m+ j = om+ j+1, so that (o×

L : (o′
m+ j)

×) = (o×
L : (om+ j+1)

×). By Lemma 3.5.3 of [9],

(
o
×
L : (o′

m+ j

)×)=
(

1 −
(

L

p

)
q−1

)
qm+ j+1.

This concludes the proof. �
3.7.2. Volume corresponding to double coset (82)

In this case, we have A = s1s2s1 and m � n. Note that

V (l,m, s1s2s1) =
∫

(h(l,m)−1 R(F )h(l,m))∩(s1s2s1 K #(pn)(s1s2s1)−1)

dt.

We have

s1s2s1 K #(pn)(s1s2s1)
−1 = K H ∩

⎡⎢⎣
o× o o pn

pn o× pn pn

p o o× pn

o o o o×

⎤⎥⎦ . (96)

We have to find the intersection of this compact group with h(l,m)−1 R(F )h(l,m). Set

L1 :=
[

o× o

pn o×
]

⊂ GL2(o), N1 :=
{

X ∈
[

o pn

pn pn

]
: t X = X

}
⊂ F 3.

Then L1 and N1 are the upper left and upper right blocks of (96), respectively. Write a given element
of R(F ) as tn with t ∈ T (F ) and n ∈ U (F ). If n = [ 12 X

12

]
, then a direct computation shows that tn lies

in s1s2s1 K #(pn)(s1s2s1)
−1 if and only if[

�−m

1

]
t

[
�m

1

]
∈ L1 (97)

and [
�−2m−l

�−m−l

]
X

[
1

�m

]
∈ N1. (98)

It follows that

vol

({
X ∈ F 3:

[
�−2m−l

�−m−l

]
X

[
1

�m

]
∈ N1

})
= vol

({
X ∈ F 3: X ∈

[
� 2m+l

�m+l

]
N1

[
1

�−m

]})
= q−3m−3l vol(N1) = q−3m−3l−2n.
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Let

T̂m =
{

t ∈ T (F ):

[
�−m

1

]
t

[
�m

1

]
∈ L1

}
= T (F ) ∩

[
�m

1

]
L1

[
�−m

1

]
. (99)

So far, we have V (l,m, s1s2s1)
−1 = q3m+3l+2n vol(T̂m)−1.

Lemma 3.7.3. For any m � n we have

vol(T̂m)−1 =
(

1 −
(

L

p

)
q−1

)
qm.

Proof. Let om be the subring of oL as defined in the proof of Lemma 3.7.2. In addition, we define
another subring

o′′
m := oL ∩

[
�m

1

][
o o

pn o

][
�−m

1

]
.

Since vol(o×
L ) = 1, we have

( ∫
T (F )∩[�m

1

][o× o

pn o×
][�−m

1

] dt

)−1

= (
o
×
L : (o′′

m

)×)
.

As above we have the integral basis oL = o + oξ0 = {[ x yc
−ya x−yb

]
x, y ∈ o}. Such an element lies in[�m

1

]
M2(o)

[
�−m

1

]
if and only if y ∈ pm . Similarly, such an element lies in

[�m

1

][ o o

pn o

][
�−m

1

]
if

and only if y ∈ pm , since m � n. Therefore,

om = {
x + �m

F yξ0: x, y ∈ o
}

and

o′′
m = {

x + �m
F yξ0: x, y ∈ o

}
,

so that actually om = o′′
m . Hence (o×

L : (o′′
m)×) = (o×

L : (om)×). By Lemma 3.5.3 of [9],

(
o
×
L : (o′′

m

)×)=
(

1 −
(

L

p

)
q−1

)
qm.

This concludes the proof. �
The following proposition summarizes the volume computations in this section.
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Proposition 3.7.4.

(i) Let m � 0. Let A =
⎡⎣ 1

1
1

z� 1

⎤⎦ for z ∈ (pn−m−1 ∩ o)/pn−1 and set ν(z) = j. If j � [n−3
2 ], then

V l,m
j :=

∫
Kl,m\Kl,m AK #(pn)

dh = q − 1

q3(n−1)(q + 1)(q4 − 1)

(
1 −

(
L

p

)
q−1

)
q2n+4m+3l−2 j−2, (100)

and if j � [n−1
2 ], then

V l,m :=
∫

Kl,m\Kl,m AK #(pn)

dh = q − 1

q3(n−1)(q + 1)(q4 − 1)

(
1 −

(
L

p

)
q−1

)
qn+4m+3l. (101)

(ii) For all m � n,

V l,m
s1s2s1

:=
∫

Kl,m\Kl,ms1s2s1 K #(pn)

dh = q − 1

q3(n−1)(q + 1)(q4 − 1)

(
1 −

(
L

p

)
q−1

)
q4m+3l+2n. (102)

(iii) In particular, for n = 1,

∫
Kl,m\Kl,m K #(p)

dh = q − 1

(q + 1)(q4 − 1)

(
1 −

(
L

p

)
q−1

)
q4m+3l+1 (m � 0),

∫
Kl,m\Kl,m s1s2s1 K #(p)

dh = q − 1

(q + 1)(q4 − 1)

(
1 −

(
L

p

)
q−1

)
q4m+3l+2 (m > 0).

Note that the right-hand side of (101) is independent of j. This will play an important role in the
evaluation of the zeta integral.

3.8. Main local theorem

In this section we will calculate the integral (49). From Proposition 3.6.1, we have

Z(s) =
∑

l,m�0

B
(
h(l,m)

)( ∑
z∈(pn−m−1∩o∩p

[ n−1
2 ]

)/pn−1

W #(ηh(l,m)A(z), s
)

V l,m

+
[ n−3

2 ]∑
j=max(n−m−1,0)

∑
u∈o×/(1+p j+1)

W #(ηh(l,m)A
(
� j+1u

)
, s
)

V l,m
j

)

+
∑

l�0,m�n

B
(
h(l,m)

)
W #(ηh(l,m)s1s2s1, s

)
V l,m

s1s2s1
(103)

where A(z) =
⎡⎣ 1

1
1

⎤⎦. By (44), (68) and (70) we get
z� 1
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W #(ηh(l,m)A(z), s
)= ∣∣� 2m+l

∣∣3(s+ 1
2 )

ωπ

(
�−2m−l)ωτ

(
�−m−l)W (0)

([
� l 0
� z 1

])
, (104)

W #(ηh(l,m)s1s2s1, s
)= ∣∣� 2m+l

∣∣3(s+ 1
2 )

ωπ

(
�−2m−l)ωτ

(
�−m−l)W (0)

([
� l

−1

])
. (105)

Set Cl,m := |� 2m+l|3(s+ 1
2 )ωπ (�−2m−l)ωτ (�−m−l). Substituting (104) and (105) into (103), we get

Z(s) =
∑
l�0

B
(
h(l,0)

)
Cl,0W (0)

([
� l 0
0 1

])
V l,0

+
∑

l�0,m�1

B
(
h(l,m)

)
Cl,m V l,m

( ∑
z∈(pn−m−1∩o∩p

[ n−1
2 ]

)/pn−1

W (0)

([
� l 0
� z 1

]))

+
∑

l�0,m�1

B
(
h(l,m)

)
Cl,m

( [ n−3
2 ]∑

j=max(n−m−1,0)

∑
u∈o×/(1+p j+1)

W (0)

([
� l 0

� j+1u 1

])
V l,m

j

)

+
∑

l�0,m�n

B
(
h(l,m)

)
Cl,m W (0)

([
� l

−1

])
V l,m

s1s2s1
. (106)

The calculation of (106) for n = 1 is different from the case n > 1.

3.8.1. The case n = 1
We will now assume that τ = Ω StGL(2) , where Ω is an unramified character of F × , and StGL(2)

is the Steinberg representation of GL(2, F ). Then τ has conductor p, and the central character of τ
is ωτ = Ω2. We work in the ψ−c Whittaker model for τ . In this model, the newform W (0) has the
properties

W (0)

([
a

1

])
=
{ |a|Ω(a) if a ∈ o,

0 otherwise,
(107)

and

W (0)

(
g

[
1

�

])
= −Ω(�)W (0)(g) for all g ∈ GL2(F ). (108)

We refer to [28] for details. If n = 1, then the inner sum over z in the second term of (106) above
reduces to just z = 0, and the third term is not present. We have

Z(s) =
∑
l�0
m>0

B
(
h(l,m)

)
Cl,m

(
W (0)

([
� l 0
0 1

])
V l,m + W (0)

([
� l

−1

])
V l,m

s1s2s1

)

+
∑
l�0

B
(
h(l,0)

)
Cl,0W (0)

([
� l 0
0 1

])
V l,0. (109)

It follows from (107) and (108) that W (0)(
[

� l

−1

]
) = W (0)(

[
� l

1

]
) = −Ω(� l)|� |l+1 for all l � 0.

Hence, from Proposition 3.7.4, we get

W (0)

([
� l 0
0 1

])
V l,m + W (0)

([
� l

−1

])
V l,m

s1s2s1
= |� |lΩ(� l)(V l,m − q−1 V l,m

s1s2s1

)= 0.



1302 A. Pitale, R. Schmidt / Journal of Number Theory 129 (2009) 1272–1324
Therefore,

Z(s) =
∑
l�0

B
(
h(l,0)

)
Cl,0W (0)

([
� l 0
0 1

])
V l,0

= q − 1

(q + 1)(q4 − 1)

∑
l�0

B
(
h(l,0)

)
q−l(3s+5/2)(ωπΩ)(�)−l

(
1 −

(
L

p

)
q−1

)
q3l+1

= q(q − 1)

(q + 1)(q4 − 1)

(
1 −

(
L

p

)
q−1

)∑
l�0

B
(
h(l,0)

)(
q−3s+1/2(ωπΩ)(�)−1)l. (110)

Let π = χ1 × χ2 � σ be an unramified principal series representation of GSp4(F ); in case χ1 × χ2 �
σ is not irreducible, take its unramified constituent. Recall the characters γ (1), . . . , γ (4) defined in
Section 3.2. Let ν be the absolute value in F normalized by ν(�) = q−1. Set

L(s, π̃ × τ̃ ) =
4∏

i=1

(
1 − ((

γ (i))−1
Ω−1ν1/2)(�F )q−s)−1

. (111)

Then L(s, π̃ × τ̃ ) is the standard L-factor attached to the representation π̃ × τ̃ of GSp4(F ) × GL2(F )

by the local Langlands correspondence. Here, π̃ (resp. τ̃ ) denotes the contragredient representation
of π (resp. τ ). Denote by AI(Λ) the irreducible, admissible representation of GL2(F ) obtained by
automorphic induction from the character Λ of L× . Set

L
(
s, τ × AI(Λ) × χ |F ×

)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − χ(�)q−1q−2s)−1, if

( L
p

)= −1,

(1 − Λ(�L)(χΩ)(�)q−1/2q−3s−1)−1, if
( L

p

)= 0,

(1 − Λ(�L)(χΩ)(�)q−1/2q−3s−1)−1

× (1 − Λ(��−1
L )(χΩ)(�)q−1/2q−3s−1)−1, if

( L
p

)= 1.

(112)

Then L(s, τ × AI(Λ)×χ |F × ) is the standard L-factor attached to the representation τ × AI(Λ)×χ |F ×
of GL2(F ) × GL2(F ) × GL1(F ) by the local Langlands correspondence. We now state the main theorem
of the local non-archimedean theory for n = 1.

Theorem 3.8.1. Let π be an unramified, irreducible, admissible representation of GSp4(F ) (not necessarily
with trivial central character), and let τ = Ω StGL(2) with an unramified character Ω of F × . Let Z(s) be the
integral (45), where W # is the function defined in Section 3.4, and B is the spherical Bessel function defined in
Section 3.2. Then

Z(s) = q(q − 1)

(q + 1)(q4 − 1)

(
1 −

(
L

p

)
q−1

)
L(3s + 1

2 , π̃ × τ̃ )

L(3s + 1, τ × AI(Λ) × χ |F ×)
. (113)

Proof. By (30) and (110),

Z(s) = q(q − 1)

(q + 1)(q4 − 1)

(
1 −

(
L

p

)
q−1

)
H(q−3s+1/2(ωπΩ)(�F )−1)

Q (q−3s+1/2(ωπΩ)(�F )−1)
. (114)

By (31),

Q
(
q−3s+1/2(ωπΩ)(�F )−1) =

4∏
i=1

(
1 − γ (i)(�F )q−3s−1(ωπΩ)(�F )−1)

=
4∏(

1 − (
γ (i)(ωπΩ)−1ν1/2)(�F )q−3s−1/2)
i=1
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=
4∏

i=1

(
1 − ((

γ (i))−1
Ω−1ν1/2)(�F )q−3s−1/2)

(111)= L(3s + 1/2, π̃ × τ̃ )−1.

To compute the numerator of (114), we distinguish cases. If ( L
p
) = −1, then H(y) = 1 − q−4Λ(�F )y2,

and hence

H
(
q−3s+1/2(ωπΩ)(�F )−1) = 1 − q−4Λ(�F )

(
q−3s+1/2(ωπΩ)(�F )−1)2

= 1 − (
Λω−2

π Ω−2)(�F )q−6s−3

= 1 − (
ω−1

π ω−1
τ

)
(�F )q−6s−3

= 1 − χ(�F )q−1q−6s−2

(112)= L
(
3s + 1, τ × AI(Λ) × χ |F ×

)−1
.

If ( L
p
) = 0, then H(y) = 1 − q−2Λ(�L)y, and hence

H
(
q−3s+1/2(ωπΩ)(�F )−1) = 1 − q−2Λ(�L)q

−3s+1/2(ωπΩ)(�F )−1

= 1 − Λ(�L)
(
ωπωτ Ω−1)(�F )−1q−3s−3/2

= 1 − Λ(�L)(χΩ)(�F )q−1/2q−3s−1

(112)= L
(
3s + 1, τ × AI(Λ) × χ |F ×

)−1
.

If ( L
p
) = 1, then H(y) = (1 − q−2Λ(�L)y)(1 − q−2Λ(�F �

−1
L )y), and hence

H
(
q−3s+1/2(ωπΩ)(�F )−1) = (

1 − q−2Λ(�L)q
−3s+1/2(ωπΩ)(�F )−1)

× (
1 − q−2Λ

(
�F �

−1
L

)
q−3s+1/2(ωπΩ)(�F )−1)

= (
1 − Λ(�L)

(
ωπωτ Ω−1)(�F )−1q−3s−3/2)

× (
1 − Λ

(
�F �

−1
L

)(
ωπωτ Ω−1)(�F )−1q−3s−3/2)

= (
1 − Λ(�L)(χΩ)(�F )q−1/2q−3s−1)
× (

1 − Λ
(
�F �

−1
L

)
(χΩ)(�F )q−1/2q−3s−1)

(112)= L
(
3s + 1, τ × AI(Λ) × χ |F ×

)−1
.

Hence H(q−3s+1/2(ωπΩ)(�F )−1) = L(3s + 1, τ × AI(Λ) × χ |F ×)−1 in all cases. This concludes the
proof of the theorem. �
3.8.2. The case n � 2

From now on we will assume that n � 2. As the following lemma shows, the fact that the repre-
sentation τ has conductor pn implies that the middle two expressions in formula (106) are zero.
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Lemma 3.8.1. Let m � 1 and n � 2.

(i) For any g ∈ GL2(F ),

∑
z∈(pn−m−1∩o∩p

[ n−1
2 ]

)/pn−1

W (0)

(
g

[
1 0

� z 1

])
= 0.

(ii) For 2 j + 2 < n and any z with ν(z) = j,

W (0)

([
� l 0
� z 1

])
= 0.

Proof. (i) Let t = max(n − m − 1,0, [n−1
2 ]). We have pn−m−1 ∩ o ∩ p[ n−1

2 ] = pt and, since m � 1 and

n � 2, we see that t + 1 < n. Define Ŵ (g) =∑
z∈pt+1/pn W (0)(g

[ 1 0
z 1

]
) ∈ Vτ . A calculation verifies that

Ŵ is invariant under K (1)(pt+1). Since τ has level pn and t + 1 < n, this implies Ŵ = 0, as claimed.
(ii) Let z1, z2 be such that ν(z1) = ν(z2) = j and z1/z2 ∈ 1 + p j+1. Consider the matrix identity[

� l

1

][
1

� z1 1

]
=
[

1 � l(z2−z1)
� z1 z2

1

][
� l

1

][
1

� z2 1

][ z1
z2

(z2−z1)
� z1 z2

z2
z1

]
.

Since the additive character ψ is trivial on o and the rightmost matrix is in K (1)(pn), it implies that

W (0)

([
� l

1

][
1

� z 1

])
= W (0)

([
� l

1

][
1

� zu 1

])
(115)

for every u ∈ 1 + p j+1 and z ∈ o with ν(z) = j (we have essentially derived the well-definedness of
the third sum in (106)). Writing u = 1 + b� j+1 with b ∈ o and integrating both sides of (115) with
respect to b, we get

W (0)

([
� l

1

][
1

� z 1

])
=
∫
o

W (0)

([
� l

1

][
1

� z 1

][
1

� zb� j+1 1

])
db

=
∫
o

W (0)

([
� l

1

][
1

� z 1

][
1

b� 2 j+2 1

])
db.

This last expression is zero, since 2 j + 2 < n and W̃ (g) := ∫
o

W (0)(g
[ 1

b� 2 j+2 1

]
)db ∈ Vτ is right in-

variant under K (1)(p2 j+2). This concludes the proof. �
Using this lemma, (106) now becomes

Z(s) =
∑
l�0

B
(
h(l,0)

)∣∣� l
∣∣3(s+ 1

2 )
ωπ

(
�−l)ωτ

(
�−l)W (0)

([
� l 0
0 1

])
V l,0

+
∑

l�0,m�n

B
(
h(l,m)

)∣∣� 2m+l
∣∣3(s+ 1

2 )
ωπ

(
�−2m−l)ωτ

(
�−m−l)W (0)

×
([

� l

−1

])
V l,m

s1s2s1
. (116)
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Since
[ 1
�n

]
normalizes K (1)(pn), the vector W ′(g) := W (0)(g

[ 1
�n

]
) is another element of Vτ that

is right invariant under K (1)(pn). Since the space of vectors in Vτ right invariant under K (1)(pn) is
one-dimensional, there is a constant c ∈ C such that W (0) = cW ′ (one can check that c−2 = ωτ (� n)).
Hence,

W (0)

([
� l

−1

])
= cW (0)

([
� l+n

−1

])
= cW (0)

([
� l+n

1

])
. (117)

This shows that in order to evaluate (116) we need the formula for the new-vector of τ in the Kir-
illov model. The possibilities for our generic, irreducible, admissible representation τ of GL2(F ) with
unramified central character and conductor pn , n � 2, are as follows. Either τ is a principal series
representation χ1 × χ2, where χ1 and χ2 are ramified characters of F × (with χ1χ2 unramified);
or τ = χ StGL(2) , a twist of the Steinberg representation by a ramified character χ (such that χ2 is
unramified); or τ is supercuspidal. In each case the newform in the Kirillov model is given by the
characteristic function of o×; see, e.g., [28]. It follows that all the terms in (117) are zero. The integral
(116) reduces to

Z(s) = V 0,0 = q − 1

q3(n−1)(q + 1)(q4 − 1)

(
1 −

(
L

p

)
q−1

)
qn. (118)

Thus, we have proved the following result.

Theorem 3.8.2. Let π be an unramified, irreducible, admissible representation of GSp4(F ) (not necessarily
with trivial central character), and let τ be an irreducible, admissible, generic representation of GL2(F ) with
unramified central character and conductor pn with n � 2. Let Z(s) be the integral (45), where W # is the
function defined in Section 3.4, and B is the spherical Bessel function defined in Section 3.2. Then

Z(s) = q − 1

q3(n−1)(q + 1)(q4 − 1)

(
1 −

(
L

p

)
q−1

)
qn. (119)

Remark. For any unramified, irreducible, admissible representation π of GSp4(F ) and any of the
representations τ of GL2(F ) mentioned in the theorem we have L(s,π × τ ) = 1. Hence, up to a
constant, the integral Z(s) represents the L-factor L(s,π × τ ).

4. Local archimedean theory

In this section we compute the local archimedean integral. As in Section 3, the key step is the
choice of vectors B and W #.

4.1. Real groups

Consider the symmetric domains H2 := {Z ∈ M2(C): i( t Z − Z) is positive definite} and h2 :=
{Z ∈ H2: t Z = Z}. The group G+(R) := {g ∈ G(R): μ2(g) > 0} acts on H2 via (g, Z) �→ g〈Z〉, where

g〈Z〉 = (A Z + B)(C Z + D)−1, for g =
[

A B
C D

]
∈ G+(R), Z ∈ H2.

Under this action, h2 is stable by H+(R) = GSp+
4 (R). The group K∞ = {g ∈ G+(R): μ2(g) = 1,

g〈I〉 = I} is a maximal compact subgroup of G+(R). Here, I = [ i
i

] ∈ H2. Explicitly,

K∞ =
{[

A B
−B A

]
: A, B ∈ M(2,C), t ĀB = t B̄ A, t Ā A + t B̄ B = 1

}
.
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By the Iwasawa decomposition

G(R) = M(1)(R)M(2)(R)N(R)K∞, (120)

where M(1)(R), M(2)(R) and N(R) are as defined in (6), (7), (8). A calculation shows that

M(1)(R)M(2)(R)N(R) ∩ K∞

=

⎧⎪⎨⎪⎩
⎡⎢⎣

ζ

α β

ζ

−β α

⎤⎥⎦ : ζ,α,β ∈ C, |ζ | = 1, |α|2 + |β|2 = 1, αβ̄ = βᾱ

⎫⎪⎬⎪⎭ . (121)

Note also that

M(2)(R) ∩ K∞ =

⎧⎪⎨⎪⎩
⎡⎢⎣

1
α β

1
−β α

⎤⎥⎦ : α,β ∈ C, |α|2 + |β|2 = 1, αβ̄ = βᾱ

⎫⎪⎬⎪⎭ , (122)

and that there is an isomorphism

(
S1 × SO(2)

)/{(
λ,

[
λ

λ

])
: λ = ±1

}
∼−→ M(2)(R) ∩ K∞,

(
λ,

[
α β

−β α

])
�−→

⎡⎢⎣
1

λα λβ

1
−λβ λα

⎤⎥⎦ . (123)

For g ∈ G+(R) and Z ∈ H2, let J (g, Z) = C Z + D be the automorphy factor. Then, for any integer l,
the map

k �−→ det
(

J (k, I)
)l

(124)

defines a character K∞ → C× . If k ∈ M(2)(R) ∩ K∞ is written in the form (123), then det( J (k, I))l =
λle−ilθ , where α = cos(θ), β = sin(θ). Let K H∞ = K∞ ∩ H+(R). Then K H∞ is a maximal compact sub-
group, explicitly given by

K H∞ =
{[

A B
−B A

]
: t AB = t B A, t A A + t B B = 1

}
.

Sending
[ A B

−B A

]
to A − iB gives an isomorphism K H∞ ∼= U(2). Recall that we have chosen a,b, c ∈ R

such that d = b2 − 4ac �= 0. In the archimedean case we shall assume that d < 0 and let D = −d. Then
R(

√−D) = C. As in Section 2.2 we have

T (R) =
{[

x + yb/2 yc
−ya x − yb/2

]
: x, y ∈ R, x2 + y2 D/4 > 0

}
. (125)

Let

T 1∞ = T (R) ∩ SL(2,R) =
{[

x + yb/2 yc
−ya x − yb/2

]
: x, y ∈ R, x2 + y2 D/4 = 1

}
. (126)
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We have T (R) ∼= C× via
[ x+yb/2 yc

−ya x−yb/2

] �→ x + y
√−D/2. Under this isomorphism T 1∞ corresponds to

the unit circle. We have

T (R) = T 1∞ ·
{[

ζ

ζ

]
: ζ > 0

}
. (127)

As in [9, p. 211], let t0 ∈ GL2(R)+ be such that T 1∞ = t0 SO(2)t−1
0 . We will make a specific choice of t0

when we choose the matrix S = [ a b/2
b/2 c

]
below. By the Cartan decomposition,

GL+
2 (R) = SO(2) ·

{[
ζ1

ζ2

]
: ζ1, ζ2 > 0, ζ1 � ζ2

}
· SO(2). (128)

Therefore,

GL+
2 (R) = t0 SO(2) ·

{[
ζ1

ζ2

]
: ζ1, ζ2 > 0, ζ1 � ζ2

}
· SO(2)

= T 1∞t0 ·
{[√

ζ1ζ2 √
ζ1ζ2

][√
ζ1/ζ2 √

ζ2/ζ1

]
: ζ1, ζ2 > 0, ζ1 � ζ2

}
· SO(2)

= T (R)t0 ·
{[

ζ

ζ−1

]
: ζ � 1

}
· SO(2). (129)

Using this, it is not hard to see that

H(R) = R(R) ·

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣λt0

[
ζ

ζ−1

]
tt−1

0

[
ζ−1

ζ

]
⎤⎥⎥⎦ : λ ∈ R×, ζ � 1

⎫⎪⎪⎬⎪⎪⎭ · K H∞. (130)

Here, R(R) = T (R)U (R) is the Bessel subgroup defined in Section 2.2. One can check that all the
double cosets in (130) are disjoint.

4.2. The Bessel function

Recall that we have chosen three elements a,b, c ∈ R such that d = b2 − 4ac �= 0. We will now
make the stronger assumption that S = [ a b/2

b/2 c

] ∈ M2(R) is a positive definite matrix. Set D = 4ac −
b2 > 0, as above. Given a positive integer l � 2, consider the function B : H(R) → C defined by

B(h) :=
{

μ2(h)ldet( J (h, I))−le−2π i tr(Sh〈I〉) if h ∈ H+(R),

0 if h /∈ H+(R),
(131)

where I = [ i
i

]
. Note that the function B only depends on the choice of S and l. Recall the character θ

of U (R) defined in (12). It depends on the choice of additive character ψ , and throughout we choose
ψ(x) = e−2π ix . Then the function B satisfies

B(tuh) = θ(u)B(h) for h ∈ H(R), t ∈ T (R), u ∈ U (R), (132)

and

B(hk) = det
(

J (k, I)
)l

B(h) for h ∈ H(R), k ∈ K H∞. (133)
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Property (132) means that B satisfies the Bessel transformation property with the character Λ ⊗ θ of
R(R), where Λ is trivial. In fact, by the considerations in [32, 1–3], or by [24, Theorem 3.4], B is the
highest weight vector (weight (−l,−l)) in a holomorphic discrete series representation (or limit of
such if l = 2) of PGSp4(R) corresponding to Siegel modular forms of degree 2 and weight l. By (132)
and (133), the function B is determined by its values on a set of representatives for R(R) \ H(R)/K H∞ .
Such a set is given in (130).

4.3. The function W #

Let (τ , Vτ ) be a generic, irreducible, admissible representation of GL2(R) with central charac-
ter ωτ . We assume that Vτ = W (τ ,ψ−c) is the Whittaker model of τ with respect to the non-trivial
additive character x �→ ψ(−cx). Note that S positive definite implies c > 0. Let W (0) ∈ Vτ have
weight l1. Then W (0) has the following properties.

(i) W (0)
(

gr(θ)
)= eil1θ W (0)(g) for g ∈ GL2(R), r(θ) =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
∈ SO(2).

(ii) W (0)

([
1 x

1

]
g

)
= ψ(−cx)W (0)(g) for g ∈ GL2(R), x ∈ R.

Let χ0 be the character of C× with the properties

χ0|R× = ωτ , χ0(ζ ) = ζ−l1 for ζ ∈ C×, |ζ | = 1. (134)

Such a character exists since ωτ (−1) = (−1)l1 . We extend W (0) to a function on M(2)(R) via

W (0)(ζ g) = χ0(ζ )W (0)(g), ζ ∈ C×, g ∈ GL2(R) (135)

(see Lemma 2.1.1). Then it is easy to check that

W (0)(gk) = det
(

J (k, I)
)−l1 W (0)(g) for g ∈ M(2)(R) and k ∈ M(2)(R) ∩ K∞. (136)

We will need values of W (0) evaluated at
[ t

1

]
for t �= 0. For this we consider the Lie algebra g =

gl(2,R) and its elements

R =
[

0 1
0 0

]
, L =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]
, Z =

[
1 0
0 1

]
.

In the universal enveloping algebra U (g) let

� = 1

4

(
H2 + 2RL + 2LR

)
. (137)

Then � lies in the center of U (g) and acts on Vτ by a scalar, which we write in the form −( 1
4 + ( r

2 )2)

with r ∈ C. In particular,

�W (0) = −
(

1

4
+
(

r

2

)2)
W (0). (138)
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If one restricts the function W (0) to
[

t1/2

t−1/2

]
, t > 0, then (138) reduces to the differential equation

satisfied by the classical Whittaker functions. Hence, there exist constants a+,a− ∈ C such that

W (0)

([
t 0
0 1

])
=
⎧⎨⎩a+ωτ ((4πct)1/2)W l1

2 , ir
2
(4πct) if t > 0,

a−ωτ ((−4πct)1/2)W− l1
2 , ir

2
(−4πct) if t < 0.

(139)

Here, W± l1
2 , ir

2
denotes a classical Whittaker function; see [4, p. 244], [16]. Let χ be the character of

C× given by

χ(ζ ) = χ0(ζ̄ )−1. (140)

We interpret χ as a character of M(1)(R); see (6). Given a complex number s, we define a function
W #(·, s) : G(R) → C as follows. Given g ∈ G(R), write g = m1m2nk according to (120). Then set

W #(g, s) = δ
s+1/2
P (m1m2)det

(
J (k, I)

)−l1χ(m1)W (0)(m2). (141)

Property (136) shows that this is well-defined. Explicitly, for ζ ∈ C× and
[ α β

γ δ

] ∈ M(2)(R),

W #

⎛⎜⎝
⎡⎢⎣

ζ

1
ζ̄−1

1

⎤⎥⎦
⎡⎢⎣

1
α β

μ
γ δ

⎤⎥⎦ , s

⎞⎟⎠= ∣∣ζ 2μ−1
∣∣3(s+1/2)

χ(ζ )W (0)

([
α β

γ δ

])
. (142)

Here μ = ᾱδ − βγ̄ . It is clear that W #(·, s) satisfies

W #(gk, s) = det
(

J (k, I)
)−l1 W #(g, s) for g ∈ G(R), k ∈ K∞. (143)

By Lemma 2.3.1, we have

W #(ηtuh, s) = θ(u)−1W #(ηh, s) (144)

for t ∈ T (R), u ∈ U (R), h ∈ G(R) and

η =
⎡⎢⎣

1
α 1

1 −ᾱ
1

⎤⎥⎦ , α = b + √
d

2c
, d = b2 − 4ac.

4.4. The local archimedean integral

Let B and W # be as defined in Sections 4.2 and 4.3. By (132) and (144), it makes sense to consider
the integral

Z∞(s) =
∫

R(R)\H(R)

W #(ηh, s)B(h)dh. (145)

Our goal in the following is to evaluate this integral. It follows from (133) and (143) that it is zero
if l1 �= l. We shall therefore assume that l1 = l. Then the function W #(ηh, s)B(h) is right invariant
under K H∞ . From the disjoint double coset decomposition (130) and the fact that W #(ηh, s)B(h) is
right invariant under K H∞ we obtain
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Z∞(s) = π

∫
R×

∞∫
1

W #

⎛⎜⎜⎝η

⎡⎢⎢⎣λt0

[
ζ

ζ−1

]
tt−1

0

[
ζ−1

ζ

]
⎤⎥⎥⎦ , s

⎞⎟⎟⎠

× B

⎛⎜⎜⎝
⎡⎢⎢⎣λt0

[
ζ

ζ−1

]
tt−1

0

[
ζ−1

ζ

]
⎤⎥⎥⎦
⎞⎟⎟⎠(ζ − ζ−3)λ−4 dζ dλ; (146)

see [9, (4.6)] for the relevant integration formulas. The above calculations are valid for any choice of
a,b, c as long as S = [ a b/2

b/2 c

]
is positive definite. To compute (146), we will fix D = 4ac − b2 and

make special choices for a,b, c. First assume that D ≡ 0 (mod 4). In this case let S(−D) := [ D
4 0
0 1

]
.

Then η =
⎡⎢⎣ 1√−D

2 1

1
√−D

2
1

⎤⎥⎦, and we can choose t0 = [ 21/2 D−1/4

2−1/2 D1/4

]
. From (131) we have

B

⎛⎜⎜⎝
⎡⎢⎢⎣λt0

[
ζ

ζ−1

]
tt−1

0

[
ζ−1

ζ

]
⎤⎥⎥⎦
⎞⎟⎟⎠=

{
λle−2πλD1/2 ζ2+ζ−2

2 if λ > 0,

0 if λ < 0.

(147)

Next we rewrite the argument of W # as an element of MN K∞ ,

η

⎡⎢⎢⎣λt0

[
ζ

ζ−1

]
tt−1

0

[
ζ−1

ζ

]
⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
λ

[
D− 1

4
(

ζ 2+ζ−2

2

)− 1
2

D
1
4
(

ζ 2+ζ−2

2

) 1
2

]
[

D
1
4
(

ζ 2+ζ−2

2

) 1
2

D− 1
4
(

ζ 2+ζ−2

2

)− 1
2

]
⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎣
1 −iζ 2

0 1

1 0

−iζ 2 1

⎤⎥⎥⎦[k0 0
0 k0

]
,

where k0 ∈ SU(2) = {g ∈ SL2(C): t ḡ g = I2}. Hence, using (142) and (143), we get

W #

⎛⎜⎝η

⎡⎢⎣λt0

[
ζ

ζ−1

]
t−1

0

[
ζ−1

ζ

]
⎤⎥⎦ , s

⎞⎟⎠
=
∣∣∣∣λD− 1

2

(
ζ 2 + ζ−2

2

)−1∣∣∣∣3(s+ 1
2 )

ωτ (λ)−1W (0)

([
λD

1
2
(

ζ 2+ζ−2

2

)
0

0 1

])
. (148)

Let q ∈ C be such that ωτ (y) = yq for y > 0. It follows from (139), (147) and (148) that
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Z∞(s) = a+π D− 3s
2 − 3

4 + q
4 (4π)

q
2

∞∫
0

∞∫
1

λ3s+ 3
2 +l− q

2

(
ζ 2 + ζ−2

2

)−3s− 3
2 + q

2

W l
2 , ir

2

(
4πλD1/2 ζ 2 + ζ−2

2

)

× e−2πλD1/2 ζ2+ζ−2

2
(
ζ − ζ−3)λ−4 dζ dλ. (149)

Substituting u = (ζ 2 + ζ−2)/2 we get

Z∞(s) = a+π D− 3s
2 − 3

4 + q
4 (4π)

q
2

∞∫
1

∞∫
0

λ3s− 3
2 +l− q

2 u−3s− 3
2 + q

2 W l
2 , ir

2

(
4πλD1/2u

)
e−2πλD1/2u dλ

λ
du.

We will first compute the integral with respect to λ. For a fixed u substitute x = 4πλD1/2u to get

Z∞(s) = a+π D−3s− l
2 + q

2 (4π)−3s+ 3
2 −l+q

∞∫
1

u−6s−l+q

∞∫
0

W l
2 , ir

2
(x)e− x

2 x3s− 3
2 +l− q

2
dx

x
du.

Using the integral formula for the Whittaker function from [16, p. 316], we get

Z∞(s) = a+π D−3s− l
2 + q

2 (4π)−3s+ 3
2 −l+q Γ (3s + l − 1 + ir

2 − q
2 )Γ (3s + l − 1 − ir

2 − q
2 )

Γ (3s + l
2 − 1

2 − q
2 )

∞∫
1

u−6s−l+q du

= a+π D−3s− l
2 + q

2
(4π)−3s+ 3

2 −l+q

6s + l − q − 1

Γ (3s + l − 1 + ir
2 − q

2 )Γ (3s + l − 1 − ir
2 − q

2 )

Γ (3s + l
2 − 1

2 − q
2 )

= a+

2
π D−3s− l

2 + q
2 (4π)−3s+ 3

2 −l+q Γ (3s + l − 1 + ir
2 − q

2 )Γ (3s + l − 1 − ir
2 − q

2 )

Γ (3s + l+1−q
2 )

. (150)

Here, for the calculation of the u-integral, we have assumed that Re(6s + l −q) > 0.—Now assume that
D ≡ 3 (mod 4). In this case we choose

S(−D) =
[ 1+D

4
1
2

1
2 1

]
=
[

1 1
2

0 1

][
D
4 0
0 1

][
1 0
1
2 1

]
.

Let T (R), R(R), η, B be the objects defined with this
[ a b/2

b/2 c

]= [ 1+D
4

1
2

1
2 1

]
, and let T̃ (R), R̃(R), η̃, B̃ be

the corresponding objects defined with
[ ã b̃/2

b̃/2 c̃

]=
[

D
4

1

]
. Let

h0 =
⎡⎢⎣

1
− 1

2 1
1 1

2
1

⎤⎥⎦ .

Then

T 1(R) = h0 T̃ 1(R)h−1
0 , T (R) = h0 T̃ (R)h−1

0 , R(R) = h0 R̃(R)h−1
0 .

Furthermore, η = η̃h−1
0 . The integral (145) becomes
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Z∞(s) =
∫

R(R)\H(R)

W #(ηh, s)B(h)dh

=
∫

h0 R̃(R)h−1
0 \H(R)

W #(η̃h−1
0 h, s

)
B
(
h0h−1

0 h
)

dh

=
∫

h0 R̃(R)h−1
0 \H(R)

W #(η̃h−1
0 hh0, s

)
B
(
h0h−1

0 hh0
)

dh

=
∫

R̃(R)\H(R)

W #(η̃h, s)B(h0h)dh

=
∫

R̃(R)\H(R)

W #(η̃h, s)B̃(h)dh.

This integral can be computed just like the one in the case D ≡ 0 mod 4, and we get the exactly same
answer as in (150). We proved the following.

Theorem 4.4.1. Let l and D be positive integers such that D ≡ 0,3 mod 4. Let S(−D) = [ D/4
1

]
if D ≡ 0 mod

4 and S(−D) = [ (1+D)/4 1/2
1/2 1

]
if D ≡ 3 mod 4. Let B : GSp4(R) → C be the function defined in (131), and let

W #(·, s) be the function defined in (141). Then, for Re(6s + l − q) > 0,

Z∞(s) :=
∫

R(R)\H(R)

W #(ηh, s)B(h)dh

= a+

2
π D−3s− l

2 + q
2 (4π)−3s+ 3

2 −l+q Γ (3s + l − 1 + ir
2 − q

2 )Γ (3s + l − 1 − ir
2 − q

2 )

Γ (3s + l+1−q
2 )

. (151)

Here, q ∈ C is related to the central character of τ via ωτ (y) = yq for y > 0. The number r ∈ C is such that
(138) holds.

We will state two special cases of formula (151). First assume that τ = χ1 × χ2, an irreducible
principal series representation of GL2(R), where χ1 and χ2 are characters of R× . Let εi ∈ {0,1} and
si ∈ C be such that χi(x) = sgn(x)εi |x|si , for i = 1,2. Then � acts on τ by multiplication with − 1

4 (1 −
(s1 − s2)

2). Comparing with (138), we get (s1 − s2)
2 = −r2, so that ir = ±(s1 − s2). Furthermore,

q = s1 + s2. Therefore,

Z∞(s) = a+

2
π D−3s− l

2 + s1+s2
2 (4π)−3s+ 3

2 −l+s1+s2
Γ (3s + l − 1 − s1)Γ (3s + l − 1 − s2)

Γ (3s + l+1−s1−s2
2 )

. (152)

Now assume that l1 is a positive integer, that q ∈ C, and that τ = Dq(l1), the discrete series (or limit
of discrete series) representation of GL2(R) with a lowest weight vector of weight l1 for which the
central element Z = [ 1

1

]
acts by multiplication with q. Then ir = ±(l1 − 1), so that, from (151),

Z∞(s) = a+

2
π D−3s− l

2 + q
2 (4π)−3s+ 3

2 −l+q Γ (3s + l − 1 + l1−1
2 − q

2 )Γ (3s + l − 1 − l1−1
2 − q

2 )

Γ (3s + l+1−q
2 )

. (153)
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5. Modular forms

Let A be the ring of adeles of Q. In this section we will consider a cuspidal, automorphic represen-
tation π of GSp4(A), obtained from a Siegel cusp form, and a cuspidal, automorphic representation
τ of GL2(A), obtained from a Maaß form. Using the local calculations from the previous sections, we
will obtain an integral formula for the L-function L(s,π × τ ).

Given a quadratic field extension L/Q, we define the groups G = GU(2,2), H = GSp4, P = MN and
R = T U as in Sections 2.1 and 2.2, but now considered as algebraic groups over Q.

5.1. Siegel modular forms and Bessel models

Let Γ2 = Sp4(Z). For a positive integer l we denote by Sl(Γ2) the space of Siegel cusp forms of
degree 2 and weight l with respect to Γ2. If Φ ∈ Sl(Γ2) then Φ satisfies

Φ
(
γ 〈Z〉)= det

(
J (γ , Z)

)l
Φ(Z), γ ∈ Γ2, Z ∈ h2.

Let us assume that Φ ∈ Sl(Γ2) is a Hecke eigenform. It has a Fourier expansion

Φ(Z) =
∑
S>0

a(S,Φ)e2π i tr(S Z),

where S runs through all symmetric semi-integral positive definite matrices of size two. We shall
make the following two assumptions about the function Φ .

Assumption 1. a(S,Φ) �= 0 for some S = [ a b/2
b/2 c

]
such that b2 − 4ac = −D < 0, where −D is the

discriminant of the imaginary quadratic field Q(
√−D).

Assumption 2. The weight l is a multiple of w(−D), the number of roots of unity in Q(
√−D). We

have

w(−D) =
{

4 if D = 4,

6 if D = 3,

2 otherwise.

We define a function φ = φΦ on H(A) = GSp4(A) by

φ(γ h∞k0) = μ2(h∞)l det
(

J (h∞, I)
)−l

Φ
(
h∞〈I〉), (154)

where γ ∈ H(Q), h∞ ∈ H+(R), k0 ∈∏p<∞ H(Zp). Here I = [ i
i

]
. Note that φ is invariant under the

center Z H (A) of H(A). It can be shown (see [1, p. 186]) that the function φΦ is a cuspidal auto-
morphic form. Let VΦ be the automorphic representation generated by φΦ . This representation may
not be irreducible, but decomposes into a direct sum of finitely many irreducible, cuspidal, automor-
phic representations of H(A). Let πΦ be one of these irreducible components, and write πΦ as a
restricted tensor product πΦ

∼=⊗′
p πp , where πp is an irreducible, admissible, unitarizable represen-

tation of H(Qp). Since φΦ is H(Zp)-invariant for all finite primes p, the representation πp has a
non-zero, essentially unique H(Zp)-invariant vector. The same calculations as in [1] show that the
equivalence class of πp depends only on Φ and not on the chosen global irreducible component πΦ .

Let ψ =∏
p ψp be a character of Q \ A which is unramified at every finite prime and such that

ψ∞(x) = e−2π ix for x ∈ R. Let

S(−D) =

⎧⎪⎪⎨⎪⎪⎩
[

D
4 0
0 1

]
if D ≡ 0 (mod 4),[ 1+D

4
1
2

1

]
if D ≡ 3 (mod 4).

(155)
2 1
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Our quadratic extension is L = Q(
√−D). We have T (Q) � Q(

√−D)× . Let Λ be an ideal class charac-
ter of Q(

√−D), i.e., a character of

T (A)/T (Q)T (R)
∏

p<∞

(
T (Qp) ∩ GL2(Zp)

)
,

to be specified further below. We define the global Bessel function of type (Λ, θ) associated to φ̄ by

B φ̄ (h) =
∫

Z H (A)R(Q)\R(A)

(Λ ⊗ θ)(r)−1φ̄(rh)dr, (156)

where θ(
[ 1 X

1

]
) = ψ(tr(S(−D)X)) and φ̄(h) = φ(h). For a finite prime p, the function B p(hp) :=

B φ̄ (hp), with hp ∈ H(Qp), is in the Bessel model for the contragradient representation π̃p with re-
spect to the character Λp ⊗ θp of R(Qp). From uniqueness of Bessel models for GSp4 (see [19]) we
conclude

B φ̄ (h) = B φ̄ (h∞)
∏

p<∞
B p(hp), (157)

where h =⊗
hp . From [32, (1-17), (1-19), (1-26)], we have, for h∞ ∈ H+(R),

B φ̄ (h∞) = ∣∣μ2(h∞)
∣∣l det

(
J (h∞, I)

)−l
e−2π i tr(S(−D)h∞〈I〉)

h(−D)∑
j=1

Λ(t j)
−1a(S j,Φ), (158)

and B φ̄ (h∞) = 0 for h∞ /∈ H+(R). Here, h(−D) is the class number of Q(
√−D), the elements t j ,

j = 1, . . . ,h(−D), are representatives of the ideal classes of Q(
√−D) and S j , j = 1, . . . ,h(−D), are

the representatives of SL2(Z) equivalent classes of primitive semi-integral positive definite matrices of
discriminant −D corresponding to t j . Thus, by Assumption 1, there exists a Λ such that B φ̄ (I4) �= 0.
We fix such a Λ. Note that B φ̄ (h∞) is a non-zero constant multiple of (131). Let us abbreviate a(Λ) =∑h(−D)

j=1 Λ(t j)a(S j,Φ).

5.2. Maaß forms and Eisenstein series

Let h1 = {z = x + iy ∈ C: y > 0} be the complex upper half-plane. Let N =∏
p|N pnp be a positive

integer, and Γ0(N) = {[ a b
c d

] ∈ SL2(Z): N | c}. A smooth function f : h1 → C is called a Maaß cusp form
of weight l1 with respect to Γ0(N) if

(i) For every
[ a b

c d

] ∈ Γ0(N) and z ∈ h1 we have

f

(
az + b

cz + d

)
=
(

cz + d

|cz + d|
)l1

f (z).

(ii) f is an eigenfunction of �l1 , where

�l1 = y2
(

∂2

∂x2
+ ∂2

∂ y2

)
− il1 y

∂

∂x
.

(iii) f vanishes at the cusps of Γ0(N).
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We denote the space of Maaß cusp forms of weight l1 with respect to Γ0(N) by S M
l1

(N). A function

f ∈ S M
l1

(N) has the Fourier expansion

f (x + iy) =
∑
n �=0

an W
sgn(n)

l1
2 , ir

2
(4π |n|y)e2π inx, (159)

where Wν,μ is a classical Whittaker function (the same function as in (139)) and (�l1 +λ) f = 0 with
λ = 1/4 + (r/2)2. Let f ∈ S M

l1
(N) be a Hecke eigenform.

If ir/2 = (l2 − 1)/2 for some integer l2 > 0, then the cuspidal, automorphic representation of
GL2(A) constructed below is holomorphic at infinity of lowest weight l2. In this case we make the
additional assumptions that l2 � l and l2 � l1, where l is the weight of the Siegel cusp form Φ from
the previous section.

Starting from f , we obtain another Maaß form fl ∈ S M
l (N) by applying the raising and lowering

operators. The raising operator R∗ maps S M∗ (N) to S M∗+2(N) and the lowering operator L∗ maps S M∗ (N)

to S M∗−2(N); for more details on these operators, see [23, p. 3925]. In particular, we have

fl =
⎧⎨⎩

Rl−2 Rl−4 · · · Rl1+2 Rl1 f if l1 < l,
f if l1 = l,
Ll+2Ll+4 · · · Ll1−2Ll1 f if l1 > l.

(160)

Note that, by Assumption 2 on the Siegel cusp form Φ , the weight l is always even. Also, S M
l1

(N) is
empty if l1 is odd. Hence (160) makes sense. If ir/2 = (l2 −1)/2, then the assumption l2 � l guarantees
that fl �= 0. Suppose {c(n)} are the Fourier coefficients of fl . In later calculations we will need c(1).
By [23, Lemma 2.5],

c(1) =
⎧⎨⎩

a1 if l1 � l,∏l1
t=l+2

t≡l (mod 2)

( ir
2 + 1

2 − t
2

)( ir
2 − 1

2 + t
2

)
a1 if l1 > l. (161)

Define a function f̂ on GL2(A) by

f̂ (γ0mk0) =
(

γ i + δ

|γ i + δ|
)−l

fl

(
αi + β

γ i + δ

)
, (162)

where γ0 ∈ GL2(Q), m = [ α β

γ δ

] ∈ GL+
2 (R), k0 ∈∏p|N K (1)(pnp )

∏
p�N GL2(Zp). Here, N =∏

p|N pnp and

K (1)(pm) = GL2(Qp) ∩ [ Z×
p Zp

pmZp Z×
p

]
, as in (32). Then f̂ satisfies

f̂
(

gr(θ)
)= eilθ f̂ (g), g ∈ GL2(A), r(θ) =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
. (163)

Let (τ f , V f ) be the cuspidal, automorphic representation of GL2(A) generated by f̂ . By strong multi-
plicity one, τ f is irreducible. Note that τ f has trivial central character. Write τ f as a restricted tensor
product τ f =⊗′

p τp . If p � N is a finite prime, then τp is an irreducible, admissible, unramified rep-
resentation of GL2(Qp). If p|N , then τp is an irreducible, admissible representation of GL2(Qp) with
conductor pnp , where p = pZp and np = νp(N). Let

W (0)(g) :=
∫

Q\A

f̂

([
1 x

1

]
g

)
ψ(x)dx,
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where ψ is the additive character fixed in the previous section. Then W (0) is in the Whittaker model
of τ f with respect to the character ψ−1. By (163),

W (0)
(

gr(θ)
)= eilθ W (0)(g), g ∈ GL2(A), r(θ) =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
. (164)

For any finite prime p, the function W p(gp) := W (0)(gp), for gp ∈ GL2(Qp), is in the Whittaker model
of τp . By the uniqueness of Whittaker models for GL2, we get

W (0)(g) = W (0)(g∞)
∏

p<∞
W p(gp)

for g =⊗
gp . Using the definition (162) for f̂ we get, for t ∈ R× ,

W (0)

([
t

1

])
=
{

c(1)W l
2 , ir

2
(4πt) if t > 0,

c(−1)W− l
2 , ir

2
(−4πt) if t < 0.

(165)

We want to extend f̂ to a function on GU(1,1; L)(A). For this, we need to construct a suitable char-
acter χ0 on L× \ A×

L .

Lemma 5.2.1. Let S be a divisible group, i.e., a group with the property that S = {sn: s ∈ S} for all positive
integers n. Let A and B be abelian groups, and assume that B is finite. Then every exact sequence

1 −→ S −→ A −→ B −→ 1

splits.

Proof. Write B as a product of cyclic groups 〈bi〉. Choose pre-images ai of bi in A. Modifying ai by
suitable elements of S , we may assume that ai has the same order as bi . Then the group generated
by all ai is isomorphic to B . �
Lemma 5.2.2. Let L = Q(

√−D) with D > 0 be an imaginary quadratic number field. Let A×
L be the group

of ideles of L. Let K f be the subgroup given by
∏

v<∞ o
×
L,v , where v runs over all finite places of L, and oL,v

is the ring of integers in the completion of L at v. The archimedean component of A×
L is isomorphic to C× =

R>0 × S1 , where S1 is the unit circle. Let l ∈ Z be a multiple of w(−D), the number of roots of unity in L. Then
there exists a character χ0 of A×

L with the properties

(i) χ0 is trivial on A×
Q K f L×; and

(ii) χ0(ζ ) = ζ−l for all ζ ∈ S1 .

Proof. First note that A×
Q K f L× = R>0 K f L× . There is an exact sequence

1 −→ W \ S1 −→ R>0 K f L× \ A×
L −→ C×K f L× \ A×

L −→ 1,

where W is the group of roots of unity in L. The group on the right is the ideal class group of L. By
Lemma 5.2.1,

R>0 K f L× \ A×
L

∼= (
W \ S1)× (

C×K f L× \ A×
L

)
.

By hypothesis, the map S1 � ζ �→ ζ l factors through W \ S1. The assertion follows. �
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Let χ0 be a character of A×
L as in Lemma 5.2.2 (observe our Assumption 2 above). We extend f̂ to

GU(1,1; L)(A) by

f̂ (ζ g) = χ0(ζ ) f̂ (g) for ζ ∈ A×
L , g ∈ GL2(A). (166)

Since l is even, this is well-defined; see (123) and (163). Let χ be the character of L× \ A×
L

given by χ(ζ ) = Λ(ζ̄ )−1χ0(ζ̄ )−1. Let K #
G (N) be the compact subgroup

∏
p|N K #(Pnp )

∏
p�N K #(P0)

of GU(2,2; L)(A), where K #(Pn) is as defined in (36). For a complex variable s, let us define a func-
tion fΛ(·, s) on GU(2,2; L)(A) by

(i) fΛ(g, s) = 0 if g /∈ M(A)N(A)K∞K #
G (N).

(ii) If m = m1m2, mi ∈ M(i)(A), n ∈ N(A), k = k0k∞ , k0 ∈ K #
G (N), k∞ ∈ K∞ , then

fΛ(mnk, s) = δ
1
2 +s
P (m)χ(m1) f̂ (m2)det

(
J (k∞, I)

)−l
. (167)

Recall from (10) that δP (m1m2) = |NL/Q(m1)μ1(m2)
−1|3.

Here, M(1)(A), M(2)(A), N(A) are the adelic points of the algebraic groups defined by (6), (7) and
(8) and K∞ is as defined in Section 4.1. In fact, fΛ is a section in the representation I(s,χ,χ0, τ ) of
GU(2,2; L)(A) obtained by parabolic induction from P ; see Section 2.3.

Let us define the Eisenstein series on GU(2,2; L)(A) by

EΛ(g, s) =
∑

γ ∈P (Q)\G(Q)

fΛ(γ g, s). (168)

This series is absolutely convergent for Re(s) > 1/2, uniformly convergent in compact subdomains and
has a meromorphic continuation to the whole complex plane; see [15].

Remark. Note that our definition (167) differs from the formula for fΛ given on p. 209 of [9]. In fact,
the function fΛ in [9] is not well-defined, since there is a non-trivial overlap between M(2)(R) and
K∞ . It is necessary to extend the function f̂ to GU(1,1; L)(A) using the character χ0 as in (166), not
the trivial character.

5.3. Global integral and L-functions

Let φ be as in (154). Let fΛ(·, s) and EΛ(·, s) be as in the previous section. We shall evaluate the
global integral

Z(s,Λ) =
∫

Z H (A)H(Q)\H(A)

EΛ(h, s)φ̄(h)dh. (169)

In Theorem 2.4 of [9], the following basic identity has been proved.

Z(s,Λ) =
∫

R(A)\H(A)

WΛ(ηh, s)B φ̄ (h)dh, (170)

where
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WΛ(g, s) =
∫

Q\A

fΛ

⎛⎜⎝
⎡⎢⎣

1
1 x

1
1

⎤⎥⎦ g, s

⎞⎟⎠ψ(x)dx, η =
⎡⎢⎣

1 0
α 1

1 −ᾱ
0 1

⎤⎥⎦ ,

α = b + √−D

2
, (171)

and B φ̄ is as defined in (156). Note that the value of b above depends on the choice of S(−D) in
(155). For the choice of fΛ in the previous section, we get

WΛ(g, s) = W∞(g∞, s)
∏

p<∞
W p(gp, s),

where W p is the function W # defined in Section 3.4. For g∞ ∈ G(R), the function W∞(g∞, s) is
exactly the function W # from (141). Note that, in this case, the values of a+,a− in (139) are given by
a+ = c(1) and a− = c(−1). From the basic identity (170) we therefore have

Z(s,Λ) =
∏

p�∞
Z p(s), Z p(s) =

∫
R(Qp)\H(Qp)

W p(ηhp, s)B p(hp)dhp .

Here, B∞ is the function given in (158). If p is a finite prime such that p � N , then all the local data
satisfies the hypothesis of Theorem 3.7 from [9], where the corresponding local integral is computed.
For p | N , we apply Theorems 3.8.1, 3.8.2, and for the archimedean integral we apply Theorem 4.4.1.
We obtain the following integral representation.

Theorem 5.3.1. Let Φ ∈ Sl(Γ2) be a cuspidal Siegel eigenform of degree 2 and even weight l satisfying the two
assumptions from Section 5.1. Let L = Q(

√−D), where D is as in Assumption 1. Let N =∏
pnp be a positive

integer. Let f be a Maaß Hecke eigenform of weight l1 ∈ Z with respect to Γ0(N). If f lies in a holomorphic
discrete series with lowest weight l2 , then assume that l2 � l. Then the integral (169) is given by

Z(s,Λ) = κ∞(s)κN (s)
L(3s + 1

2 ,πΦ × τ f )

ζ(6s + 1)L(3s + 1, τ f × AI(Λ))
, (172)

where ζ is the Riemann zeta function, κN (s) =∏
p|N κp(s) with

κp(s) =
⎧⎨⎩

p(p−1)

(p+1)(p4−1)

(
1 − ( L

p

)
p−1

)
(1 − p−6s−1)−1 if np = 1,

pnp (p−1)

p3(np−1)(p+1)(p4−1)

(
1 − ( L

p

)
p−1

) Lp(3s+1,τp×A I(Λp))

1−p−6s−1 if np � 2,

and

κ∞(s) = 1

2
a(Λ)c(1)π D−3s− l

2 (4π)−3s+ 3
2 −l Γ (3s + l − 1 + ir

2 )Γ (3s + l − 1 − ir
2 )

Γ (3s + l+1
2 )

.

Here, the non-zero constant c(1) is given by (161), the non-zero constant a(Λ) is defined at the end of Sec-
tion 5.1, and

(
L

p

)
=
{−1 if p is inert in L,

0 if p ramifies in L,

1 if p splits in L.

The quantity ir
2 is as in (159).
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5.4. The special value

In this section, we will apply Theorem 5.3.1 to a special case—when f , from the previous section,
is a holomorphic cusp form of the same weight l as the Siegel cusp form Φ—to obtain a special
L-value result. This result fits into the general conjecture of Deligne on special values of L-functions.

Let Ψ (z) =∑
n>0 bne2π inz be a holomorphic cuspidal eigenform of weight l with respect to Γ0(N).

Here, l is the same as the weight of the Siegel modular form Φ from Section 5.1 and N =∏
p|N pnp

is a positive integer. Let us normalize Ψ so that b1 = 1. The function fΨ defined by fΨ (z) = yl/2Ψ (z)
is a Maaß form in S M

l (N). Let {c(n)} be its Fourier coefficients; see (159). It follows from the formula
Wμ+1/2,μ(z) = e−z/2zμ+1/2 for the Whittaker function that

c(n) =
{

bn(4πn)−l/2 if n > 0,

0 if n < 0.
(173)

From (162), we have

f̂Ψ (γ0mk0) =
(

γ i + δ

|γ i + δ|
)−l

fΨ

(
αi + β

γ i + δ

)
= det(m)l/2

(γ i + δ)l
Ψ

(
αi + β

γ i + δ

)
,

where γ0 ∈ GL2(Q), m = [ α β

γ δ

] ∈ GL+
2 (R), k0 ∈∏p|N K (1)(pnp )

∏
p�N GL2(Zp). Let us denote z22 by Z∗

for Z = [ ∗ ∗
∗ z22

] ∈ H2. Let us set Ẑ = i
2 ( t Z − Z) for Z ∈ H2. Let Im(z) denote the imaginary part of a

complex number z. Let fΛ be as defined in (167) and I = [ i
i

] ∈ H2.

Lemma 5.4.1. For g ∈ G+(R), we have

fΛ(g, s) = μ2(g)l det
(

J (g, I)
)−l
(

det ĝ〈I〉
Im(g〈I〉)∗

)3s+ 3
2 − l

2

Ψ
((

g〈I〉)∗). (174)

Proof. For g ∈ G+(R) and Z ∈ H2 we have ĝ〈Z〉 = μ2(g) t J (g, Z)
−1

Ẑ J (g, Z)−1. This implies that
det(ĝ〈I〉) = μ2(g)2|det( J (g, I))|−2 det( Î) = μ2(g)2|det( J (g, I))|−2. It follows from (121) that we can
write the element g ∈ G+(R) as

g =
⎡⎢⎣

ζ

1
ζ−1

1

⎤⎥⎦
⎡⎢⎣

1
α β

μ
γ δ

⎤⎥⎦
⎡⎢⎣

1 x xȳ + w y
1 ȳ

1
−x̄ 1

⎤⎥⎦k,

where ζ ∈ R× ,
[ α β

γ δ

] ∈ GL+
2 (R), x, y ∈ C, w ∈ R and k ∈ K∞ . Then we have

det
(

J (g, I)
)= ζ−1μ(γ i + δ)det

(
J (k, I)

)
and

(
g〈I〉)∗ = αi + β

γ i + δ
.

Hence, the right-hand side of (174) is equal to

μl(ζ−1μ(γ i + δ)det
(

J (k, I)
))−l

(
μ2|ζ−1μ(γ i + δ)det( J (k, I))|−2

μ|γ i + δ|−2

)3s+ 3
2 − l

2

Ψ

(
αi + β

γ i + δ

)
.

Using the fact that |det( J (k, I))|−2 = det(k̂〈I〉) = 1, we get the lemma. �
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Remark. Eq. (4.4.2) of [9] claims that, for g ∈ G+(R), the function fΛ(g, s) satisfies a formula differ-
ent from (174). In this formula, the term det(Im(g〈I〉)) replaces the term det(ĝ〈I〉) from (174). Note
that Im(Z) = i

2 (Z − Z) for Z ∈ H2. One easily checks that the resulting function is not invariant under
N(R) and hence cannot equal fΛ , as defined in (167). If one replaces Eq. (4.4.2) in [9] by (174), the
subsequent arguments in [9] remain valid.

Let EΛ be the Eisenstein series defined in (168). From the above lemma, we see that, for g ∈
G+(R), μ2(g)−l det( J (g, I))l EΛ(g, s) only depends on Z = g〈I〉. Hence, we can define a function EΛ

on H2 by the formula

EΛ(Z , s) = μ2(g)−l det
(

J (g, I)
)l

EΛ

(
g,

s

3
+ l

6
− 1

2

)
, (175)

where g ∈ G+(R) is such that g〈I〉 = Z . The series that defines EΛ(Z , s) is absolutely convergent for
Re(s) > 3 − l/2 (see [14]). Since l � 12, we can set s = 0 and obtain a holomorphic Eisenstein series
EΛ(Z ,0) on H2. For a finite place p of Q recall the local congruence subgroups K #(Pn) ⊂ G(Zp) and
K #(pn) = K #(Pn) ∩ H(Zp) defined in (36) resp. (37). For N =∏

pnp , we let

Γ #
G (N) = G(Q) ∩ G(R)+K #

G (N), K #
G (N) =

∏
p|N

K #(Pnp
)∏

p�N

K #(P0),
and

Γ #(N) = H(Q) ∩ H(R)+K #(N), K #(N) =
∏
p|N

K #(pnp
)∏

p�N

K #(p0).
Explicitly,

Γ #(N) = Sp(4,Z) ∩
⎡⎢⎣

Z NZ Z Z
Z Z Z Z

N ′Z NZ Z Z
NZ NZ NZ Z

⎤⎥⎦ , where N ′ is the square-free part of N.

Then EΛ(Z ,0) is a modular form of weight l with respect to Γ #
G (N). Its restriction to h2 is a modular

form of weight l with respect to Γ #(N). We see that EΛ(Z ,0) has a Fourier expansion

EΛ(Z ,0) =
∑

S�0

b(S, EΛ)e2π i tr(S Z),

where S runs through all hermitian half-integral (i.e., S = [ t1 t̄2
t2 t3

]
, t1, t3 ∈ Z,

√−Dt2 ∈ OQ(
√−D)) pos-

itive semi-definite matrices of size 2. By [13],

b(S, EΛ) ∈ Q for any S. (176)

Here Q denotes the algebraic closure of Q in C. The relation between the global integral Z(s,Λ)

defined in (169) and the Eisenstein series EΛ is given in the following lemma.

Lemma 5.4.2. We have

Z

(
l

6
− 1

2
,Λ

)
= 1

2
V N

∫
Γ #(N)\h

EΛ(Z ,0)Φ(Z)
(
det(Y )

)l−3
dX dY ,
2
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where V N =∏
p|N

p−1
p3(np−1)(p+1)(p4−1)

and Z = X + iY .

Proof. By definition,

Z

(
l

6
− 1

2
,Λ

)
=

∫
Z H (A)H(Q)\H(A)

EΛ

(
h,

l

6
− 1

2

)
φ̄Φ(h)dh.

Note that the integrand is right invariant under K H∞K #(N). Since the volume of K H∞K #(N) equals∏
p|N

p−1
p3(np−1)(p+1)(p4−1)

= V N , it follows that

Z

(
l

6
− 1

2
,Λ

)
= V N

∫
Z H (A)H(Q)\H(A)/K H∞ K #(N)

EΛ

(
h,

l

6
− 1

2

)
φ̄Φ(h)dh.

Note that

Z H (A)H(Q) \ H(A)/K H∞K #(N) = Z H (R)Γ #(N) \ H(R)+/K H∞ = Γ #(N) \ h2. (177)

The H(R)+-invariant measure on h2 and dh are related by dh = 1
2 det(Y )−3 dX dY . From (154) and

(175) we get, for h ∈ H(R)+ ,

EΛ

(
h,

l

6
− 1

2

)
φ̄Φ(h) = μ2(h)l det

(
J (h, I)

)−l EΛ

(
h〈I〉,0

)
μ2(h)ldet

(
J (h, I)

)−lΦ
(
h〈I〉)

= det(Y )l EΛ(Z ,0)Φ(Z),

where Z = h〈I〉 = X + iY . We get the last equality because, for Z ∈ h2 and h ∈ H(R)+ ,

Im
(
h〈Z〉)= μ2(h) t J (h, Z)−1 Im(Z) J (h, Z)−1.

This completes the proof of the lemma. �
Let Γ (2)(N) := {g ∈ Sp4(Z): g ≡ 1 (mod N)} be the principal congruence subgroup of Sp4(Z). Let

us denote the space of all Siegel modular forms of weight l with respect to Γ (2)(N) by Ml(Γ
(2)(N))

and its subspace of cusp forms by Sl(Γ
(2)(N)). For Φ1,Φ2 in Ml(Γ

(2)(N)) with one of the Φi a cusp
form, one can define the Petersson inner product 〈Φ1,Φ2〉 by

〈Φ1,Φ2〉 = [
Sp4(Z) : Γ (2)(N)

]−1
∫

Γ (2)(N)\h2

Φ1(Z)Φ2(Z)
(
det(Y )

)l−3
dX dY . (178)

For a Hecke eigenform Φ ∈ Sl(Γ
(2)(N)), let Q(Φ) be the subfield of C generated by all the

Hecke eigenvalues of Φ . From [10, p. 460], we see that Q(Φ) is a totally real number field. Let
Sl(Γ

(2)(N),Q(Φ)) be the subspace of Sl(Γ
(2)(N)) consisting of cusp forms whose Fourier coefficients

lie in Q(Φ). Again by [10, p. 460], Sl(Γ
(2)(N)) has an orthogonal basis {Φi} of Hecke eigenforms

Φi ∈ Sl(Γ
(2)(N),Q(Φi)). In addition, if Φ is a Hecke eigenform such that Φ ∈ Sl(Γ

(2)(N),Q(Φ)), then
one can take Φ1 = Φ in the above basis. Hence, let us assume that the Siegel eigenform Φ of weight
l with respect to Sp4(Z) considered in the previous section satisfies Φ ∈ Sl(Γ

(2)(N),Q(Φ)). (Also, see
[17] for the N = 1 case.)
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Lemma 5.4.3. With notations as above, we have

Z( l
6 − 1

2 ,Λ)

〈Φ,Φ〉 ∈ Q. (179)

Proof. Since Γ (2)(N) ⊂ Γ #(N) we know that EΛ|h2 is a holomorphic Siegel modular form of weight
l with respect to Γ (2)(N). Let V be the orthogonal complement of Sl(Γ

(2)(N)) in Ml(Γ
(2)(N)) with

respect to the Petersson inner product (178). In Corollary 2.4.6 of [13], it is shown, using the Siegel
operator, that V is generated by Eisenstein series. By Theorem 3.2.1 of [13], one can choose a basis
{E j} such that all the Fourier coefficients of the E j are algebraic. Let {Φi} be the orthogonal basis of
Sl(Γ

(2)(N)), with Φ1 = Φ , as in the remark above. Let us write

EΛ|h2 =
∑

i

αiΦi +
∑

j

β j E j . (180)

Given a F ∈ Ml(Γ
(2)(N)) and σ ∈ Aut(C/Q), let F σ be defined by applying the automorphism σ to

the Fourier coefficients of F . From [31], we know that F σ ∈ Ml(Γ
(2)(N)). Applying σ to (180) we get

EΛ|h2 =
∑

i

σ(αi)Φi +
∑

j

σ(β j)E j . (181)

This follows from the construction of the bases {Φi}, {E j} and the property (176). From (180) and
(181) we now get

σ

( 〈EΛ|h2 ,Φ1〉
〈Φ1,Φ1〉

)
= σ(α1) = 〈EΛ|h2 ,Φ1〉

〈Φ1,Φ1〉 for all σ ∈ Aut(C/Q),

and hence

〈EΛ|h2 ,Φ1〉
〈Φ1,Φ1〉 ∈ Q.

Now, using Lemma 5.4.2, we get the result. �
Let 〈Ψ,Ψ 〉1 = (SL2(Z) : Γ1(N))−1

∫
Γ1(N)\h1

|Ψ (z)|2 yl−2 dx dy, where Γ1(N) := {[ a b
c d

] ∈ Γ0(N): a,d ≡
1 (mod N)}. We have the following generalization of Theorem 4.8.3 of [9].

Theorem 5.4.4. Let Φ be a cuspidal Siegel eigenform of weight l with respect to Γ2 satisfying the two assump-
tions from Section 5.1 and Φ ∈ Sl(Γ

(2)(N),Q(Φ)). Let Ψ be a normalized, holomorphic, cuspidal eigenform
of weight l with respect to Γ0(N), with N =∏

pnp a positive integer. Then

L( l
2 − 1,πΦ × τΨ )

π5l−8〈Φ,Φ〉〈Ψ,Ψ 〉1
∈ Q̄. (182)

Proof. By Theorem 5.3.1, we have

Z

(
l

6
− 1

2
,Λ

)
= Cπ4−2l L( l

2 − 1,πΦ × τΨ )

ζ(l − 2)L( l−1
2 , τΨ × AI(Λ))

,

where
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C = a(Λ)D−l+ 3
2 2−4l+6(2l − 5)!

×
∏
p|N

pnp (p − 1)

p3(np−1)(p + 1)(p4 − 1)

(
1 −

(
Q(

√−D)

p

)
p−1

)
L p((l − 1)/2, τp × AI(Λp))εp

1 − p−l+2
∈ Q.

Here εp = 1 if np � 2 and 0 otherwise. Observe that ir
2 = l−1

2 , and that c(1) = (4π)−l/2 by (173). We
have used the fact that L p((l − 1)/2, τp × AI(Λp)) ∈ Q̄, which follows from an argument as in the
proof of Proposition 3.17 of [25]. It is well known that ζ(l − 2)π2−l ∈ Q. Using [30], by the same
argument as in the proof of Theorem 4.8.3 in [9], we get

L( l−1
2 , τΨ × AI(Λ))

π2l−2〈Ψ,Ψ 〉1
∈ Q.

Together with (179), this implies the theorem. �
We remark that it would be interesting to know the behavior of the quantity

L( l
2 −1,πΦ×τΨ )

π5l−8〈Φ,Φ〉〈Ψ,Ψ 〉1

under the action of Aut(C). This subject will be considered in a future work.
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