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Abstract. We prove that every irreducible, admissible represen-
tation π of GSp(4, F ), where F is a non-archimedean local field of
characteristic zero, admits a Bessel functional, provided π is not one-
dimensional. If π is not supercuspidal, we explicitly determine the set
of all Bessel functionals admitted by π, and prove that Bessel func-
tionals of a fixed type are unique. If π is supercuspidal, we do the
same for all split Bessel functionals.
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Introduction

The uniqueness and existence of appropriate models for irreducible, admissible
representations of a linear reductive group over a local field has long played
an important role in local and global representation theory. Best known are
perhaps the Whittaker models for general linear groups, which are instrumental
in proving multiplicity one theorems and the analytic properties of automorphic
L-functions. Generic representations, i.e., those admitting a Whittaker model,
have an important place in the representation theory of GSp(4) as well, the
group under consideration in this paper; see [16] for an early example of their
use. For GSp(4) they play a less comprehensive role, however, since there are
many important non-generic automorphic representations, for example those
generated by holomorphic Siegel modular forms.
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The use of Bessel models, or equivalently Bessel functionals, as a substitute for
the often missing Whittaker models for GSp(4) has been pioneered by Novod-
vorsky and Piatetski-Shapiro. Similar to the generic case, Bessel models consist
of functions on the group with a simple transformation property under a cer-
tain subgroup; see below for precise definitions. The papers [17] and [15] are
concerned with the uniqueness of Bessel functionals in the case of trivial central
character; the first paper treats the case of so-called special Bessel functionals.
For the use of Bessel models in the study of analytic properties and special
values of L-functions for non-generic representations, see [19], [36], [6], [21].
In this paper, we further investigate the existence and uniqueness of Bessel
functionals for irreducible, admissible representations of GSp(4, F ), where F is
a non-archimedean local field of characteristic zero. To explain our results, we
have to introduce some notation. Let F be a non-archimedean local field of
characteristic zero, and let ψ be a non-trivial character of F . Let GSp(4, F ) be
the subgroup of g in GL(4, F ) satisfying tgJg = λ(g)J for some scalar λ(g) in
F×, where

J =

[
1

1
−1

−1

]
.

The Siegel parabolic subgroup P of GSp(4, F ) is the subgroup consisting of all
matrices whose lower left 2 × 2 block is zero. Let N be the unipotent radical
of P . The characters θ of N are in one-to-one correspondence with symmetric
2× 2 matrices S over F via the formula

θ([ 1 X1 ]) = ψ(tr(S[ 1
1 ]X)).

We say that θ is non-degenerate if the matrix S is invertible, and we say that
θ is split if disc(S) = 1; here disc(S) is the class of − det(S) in F×/F×2. For
a fixed S, we define

T = [ 1
1 ]{g ∈ GL(2, F ) : tgSg = det(g)S}[ 1

1 ]. (1)

We embed T into GSp(4, F ) via the map

t 7→
[
t
det(t)t′

]
,

where for a 2×2-matrix g we write g′ = [ 1
1 ] tg−1 [ 1

1 ]. The group T normalizes
N , so that we can define the semidirect product D = TN . This will be referred
to as the Bessel subgroup corresponding to S. For t in T and n in N , we have
θ(tnt−1) = θ(n). Thus, if Λ is a character of T , we can define a character Λ⊗ θ
of D by (Λ ⊗ θ)(tn) = Λ(t)θ(n). Whenever we regard C as a one-dimensional
representation of D via this character, we denote it by CΛ⊗θ. Let (π, V ) be an
irreducible, admissible representation of GSp(4, F ). A non-zero element of the
space HomD(π,CΛ⊗θ) is called a (Λ, θ)-Bessel functional for π. We say that
π admits a (Λ, θ)-Bessel functional if HomD(π,CΛ⊗θ) is non-zero, and that π
admits a unique (Λ, θ)-Bessel functional if HomD(π,CΛ⊗θ) is one-dimensional.
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In this paper we prove three main results about irreducible, admissible repre-
sentations π of GSp(4, F ):

• If π is not one-dimensional, we prove that π admits some (Λ, θ)-Bessel
functional; see Theorem 6.1.4.

• If θ is split, we determine the set of Λ for which π admits a (Λ, θ)-
Bessel functional, and prove that such functionals are unique; see
Proposition 3.4.2, Theorem 6.1.4, Theorem 6.2.2 and Theorem 6.3.2.

• If π is non-supercuspidal, or is in an L-packet with a non-super-
cuspidal representation, we determine the set of (Λ, θ) for which π
admits a (Λ, θ)-Bessel functional, and prove that such functionals are
unique; see Theorem 6.2.2 and Theorem 6.3.2.

We point out that all our results hold independently of the residual character-
istic of F .
To investigate (Λ, θ)-Bessel functionals for (π, V ) we use the P3-module VZJ ,
the GJ -module VZJ ,ψ, and the twisted Jacquet module VN,θ. Here,

P3 = GL(3, F ) ∩
[
∗ ∗ ∗
∗ ∗ ∗

1

]
, ZJ = GSp(4, F ) ∩

[
1 ∗
1
1
1

]
,

and GJ = GSp(4, F ) ∩
[
1 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

]
.

The P3-module VZJ was computed for all π with trivial central character in
[28]; in this paper, we note that these results extend to the general case. The
GJ -module VZJ ,ψ is closely related to representations of the metaplectic group

S̃L(2, F ). The twisted Jacquet module VN,θ is especially relevant for non-
supercuspidal representations. Indeed, we completely calculate twisted Jacquet
modules of representations parabolically induced from the Klingen or Siegel
parabolic subgroups. These methods suffice to treat most representations; for
the few remaining families of representations we use theta lifts. As a by-product
of our investigations we obtain a characterization of non-generic representa-
tions. Namely, the following conditions are equivalent: π is non-generic; the
twisted Jacquet module VN,θ is finite-dimensional for all non-degenerate θ; the
twisted Jacquet module VN,θ is finite-dimensional for all split θ; the GJ -module
VZJ ,ψ is of finite length. See Theorem 7.1.4.
If an irreducible, admissible representation π admits a (Λ, θ)-Bessel functional,
then π has an associated Bessel model. For unramified π admitting a (Λ, θ)-
Bessel functional, the works [36] and [4] contain explicit formulas for the spher-
ical vector in such a Bessel model. Other explicit formulas in certain cases of
Iwahori-spherical representations appear in [32], [20] and [22]. We note that
these works show that all the values of a certain vector in the given Bessel
model can be expressed in terms of data depending only on the representation
and Λ and θ; in this situation it follows that the Bessel functional is unique.
As far as we know, a detailed proof of uniqueness of Bessel functionals in all
cases has not yet appeared in the literature.
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In the case of odd residual characteristic, and when π appears in a generic
L-packet, the main local theorem of [23] gives an ε-factor criterion for the
existence of a (Λ, θ)-Bessel functional. There is some overlap between the
methods of [23] and the present work. However, the goal of this work is to give
a complete and ready account of Bessel functionals for all non-supercuspidal
representations. We hope these results will be useful for applications where
such specific knowledge is needed.

1 Some definitions

Throughout this work let F be a non-archimedean local field of characteristic
zero. Let F̄ be a fixed algebraic closure of F . We fix a non-trivial character
ψ : F → C×. The symbol o denotes the ring of integers of F , and p is the
maximal ideal of o. We let ̟ be a fixed generator of p. We denote by | · | the
normalized absolute value on F , and by ν its restriction to F×. The Hilbert
symbol of F will be denoted by (·, ·)F . If Λ is a character of a group, we denote
by CΛ the space of the one-dimensional representation whose action is given by
Λ. If x =

[
a b
c d

]
is a 2× 2 matrix, then we set x∗ =

[
d −b
−c a

]
. If X is an l-space,

as in 1.1 of [3], and V is a complex vector space, then S(X,V ) is the space of
locally constant functions X → V with compact support. Let G be an l-group,
as in [3], and let H be a closed subgroup. If ρ is a smooth representation of H ,
we define the compactly induced representation (unnormalized) c-IndGH(ρ) as
in 2.22 of [3]. If (π, V ) is a smooth representation of G, and if θ is a character
of H , we define the twisted Jacquet module VH,θ as the quotient V/V (H, θ),
where V (H, θ) is the span of all vectors π(h)v − θ(h)v for all h in H and v in
V .

1.1 Groups

Let

GSp(4, F ) = {g ∈ GL(4, F ) : tgJg = λ(g)J, λ(g) ∈ F×}, J =

[
1

1
−1

−1

]
.

The scalar λ(g) is called the multiplier or similitude factor of the matrix g. The
Siegel parabolic subgroup P of GSp(4, F ) consists of all matrices whose lower
left 2 × 2 block is zero. For a matrix A ∈ GL(2, F ) set A′ = [ 1

1 ] tA−1[ 1
1 ].

Then the Levi decomposition of P is P =MN , where

M = {
[
A
λA′

]
: A ∈ GL(2, F ), λ ∈ F×}, (2)

and

N = {
[ 1 y z

1 x y
1

1

]
: x, y, z ∈ F}. (3)

Let Q be the Klingen parabolic subgroup, i.e.,

Q = GSp(4, F ) ∩
[
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗

]
. (4)
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The Levi decomposition for Q is Q =MQNQ, where

MQ = {
[
t
A
t−1 det(A)

]
: A ∈ GL(2, F ), t ∈ F×}, (5)

and NQ is the Heisenberg group

NQ = {
[ 1 x y z

1 y
1 −x

1

]
: x, y, z ∈ F}. (6)

The subgroup of Q consisting of all elements with t = 1 and det(A) = 1 is called

the Jacobi group and is denoted by GJ . The center of GJ is ZJ =

[
1 ∗
1
1
1

]
.

The standard Borel subgroup of GSp(4, F ) consists of all upper triangular
matrices in GSp(4, F ). We let

U = GSp(4, F ) ∩
[
1 ∗ ∗ ∗
1 ∗ ∗
1 ∗
1

]

be its unipotent radical. The following elements of GSp(4, F ) represent gener-
ators for the eight-element Weyl group,

s1 =

[
1

1
1

1

]
and s2 =

[
1

1
−1

1

]
. (7)

1.2 Representations

For a smooth representation π of GSp(4, F ) or GL(2, F ), we denote by π∨ its
smooth contragredient.
For c1, c2 in F×, let ψc1,c2 be the character of U defined by

ψc1,c2(

[
1 x ∗ ∗
1 y ∗

1 −x
1

]
) = ψ(c1x+ c2y). (8)

An irreducible, admissible representation (π, V ) of GSp(4, F ) is called generic
if the space HomU (V, ψc1,c2) is non-zero. This definition is independent of the
choice of c1, c2. It is known by [30] that, if non-zero, the space HomU (V, ψc1,c2)
is one-dimensional. Hence, π can be realized in a unique way as a space of
functions W : GSp(4, F ) → C with the transformation property

W (ug) = ψc1,c2(u)W (g), u ∈ U, g ∈ GSp(4, F ),

on which π acts by right translations. We denote this model of π by
W(π, ψc1,c2), and call it the Whittaker model of π with respect to c1, c2.
We will employ the notation of [35] for parabolically induced representations
of GSp(4, F ) (all parabolic induction is normalized). For details we refer to the
summary given in Sect. 2.2 of [28]. Let χ1, χ2 and σ be characters of F×. Then
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χ1×χ2⋊σ denotes the representation of GSp(4, F ) parabolically induced from
the character of the Borel subgroup which is trivial on U and is given by

diag(a, b, cb−1, ca−1) 7−→ χ1(a)χ2(b)σ(c), a, b, c ∈ F×,

on diagonal elements. Let σ be a character of F× and π be an admissible
representation of GL(2, F ). Then π⋊σ denotes the representation of GSp(4, F )
parabolically induced from the representation

[
A ∗
cA′

]
7−→ σ(c)π(A), A ∈ GL(2, F ), c ∈ F×, (9)

of the Siegel parabolic subgroup P . Let χ be a character of F× and π an
admissible representation of GSp(2, F ) ∼= GL(2, F ). Then χ ⋊ π denotes the
representation of GSp(4, F ) parabolically induced from the representation

[
t ∗ ∗
g ∗

det(g)t−1

]
7−→ χ(t)π(g), t ∈ F×, g ∈ GL(2, F ), (10)

of the Klingen parabolic subgroup Q.
For a character ξ of F× and a representation (π, V ) of GSp(4, F ), the twist
ξπ is the representation of GSp(4, F ) on the same space V given by (ξπ)(g) =
ξ(λ(g))π(g) for g in GSp(4, F ), where λ is the multiplier homomorphism defined
above. A similar definition applies to representations π of GL(2, F ); in this case,
the multiplier is replaced by the determinant. The behavior of parabolically
induced representations under twisting is as follows,

ξ(χ1 × χ2 ⋊ σ) = χ1 × χ2 ⋊ ξσ,

ξ(π ⋊ σ) = π ⋊ ξσ,

ξ(χ⋊ π) = χ⋊ ξπ.

The irreducible constituents of all parabolically induced representations of
GSp(4, F ) have been determined in [35]. The following table, which is es-
sentially a reproduction of Table A.1 of [28], provides a summary of these
irreducible constituents. In the table, χ, χ1, χ2, ξ and σ stand for characters
of F×; the symbol ν denotes the normalized absolute value; π stands for an
irreducible, admissible, supercuspidal representation of GL(2, F ), and ωπ de-
notes the central character of π. The trivial character of F× is denoted by
1F× , the trivial representation of GL(2, F ) by 1GL(2) or 1GSp(2), depending on
the context, the trivial representation of GSp(4, F ) by 1GSp(4), the Steinberg
representation of GL(2, F ) by StGL(2) or StGSp(2), depending on the context,
and the Steinberg representation of GSp(4, F ) by StGSp(4). The names of the
representations given in the “representation” column are taken from [35]. The
“tempered” column indicates the condition on the inducing data under which
a representation is tempered. The “L2” column indicates which representa-
tions are square integrable after an appropriate twist. Finally, the “g” column
indicates which representations are generic.
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constituents of representation tempered L2 g

I χ1 × χ2 ⋊ σ (irreducible) χi, σ unitary •

II ν1/2χ× ν−1/2χ⋊ σ a χStGL(2) ⋊ σ χ, σ unitary •

(χ2 6= ν±1, χ 6= ν±3/2) b χ1GL(2) ⋊ σ

III χ× ν ⋊ ν−1/2σ a χ⋊ σStGSp(2) χ, σ unitary •

(χ /∈ {1, ν±2}) b χ⋊ σ1GSp(2)

IV ν2 × ν ⋊ ν−3/2σ a σStGSp(4) σ unitary • •

b L(ν2, ν−1σStGSp(2))

c L(ν3/2StGL(2), ν
−3/2σ)

d σ1GSp(4)

V νξ × ξ ⋊ ν−1/2σ a δ([ξ, νξ], ν−1/2σ) σ unitary • •

(ξ2 = 1, ξ 6= 1) b L(ν1/2ξStGL(2), ν
−1/2σ)

c L(ν1/2ξStGL(2), ξν
−1/2σ)

d L(νξ, ξ ⋊ ν−1/2σ)

VI ν × 1F× ⋊ ν−1/2σ a τ (S, ν−1/2σ) σ unitary •

b τ (T, ν−1/2σ) σ unitary

c L(ν1/2StGL(2), ν
−1/2σ)

d L(ν, 1F× ⋊ ν−1/2σ)

VII χ⋊ π (irreducible) χ, π unitary •

VIII 1F× ⋊ π a τ (S, π) π unitary •

b τ (T, π) π unitary

IX νξ ⋊ ν−1/2π a δ(νξ, ν−1/2π) π unitary • •

(ξ 6= 1, ξπ = π) b L(νξ, ν−1/2π)

X π ⋊ σ (irreducible) π, σ unitary •

XI ν1/2π ⋊ ν−1/2σ a δ(ν1/2π, ν−1/2σ) π, σ unitary • •

(ωπ = 1) b L(ν1/2π, ν−1/2σ)

Va∗ (supercuspidal) δ∗([ξ, νξ], ν−1/2σ) σ unitary •

XIa∗ (supercuspidal) δ∗(ν1/2π, ν−1/2σ) π, σ unitary •
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In addition to all irreducible, admissible, non-supercuspidal representations,
the table also includes two classes of supercuspidal representations denoted by
Va∗ and XIa∗. The reason that these supercuspidal representations are in-
cluded in the table is that they are in L-packets with some non-supercuspidal
representations. Namely, the Va representation δ([ξ, νξ], ν−1/2σ) and the Va∗

representation δ∗([ξ, νξ], ν−1/2σ) form an L-packet, and the XIa representa-
tion δ(ν1/2π, ν−1/2σ) and the XIa∗ representation δ∗(ν1/2π, ν−1/2σ) form an
L-packet; see the paper [8]. Incidentally, the other non-singleton L-packets
involving non-supercuspidal representations are the two-element packets
{τ(S, ν−1/2σ), τ(T, ν−1/2σ)} (type VIa and VIb), as well as {τ(S, π), τ(T, π)}
(type VIIIa and VIIIb).

2 Generalities on Bessel functionals

In this section we gather some definitions, notation, and basic results about
Bessel functionals.

2.1 Quadratic extensions

Let D ∈ F×. If D /∈ F×2, then let ∆ =
√
D be a square root of D in F̄ ,

and L = F (∆). If D ∈ F×2, then let
√
D be a square root of D in F×,

L = F × F , and ∆ = (−
√
D,

√
D) ∈ L. In both cases L is a two-dimensional

F -algebra containing F , L = F +F∆, and ∆2 = D. We will abuse terminology
slightly, and refer to L as the quadratic extension associated to D. We define
a map γ : L → L called Galois conjugation by γ(x + y∆) = x − y∆. Then
γ(xy) = γ(x)γ(y) and γ(x + y) = γ(x) + γ(y) for x, y ∈ L, and the fixed
points of γ are the elements of F . The group Gal(L/F ) of F -automorphisms
α : L → L is {1, γ}. We define norm and trace functions NL/F : L → F and
TL/F : L→ F by NL/F (x) = xγ(x) and TL/F (x) = x+ γ(x) for x ∈ L. We let
χL/F be the quadratic character associated to L/F , so that χL/F (x) = (x,D)F
for x ∈ F×.

2.2 2× 2 symmetric matrices

Let a, b, c ∈ F and set

S =
[
a b/2
b/2 c

]
. (11)

Let D = b2/4 − ac = − det(S). Assume that D 6= 0. The discriminant
disc(S) of S is the class in F×/F×2 determined by D. It is known that there
exists g ∈ GL(2, F ) such that tgSg is of the form [ a1 a2 ] and that (a1, a2)F is
independent of the choice of g such that tgSg is diagonal; we define the Hasse
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476 Brooks Roberts and Ralf Schmidt

invariant ε(S) ∈ {±1} by ε(S) = (a1, a2)F . In fact, one has:

S g tgSg disc(S) ε(S)

a 6= 0, c 6= 0
[

1 −b
2a
1

] [

a

c− b2

4a

]

( b
2

4
− ac)F×2 (a, b2

4
− ac)F = (c, b2

4
− ac)F

a 6= 0, c = 0
[

1 −b
2a
1

] [

a

− b2

4a

]

F×2 1

a = 0, c 6= 0
[

1
1 − b

2c

] [

c

− b2

4c

]

F×2 1

a = 0, c = 0
[

1 1
1 −1

] [

b
−b

]

F×2 1

If disc(S) = F×2, then we say that S is split. If S is split, then for any λ ∈ F×

there exists g ∈ GL(2, F ) such that tgSg =
[

λ
λ

]
.

2.3 Another F -algebra

Let S be as in (11) with disc(S) 6= 0. Set D = b2/4− ac. We define

A = AS = {
[
x−yb/2 −ya
yc x+yb/2

]
: x, y ∈ F}. (12)

Then, with respect to matrix addition and multiplication, A is a two-
dimensional F -algebra naturally containing F . One can verify that

A = [ 1
1 ]{g ∈ M2(F ) :

tgSg = det(g)S}[ 1
1 ]. (13)

We define T = TS = A×. Let L be the quadratic extension associated to D;
we also say that L is the quadratic extension associated to S. We define an
isomorphism of F -algebras,

A
∼−→ L,

[
x−yb/2 −ya
yc x+yb/2

]
7−→ x+ y∆. (14)

The restriction of this isomorphism to T is an isomorphism T
∼−→ L×, and

we identify characters of T and characters of L× via this isomorphism. The
automorphism of A corresponding to the automorphism γ of L will also be
denoted by γ. It has the effect of replacing y by −y in the matrix (12). We
have det(t) = NL/F (t) for t ∈ A, where we identify elements of A and L via
(14).

2.3.1 Lemma. Let T be as above, and assume that L is a field. Let B2 be the
group of upper triangular matrices in GL(2, F ). Then TB2 = GL(2, F ).

Proof. This can easily be verified using the explicit form of the matrices in T
and the assumption D /∈ F×2.
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2.4 Bessel functionals

Let a, b and c be in F . Define S as in (11), and define a character θ = θa,b,c = θS
of N by

θ(

[ 1 y z
1 x y
1

1

]
) = ψ(ax+ by + cz) = ψ(tr(S[ 1

1 ][ y zx y ])) (15)

for x, y, z ∈ F . Every character of N is of this form for uniquely determined
a, b, c in F , or, alternatively, for a uniquely determined symmetric 2× 2 matrix
S. We say that θ is non-degenerate if det(S) 6= 0. Given S with det(S) 6= 0,
let A be as in (12), and let T = A×. We embed T into GSp(4, F ) via the map
defined by

t 7−→
[
t
det(t)t′

]
, t ∈ T. (16)

The image of T in GSp(4, F ) will also be denoted by T ; the usage should be
clear from the context. For t ∈ T we have λ(t) = det(t) = NL/F (t). It is easily
verified that

θ(tnt−1) = θ(n) for n ∈ N and t ∈ T .

We refer to the semidirect product

D = TN (17)

as the Bessel subgroup defined by character θ (or, the matrix S). Given a
character Λ of T (identified with a character of L× as explained above), we can
define a character Λ⊗ θ of D by

(Λ⊗ θ)(tn) = Λ(t)θ(n) for n ∈ N and t ∈ T .

Every character of D whose restriction to N coincides with θ is of this form for
an appropriate Λ.
Now let (π, V ) be an admissible representation of GSp(4, F ). Let θ be a non-
degenerate character of N , and let Λ be a character of the associated group
T . We say that π admits a (Λ, θ)-Bessel functional if HomD(V,CΛ⊗θ) 6= 0.
A non-zero element β of HomD(V,CΛ⊗θ) is called a (Λ, θ)-Bessel functional
for π. If such a β exists, then π admits a model consisting of functions B :
GSp(4, F ) → C with the Bessel transformation property

B(tng) = Λ(t)θ(n)B(g) for t ∈ T , n ∈ N and g ∈ GSp(4, F ),

by associating to each v in V the function Bv that is defined by Bv(g) =
β(π(g)v) for g ∈ GSp(4, F ). We note that if π admits a central character ωπ
and a (Λ, θ)-Bessel functional, then Λ|F× = ωπ. For a character σ of F×, it is
easy to verify that

HomD(π,CΛ⊗θ) = HomD(σπ,C(σ◦NL/F )Λ⊗θ). (18)

If π is irreducible, then, using that π∨ ∼= ω−1
π π (Proposition 2.3 of [37]), one

can also verify that

HomD(π,CΛ⊗θ) ∼= HomD(π
∨,C(Λ◦γ)−1⊗θ). (19)
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The twisted Jacquet module of V with respect toN and θ is the quotient VN,θ =
V/V (N, θ), where V (N, θ) is the subspace spanned by all vectors π(n)v−θ(n)v
for v in V and n in N . This Jacquet module carries an action of T induced by
the representation π. Evidently, there is a natural isomorphism

HomD(V,CΛ⊗θ) ∼= HomT (VN,θ,CΛ). (20)

Hence, when calculating the possible Bessel functionals on a representation
(π, V ), a first step often consists in calculating the Jacquet modules VN,θ. We
will use this method to calculate the possible Bessel functionals for most of the
non-supercuspidal, irreducible, admissible representations of GSp(4, F ). The
few representations that are inaccessible with this method will be treated using
the theta correspondence.
In this paper we do not assume that (Λ, θ)-Bessel functionals are unique up to
scalars. See Sect. 6.3 for some remarks on uniqueness.
Finally, instead of GSp(4, F ) as defined in this paper, in the literature it is
common to work with the group G′ of g ∈ GL(4, F ) such that tg

[
12

−12

]
g =

λ(g)
[

12
−12

]
for some λ(g) ∈ F×. For the convenience of the reader, we will

explain how to translate statements about Bessel functionals from this paper
into statements using G′. The groups GSp(4, F ) and G′ are isomorphic via
the map i : GSp(4, F ) −→ G′ defined by i(g) = LgL for g ∈ GSp(4, F ), where

L =

[
1

1
1
1

]
. We note that tL = L = L−1, L2 = 1, and the inverse of i is

given by i−1(g′) = Lg′L for g′ ∈ G′. If H is a subgroup of GSp(4, F ), then we
define H ′ = i(H), and refer to H ′ as the subgroup of G′ corresponding to H .
For example, the subgroup N ′ of G′ corresponding to N is

N ′ = {
[ 1 x y

1 y z
1

1

]
: x, y, z ∈ F}.

If π is a smooth representation of a subgroup H of GSp(4, F ) on a complex
vector space V , then we define the representation π′ of H ′ on V corresponding

to π by the formula π′(g′) = π(i−1(g′)) for g′ ∈ H ′. Now let S =
[
a b/2
b/2 c

]
be

as above, with det(S) 6= 0. The character θ′ = θ′S of N ′ corresponding to the
character θS of N is given by the formula

θ′(

[ 1 x y
1 y z
1

1

]
) = ψ(ax+ by + cz) = ψ(tr(S [ x yy z ]))

for x, y, z ∈ F . The subgroup T ′ = T ′
S of G′ corresponding to T = TS is

T ′ = {
[
t
det(t)·tt−1

]
: t ∈ GL(2, F ) : ttSt = det(t)S}.

More explicitly, the group of t ∈ GL(2, F ) such that ttSt = det(t)S consists of
the matrices

t =
[
x+yb/2 yc
−ya x−yb/2

]
(21)
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where x, y ∈ F , x2−y2(b2/4−ac) 6= 0, with b2/4−ac = − det(S), as usual. With

L as above, there is an isomorphism T ′ ∼−→ L× given by
[
t
det(t)·tt−1

]
7→ x+y∆

for t as in (21). Suppose that Λ is a character of L×; identify Λ with a character
of T as explained above. The corresponding character Λ′ of T ′ is given by the
formula

Λ′(
[
t
det(t)·tt−1

]
) = Λ(x+ y∆)

for t as in (21). Finally, suppose that (π, V ) is an admissible representation
of GSp(4, F ), and let π′ be the representation of G′ on V corresponding to π.
There is an equality

HomD′(V,CΛ′⊗θ′) = HomD(V,CΛ⊗θ),

withD′ = T ′N ′. The non-zero elements of HomD′(V,CΛ′⊗θ′) are called (Λ′, θ′)-
Bessel functionals for π′, and the last equality asserts that the set of (Λ′, θ′)-
Bessel functionals for π′ is the same as the set of (Λ, θ)-Bessel functionals for
π.

2.5 Action on Bessel functionals

There is an action of M , defined in (2), on the set of Bessel functionals. Let
(π, V ) be an irreducible, admissible representation of GSp(4, F ), and let β :
V → C be a (Λ, θ)-Bessel functional for π. Let a, b, c ∈ F be such that (15)
holds. Let m ∈M , with m =

[ g
λg′

]
, where λ ∈ F× and g ∈ GL(2, F ). Define

m · β : V → C by (m · β)(v) = β(π(m−1)v) for v ∈ V . Calculations show that
m · β is a (Λ′, θ′)-Bessel functional with θ′ defined by

θ′(

[ 1 y z
1 x y
1

1

]
) = ψ(a′x+ b′y + c′z) = ψ(tr(S′[ 1

1 ][ y zx y ])), x, y, z ∈ F,

where

S′ =
[
a′ b′/2

b′/2 c′

]
= λ thSh with h = [ 1

1 ]g−1[ 1
1 ].

Since disc(S′) = disc(S), the quadratic extension L′ associated to S′ is the
same as the quadratic extension L associated to S. There is an isomorphism
of F -algebras

A′ = AS′

∼−→ A = AS , a 7→ g−1ag.

Let T ′ = A′×. Finally, Λ′ : T ′ → C× is given by Λ′(t′) = Λ(g−1t′g) for t′ ∈ T ′.
For example, assume that β′ is a split Bessel functional, i.e., a Bessel functional
for which the discriminant of the associated symmetric matrix S′ is the class
F×2. By Sect. 2.2 there exists m as above such that β′ = m · β, where the
symmetric matrix S associated to the (Λ, θ)-Bessel functional β is

S =
[

1/2
1/2

]
, (22)
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and

θ(

[ 1 y z
1 x y

1
1

]
) = ψ(y). (23)

In this case

T = TS = {
[
a
b
a
b

]
: a, b ∈ F×}. (24)

Sometimes when working with split Bessel functionals it is more convenient to
work with the conjugate group

Nalt = s−1
2 Ns2 =

[
1 ∗ ∗
1
∗ 1 ∗

1

]
(25)

and the conjugate character

θalt(

[ 1 −y z
1
x 1 y

1

]
) = ψ(y). (26)

In this case the stabilizer of θalt is

Talt = {
[
a
a
b
b

]
: a, b ∈ F×}. (27)

2.6 Galois conjugation of Bessel functionals

The action of M can be used to define the Galois conjugate of a Bessel func-
tional. Let S be as in (11), and let A = AS and T = TS . Define

hγ =





[
1 b/a

−1

]
if a 6= 0,

[
1

−b/c −1

]
if a = 0 and c 6= 0,

[ 1
1 ] if a = c = 0.

(28)

Then hγ ∈ GL(2, F ), h2γ = 1, S = thγShγ and det(hγ) = −1. Set

gγ = [ 1
1 ]h−1

γ [ 1
1 ] = [ 1

1 ]hγ [ 1
1 ] ∈ GL(2, F ), mγ =

[
gγ

g′γ

]
∈M.

We have gγTg
−1
γ = T , and the diagrams

A
∼−−−−→ L

conjugation by gγ

y
yγ

A
∼−−−−→ L

T
∼−−−−→ L×

conjugation by gγ

y
yγ

T
∼−−−−→ L×

commute. Let (π, V ) be an irreducible, admissible representation of GSp(4, F ),
and let β be a (Λ, θ)-Bessel functional for π. We refer to mγ · β as the Galois
conjugate of β. We note that mγ · β is a (Λ ◦ γ, θ)-Bessel functional for π.
Hence,

HomD(π,CΛ⊗θ) ∼= HomD(π,C(Λ◦γ)⊗θ). (29)
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In combination with (19), we get

HomD(π,CΛ⊗θ) ∼= HomD(π
∨,CΛ−1⊗θ). (30)

2.7 Waldspurger functionals

Our analysis of Bessel functionals will often involve a similar type of functional
on representations of GL(2, F ). Let θ and S be as in (15), and let T ∼= L× be
the associated subgroup of GL(2, F ). Let Λ be a character of T . Let (π, V )
be an irreducible, admissible representation of GL(2, F ). A (Λ, θ)-Waldspurger
functional on π is a non-zero linear map β : V → C such that

β(π(g)v) = Λ(g)β(v) for all v ∈ V and g ∈ T.

For trivial Λ, such functionals were the subject of Proposition 9 of [39] and
Proposition 8 of [40]. For general Λ see [38], [34] and Lemme 8 of [40].
The (Λ, θ)-Waldspurger functionals are the non-zero elements of the space
HomT (π,CΛ), and it is known that this space is at most one-dimensional.
An obvious necessary condition for HomT (π,CΛ) 6= 0 is that Λ

∣∣
F×

equals ωπ,
the central character of π. By Sect. 2.6, Galois conjugation on T is given by
conjugation by an element of GL(2, F ). Hence,

HomT (π,CΛ) ∼= HomT (π,CΛ◦γ). (31)

Using π∨ ∼= ω−1
π π, one verifies that

HomT (π,CΛ) ∼= HomT (π
∨,C(Λ◦γ)−1). (32)

In combination with (31), we also have

HomT (π,CΛ) ∼= HomT (π
∨,CΛ−1). (33)

Let πJL denote the Jacquet-Langlands lifting of π in the case that π is a discrete
series representation, and 0 otherwise. Then, by the discussion on p. 1297 of
[38],

dimHomT (π,CΛ) + dimHomT (π
JL,CΛ) = 1. (34)

It is easy to see that, for any character σ of F×,

HomT (π,CΛ) = HomT (σπ,C(σ◦NL/F )Λ). (35)

For Λ such that Λ
∣∣
F×

= σ2, it is known that

dim(HomT (σStGL(2),CΛ)) =

{
0 if L is a field and Λ = σ ◦NL/F ,
1 otherwise;

(36)
see Proposition 1.7 and Theorem 2.4 of [38]. As in the case of Bessel function-
als, we call a Waldspurger functional split if the discriminant of the associated
matrix S lies in F×2. By Lemme 8 of [40], an irreducible, admissible, infinite-
dimensional representation of GL(2, F ) admits a split (Λ, θ)-Waldspurger func-
tional with respect to any character Λ of T that satisfies Λ

∣∣
F×

= ωπ (this can
also be proved in a way analogous to the proof of Proposition 3.4.2 below,
utilizing the standard zeta integrals for GL(2)).
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3 Split Bessel functionals

Irreducible, admissible, generic representations of GSp(4, F ) admit a theory of
zeta integrals, and every zeta integral gives rise to a split Bessel functional. As a
consequence, generic representations admit all possible split Bessel functionals;
see Proposition 3.4.2 below for a precise formulation.
To put the theory of zeta integrals on a solid foundation, we will use P3-theory.
The group P3, defined below, plays a role in the representation theory of GSp(4)
similar to the “mirabolic” subgroup in the theory for GL(n). Some of what
follows is a generalization of Sects. 2.5 and 2.6 of [28], where P3-theory was
developed under the assumption of trivial central character. The general case
requires only minimal modifications.
While every generic representation admits split Bessel functionals, we will see
that the converse is not true. P3-theory can also be used to identify the non-
generic representations that admit a split Bessel functional. This is explained
in Sect. 3.5 below.

3.1 The group P3 and its representations

Let P3 be the subgroup of GL(3, F ) defined as the intersection

P3 = GL(3, F ) ∩
[
∗ ∗ ∗
∗ ∗ ∗

1

]
.

We recall some facts about this group, following [3]. Let

U3 = P3 ∩
[
1 ∗ ∗
1 ∗
1

]
, N3 = P3 ∩

[
1 ∗
1 ∗
1

]
.

We define characters Θ and Θ′ of U3 by

Θ(
[
1 u12 ∗

1 u23

1

]
) = ψ(u12 + u23), Θ′(

[
1 u12 ∗

1 u23

1

]
) = ψ(u23).

If (π, V ) is a smooth representation of P3, we may consider the twisted Jacquet
modules

VU3,Θ = V/V (U3,Θ), VU3,Θ′ = V/V (U3,Θ
′)

where V (U3,Θ) (resp. V (U3,Θ
′)) is spanned by all elements of the form π(u)v−

Θ(u)v (resp. π(u)v−Θ′(u)v) for v in V and u in U3. Note that VU3,Θ′ carries an

action of the subgroup
[
∗
1
1

]
∼= F× of P3. We may also consider the Jacquet

module VN3
= V/V (N3), where V (N3) is the space spanned by all vectors of

the form π(u)v − v for v in V and u in N3. Note that VN3
carries an action of

the subgroup
[
∗ ∗
∗ ∗

1

]
∼= GL(2, F ) of P3.

Next we define three classes of smooth representations of P3, associated with
the groups GL(0), GL(1) and GL(2). Let

τP3

GL(0)(1) := c-IndP3

U3
(Θ), (37)
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where c-Ind denotes compact induction. Then τP3

GL(0)(1) is a smooth, irreducible

representation of P3. Next, let χ be a smooth representation of GL(1, F ) ∼= F×.

Define a representation χ⊗Θ′ of the subgroup
[
∗ ∗ ∗
1 ∗
1

]
of P3 by

(χ⊗Θ′)(
[ a ∗ ∗

1 y
1

]
) = χ(a)ψ(y).

Then

τP3

GL(1)(χ) := c-IndP3
[

∗ ∗ ∗
1 ∗
1

](χ⊗Θ′)

is a smooth representation of P3. It is irreducible if and only if χ is one-
dimensional. Finally, let ρ be a smooth representation of GL(2, F ). We define
the representation τP3

GL(2)(ρ) of P3 to have the same space as ρ, and action given

by

τP3

GL(2)(ρ)(
[
a b ∗
c d ∗

1

]
) = ρ(

[
a b
c d

]
). (38)

Evidently, τP3

GL(2)(ρ) is irreducible if and only if ρ is irreducible.

3.1.1 Proposition. Let notations be as above.

i) Every irreducible, smooth representation of P3 is isomorphic to exactly
one of

τP3

GL(0)(1), τP3

GL(1)(χ), τP3

GL(2)(ρ),

where χ is a character of F× and ρ is an irreducible, admissible repre-
sentation of GL(2, F ). Moreover, the equivalence classes of χ and ρ are
uniquely determined.

ii) Let (π, V ) be a smooth representation of P3 of finite length. Then there
exists a chain of P3 subspaces

0 ⊂ V2 ⊂ V1 ⊂ V0 = V

with the following properties,

V2 ∼= dim(VU3,Θ) · τP3

GL(0)(1),

V1/V2 ∼= τP3

GL(1)(VU3,Θ′),

V0/V1 ∼= τP3

GL(2)(VN3
).

Proof. See 5.1 – 5.15 of [3].

Documenta Mathematica 21 (2016) 467–553



484 Brooks Roberts and Ralf Schmidt

3.2 P3-theory for arbitrary central character

It is easy to verify that any element of the Klingen parabolic subgroup Q can
be written in a unique way as

[
ad−bc

a b
c d

1

] [ 1 −y x z
1 x

1 y
1

] [
u
u
u
u

]
(39)

with
[
a b
c d

]
∈ GL(2, F ), x, y, z ∈ F , and u ∈ F×. Let ZJ be the center of the

Jacobi group, consisting of all elements of GSp(4) of the form
[
1 ∗
1
1
1

]
. (40)

Evidently, ZJ is a normal subgroup of Q with ZJ ∼= F . Let (π, V ) be a smooth
representation of GSp(4, F ). Let V (ZJ ) be the span of all vectors v − π(z)v,
where v runs through V and z runs through ZJ . Then V (ZJ) is preserved by
the action of Q. Hence Q acts on the quotient VZJ := V/V (ZJ ). Let Q̄ be the
subgroup of Q consisting of all elements of the form (39) with u = 1, i.e.,

Q̄ = GSp(4) ∩
[
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

]
.

The map

i(

[
ad−bc

a b
c d

1

] [ 1 −y x z
1 x

1 y
1

]
) =

[
a b
c d

1

] [
1 x
1 y
1

]
(41)

establishes an isomorphism Q̄/ZJ ∼= P3.
Recall the character ψc1,c2 of U defined in (8). Note that U maps onto U3

under the map (41), and that the diagrams

U
i

//

ψ−1,1
  A

A

A

A

A

A

A

A

U3

Θ

��

C×

U
i

//

ψ−1,0
  A

A

A

A

A

A

A

A

U3

Θ′

��

C×

are commutative. The radical NQ (see (6)) maps onto N3 under the map (41).
The following theorem is exactly like Theorem 2.5.3 of [28], except that the
hypothesis of trivial central character is removed.

3.2.1 Theorem. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ). The quotient VZJ = V/V (ZJ) is a smooth representation of Q̄/ZJ ,
and hence, via the map (41), defines a smooth representation of P3. As a
representation of P3, VZJ has finite length. Hence, VZJ has a finite filtration
by P3 subspaces such that the successive quotients are irreducible and of the
form τP3

GL(0)(1), τ
P3

GL(1)(χ) or τP3

GL(2)(ρ) for some character χ of F×, or some

irreducible, admissible representation ρ of GL(2, F ). Moreover, the following
statements hold:
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i) There exists a chain of P3 subspaces

0 ⊂ V2 ⊂ V1 ⊂ V0 = VZJ

such that

V2 ∼= dimHomU (V, ψ−1,1) · τP3

GL(0)(1),

V1/V2 ∼= τP3

GL(1)(VU,ψ−1,0),

V0/V1 ∼= τP3

GL(2)(VNQ).

Here, the vector space VU,ψ−1,0 admits a smooth action of GL(1, F ) ∼= F×

induced by the operators

π(

[
a
a

1
1

]
), a ∈ F×,

and VNQ admits a smooth action of GL(2, F ) induced by the operators

π(
[
det g

g
1

]
), g ∈ GL(2, F ).

ii) The representation π is generic if and only if V2 6= 0, and if π is generic,
then V2 ∼= τP3

GL(0)(1).

iii) We have V2 = VZJ if and only if π is supercuspidal. If π is supercuspidal
and generic, then VZJ = V2 ∼= τP3

GL(0)(1) is non-zero and irreducible. If π

is supercuspidal and non-generic, then VZJ = V2 = 0.

Proof. This is an application of Proposition 3.1.1. See Theorem 2.5.3 of [28]
for the details of the proof.

Given an irreducible, admissible representation (π, V ) of GSp(4, F ), one can
calculate the semisimplifications of the quotients V0/V1 and V1/V2 in the P3-
filtration from the Jacquet modules of π with respect to the Siegel and Klingen
parabolic subgroups. The results are exactly the same as in Appendix A.4 of
[28] (where it was assumed that π has trivial central character).
Note that there is a typo in Table A.5 of [28]: The entry for Vd in the
“s.s.(V0/V1)” column should be τP3

GL(2)(ν(ν
−1/2σ × ν−1/2ξσ)).

3.3 Generic representations and zeta integrals

Let π be an irreducible, admissible, generic representation of GSp(4, F ). Recall
from Sect. 1.2 that W(π, ψc1,c2) denotes the Whittaker model of π with respect
to the character ψc1,c2 of U . For W in W(π, ψc1,c2) and s ∈ C, we define the
zeta integral Z(s,W ) by

Z(s,W ) =

∫

F×

∫

F

W (

[
a
a
x 1

1

]
)|a|s−3/2 dx d×a. (42)
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It was proved in Proposition 2.6.3 of [28] that there exists a real number s0,
independent of W , such that Z(s,W ) converges for ℜ(s) > s0 to an element of
C(q−s). In particular, all zeta integrals have meromorphic continuation to all
of C. Let I(π) be the C-vector subspace of C(q−s) spanned by all Z(s,W ) for
W in W(π, ψc1,c2). It is easy to see that I(π) is independent of the choice of ψ
and c1, c2 in F×.

3.3.1 Proposition. Let π be a generic, irreducible, admissible representation
of GSp(4, F ). Then I(π) is a non-zero C[q−s, qs]-module containing C, and
there exists R(X) ∈ C[X ] such that R(q−s)I(π) ⊂ C[q−s, qs], so that I(π) is
a fractional ideal of the principal ideal domain C[q−s, qs] whose quotient field
is C(q−s). The fractional ideal I(π) admits a generator of the form 1/Q(q−s)
with Q(0) = 1, where Q(X) ∈ C[X ].

Proof. The proof is almost word for word the same as that of Proposition 2.6.4
of [28]. The only difference is that, in the calculation starting at the bottom of
p. 79 of [28], the element q is taken from Q̄ instead of Q.

The quotient 1/Q(q−s) in this proposition is called the L-factor of π, and
denoted by L(s, π). If π is supercuspidal, then L(s, π) = 1. The L-factors for
all irreducible, admissible, generic, non-supercuspidal representations are listed
in Table A.8 of [28]. By definition,

Z(s,W )

L(s, π)
∈ C[qs, q−s] (43)

for all W in W(π, ψc1,c2).

3.4 Generic representations admit split Bessel functionals

In this section we will prove that an irreducible, admissible, generic representa-
tion of GSp(4, F ) admits split Bessel functionals with respect to all characters
Λ of T . This is a characteristic feature of generic representations, which will
follow from Proposition 3.5.1 in the next section.

3.4.1 Lemma. Let (π, V ) be an irreducible, admissible, generic representation
of GSp(4, F ). Let σ be a unitary character of F×, and let s ∈ C be arbitrary.
Then there exists a non-zero functional fs,σ : V → C with the following
properties.

i) For all x, y, z ∈ F and v ∈ V ,

fs,σ(π(

[ 1 y z
1 x y

1
1

]
)v) = ψ(y)fs,σ(v). (44)
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ii) For all a ∈ F× and v ∈ V ,

fs,σ(π(

[
a

1
a

1

]
)v) = σ(a)−1|a|−s+1/2fs,σ(v). (45)

Proof. We may assume that V = W(π, ψc1,c2) with c1 = 1. Let s0 ∈ R be
such that Z(s,W ) is absolutely convergent for ℜ(s) > s0. Then the integral

Zσ(s,W ) =

∫

F×

∫

F

W (

[
a
a
x 1

1

]
)|a|s−3/2σ(a) dx d×a (46)

is also absolutely convergent for ℜ(s) > s0, since σ is unitary. Note that these
are the zeta integrals for the twisted representation σπ. Therefore, by (43), the
quotient Zσ(s,W )/L(s, σπ) is in C[q−s, qs] for all W ∈ W(π, ψc1,c2). We may
therefore define, for any complex s,

fs,σ(W ) =
Zσ(s, π(s2)W )

L(s, σπ)
, (47)

where s2 is as in (7). Straightforward calculations using the definition (46)
show that (44) and (45) are satisfied for ℜ(s) > s0. Since both sides depend
holomorphically on s, these identities hold on all of C.

3.4.2 Proposition. Let (π, V ) be an irreducible, admissible and generic rep-
resentation of GSp(4, F ). Let ωπ be the central character of π. Then π admits a
split (Λ, θ)-Bessel functional with respect to any character Λ of T that satisfies
Λ
∣∣
F×

= ωπ.

Proof. Let θ be as in (23) with T as in (24). Let s ∈ C and σ be a unitary
character of F× such that

Λ(

[
a

1
a

1

]
) = σ(a)−1|a|−s+1/2 for all a ∈ F×.

Let fs,σ be as in Lemma 3.4.1. By (45),

fs,σ(π(

[
a

1
a

1

]
)v) = Λ(a)fs,σ(v) for all a ∈ F×. (48)

Since Λ
∣∣
F×

= ωπ we have in fact fs,σ(π(t)v) = Λ(t)fs,σ(v) for all t ∈ T . Hence
fs,σ is a Bessel functional as desired.
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3.5 Split Bessel functionals for non-generic representations

The converse of Proposition 3.4.2 is not true: There exist irreducible, admissi-
ble, non-generic representations of GSp(4, F ) which admit split Bessel function-
als. This follows from the following proposition. In fact, using this result and
the P3-filtrations listed in Table A.6 of [28], one can precisely identify which
non-generic representations admit split Bessel functionals. Other than in the
generic case, the possible characters Λ of T are restricted to a finite number.

3.5.1 Proposition. Let (π, V ) be an irreducible, admissible and non-generic
representation of GSp(4, F ). Let the semisimplification of the quotient V1 =
V1/V2 in the P3-filtration of π be given by

∑n
i=1 τ

P3

GL(1)(χi) with characters χi

of F×.

i) π admits a split Bessel functional if and only if the quotient V1 in the
P3-filtration of π is non-zero.

ii) Let β be a non-zero (Λ, θ)-Bessel functional, with θ as in (23), and a
character Λ of the group T explicitly given in (24). Then there exists an
i for which

Λ(

[
a

1
a

1

]
) = |a|−1χi(a) for all a ∈ F×. (49)

iii) If V1 is non-zero, then there exists an i such that π admits a split (Λ, θ)-
Bessel functional with respect to a character Λ of T satisfying (49).

iv) The space of split (Λ, θ)-Bessel functionals is zero or one-dimensional.

v) The representation π does not admit any split Bessel functionals if and
only if π is of type IVd, Vd, VIb, VIIIb, IXb, or is supercuspidal.

Proof. Let Nalt be as in (25) and θalt be as in (26). We use the fact that any
(Λ, θalt)-Bessel functional factors through the twisted Jacquet module VNalt,θalt .
To calculate this Jacquet module, we use the P3-filtration of Theorem 3.2.1.
Since π is non-generic, the P3-filtration simplifies to

0 ⊂ V1 ⊂ V0 = VZJ ,

with V1 of type τ
P3

GL(1) and V0/V1 of type τ
P3

GL(2). Taking further twisted Jacquet

modules and observing Lemma 2.5.6 of [28], it follows that

VNalt,θalt = (V1)[ 1
∗ 1 ∗

1

]

,ψ
, where ψ(

[
1
x 1 y

1

]
) = ψ(y).

By Lemma 2.5.5 of [28], after suitable renaming,

0 = Jn ⊂ . . . ⊂ J1 ⊂ J0 = (V1)[ 1
∗ 1 ∗

1

]

,ψ
,

Documenta Mathematica 21 (2016) 467–553



Some Results on Bessel Functionals for GSp(4) 489

where Ji/Ji+1 is one-dimensional, and diag(a, 1, 1) acts on Ji/Ji+1 by
|a|−1χi(a). Table A.6 of [28] shows that all the χi are pairwise distinct. This
proves i), ii), iii) and iv).
v) If π is one of the representations mentioned in v), then V1/V2 = 0 by
Theorem 3.2.1 (in the supercuspidal case), or by Table A.6 in [28] (in the non-
supercuspidal case). By part i), π does not admit a split Bessel functional. For
any representation not mentioned in v), the quotient V1/V2 is non-zero, so that
a split Bessel functional exists by iii).

4 Theta correspondences

Let S be as in (11), and let θ = θS be as in (15). Let (π, V ) be an irreducible,
admissible representation of GSp(4, F ), and let (σ,W ) be an irreducible, ad-
missible representation of GO(X), where X is an even-dimensional, symmetric,
bilinear space. Let ω be the Weil representation of the group R, consisting of
the pairs (g, h) ∈ GSp(4, F )×GO(X) with the same similitude factors, on the
Schwartz space S(X2). Assume that the pair (π, σ) occurs in the theta corre-
spondence defined by ω, i.e., HomR(ω, π ⊗ σ) 6= 0. It is a theme in the theory
of the theta correspondence to relate the twisted Jacquet module VN,θ of π to
invariant functionals on σ; a necessary condition for the non-vanishing of VN,θ
is that X represents S. See for example the remarks in Sect. 6 of [26].
Applications to (Λ, θS)-Bessel functionals also require the involvement of T .
The idea is roughly as follows. The group T is contained in M . Moreover,
ω(m,h) for (m,h) in R ∩ (M × GO(X)) is given by an action of such pairs
on X2. The study of this action leads to the definition of certain compatible
embeddings of T into GO(X). Using these embeddings allows us to show
that if π has a (Λ, θ)-Bessel functional, then σ admits a non-zero functional
transforming according to Λ−1.
After setting up notations and studying the embeddings of T mentioned above,
we obtain the main result of this section, Theorem 4.4.6. Section 4.7 contains
the applications to Bessel functionals.

4.1 The spaces

In this section we will consider non-degenerate symmetric bilinear spaces
(X, 〈·, ·〉) over F such that

dimX = 2, or dimX = 4 and disc(X) = 1. (50)

We begin by recalling the constructions of the isomorphism classes of these
spaces, and the characterization of their similitude groups. Let m ∈ F×,
A = A[

1
−m

] and T = A× be as in Sect. 2.3, so that

A = {
[ x −y
−ym x

]
: x, y ∈ F}, T = A× = {

[ x −y
−ym x

]
: x, y ∈ F, x2− y2m 6= 0}.

(51)
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Let λ ∈ F×. Define a non-degenerate two-dimensional symmetric bilinear space
(Xm,λ, 〈·, ·〉m,λ) by

Xm,λ = A[

1
−m

], 〈x1, x2〉m,λ = λ tr(x1x
∗
2)/2, x1, x2 ∈ Xm,λ. (52)

Here, ∗ is the canonical involution of 2×2 matrices, given by
[
a b
c d

]∗
=

[
d −b
−c a

]
.

Define a homomorphism ρ : T → GSO(Xm,λ) by ρ(t)x = tx for x ∈ Xm,λ. We
also recall the Galois conjugation map γ : A→ A from Sect. 2.3; it is given by
γ(x) = x∗ for x ∈ A. The map γ can be regarded as an F linear endomorphism

γ : Xm,λ −→ Xm,λ, (53)

and as such is contained in O(Xm,λ) but not in SO(Xm,λ).

4.1.1 Lemma. If (Xm,λ, 〈·, ·〉m,λ) is as in (52), then disc(Xm,λ) = mF×2,
ε(Xm,λ) = (λ,m), and the homomorphism ρ is an isomorphism, so that

ρ : T
∼−→ GSO(Xm,λ). (54)

The image ρ(T ) and the map γ generate GO(Xm,λ). If (Xm,λ, 〈·, ·〉m,λ) and
(Xm′,λ′ , 〈·, ·〉m′,λ′) are as in (52), then (Xm,λ, 〈·, ·〉m,λ) ∼= (Xm′,λ′ , 〈·, ·〉m′,λ′) if
and only if mF×2 = m′F×2 and (λ,m)F = (λ′,m′)F . Every two-dimensional,
non-degenerate symmetric bilinear space over F is isomorphic (Xm,λ, 〈·, ·〉m,λ)
for some m and λ.

Proof. Letm,λ ∈ F×. In Xm,λ let x1 = [ 1 1 ] and x2 = [ 1
m ]. Then x1, x2 is a

basis for Xm,λ, and in this basis the matrix for Xm,λ is λ
[
1
−m

]
. Calculations

using this matrix show that disc(Xm,λ) = mF×2 and ε(Xm,λ) = (λ,m)F . The
map ρ is clearly injective. To see that ρ is surjective, let h ∈ GSO(Xm,λ).
Write h in the ordered basis x1, x2 so that h =

[
h1 h2

h3 h4

]
. By the definition

of GSO(Xm,λ), we have thλ
[
1
−m

]
h = det(h)λ

[
1
−m

]
. By the definition

of T , this implies that t = [ 1
1 ]h [ 1

1 ] ∈ T . Hence, h =
[
h1 h3m
h3 h1

]
for some

h1, h3 ∈ F . Calculations now show that ρ(t)x1 = h(x1) and ρ(t)x2 = h(x2),
so that ρ(t) = h. This proves the first assertion. The second assertion follows
from the fact that two non-degenerate symmetric bilinear spaces over F with
the same finite dimension are isomorphic if and only if they have the same
discriminant and Hasse invariant. For the final assertion, let (X, 〈·, ·〉) be a
two-dimensional, non-degenerate symmetric bilinear space over F . There exists
a basis for X with respect to which the matrix for X is of the form [ α1

α2
] for

some α1, α2 ∈ F×. Then disc(X) = −α1α2F
×2 and ε(X) = (α1, α2)F . An

argument shows that there exists λ ∈ F× such that (λ, disc(X))F = ε(X). We
now have (X, 〈·, ·〉) ∼= (Xm,λ, 〈·, ·〉m,λ) with m = disc(X) because both spaces
have the same discriminant and Hasse invariant.

Next, define a four-dimensional non-degenerate symmetric bilinear space over
F by setting

XM2
= M2(F ), 〈x1, x2〉M2

= tr(x1x
∗
2)/2, x1, x2 ∈ XM2

. (55)
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Here, ∗ is the canonical involution of 2×2 matrices, given by
[
a b
c d

]∗
=

[
d −b
−c a

]
.

Define ρ : GL(2, F )×GL(2, F ) → GSO(XM2
) by ρ(g1, g2)x = g1xg

∗
2 for g1, g2 ∈

GL(2, F ) and x ∈ XM2
. The map ∗ : XM2

→ XM2
is contained in O(XM2

) but
not in SO(XM2

).
Finally, let H be the division quaternion algebra over F . Let 1, i, j, k be a
quaternion algebra basis for H , i.e.,

H = F + Fi+ Fj + Fk, i2 ∈ F×, j2 ∈ F×, k = ij, ij = −ji. (56)

Let ∗ be the canonical involution on H so that (a + b · i + c · j + d · k)∗ =
a − b · i − c · j − d · k, and define the norm and trace functions N,T : H → F
by N(x) = xx∗ and T(x) = x+ x∗ for x ∈ H . Define another four-dimensional
non-degenerate symmetric bilinear space over F by setting

XH = H, 〈x1, x2〉H = T(x1x
∗
2)/2, x1, x2 ∈ XH . (57)

Define ρ : H× ×H× → GSO(XH) by ρ(h1, h2)x = h1xh
∗
2 for h1, h2 ∈ H× and

x ∈ XH . The map ∗ : XH → XH is contained in O(XH) but not in SO(XH).

4.1.2 Lemma. The symmetric bilinear space (XM2
, 〈·, ·〉M2

) is non-degenerate,
has dimension four, discriminant disc(XM2

) = 1, and Hasse invariant ε(XM2
) =

(−1,−1)F . The (XH , 〈·, ·〉H) symmetric bilinear space is non-degenerate, has
dimension four, discriminant disc(XH) = 1, and Hasse invariant ε(XH) =
−(−1,−1)F . The sequences

1 −→ F× −→ GL(2, F )×GL(2, F )
ρ−→ GSO(XM2

) −→ 1, (58)

1 −→ F× −→ H× ×H× ρ−→ GSO(XH) −→ 1 (59)

are exact; here, the second maps send a to (a, a−1) for a ∈ F×. The image
ρ(GL(2, F ) × GL(2, F )) and the map ∗ generate GO(XM2

), and the image
ρ(H× ×H×) and the map ∗ generate GO(XH). Every four-dimensional, non-
degenerate symmetric linear space over F of discriminant 1 is isomorphic to
(XM2

, 〈·, ·〉M2
) or (XH , 〈·, ·〉H).

Proof. See, for example, Sect. 2 of [27].

4.2 Embeddings

Suppose that (X, 〈·, ·〉) satisfies (50). We define an action of the group
GL(2, F )×GO(X) on the set X2 by

(g, h) · (x1, x2) = (hx1, hx2)g
−1 = (g′1hx1 + g′3hx2, g

′
2hx1 + g′4hx2) (60)

for (x1, x2) ∈ X2, h ∈ GO(X) and g ∈ GL(2, F ) with g−1 =
[
g′
1
g′
2

g′
3
g′
4

]
. For S as

in (11) with det(S) 6= 0, we define

Ω = ΩS = ΩS,(X,〈·,·〉) = {(x1, x2) ∈ X2 :
[
〈x1,x1〉 〈x1,x2〉
〈x1,x2〉 〈x2,x2〉

]
= S}. (61)
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We say that (X, 〈·, ·〉) represents S if the set Ω is non-empty.

4.2.1 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. The subgroup

B = BS = {(g, h) ∈ GL(2, F )×GO(X) : tgSg = det(g)S and det(g) = λ(h)}
(62)

maps Ω = ΩS to itself under the action of GL(2, F )×GO(X) on X2.

Proof. Let (g, h) ∈ B, and let g = [ g1 g2g3 g4 ]. To start, we note that the assump-
tion tgSg = det(g)S is equivalent to tg−1Sg−1 = det(g)−1S, which is in turn
equivalent to

ag24 − bg3g4 + cg23 = det(g)a,

−ag4g2 + b(g1g4 + g2g3)/2− cg3g1 = det(g)b/2,

ag22 − bg2g1 + cg21 = det(g)c.

Let (x1, x2) ∈ Ω and set (y1, y2) = (g, h1(t)) · (x1, x2). By the definition of the
action and Ω, and using det(g) = λ(h), we have

〈y1, y1〉 = det(g)−1
(
g24〈x1, x1〉 − 2g3g4〈x1, x2〉+ g23〈x2, x2〉

)

= det(g)−1
(
g24a− g3g4b+ g23c

)

= a.

Similarly, 〈y1, y2〉 = b/2 and 〈y2, y2〉 = c. It follows that (y1, y2) =
(g, h1(t))(x1, x2) ∈ Ω.

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50), and let S be as in (11) with det(S) 6= 0. Assume that Ω is non-empty,
and let T = TS , as in Sect. 2.3. The goal of this section is to define, for each
z ∈ Ω, a set

E(z) = E(X,〈·,·〉),S(z) (63)

of embeddings τ : T → GSO(X) such that:

τ(t) = t for t ∈ F× ⊂ T ; (64)

λ(τ(t)) = det(t) for t ∈ T , so that (t, τ(t)) ∈ B for t ∈ T ; (65)

([ 1
1 ] t [ 1

1 ] , τ(t)) · z = z for t ∈ T . (66)

We begin by noting some properties of Ω. The set Ω is closed in X2. The
subgroup O(X) ∼= 1 × O(X) ⊂ B ⊂ GL(2, F ) × GO(X) preserves Ω, i.e., if
h ∈ O(X) and (x1, x2) ∈ Ω, then (hx1, hx2) ∈ Ω. Since det(S) 6= 0, the group
O(X) acts transitively on Ω. If dimX = 4, then SO(X) acts transitively on Ω.
If dimX = 2, then the action of SO(X) on Ω has two orbits.
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4.2.2 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Assume that
dimX = 2 and Ω is non-empty. Let z = (z1, z2) ∈ Ω. For

t = [ 1
1 ]g[ 1

1 ] = [ 1
1 ][ g1 g2g3 g4 ][

1
1 ] ∈ T

let τz(t) : X → X be the linear map that has g as matrix in the ordered basis
z1, z2 for X , so that

τz(t)(z1) = g1z1 + g3z2,

τz(t)(z2) = g2z1 + g4z2.

i) For t ∈ T , the map τz(t) is contained in GSO(X) and λ(τz(t)) = det(t).

ii) If z′ lies in the SO(X) orbit of z, and t ∈ T , then τz(t) = τz′(t).

iii) The map sending t to τz(t) defines an isomorphism τz : T
∼−→ GSO(X).

iv) Let h0 ∈ O(X) with det(h0) = −1. Let z′ ∈ Ω not be in the SO(X) orbit
of z. Then τz′(t) = h0τz(t)h

−1
0 for t ∈ T .

v) Let t ∈ T . The element ([ 1
1 ] t [ 1

1 ] , τz(t)) ∈ B acts by the identity on
the SO(X) orbit of z, and maps the other SO(X) orbit of Ω to itself.

Proof. i) A computation verifies that τz(t) ∈ GO(X), with similitude factor
λ(τz(t)) = det(g) = det(t), and the equality det(τz(t)) = λ(τz(t)) implies that
τz(t) ∈ GSO(X) by the definition of GSO(X).
ii) Suppose that z′ = (z′1, z

′
2) lies in the SO(X) orbit of z, and let c ∈ SO(X) be

such that c(z1) = z′1 and c(z2) = z′2. Then τz′(t) = cτz(t)c
−1. But the group

GSO(X) is abelian, so that τz′(t) = cτz(t)c
−1 = τz(t).

iii) Calculations prove that τz : T → GSO(X) is an isomorphism.
iv) Let z′′ = h0(z). A calculation shows that τz′′ (t) = h0τz(t)h

−1
0 for t ∈ T .

By, ii), τz′′(t) = τz′(t) for t ∈ T .
v) Write g = [ 1

1 ] t [ 1
1 ], so that tgSg = det(g)S. Let g = [ g1 g2g3 g4 ]. By the

definition of τz(t), we have

(g, τz(t)) · z = (det(g)−1g4(g1z1 + g3z2)− det(g)−1g3(g2z1 + g4z2),

det(g)−1(−g2)(g1z1 + g3z2) + det(g)−1g1(g2z1 + g4z2))

= z.

By ii), it follows that (g, τz(t)) acts by the identity on all of the SO(X) orbit
of z. Next, let z′ ∈ Ω with z′ /∈ SO(X)z. Assume that (g, τz(t)) · z′ ∈ SO(X)z;
we will obtain a contradiction. Since (g, τz(t)) · z′ ∈ SO(X)z and since we have
already proved that (g, τz(t)) acts by the identity on SO(X)z, we have:

(g, τz(t)) ·
(
(g, τz(t)) · z′

)
= (g, τz(t)) · z′

(g, τz(t)) · z′ = z′.
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This is a contradiction since z′ /∈ SO(X)z and (g, τz(t)) · z′ ∈ SO(X)z.

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50), and let S be as in (11) with det(S) 6= 0. Assume that dimX = 2 and Ω
is non-empty. For z ∈ Ω, we define

E(z) = E(X,〈·,·〉),S(z) = {τz}, (67)

with τz as defined in Lemma 4.2.2. It is evident from Lemma 4.2.2 that the
element of E(z) has the properties (64), (65), and (66).

4.2.3 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Assume that
dimX = 2. Let λ, λ′ ∈ F×, and set Ω = ΩλS and Ω′ = Ωλ′S . Assume that Ω
and Ω′ are non-empty. Then

⋃

z∈Ω

E(z) =
⋃

z′∈Ω′

E(z′). (68)

Proof. Let Ω1 and Ω2 be the two SO(X) orbits of the action of SO(X) on Ω
so that Ω = Ω1 ⊔ Ω2, and analogously define and write Ω′ = Ω′

1 ⊔ Ω′
2. Let z =

(z1, z2) ∈ Ω1 and z′ = (z′1, z
′
2) ∈ Ω′

1. Define a linear map h : X → X by setting
h(z1) = z′1 and h(z2) = z′2. We have 〈h(x), h(y)〉 = (λ′/λ)〈x, y〉 for x, y ∈ X ,
so that h ∈ GO(X). Assume that h /∈ GSO(X). Let z′′ = (z′′1 , z

′′
2 ) ∈ Ω′

2, and
let h′ : X → X be the linear map defined by h′(z′1) = z′′1 and h′(z′2) = z′′2 .
Then h′ ∈ O(X) with det(h′) = −1, so that h′h ∈ GSO(X) and (h′h)(z1) = z′′1
and (h′h)(z2) = z′′2 . Therefore, by renumbering if necessary, we may assume
that h ∈ GSO(X). Next, a calculation shows that hτz(t)h

−1 = τz′(t) for t ∈ T .
Since GSO(X) is abelian, this means that τz = τz′ . The claim (68) follows now
from ii) and iv) of Lemma 4.2.2.

4.2.4 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Assume that
dimX = 4 and Ω is non-empty. Let z = (z1, z2) ∈ Ω, and set U = Fz1 + Fz2,
so that X = U ⊕ U⊥ with dimU = dimU⊥ = 2. There exists λ ∈ F× such
that (U⊥, 〈·, ·〉) represents λS.

Proof. Let M4,1(F ) be the F vector space of 4× 1 matrices with entries from
F . Let D = − det(S). Let λ ∈ F×, and define a four-dimensional symmetric
bilinear space Xλ by letting Xλ = M4,1(F ) with symmetric bilinear form b
given by b(x, y) = txMy, where

M =
[
S
λS

]
.

Evidently, disc(Xλ) = 1, and the Hasse invariant of Xλ is ε(Xλ) =
(−1,−1)F (−λ,D)F . Now assume that X is isotropic. Then the Hasse in-
variant of X is (−1,−1)F . It follows that if λ = −1, then ε(Xλ) = ε(X), so
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that Xλ
∼= X . By the Witt cancellation theorem, (U⊥, 〈·, ·〉) represents λS.

Next, assume that X is anisotropic, so that ε(X) = −(−1,−1)F . By hypoth-
esis, (X, 〈·, ·〉) represents S; since X is anisotropic, this implies that D /∈ F×2.
Since, D /∈ F×2, there exists λ ∈ F× such that −1 = (−λ,D)F . It follows that
ε(Xλ) = ε(X), so that Xλ

∼= X ; again the Witt cancellation theorem implies
that (U⊥, 〈·, ·〉) represents λS.

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50), and let S be as in (11) with det(S) 6= 0. Assume that dimX = 4, Ω = ΩS
is non-empty, and let T = TS, as in Sect. 2.3. Let z = (z1, z2) ∈ Ω, and as in
Lemma 4.2.4, let U = Fz1+Fz2, so that X = U⊕U⊥ with dimU = dimU⊥ =
2. By Lemma 4.2.4 there exists λ ∈ F× such that (U⊥, 〈·, ·〉) represents λS.
Let τz : T → GSO(U) be the isomorphism from Lemma 4.2.2 that is associated
to z. Also, let τz′ , τz′′ : T → GSO(U⊥) be the isomorphisms from Lemma 4.2.2,
where z′ and z′′ are representatives for the two SO(U⊥) orbits of SO(U⊥) acting
on ΩλS,(U⊥,〈·,·〉); by Lemma 4.2.3, {τz′ , τz′′} does not depend on the choice of
λ. We now define

E(z) = E(X,〈·,·〉),S(z) = {τ1, τ2}, (69)

where τ1, τ2 : T → GSO(X) are defined by

τ1(t) =
[
τz(t)

τz′(t)

]
, τ2(t) =

[
τz(t)

τz′′(t)

]

with respect to the decomposition Z = U ⊕ U⊥, for t ∈ T . For t ∈ T , the
similitude factor of τi(t) is det(t). It is evident that the elements of E(z) satisfy
(64), (65), and (66).

4.2.5 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Assume that Ω = ΩS
is non-empty, and let A = AS and T = TS, as in Sect. 2.3. If dimX = 4, assume
that A is a field. Let z ∈ Ω and τ ∈ E(z). Let C be a compact, open subset
of Ω containing z. There exists a compact, open subset C0 of Ω such that
z ∈ C0 ⊂ C and ([ 1

1 ] t [ 1
1 ] , τ(t)) · C0 = C0 for t ∈ T .

Proof. Assume dimX = 2. Let C0 be the intersection of C with the SO(X)
orbit of z in Ω. Then C0 is a compact, open subset of Ω because the SO(X)
orbit of z in Ω is closed and open in Ω, and C is compact and open. We
have ([ 1

1 ] t [ 1
1 ] , τ(t)) · C0 = C0 for t ∈ T by v) of Lemma 4.2.2. Assume

dimX = 4. The group of pairs ([ 1
1 ] t [ 1

1 ] , τ(t)) for t ∈ T acts on X2 and
can be regarded as a subgroup of GL(X2). The group T contains F×, and
the pairs with t ∈ F× act by the identity on X2. The assumption that A is a
field implies that T/F× is compact, and hence the image K in GL(X2) of this
group of pairs is compact. There exists a lattice L of X2 such that k · L = L
for k ∈ K. Also, by (66) we have that k · z = z for k ∈ K. Let n be sufficiently
large so that (z +̟nL)∩Ω ⊂ C. Then C0 = (z +̟nL)∩Ω is the desired set.
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4.3 Example embeddings

In this section we provide explicit formulas for the embeddings of the previous
section.

4.3.1 Lemma. Let S be as in (11). Let m,λ ∈ F×, and define (Xm,λ, 〈·, ·〉m,λ)
as in (52). The set Ω = ΩS is non-empty if and only if disc(S) = mF×2 and
ε(S) = (λ,m)F . Assume that the set Ω is non-empty. Set D = b2/4 − ac so
that disc(S) = DF×2, and define ∆ and the quadratic extension L = F + F∆
of F (which need not be a field) associated to D as in Sect. 2.1. Similarly,
define ∆m with respect to m; the quadratic extension associated m is also L
and L = F + F∆m. The set of compositions

L× ∼−→ TS
τ−→ GSO(Xm,λ)

for z ∈ Ω and τ ∈ E(z) is the same as the set consisting of the two compositions

L× ∼−→ T[ 1
−m

]

∼−→ GSO(Xm,λ), L× γ−→ L× ∼−→ T[ 1
−m

]

∼−→ GSO(Xm,λ).

Here, the maps L× → T[ 1
−m

] are as in (14), and the isomorphism ρ of

T[ 1
−m

] with GSO(Xm,λ) is as in (54).

Proof. By definition, Ω is non-empty if and only if there exist x1, x2 ∈ Xm,λ

such that S =
[
〈x1,x1〉 〈x1,x2〉
〈x1,x2〉 〈x2,x2〉

]
. Since Xm,λ is two-dimensional, this means

that Ω is non-empty if and only if (Xm,λ, 〈·, ·〉m,λ) is equivalent to the sym-
metric bilinear space over F defined by S. From Lemma 4.1.1, we have
disc(Xm,λ) = mF×2 and ε(Xm,λ) = (λ,m)F . Since a finite-dimensional non-
degenerate symmetric bilinear space over F is determined by its dimension,
discriminant and Hasse invariant, it follows that Ω is non-empty if and only if
disc(S) = mF×2 and ε(S) = (λ,m)F .
Assume that Ω is non-empty, so that disc(S) = mF×2 and ε(S) = (λ,m)F .
Let e ∈ F× be such that ∆ = e∆m; then b2/4 − ac = D = e2m. Assume first
that a 6= 0. By Sect. 2.2, ε(S) = (a,m)F . Therefore, (a,m)F = (λ,m)F . It
follows that there exist g, h ∈ F× such that g2 −mh2 = λ−1a. Set

z1 =
[

g h
−h(−m) g

]
, z2 = a−1

[
ehm+gb/2 eg+hb/2

−(eg+hb/2)(−m) ehm+gb/2

]
.

Then z1, z2 ∈ Xm,λ, and a calculation shows that
[
〈z1,z1〉m,λ 〈z1,z2〉m,λ

〈z1,z2〉m,λ 〈z2,z2〉m,λ

]
= S.

It follows that z = (z1, z2) ∈ Ω. Let u ∈ L×. Write u = x + y∆ for some

x, y ∈ F×. By (14), u corresponds to t =
[
x−yb/2 −ya
yc x+yb/2

]
∈ TS. Using the

definition of τz(t), we find that

τz(t)(z1) =
[

gx−ehym hx−egy
−(hx−egy)(−m) gx−ehym

]
, (70)
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τz(t)(z2) =
1

2a

[
(2ehm+bg)x−(behm+2e2mg)y (2eg+bh)x−(beg+2e2mh)y

−((2eg+bh)x−(beg+2e2mh)y)(−m) (2ehm+bg)x−(behm+2e2mg)y

]
.

(71)

On the other hand, we also have that u = x + ye∆m, and u corresponds to

the element t′ =
[

x −ye
(ye)(−m) x

]
in T[ 1

−m

]. Moreover, calculations show that

ρ(t′)(z1) = t′ · z1 and ρ(t′)(z2) = t′ · z2 are as in (70) and (71), respectively,
proving that the two compositions

L× ∼−→ TS
τz−→ GSO(Xm,λ), L× ∼−→ T[ 1

−m

]

ρ−→ GSO(Xm,λ)

are the same map. Next, let z′ = (γ(z1), γ(z2)). Then z
′ ∈ Ω, and calculations

as above show that the two compositions

L× ∼−→ TS
τz′−→ GSO(Xm,λ), L× γ−→ L× ∼−→ T[ 1

−m

]

ρ−→ GSO(Xm,λ)

are the same. This completes the proof in this case since z and z′ are rep-
resentatives for the two SO(Xm,λ) orbits of Ω, and by ii) of Lemma 4.2.2,
∪w∈ΩE(w) = {τz, τz′}. Now assume that a = 0. Set

z1 = λ−1
[

b/2 −e
e(−m) b/2

]
, z2 =

[
(cλ−1+1)/2 −eb−1(cλ−1−1)

eb−1(cλ−1−1)(−m) (cλ−1+1)/2

]
.

Again, a calculation shows that z = (z1, z2) ∈ Ω. Let u ∈ L× with u = x+ y∆

for some x, y ∈ F×. Then u corresponds to t =
[
x−yb/2
yc x+yb/2

]
∈ TS, and

u corresponds to t′ =
[

x −ye
ye(−m) x

]
∈ T[ 1

−m

]. Computations show that

τz(t)(z1) = ρ(t′)(z1) and τz(t)(z2) = ρ(t′)(z2), proving that the compositions

L× ∼−→ TS
τz′−→ GSO(Xm,λ), L× ∼−→ T[ 1

−m

]

ρ−→ GSO(Xm,λ)

are the same. As in the previous case, if z′ = (γ(z1), γ(z2)), then z
′ ∈ Ω, and

the two compositions

L× ∼−→ TS
τz′−→ GSO(Xm,λ), L× γ−→ L× ∼−→ T[ 1

−m

]

ρ−→ GSO(Xm,λ)

are the same. As above, this completes the proof.

Let c ∈ F×, and set

S = [ 1 c ] . (72)

Let (XM2
, 〈·, ·〉M2

) be as in (55). Let A = AS and T = TS be as in Sect. 2.3.
We embed A in M2(F ) via the inclusion map. Set

z1 = [ 1 1 ] , z2 =
[

1
−c

]
, z′1 =

[
1
−1

]
, z′2 = [ 1

c ] .
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The vectors z1, z2, z
′
1, z

′
2 form an orthogonal ordered basis for XM2

, and in this
basis the matrix for XM2

is [
S

−S

]
.

As in Lemma 4.2.4, set U = Fz1 + Fz2. Then U⊥ = Fz′1 + Fz′2, and the λ of
Lemma 4.2.4 is −1. Calculations show that the set E(z) = EXM2

(z) of (69) is

EXM2
(z) = {τ1, τ2}, τ1(t) = ρ(t, 1), τ2(t) = ρ(1, γ(t)), t ∈ T×. (73)

Finally, let S be as in (72) with −c /∈ F×2, and let (XH , 〈·, ·〉H) be as in (57).
Let A = AS and T = TS be as in Sect. 2.3. Let L be the quadratic extension
associated to −c as in Sect. 2.1; L is a field. Let e be a representative for
the non-trivial coset of F×/NL/F (L

×), so that (e,−c)F = −1. We realize the
division quaternion algebra H over F as

H = F + Fi+ Fj + Fk, i2 = −c, j2 = e, k = ij, ij = −ji. (74)

We embed A into H via the map defined by

[
x −y
cy x

]
7→ x− yi

for x, y ∈ F . Let
z1 = 1, z2 = i, z′1 = j, z′2 = k. (75)

The vectors z1, z2, z
′
1, z

′
2 form an orthogonal ordered basis for XH , and in this

basis the matrix for XH is [
S

−eS

]
.

As in Lemma 4.2.4, set U = Fz1 + Fz2. Then U⊥ = Fz′1 + Fz′2, and the λ
of Lemma 4.2.4 is −e. Calculations again show that the set E(z) = EXH (z) of
(69) is

EXH (z) = {τ1, τ2}, τ1(t) = ρ(t, 1), τ2(t) = ρ(1, γ(t)), t ∈ T×. (76)

To close this subsection, we note that (XH , 〈·, ·〉H) does not represent S if S is
as in (72) but −c ∈ F×2. To see this, assume that −c ∈ F×2 and (XH , 〈·, ·〉H)
represents S; we will obtain a contradiction. Write −c = t2 for some t ∈ F×.
Since XH represents S, there exist x1, x2 ∈ H such that 〈x1, x1〉H = N(x1) = 1,
〈x2, x2〉H = N(x2) = c = −t2 and 〈x1, x2〉H = T(x1x

∗
2)/2 = 0. A calculation

shows that N(tx1 + x2) = 0. Since H is a division algebra, this means that
tx1 = −x2. Hence, t2 = N(tx1) = 〈tx1, tx1〉H = 〈tx1,−x2〉H = −t〈x1, x2〉H =
0, a contradiction.

4.4 Theta correspondences and Bessel functionals

In this section we make the connection between Bessel functionals for GSp(4, F )
and equivariant functionals on representations of GO(X). The main result is
Theorem 4.4.6 below.
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Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50). We define the subgroup GSp(4, F )+ of GSp(4, F ) by

GSp(4, F )+ = {g ∈ GSp(4, F ) : λ(g) ∈ λ(GO(X))}. (77)

The following lemma follows from (54) and the exact sequences (58) and (59),
which facilitate the computation of λ(GSO(X)). Note that N(H×) = F×.

4.4.1 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50). Then

[GSp(4, F ) : GSp(4, F )+] =

{
1 if dimX = 4, or dimX = 2 and disc(X) = 1,

2 if dimX = 2 and disc(X) 6= 1.

(78)

4.4.2 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Let Ω = ΩS be as in
(61), and assume that Ω is non-empty. Let T = TS be as in Sect. 2.3. Embed
T as a subgroup of GSp(4, F ), as in (16). Then T is contained in GSp(4, F )+.

Proof. By (78) we may assume that dimX = 2 and disc(X) 6= 1. Since
Ω is non-empty and dimX = 2, we make take S to be the matrix of the
symmetric bilinear form 〈·, ·〉 on X . By definition, GO(X) is then the set of
h ∈ GL(2, F ) such that thSh = λ(h)S for some λ(h) ∈ F×. From (13), we have
that thSh = det(h)S for h = [ 1

1 ] t [ 1
1 ] with t ∈ T . It follows that det(T ) is

contained in λ(GO(X)). This implies that T is contained in GSp(4, F )+.

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50). Define

R = {(g, h) ∈ GSp(4, F )×GO(X) : λ(g) = λ(h)}.
We consider the Weil representation ω of R on the space S(X2) defined with
respect to ψ2, where ψ2(x) = ψ(2x) for x ∈ F . If ϕ ∈ S(X2), g ∈ GL(2, F )
and h ∈ GO(X) with det(g) = λ(h), and x1, x2 ∈ X , then

(

ω(

[

1 y z
1 x y

1
1

]

, 1)ϕ
)

(x1, x2) = ψ(〈x1, x1〉x+ 2〈x1, x2〉y + 〈x2, x2〉z)ϕ(x1, x2), (79)

(

ω(
[ g

det(g)g′
]

, h)ϕ
)

(x1, x2) = (det(g),disc(X))Fϕ(([ 1
1 ] g [ 1

1 ] , h)−1 · (x1, x2)).

(80)

For these formulas, see Sect. 1 of [27]; note that the additive character we are
using is ψ2. Also, in (80) we are using the action of GL(2, F )×GO(X) defined
in (60).
We will also use the Weil representation ω1 of

R1 = {(g, h) ∈ GL(2, F )×GO(X) : det(g) = λ(h)}
on S(X) defined with respect to ψ2. For formulas, again see Sect. 1 of [27].
The two Weil representations ω and ω1 are related as follows.
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4.4.3 Lemma. The map

T : S(X)⊗ S(X) −→ S(X2), (81)

determined by the formula

T (ϕ1 ⊗ ϕ2)(x1, x2) = ϕ1(x1)ϕ2(x2) (82)

for ϕ1 and ϕ2 in S(X) and x1 and x2 in X , is a well-defined complex linear
isomorphism such that

T ◦ (ω1

( [
a2 b2
c2 d2

]
, h)⊗ ω1(

[
a1 b1
c1 d1

]
, h)

)

= ω(

[
a1 b1

a2 b2
c2 d2

c1 d1

]
, h) ◦ T (83)

for g1 =
[
a1 b1
c1 d1

]
and g2 =

[
a2 b2
c2 d2

]
in GL(2, F ) and h in GO(X) such that

det(g1) = det(g2) = λ(h).

This lemma can be verified by a direct calculation using standard generators
for SL(2, F ).
Let θ = θS be the character of N defined in (15) with respect to a matrix S
as in (11). Let S(X2)(N, θ) be the subspace of S(X2) spanned by all vectors
ω(n)ϕ − θ(n)ϕ, where n runs through N and ϕ runs through S(X2), and set
S(X2)N,θ = S(X2)/S(X2)(N, θ).

4.4.4 Lemma. (Rallis) Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear
space over F satisfying (50), and let S be as in (11) with det(S) 6= 0. If
(X, 〈·, ·〉) does not represent S, then the twisted Jacquet module S(X2)N,θ is
zero. Assume that (X, 〈·, ·〉) represents S. The map S(X2) → S(Ω) defined by
ϕ 7→ ϕ|Ω induces an isomorphism

S(X2)N,θ
∼−→ S(Ω).

Equivalently, S(X2)(N, θ) is the space of ϕ ∈ S(X2) such that ϕ|Ω = 0.

Proof. See Lemma 2.3 of [13].

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50), and let S be as in (11) with det(S) 6= 0. Let Ω = ΩS be as in (61), and
assume that Ω is non-empty. In Lemma 4.2.1 we noted that the subgroup B of
GL(2, F )×GO(X) acts on Ω. By identifying O(X) with 1×O(X) ⊂ GL(2, F )×
GO(X), we obtain an action of O(X) on Ω: this is given by h · (x1, x2) =
(hx1, hx2), where h ∈ O(X) and (x1, x2) ∈ Ω. This action is transitive. We
obtain an action of O(X) on S(Ω) by defining (h · ϕ)(x) = ϕ(h−1 · x) for
h ∈ O(X), ϕ ∈ S(Ω) and x ∈ Ω. This action is used in the next lemma.
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4.4.5 Lemma. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over
F satisfying (50), and let S be as in (11) with det(S) 6= 0. Let Ω = ΩS be
as in (61), and assume that Ω is non-empty. Let (σ0,W0) be an admissible
representation of O(X), and let M ′ : S(Ω) → W0 be a non-zero O(X) map.
Let z ∈ Ω. There exists a compact, open subset C of Ω containing z such that
if C0 is a compact, open subset of Ω such that z ∈ C0 ⊂ C, then M ′(fC0

) 6= 0.
Here, fC0

is the characteristic function of C0.

Proof. Let H be the subgroup of h ∈ O(X) such that hz = z. By 1.6 of
[3], the map H\O(X)

∼−→ Ω defined by Hh 7→ h−1z is a homeomorphism, so

that the map S(Ω) ∼−→ c-Ind
O(X)
H 1H that sends ϕ to the function f such that

f(h) = ϕ(h−1z) for h ∈ O(X) is an O(X) isomorphism. Via this isomorphism,

we may regard M ′ as defined on c-Ind
O(X)
H 1H , and it will suffice to prove that

that there exists a compact, open neighborhood C of the identity in O(X)
such that if C0 is a compact, open neighborhood of the identity in O(X) with
C0 ⊂ C, then M ′(fHC0

) 6= 0, where fHC0
is the characteristic function of

HC0. Since σ0 is admissible, by 2.15 of [3] we have (σ1)
∨ ∼= σ0 where σ1 = σ∨

0 .
Let W1 be the space of σ1. We may regard M ′ as a non-zero element of

HomO(X)(c-Ind
O(X)
H 1H , σ

∨
1 ). Now H and O(X) are unimodular since both are

orthogonal groups (H is isomorphic to O(U⊥), where U = Fz1+Fz2). By 2.29
of [3], there exists an element λ of HomH(σ1, 1H) such that M ′ is given by

M ′(f)(v) =

∫

H\O(X)

f(h)λ(σ1(h)v) dh

for f ∈ c-Ind
O(X)
H 1H and v ∈ W1. Since M ′ is non-zero, there exists v ∈ W1

such that λ(v) 6= 0. Let C be a compact, open neighborhood of 1 in O(X) such
that σ1(h)v = v for h ∈ C. Let C0 be a compact, open neighborhood of 1 in
O(X) such that C0 ⊂ C. Then

M ′(fHC0
)(v) =

∫

H\O(X)

fHC0
(h)λ(σ1(h)v) dh

=

∫

H\HC0

λ(σ1(h)v) dh

= vol(H\HC0)λ(v),

which is non-zero.

In the following theorem we mention the set E(z) of embeddings of T into
GSO(X); see (63), (67) and (69).

4.4.6 Theorem. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space
over F satisfying (50), and let S be as in (11) with det(S) 6= 0. Let A = AS ,
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T = TS , and L = LS be as in Sect. 2.3. If dimX = 4, assume that A is a field.
Let (π, V ) be an irreducible, admissible representation of GSp(4, F )+, and let
(σ,W ) be an irreducible, admissible representation of GO(X). Assume that
there is a non-zero R map M : S(X2) → π ⊗ σ. Let θ = θS and let Λ be a
character of T .

i) If HomN (π,Cθ) 6= 0, then Ω = ΩS is non-empty andD = TN is contained
in GSp(4, F )+.

ii) Assume that HomN (π,Cθ) 6= 0 so that Ω = ΩS is non-empty, and D =
TN ⊂ GSp(4, F )+ by i). Assume further that HomD(π,CΛ⊗θ) 6= 0. Let
z ∈ Ω, and τ ∈ E(z). There exists a non-zero vector w ∈ W such that

σ(τ(t))w = Λ−1(t)w

for t ∈ T .

Proof. i) The assumptions HomR(S(X2), V ⊗W ) 6= 0 and HomN (V,Cθ) 6= 0
imply that HomN(S(X2),Cθ) 6= 0. This means that S(X2)N,θ 6= 0; by Lemma
4.4.4, we obtain Ω 6= ∅. Lemma 4.4.2 now also yields that D ⊂ GSp(4, F )+.
ii) Let β be a non-zero element of HomD(π,CΛ⊗θ). We first claim that the
composition M ′

S(X2)
M−→ V ⊗W

β⊗id−→ CΛ⊗θ ⊗W

is non-zero. Let ϕ ∈ S(X2) be such that M(ϕ) 6= 0, and write

M(ϕ) =

t∑

ℓ=1

vℓ ⊗ wℓ

where v1, . . . , vt ∈ V and w1, . . . , wt ∈ W . We may assume that the vectors
w1, . . . , wt are linearly independent and that v1 6= 0. Since β is non-zero and
V is an irreducible representation of GSp(4, F )+, it follows that there exists
g ∈ GSp(4, F )+ such that β(π(g)v1) 6= 0. Let h ∈ GO(X) be such that
λ(h) = λ(g). Then (g, h) ∈ R. Since M is an R-map, we have

M(ω(g, h)ϕ) =
t∑

ℓ=1

π(g)vℓ ⊗ σ(h)wℓ.

Applying β ⊗ id to this equation, we get

M ′(ω(g, h)ϕ) =
t∑

ℓ=1

β(π(g)vℓ)⊗ σ(h)wℓ

in CΛ⊗θ ⊗W . Since the vectors σ(h)w1, . . . , σ(h)wt are also linearly indepen-
dent, and since β(π(g)v1) is non-zero, it follows that the vector M ′(ω(g, h)ϕ)
is non-zero; this proves M ′ 6= 0.
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Next, the map M ′ induces a non-zero map S(X2)N,θ → CΛ⊗θ ⊗ W , which
we also denote by M ′. Lemma 4.4.4 implies that the restriction map yields
an isomorphism S(X2)N,θ

∼−→ S(Ω). Composing, we thus obtain a non-zero
map S(Ω) → CΛ⊗θ ⊗ W , which we again denote by M ′. Let z ∈ Ω and
τ ∈ E(z). By Lemma 4.2.1, the elements ([ 1

1 ] t [ 1
1 ] , τ(t)) for t ∈ T act

on Ω. We can regard these elements as acting on S(Ω) via the definition(
([ 1

1 ] t [ 1
1 ] , τ(t))·ϕ

)
(x) = ϕ(([ 1

1 ] t [ 1
1 ] , τ(t))−1 ·x) for ϕ ∈ S(Ω) and x ∈ Ω.

Moreover, by the definition of M ′ and (80), we have

M ′(([ 1
1 ] t [ 1

1 ] , τ(t)) · ϕ) = (det(t), disc(X))FΛ(t)σ(τ(t))M
′(ϕ) (84)

for t ∈ T and ϕ ∈ S(Ω). Let C be the compact, open subset from Lemma 4.4.5
with respect to M ′ and z; note that the restriction of σ to O(X) is admissi-
ble. By Lemma 4.2.5 there exists a compact, open subset C0 of C containing
z such that ([ 1

1 ] t [ 1
1 ] , τ(t)) · C0 = C0 for t ∈ T . Let ϕ = fC0

. Then
([ 1

1 ] t [ 1
1 ] , τ(t)) · ϕ = ϕ for t ∈ T , and by Lemma 4.4.5, we have M ′(ϕ) 6=

0. From (84) we have σ(τ(t))M ′(ϕ) = (det(t), disc(X))FΛ(t)
−1M ′(ϕ) =

χL/F (NL/F (t))Λ(t)
−1M ′(ϕ) = Λ(t)−1M ′(ϕ) for t ∈ T . Since M ′(ϕ) 6= 0,

this proves ii).

Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear space over F satisfying
(50), and let S be as in (11) with det(S) 6= 0. If ΩS is non-empty and z =
(z1, z2) ∈ ΩS , then we let O(X)z be the subgroup of h ∈ O(X) such that
h(z1) = z1 and h(z2) = z2.

4.4.7 Proposition. Let (X, 〈·, ·〉) be a non-degenerate symmetric bilinear
space over F satisfying (50), and assume that dimX = 4. Let S be as in
(11) with det(S) 6= 0. Assume that ΩS is non-empty, and let z be in ΩS . Let
Π and σ be irreducible, admissible, supercuspidal representations of GSp(4, F )
and GO(X), respectively. If HomR(ω,Π ⊗ σ) 6= 0, then

dimΠN,θS = dimHomO(X)z (σ,C1). (85)

Proof. Assume that HomR(ω,Π ⊗ σ) 6= 0. By Proposition 3.3 of [27] the
restriction of σ to O(X) is multiplicity-free. By Lemma 4.2 of [24] we have
Π |Sp(4,F ) = Π1 ⊕ · · · ⊕ Πt, where Π1, . . . , Πt are mutually non-isomorphic,
irreducible, admissible representations of Sp(4, F ), σ|O(X) = σ1 ⊕ · · · ⊕ σt,
where σ1, . . . , σt are mutually non-isomorphic, irreducible, admissible repre-
sentations of O(X), with HomSp(4,F )×O(X)(ω,Πi ⊗ σi) 6= 0 for i ∈ {1, . . . , t}.
Let i ∈ {1, . . . , t}; to prove the proposition, it will suffice to prove that
(Πi)N,θS

∼= HomO(X)z(σi,C1) as complex vector spaces. By Lemma 6.1 of
[26], we have Θ(σi)N,θS

∼= HomO(X)z(σ
∨
i ,C1) as complex vector spaces. By

1) a) of the theorem on p. 69 of [14], the representation Θ(σi) of Sp(4, F )
is irreducible. By Theorem 2.1 of [12] we have Πi

∼= Θ(σi). Therefore,
(Πi)N,θS

∼= HomO(X)z(σ
∨
i ,C1). By the first theorem on p. 91 of [14], σ∨

i
∼= σi.

The proposition follows.
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4.5 Representations of GO(X)

Let m,λ ∈ F×. By Lemma 4.1.1, the group GSO(Xm,λ) is abelian. It follows
that the irreducible, admissible representations of GSO(Xm,λ) are characters.
To describe the representations of GO(Xm,λ), let µ : GSO(Xm,λ) → C

× be
a character. We recall that the map γ from (53) is a representative for the
non-trivial coset of GSO(Xm,λ) in GO(Xm,λ). Define µγ : GSO(Xm,λ) → C×

by µγ(x) = µ(γxγ−1). If µγ 6= µ, then the representation ind
GO(Xm,λ)

GSO(Xm,λ)
µ is

irreducible, and we define

µ+ = ind
GO(Xm,λ)

GSO(Xm,λ)
µ.

Assume that µ = µγ . Then the induced representation ind
GO(Xm,λ)

GSO(Xm,λ)
µ is re-

ducible, and is the direct sum of the two extensions of µ to GO(Xm,λ). We let
µ+ be the extension of µ to GO(Xm,λ) such that µ+(γ) = 1 and let µ− be the
extension of µ to GO(Xm,λ) such that µ−(γ) = −1. Every irreducible, admis-
sible representation of GO(Xm,λ) is of the form µ+ or µ− for some character
µ of GSO(Xm,λ). We will sometimes identify characters of GSO(Xm,λ) with
characters of T[ 1

−m

], via (54), and in turn identify characters of T[ 1
−m

]

with characters of L×, via (14). Here L is associated to m, as in Sect. 2.1, so
that L = F (

√
m) if m /∈ F×2, and L = F × F if m ∈ F×2.

Next, let (X, 〈·, ·〉) be either (XM2
, 〈·, ·〉M2

) or (XH , 〈·, ·〉H), as in (55) or (57).
If X = XM2

, set G = GL(2, F ), and if X = XH , set G = H×. Let h0
be the element of GO(X) that maps x to x∗; then h0 represents the non-
trivial coset of GSO(X) in GO(X). Let π1 and π2 be irreducible, admissible
representations of G with the same central character. Via the exact sequences
(58) and (59), the representations (π1, V1) and (π2, V2) define an irreducible,
admissible representation π1⊗π2 of GSO(X) which has space V1⊗V2 and action
given by the formula (π1 ⊗ π2)(ρ(g1, g2)) = π1(g1) ⊗ π2(g2) for g1, g2 ∈ G. If
π1 and π2 are not isomorphic, then π1 ⊗ π2 induces irreducibly to GO(X); we
denote this induced representation by (π1 ⊗ π2)

+. Assume that π1 and π2 are
isomorphic. In this case the representation π1 ⊗ π2 does not induce irreducibly
to GO(X), but instead has two extensions σ1 and σ2 to representations of
GO(X). Moreover, the space of linear forms on π1⊗π2 that are invariant under
the subgroup of GSO(X) of elements ρ(g, g∗−1) for g ∈ G is one-dimensional.
Let λ be a non-zero functional in this space. Then λ ◦ σi(h0) is another such
functional, so that λ◦σi(h0) = εiλ with {ε1, ε2} = {1,−1}. The representation
σi for which εi = 1 is denoted by (π1 ⊗ π2)

+, and the representation σj for
which εj = −1 is denoted by (π1 ⊗ π2)

−. See [26] for details.

4.5.1 Proposition. Let H be as in (56) and let XH be as in (57). Let S
be as in (72) with −c /∈ F×2; we may assume that i2 = −c, as in (74). Let
z = (z1, z2) be as in (75), so that z ∈ ΩS . Set L = F (

√−c). We have

dimHomO(XH)z (σ0,C1) = 1
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for the following families of irreducible, admissible representations σ0 of
GO(XH):

i) σ0 = (σ1H× ⊗ σχL/F )
+;

ii) σ0 = (σ1H× ⊗ σπJL)+.

Here, σ is a character of F×, and π is a supercuspidal, irreducible,
admissible representation of GL(2, F ) with trivial central character with
HomL×(πJL,C1) 6= 0.

Proof. We begin by describing O(XH)z. Define g1 : XH → XH by

g1(1) = 1, g1(i) = i, g1(j) = j, g1(k) = −k.

Evidently, g1 ∈ O(XH)z, moreover, det(g1) = −1. It follows that O(XH)z =
(SO(XH) ∩ O(XH)z) ⊔ (SO(XH) ∩ O(XH)z)g1. Using that z1 = 1, z2 = i,
and the fact that every element of SO(XH) is of the form ρ(h1, h2) for some
h1, h2 ∈ H×, a calculation shows that SO(XH) ∩ O(XH)z is {ρ(h∗−1, h) : h ∈
(F + Fi)× = L×}.
i) Since σ0|O(XH ) = (1H× ⊗ χL/F )

+, we may assume that σ = 1. A model for
σ0 is C⊕ C, with action defined by

σ0(ρ(h1, h2))(w1 ⊕ w2) = χL/F (N(h2))w1 ⊕ χL/F (N(h1))w2,

σ0(∗)(w1 ⊕ w2) = w2 ⊕ w1

for w1, w2 ∈ C and h1, h2 ∈ H×; here, ∗ is the canonical involution of H ,
regarded as an element of O(XH) with determinant −1. Using that g1 =
∗ ◦ ρ(k∗−1, k), we find that the restriction of σ0 to O(XH)z is given by

σ0(ρ(h
∗−1, h))(w1 ⊕ w2) = w1 ⊕ w2,

σ0(g1)(w1 ⊕ w2) = χL/F (N(k))(w2 ⊕ w1)

for w1, w2 ∈ C and h ∈ (F + Fi)× = L×. Therefore, σ0|O(XH )z is the direct
sum of the trivial character O(XH)z , and the non-trivial character of O(XH)z
that is trivial on SO(XH) ∩ O(XH)z and sends g1 to −1. This implies that
HomO(XH )z(σ0,C1) is one-dimensional.
ii) Again, we may assume that σ = 1. Let V be the space of πJL. As a model
for σ0 we take V ⊕ V with action of GO(XH) defined by

σ0(ρ(h1, h2))(v1 ⊕ v2) = πJL(h2)v1 ⊗ πJL(h1)v2,

σ0(∗)(v1 ⊕ v2) = v2 ⊕ v1

for h1, h2 ∈ H× and v1, v2 ∈ V . By hypothesis, HomL×(πJL,C1) 6= 0. This
space is one-dimensional; see Sect. 2.7. We have kLk−1 = L; in fact, conjuga-
tion by k on L is the non-trivial element of Gal(L/F ). Since HomL×(πJL,C1)
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is one-dimensional, there exists ε ∈ {±1} such that λ ◦ πJL(k) = ελ for
λ ∈ HomL×(πJL,C1). Define a map

HomL×(πJL,C1) −→ HomO(XH)z (σ0,C1)

by sending λ to Λ, where Λ is defined by Λ(v1 ⊕ v2) = λ(v1) + ελ(v2) for
v1, v2 ∈ V . A computation using the fact that g1 = ∗ ◦ ρ(k∗−1, k) shows that
this map is well defined. It is straightforward to verify that this map is injective
and surjective, so that

HomL×(πJL,C1) ∼= HomO(XH)z (σ0,C1).

Hence, HomO(XH )z(σ0,C1) is one-dimensional.

4.6 GO(X) and GSp(4, F )

In this section we will gather together some information about the theta
correspondence between GO(X) and GSp(4) when X is as in (50). When
dim(X) = 4, we recall in Theorem 4.6.3 some results from [7] and [8]. When
dim(X) = 2, we calculate two theta lifts, producing representations of type Vd
and IXb, in Proposition 4.6.2. This calculation uses P3-theory. We include this
material because, to the best of our knowledge, such a computation is absent
from the literature.

We let RQ be the group of elements of R of the form (

[
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗

]
, ∗). Let ZJ be

the group defined in (40).

4.6.1 Lemma. Let (X, 〈·, ·〉) be an even-dimensional symmetric bilinear space
satisfying (50); assume additionally that X is anisotropic. There is an isomor-
phism of complex vector spaces

T1 : S(X2)ZJ
∼−→ S(X) (86)

that is given by
T1

(
ϕ+ S(X2)(ZJ )

)
(x) = ϕ(x, 0)

for ϕ in S(X2) and x in X . The subgroup RQ of R acts on the quotient
S(X2)ZJ . Transferring this action to S(X) via T1, the formulas for the resulting
action are

(

[ t
a b
c d

λ(h)t−1

]

, h) · ϕ = |λ(h)|− dim(X)/4 (t,disc(X))F |t|dim(X)/2 ω1([ a b
c d ] , h)ϕ,

(87)

(

[ 1 x y z
1 y

1 −x
1

]

, 1) · ϕ = ϕ (88)

for ϕ in S(X), x, y and z in F , t in F×, and g =
[
a b
c d

]
in GL(2, F ) and h in

GO(X) with λ(h) = det(g).
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Proof. We first claim that

S(X2)(ZJ) = {ϕ ∈ S(X2) : ϕ(X × 0) = 0}. (89)

Let ϕ be in S(X2)(ZJ). By the lemma in 2.33 of [3] there exists a positive
integer n so that ∫

p−n

ω(

[
1 b
1
1
1

]
, 1)ϕdb = 0. (90)

Evaluating at (x, 0) and using (79) shows that ϕ(X × 0) = 0. Conversely,
assume that ϕ is contained in the right hand side of (89). For any integer k let

Lk = {x ∈ X : 〈x, x〉 ∈ p
k}. (91)

It is known that Lk is a lattice, i.e., it is a compact and open o submodule of
X ; see the proof of Theorem 91:1 of [18]. Any lattice is free of rank dimX as
an o module. Since ϕ(X × 0) = 0, there exists a positive integer n such that
ϕ(X ×Ln) = 0. We claim that (90) holds. Let x1 and x2 be in X . Evaluating
(90) at (x1, x2) gives

( ∫

p−n

ψ(b〈x2, x2〉) db
)
ϕ(x1, x2).

This is zero if x2 is in Ln because ϕ(X × Ln) = 0. Assume that x2 is not in
Ln. By the definition of Ln, we have 〈x2, x2〉 /∈ pn. This implies that

∫

p−n

ψ(b〈x2, x2〉) db = 0,

proving our claim. This completes the proof of (89).
Using (89), it is easy to verify that the map T1 is an isomorphism of vector
spaces. Equation (87) follows from Lemma 4.4.3, and equation (88) follows
from (79) and (80).

4.6.2 Proposition. Let m ∈ F×, and let (Xm,1, 〈·, ·〉m,1) be as (52). Assume
that m /∈ F×2, so that Xm,1 is anisotropic. Let E = F (

√
m), and identify char-

acters of GSO(Xm,1) and characters of E× via (14) and (54). Let χE/F be the
quadratic character associated to E. Let Π be an irreducible, admissible rep-
resentation of GSp(4, F ), and let σ be an irreducible, admissible representation
of GO(Xm,1).

i) Assume that σ = µ+ with µ = µ ◦ γ, so that µ = α ◦ NE/F for a
character α of F×. Then HomR(ω,Π

∨ ⊗ σ) 6= 0 if and only if Π =
L(νχE/F , χE/F ⋊ ν−1/2α) (type Vd).
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ii) Assume that σ = µ+ = ind
GO(Xm,1)

GSO(Xm,1)
(µ) with µ 6= µ ◦ γ. Then

HomR(ω,Π
∨ ⊗ σ) 6= 0 if and only if Π = L(νχE/F , ν

−1/2π(µ)) (type
IXb). Here, π(µ) is the supercuspidal, irreducible, admissible representa-
tion of GL(2, F ) associated to µ.

Proof. Let (σ,W ) be as in i) or ii). In the case of i), set π(µ) = α × αχE/F .
Then HomR1

(ω1, π(µ)
∨⊗σ) 6= 0, and π(µ) is the unique irreducible, admissible

representation of GL(2, F ) with this property, by Theorem 4.6 of [11].
Let (Π ′, V ) be an irreducible, admissible representation of GSp(4, F ) such that
HomR(ω,Π

′ ⊗ σ) 6= 0. Let T be a non-zero element of this space. The non-
vanishing of T implies that the central characters of Π ′ and σ satisfy

ωΠ′ = ω−1
σ = (µ|F×)−1. (92)

We first claim that V is non-supercuspidal. By reasoning as in [9], there exist
λ1, . . . , λt in F

× and an irreducible Sp(4, F ) subspace V0 of V such that

V = V1 ⊕ · · · ⊕ Vt,

where

V1 = π(

[ 1
1
λ1

λ1

]
)V0 , . . . , Vt = π(

[ 1
1
λt

λt

]
)V0. (93)

Similarly, there exist irreducible O(X) subspaces W1, . . . ,Wr of W such that

W =W1 ⊕ · · · ⊕Wr .

There exists an i and a j such that HomSp(4,F )×O(X)(ω, Vi⊗Wj) 6= 0. As in the
proof of Lemma 4.2 of [24], there is an irreducible constituent U1 of π(µ)∨ such
that HomO(X)(ω1, U1 ⊗Wj) 6= 0. By Theorem 4.4 of [25], the representation
Vi is non-supercuspidal, so that V is non-supercuspidal.
Since V is non-supercuspidal, we have VZJ 6= 0 by Tables A.5 and A.6
of [28] (see the comment after Theorem 3.2.1). We claim next that
HomRQ(S(X2)ZJ , VZJ ⊗W ) 6= 0. It follows from (93) that (Vi)ZJ 6= 0. Let
pi : V → Vi and qj : W → Wj be the projections. These maps are Sp(4, F )
and O(X) maps, respectively. The composition

S(X2)
T−→ V ⊗W

pi⊗qj−→ Vi ⊗Wj −→ (Vi)ZJ ⊗Wj

is non-zero and surjective; note that Vi⊗Wj is irreducible. The commutativity
of the diagram

S(X2)
T−−−−→ V ⊗W

pi⊗qj−−−−→ Vi ⊗Wjy
y

VZJ ⊗W
pi⊗qj−−−−→ (Vi)ZJ ⊗Wj
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implies our claim that HomRQ(S(X2)ZJ , VZJ ⊗W ) 6= 0.
Let RQ̄ be the subgroup of RQ consisting of the elements of the form

(

[
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

]
, ∗). Let RP3

be the subgroup of P3 × GO(X) consisting of the ele-

ments of the form (
[
a b x
c d y

1

]
, h), ad−bc = λ(h). There is a homomorphism from

RQ̄ to RP3
given by

(

[ ∗ ∗ ∗ ∗
a b x
c d y

1

]
, h) 7→ (

[
a b x
c d y

1

]
, h)

for
[
a b
c d

]
in GL(2, F ), x and y in F , and h in GO(X) with ad− bc = λ(h). We

consider ZJ a subgroup of RQ̄ via z 7→ (z, 1). The above homomorphism then

induces an isomorphism RQ̄/Z
J ∼= RP3

.

We restrict the RQ modules S(X2)ZJ and VZJ ⊗W to RQ̄. The subgroup ZJ

of RQ̄ acts trivially, so that these spaces may be viewed as RP3
modules.

Let χ be a character of F×. We assert that

HomRP3
(S(X2)ZJ , τP3

GL(0)(1)⊗ σ) = 0, (94)

HomRP3
(S(X2)ZJ , τP3

GL(1)(χ)⊗ σ) = 0. (95)

Let τ be τP3

GL(0)(1) or τP3

GL(1)(χ). Assume that (94) or (95) is non-zero; we

will obtain a contradiction. Let S be a non-zero element of (94) or (95).
Since S is non-zero, there exists ϕ in S(X2)ZJ such that S(ϕ) is non-zero.
Write S(ϕ) =

∑t
i=1 fi ⊗ wi for some f1, . . . , ft in the standard space of τ and

w1, . . . , wt in W . The elements f1, . . . , ft are functions from P3 to C such that

fi(
[
1 x
1 y
1

]
p) = ψ(y)fi(p)

for x and y in F , p in P3, and i = 1, . . . , t. We may assume that the vectors
w1, . . . , wt are linearly independent, and that there exists p in P3 such that
f1(p) is non-zero. Using the transformation properties of S and f1, we may

assume that p =
[
a

1
1

]
. Let λ : σ → C be a linear functional such that

λ(w1) = 1 and λ(w2) = · · · = λ(wt) = 0, and let e : τ → C be the linear
functional that sends f to f(p). The composition (e⊗ λ) ◦ S is non-zero on ϕ.
On the other hand, using (88), for y in F we have

(
(e ⊗ λ) ◦ S

)
((
[
1
1 y
1

]
, 1)ϕ) = (e⊗ λ)

(
(
[
1
1 y
1

]
, 1) · S(ϕ)

)
,

(
(e ⊗ λ) ◦ S

)
(ϕ) = (e⊗ λ)

(
(
[
1
1 y
1

]
, 1) ·

t∑

i=1

fi ⊗ wi
)

=

t∑

i=1

fi(p
[
1
1 y
1

]
)λ(wi)

= ψ(y)f1(p),
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(
(e ⊗ λ) ◦ S

)
(ϕ) = ψ(y)

(
(e ⊗ λ) ◦ S

)
(ϕ).

This is a contradiction since
(
(e ⊗ λ) ◦ S

)
(ϕ) is non-zero, and there exist y in

F such that ψ(y) 6= 1. This concludes the proof of (94) and (95).

It follows from (94), (95) and the non-vanishing of HomRP3
(S(X2)ZJ , VZJ ⊗W )

that there exists an irreducible, admissible representation ρ of GL(2, F )
that occurs in the P3 filtration of VZJ (see Theorem 3.2.1) such that
HomRP3

(S(X2)ZJ , τP3

GL(2)(ρ) ⊗ W ) 6= 0. It follows from (87) that

HomR1
(ω1, ν

−1/2χE/F ρ ⊗ σ) 6= 0. By the uniqueness stated in the first
paragraph of this proof, it follows that

ρ = ν1/2χE/F π(µ)
∨. (96)

As a consequence, ωρ = ν(µ|F×)−1χE/F . Together with (92), it follows that

ωΠ′ = χE/F ν
−1ωρ. (97)

Going through Table A.5 of [28], we see that only the Π ′ = Π∨ with Π as
asserted in i) and ii) satisfy both (96) and (97). (Observe the remark made
after Theorem 3.2.1.)

Conversely, assume thatΠ is as in i) or ii). Since HomR1
(ω1, π(µ)

∨⊗σ) 6= 0, we
have HomO(X)(S(X2), σ) 6= 0 by, for example, Remarque b) on p. 67 of [14].
Arguing as in Theorem 4.4 of [24], there exists some irreducible, admissible
representation Π ′ of GSp(4, F ) such that HomR(ω,Π

′ ⊗ σ) 6= 0. By what we
proved above, Π ′ = Π∨. This concludes the proof.

4.6.3 Theorem. ([7],[8]) Let (X, 〈·, ·〉) be either (XM2
, 〈·, ·〉M2

) or
(XH , 〈·, ·〉H), as in (55) or (57). If X = XM2

, set G = GL(2, F ), and if
X = XH , set G = H×. Let Π be an irreducible, admissible representation of
GSp(4, F ), and let π1 and π2 be irreducible, admissible representations of G
with the same central character. We have

HomR(ω,Π
∨ ⊗ (π1 ⊗ π2)

+) 6= 0
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for Π , π1 and π2 as in the following table:

type of Π Π π1 π2

I χ1 × χ2 ⋊ σ σχ1χ2 × σ σχ1 × σχ2

II a χStGL(2) ⋊ σ σχ2 × σ σχStGL(2)

b χ1GL(2) ⋊ σ σχ2 × σ σχ1GL(2)

III b χ⋊ σ1GSp(2) σχν1/2 × σν−1/2 σχν−1/2 × σν1/2

IV c L(ν3/2StGL(2), ν
−3/2σ) σν3/2 × σν−3/2 σStGL(2)

d σ1GSp(4) σν3/2 × σν−3/2 σ1GL(2)

V a δ([ξ, νξ], ν−1/2σ) σStGL(2) σξStGL(2)

a∗ δ∗([ξ, νξ], ν−1/2σ) σ1H× σξ1H×

b L(ν1/2ξStGL(2), ν
−1/2σ) σ1GL(2) σξStGL(2)

d L(νξ ⋊ ν−1/2σ) σ1GL(2) σξ1GL(2)

VI a τ(S, ν−1/2σ) σStGL(2) σStGL(2)

b τ(T, ν−1/2σ) σ1H× σ1H×

c L(ν1/2StGL(2), ν
−1/2σ) σ1GL(2) σStGL(2)

d L(ν, 1F× ⋊ ν−1/2σ) σ1GL(2) σ1GL(2)

VIII a τ(S, π) π π

b τ(T, π) πJL πJL

X π ⋊ σ σωπ × σ π

XI a δ(ν1/2π, ν−1/2σ) σStGL(2) σπ

a∗ δ∗(ν1/2π, ν−1/2σ) σ1H× σπJL

b L(ν1/2π, ν−1/2σ) σ1GL(2) σπ

The notation πJL in the table denotes the Jacquet-Langlands lifting of the
supercuspidal representation π of GL(2, F ) to a representation of H×. See
Sect. 4.5 for the definitions of the + representation.

4.7 Applications

We now apply Theorem 4.4.6 along with knowledge of the theta correspon-
dences of the previous section to obtain results about Bessel functionals.

4.7.1 Corollary. Let (X, 〈·, ·〉) be either (XM2
, 〈·, ·〉M2

) or (XH , 〈·, ·〉H), as
in (55) or (57). If X = XM2

, set G = GL(2, F ), and if X = XH , set G = H×.
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Let Π be an irreducible, admissible representation of GSp(4, F ), and let π1
and π2 be irreducible, admissible representations of G with the same central
character. Assume that

HomR(ω,Π
∨ ⊗ (π1 ⊗ π2)

+) 6= 0

and that Π has a non-split (Λ, θ)-Bessel functional with θ = θS . Then

HomT (π1,CΛ) 6= 0 and HomT (π2,CΛ) 6= 0

where T = TS .

Proof. The assumption that the Bessel functional is non-split means that
A = AS is a field. By Sect. 2.2 and Sect. 2.5 we may assume that S has
the diagonal form (72). By (19), the contragredient Π∨ has a ((Λ ◦ γ)−1, θ)-
Bessel functional. The assertion follows now from Theorem 4.4.6, the explicit
embeddings in (73) and (76), and the relation (31).

4.7.2 Corollary. Let (Π,V ) be an irreducible, admissible representation of
GSp(4, F ). If Π is one of the representations in the following table, then
Π admits a non-zero (Λ, θ)-Bessel functional β if and only if the quadratic
extension L associated to β, and Λ, regarded as a character of L×, are as
specified in the table.

type of Π Π L Λ

Va∗ δ∗([χE/F , νχE/F ], ν
−1/2α) E α ◦ NE/F

Vd L(νχE/F , χE/F ⋊ ν−1/2α) E α ◦ NE/F

IXb L(νχE/F , ν
−1/2π(µ)) E µ and the Galois conjugate of µ

Proof. First we consider the Va∗ case. Let Π = δ∗([χE/F , νχE/F ], ν
−1/2α).

By Theorem 4.6.3,

HomR(ω,Π
∨ ⊗ (α1H× ⊗ αχE/F 1H×)+) 6= 0.

First, assume that Π admits a non-zero (Λ, θ)-Bessel functional, and let L be
the quadratic extension associated to this Bessel functional; we will prove that
E = L and that Λ = α◦NE/F . By v) of Proposition 3.5.1, this Bessel functional
is non-split. It follows from Corollary 4.7.1 that

α(NL/F (t)) = Λ(t) and (χE/Fα)(NL/F (t)) = Λ(t)

for t in T = L×. It follows that E = L, and that Λ = α ◦NE/F .
Finally, we prove that Va∗ admits a Bessel functional as specified in the state-
ment of the corollary. By Theorem 6.1.4 below, Va∗ admits some non-zero
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Bessel functional. The previous paragraph proves that this Bessel functional
must be as described in the statement of the corollary.

The arguments for the cases Vd and IXb are similar; we will only consider
the case of type IXb. Let Π = L(νχE/F , ν

−1/2π(µ)), where E is a quadratic
extension of F , χE/F is the quadratic character associated to E/F , µ is a
character of E× that is not Galois invariant, and π(µ) is the supercuspidal,
irreducible, admissible representation of GL(2, F ) associated to µ.

First, assume that Π admits a non-zero (Λ, θ)-Bessel functional, and let L be
the quadratic extension associated to this Bessel functional; we will prove that
E = L, and that Λ is µ or the Galois conjugate of µ. Let S define θ, as in
(15). By (19), Π∨ admits a non-zero ((Λ ◦ γ)−1, θ) Bessel functional β. Write
E = F (

√
m) for some m ∈ F×. By Proposition 4.6.2 we have HomR(ω,Π

∨ ⊗
µ+) 6= 0 with µ+ as in this proposition. The involved symmetric bilinear space
is (Xm,1, 〈·, ·〉m,1). Let GSp(4, F )+ be defined with respect to (Xm,1, 〈·, ·〉m,1)
as in (77). By Lemma 4.4.1 the index of GSp(4, F )+ in GSp(4, F ) is two.
By Lemma 2.1 of [9], the restriction of Π∨ to GSp(4, F )+ is irreducible or
the direct sum of two non-isomorphic irreducible, admissible representations
of GSp(4, F )+; the non-vanishing of HomR(ω,Π

∨ ⊗ µ+) and Lemma 4.1 of
[27] (with m = 2 and n = 2) imply that V ∨ = V1 ⊕ V2 with V1 and V2
irreducible GSp(4, F )+ subspaces of V . Moreover, for each i ∈ {1, 2}, there
exists λi ∈ F× such that Π(

[
1
λi

]
)V1 = Vi. Since HomR(ω, V

∨ ⊗ µ+) is non-
zero, we may assume, after possibly renumbering, that HomR(ω, V1 ⊗ µ+) is
non-zero. There exists i ∈ {1, 2} such that the restriction of β to Vi is non-zero.

Let β′ =
[
1
λ−1

i

]
·β. From Sect. 2.5 it follows that β′ is a ((Λ ◦ γ)−1, θ′) Bessel

functional on Π∨ with θ′ defined by S′ = λ−1
i S; also, the restriction of β′ to V1

is non-zero. We will now apply Theorem 4.4.6, with S′ and V1 playing the roles
of S and π, respectively. By i) of this theorem we have that ΩS′ is non-empty;
since S and S′ have the same discriminant, Lemma 4.3.1 implies that L = E.
Let z ∈ ΩS′ and τ ∈ E(z). By ii) of Theorem 4.4.6, there exists a non-zero
vector w in the space of µ+ such that µ+(τ(t))w = (Λ ◦ γ)(t)w for t ∈ TS′ .
By Lemma 4.3.1 again, this implies that µ+(ρ(x))w = Λ(x)w for x ∈ L×, or
µ+(ρ(γ(x)))w = Λ(x)w for x ∈ L×. Since w 6= 0, the definition of µ+ now
implies that Λ = µ or µ ◦ γ, as desired.
Finally, we prove that Π admits Bessel functionals as specified in the statement
of the corollary. By Theorem 6.1.4 below, Π admits some non-zero Bessel
functional. The previous paragraph proves that this Bessel functional must
be as described in the statement of the corollary, and (29) implies that the Π
admits both of the asserted Bessel functionals.

The following result will imply uniqueness of Bessel functionals for representa-
tions of type Va∗ and XIa∗.

4.7.3 Corollary. Let σ be a character of F×. Let c ∈ F× with −c /∈ F×2.
Let S be as in (72) and set L = F (

√−c).
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i) If ξ = χL/F , then dim δ∗([ξ, νξ], ν−1/2σ)N,θS = 1.

ii) If π is an irreducible, admissible, supercuspidal representation ofGL(2, F )
with trivial central character such that HomL×(πJL,C1) 6= 0, then
dim δ∗(ν1/2π, ν−1/2σ)N,θS = 1.

Proof. This follows from Proposition 4.4.7, Theorem 4.6.3, and Proposition
4.5.1; note that Π∨|N ∼= Π |N for irreducible, admissible representations Π of
GSp(4, F ) because Π∨ ∼= ω−1

Π Π .

5 Twisted Jacquet modules of induced representations

Let (π, V ) be an irreducible, admissible representation of GSp(4, F ). In view
of the isomorphism (20), understanding the possible Bessel functionals of π is
equivalent to understanding the twisted Jacquet modules VN,θ as T -modules. In
this section, we will calculate the twisted Jacquet modules for representations
induced from the Siegel and Klingen parabolic subgroup. This information
will be used to determine the possible Bessel functionals for many of the non-
supercuspidal representations of GSp(4, F ); see Sect. 6.2.
The results of this section are similar to Proposition 2.1 and 2.3 of [23]. How-
ever, we prefer to redo the arguments, as those in [23] contain some inaccuracies.

5.1 Two useful lemmas

For a positive integer n let S(Fn) be the Schwartz space of Fn, meaning the
space of locally constant, compactly supported functions Fn → C. As before,
ψ is our fixed non-trivial character of F .
Let V be a complex vector space. Let S(F, V ) be the space of compactly sup-
ported, locally constant functions from F to V . There is a canonical isomor-
phism S(F, V ) ∼= S(F )⊗ V . The functional on S(F ) given by f 7→

∫
F f(x) dx

gives rise to a linear map S(F ) ⊗ V → V , and hence to a linear map
S(F, V ) → V . We write this map as an integral

f 7−→
∫

F

f(x) dx.

The following lemma will be frequently used when we calculate Jacquet modules
in the subsequent sections.

5.1.1 Lemma. Let ρ denote the action of F on S(F, V ) by translation, i.e.,
(ρ(x)f)(y) = f(x + y). Let ρ′ be the action of F on S(F, V ) given by
(ρ′(x)f)(y) = ψ(xy)f(y).

i) The map f 7→
∫
F f(x) dx induces an isomorphism

S(F, V )/〈f − ρ(x)f : x ∈ F 〉 ∼= V.
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ii) The map f 7→
∫
F
ψ(−x)f(x) dx induces an isomorphism

S(F, V )/〈ψ(x)f − ρ(x)f : x ∈ F 〉 ∼= V.

iii) The map f 7→ f(0) induces an isomorphism

S(F, V )/〈f − ρ′(x)f : x ∈ F 〉 ∼= V.

Proof. By the Proposition in 1.18 of [3], every translation-invariant functional
on S(F ) is a multiple of the Haar measure f 7→

∫
F
f(x) dx. This proves i) in

the case where V = C. The general case follows from this case by tensoring
the exact sequence

0 −→ 〈f − ρ(x)f : x ∈ F, f ∈ S(F )〉 −→ S(F ) −→ C −→ 0

by V . Under the isomorphism S(F )⊗V ∼= S(F, V ), the space 〈f −ρ(x)f : x ∈
F, f ∈ S(F )〉 ⊗ V maps onto 〈f − ρ(x)f : x ∈ F, f ∈ S(F, V )〉.
To prove ii), observe that there is an isomorphism

S(F, V )/〈f − ρ(x)f : x ∈ F, f ∈ S(F, V )〉
−→ S(F, V )/〈ψ(x)f − ρ(x)f : x ∈ F, f ∈ S(F, V )〉

induced by the map f 7→ f ′, where f ′(x) = ψ(x)f(x). Hence ii) follows from

i). Finally, iii) also follows from i), since the Fourier transform f 7→ f̂ , where

f̂(y) =

∫

F

ψ(−uy)f(u) du,

intertwines the actions ρ and ρ′ of F on S(F, V ).

5.1.2 Lemma. Let G be an l-group, as in [3], and let H1 and H2 be closed sub-
groups of G. Assume that G = H1H2, and that for every compact subset K of
G, there exists a compact subset K2 of H2 such that K ⊂ H1K2. Let (ρ, V ) be
a smooth representation of H1. The map r : c-IndGH1

ρ→ c-IndH2

H1∩H2
(ρ|H1∩H2

)
defined by restriction of functions is a well-defined isomorphism of representa-
tions of H2.

Proof. This follows from straightforward verifications.

5.2 Siegel induced representations

Let π be an admissible representation of GL(2, F ), let σ be a character of F×,
and let π⋊σ be as defined in Sect. 1.2; see (9). In this section we will calculate
the twisted Jacquet modules (π ⋊ σ)N,θ for any non-degenerate character θ of
N as a module of T . Lemma 5.2.2 below corrects an inaccuracy in Proposition
2.1 of [23]. Namely, Proposition 2.1 of [23] does not include ii) of our lemma.
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5.2.1 Lemma. Let σ be a character of F×, and π an admissible representation
of GL(2, F ). Let I be the standard space of the Siegel induced representation
π ⋊ σ. There is a filtration of P -modules

I3 = 0 ⊂ I2 ⊂ I1 ⊂ I0 = I.

with the quotients given as follows.

i) I0/I1 = σ0, where

σ0(
[
A ∗
cA′

]
) = σ(c) |c−1 det(A)|3/2 π(A)

for A in GL(2, F ) and c in F×.

ii) I1/I2 = c-IndP[ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗

]σ1, where

σ1(

[
t ∗ y ∗
a ∗
d ∗
adt−1

]
) = σ(ad) |a−1t|3/2 π(

[
t y
d

]
)

for y in F and a, d, t in F×.

iii) I2/I3 = c-IndP[ ∗ ∗
∗ ∗

∗ ∗
∗ ∗

]σ2, where

σ2(
[
A
cA′

]
) = σ(c) |c det(A)−1|3/2 π(cA′)

for A in GL(2, F ) and c in F×.

Proof. This follows by going through the procedure of Sections 6.2 and 6.3 of
[5].

5.2.2 Lemma. Let σ be a character of F×, and let (π, V ) be an admissible
representation of GL(2, F ). We assume that π admits a central character ωπ.
Let I be the standard space of the Siegel induced representation π ⋊ σ. Let θ
be the character of N defined in (15). Assume that θ is non-degenerate. Let L
be the quadratic extension associated to S as in Sect. 2.3.

i) Assume that L is a field. Then IN,θ ∼= V with the action of T given
by σωππ

′. Here, π′ is the representation of GL(2, F ) on V given by
π′(g) = π(g′). In particular, if π is irreducible, then the action of T is
given by σπ.

ii) Assume that L is not a field; we may arrange that S =
[

1/2
1/2

]
. Then

there is a filtration
0 ⊂ J2 ⊂ J1 = IN,θ,

with vector space isomorphisms:
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• J1/J2 ∼= V[ 1 ∗
1 ],ψ

⊕ V[ 1 ∗
1 ],ψ

,

• J2 ∼= V .

The action of T = TS is given as follows,

diag(a, b, a, b)(v1 ⊕ v2) =
∣∣∣a
b

∣∣∣
1/2

σ(ab)ωπ(a)v1 ⊕
∣∣∣a
b

∣∣∣
−1/2

σ(ab)ωπ(b)v2,

diag(a, b, a, b)v = σ(ab)π([ a b ])v,

for a, b ∈ F×, v1 ⊕ v2 ∈ J1/J2 ∼= V[ 1 ∗
1 ],ψ

⊕ V[ 1 ∗
1 ],ψ

, and v ∈ J2. In

particular, if π is one-dimensional, then IN,θ ∼= V , with the action of T
given by diag(a, b, a, b)v = σ(ab)π([ a b ])v.

Proof. We may assume that b = 0. Since det(S) 6= 0 we have a 6= 0 and
c 6= 0. We use the notation of Lemma 5.2.1. We calculate the twisted Jacquet
modules (Ii/Ii+1)N,θ for i ∈ {0, 1, 2}. Since the action of N on I0/I1 is trivial
and θ is non-trivial, we have (I0/I1)N,θ = 0.

We consider the quotient I1/I2 = c-IndPHσ1, where

H =

[
∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗

]
,

and with σ1 as in ii) of Lemma 5.2.1. We first show that for each function f in
the standard model of this representation, the function f◦ : F → V , given by

f◦(w) = f(

[
1
1 w

1
1

]
),

has compact support. Let K be a compact subset of P such that the support
of f is contained in HK. If

[
1
1 w

1
1

]
=

[
t ∗ y ∗
a ∗
d ∗
adt−1

] [ k1 k2 x1 x2

k3 k4 x3 x4

k5 k6
k7 k8

]
,

with the rightmost matrix being in K, then calculations show that k3 = k7 = 0
and w = k−1

4 x3. Since k
−1
4 and x3 vary in bounded subsets, w is confined to a

compact subset of F . This proves our assertion that f◦ has compact support.
Next, for each function f in the standard model of c-IndPHσ1, consider the
function f̃ : F 2 → V given by

f̃(u,w) = f(

[
1
u 1 w

1
−u 1

]
)

for u,w in F . LetW be the space of all such functions f̃ . Since the map f 7→ f̃
is injective, we get a vector space isomorphism c-IndPHσ1

∼= W . In this new
model, the action of N is given by

(

[ 1 y z
1 x y
1

1

]
f̃)(u,w) = π(

[
1 y+uz

1

]
)f̃(u,w + x+ 2uy + u2z) (98)
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for x, y, z, u, w in F .
We claim that W contains S(F 2, V ). Since W is translation invariant, it is
enough to prove that W contains the function

fN,v(u,w) =

{
v if u,w ∈ pN ,

0 if u /∈ pN or w /∈ pN ,

for any v in V and any positive integer N . Again by translation invariance, we
may assume that N is large enough so that

σ1(h)v = v for h ∈ H ∩ ΓN , (99)

where

ΓN =




1+p
N

p
N

p
N

p
N

p
N 1+p

N
p
N

p
N

1+p
N

p
N

p
N 1+p

N


 ∩ P. (100)

Define f : P → V by

f(g) =

{
σ1(h)v if g = hk with h ∈ H, k ∈ ΓN ,

0 g /∈ HΓN .

Then, by (99), f is a well-defined element of c-IndQHσ1. It is easy to verify that

f̃ = fN,v. This proves our claim that W contains S(F 2, V ).
Now consider the map

W −→ S(F, V ), f̃ 7−→
(
w 7→ f(

[
1
1 w

1
1

]
s1)

)
, (101)

where s1 is defined in (7). This map is well-defined, since the function on
the right is (s1f)

◦, which we showed above has compact support. Similar
considerations as above show that the map (101) is surjective.
We claim that the kernel of (101) is S(F 2, V ). First suppose that f̃ lies in the
kernel; we have to show that f̃ has compact support. Choose N large enough
so that f is right invariant under ΓN . Then, for u not in p−N and w in F ,

f̃(u,w) = f(

[
1
u 1 w

1
−u 1

]
)

= f(

[
1
1 w

1
1

][
1 u−1

1
1 −u−1

1

][
−u−1

u
u−1

−u

]
s1

[
1 u−1

1
1 −u−1

1

]
)

= f(

[
1 u−1

1
1 −u−1

1

][
1 −u−1w u−2w
1 w −u−1w

1
1

][
−u−1

u
u−1

−u

]
s1)

= π(
[
1 −u−1w

1

]
)f(

[
1
1 w

1
1

] [
−u−1

u
u−1

−u

]
s1)
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= π(
[
1 w2u−1

1

]
)f(

[
1 −w

1
1 w

1

] [ 1
−u−1

−u
1

]
s2)

= π(
[
1 −u−1w

1

]
)f(

[
−u−1

u
u−1

−u

][
1
1 u−2w

1
1

]
s1)

= |u|−3π(
[
−u−1 −u−2w

u−1

]
)f(

[
1
1 u−2w

1
1

]
s1).

This last expression is zero by assumption. For fixed u in p−N , the function
f̃(u, ·) has compact support; this follows because each f◦ has compact support.
Combining these facts shows that f̃ has compact support. Conversely, assume
f̃ is in S(F 2, V ). Then we can find a large enoughN such that if u has valuation
−N , the function f̃(u, ·) is zero. Looking at the above calculation, we see that,
for fixed such u,

f(

[
1
1 u−2w

1
1

]
s1) = 0

for all w in F . This shows that f̃ is in the kernel of the map (101), completing
the proof of our claim about this kernel. We now have an exact sequence

0 −→ S(F 2, V ) −→W −→ S(F, V ) −→ 0. (102)

Note that the space S(F 2, V ) is invariant under the action (98) of N . A
calculation shows that the action of N on S(F, V ) is given by

(

[ 1 y z
1 x y

1
1

]
f)(w) = π(

[
1 y
1

]
)f(w + z) (103)

for x, y, z, w in F and f in S(F, V ). Since the action of x is trivial and a 6= 0,
it follows that S(F, V )N,θ = 0. Hence, by (102), we have WN,θ

∼= S(F 2, V )N,θ.
We will compute the Jacquet module S(F 2, V )N,θ in stages. The action of N

on S(F 2, V ) is given by (98). By ii) of Lemma 5.1.1, the map f̃ 7→ f ′, where
f ′ : F → V is given by

f ′(u) =

∫

F

ψa(−u)f̃(u,w) dw,

defines a vector space isomorphism

W[ 1
1 ∗
1
1

]

,ψa

∼−→ S(F, V ).

The transfer of the action of the remaining group

[
1 ∗ ∗
1 ∗
1
1

]
to S(F, V ) is given

by

(

[ 1 y z
1 y
1

1

]
f)(u) = ψ(a(2uy + u2z))π(

[
1 y+uz

1

]
)f(u)
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for u, y, z ∈ F and f ∈ S(F, V ). The subspace S(F×, V ) of elements f of
S(F, V ) such that f(0) = 0 is preserved under this action, so that we have an
exact sequence

0 −→ S(F×, V ) −→ S(F, V ) −→ S(F, V )/S(F×, V ) −→ 0 (104)

of representations of the group

[
1 ∗ ∗
1 ∗
1
1

]
. There is an isomorphism of vector

spaces S(F, V )/S(F×, V )
∼−→ V that sends f to f(0). The transfer of the

action of the group

[
1 ∗ ∗
1 ∗
1
1

]
to V is given by

[ 1 y z
1 y
1

1

]
v = π(

[
1 y
1

]
)v (105)

for y, z ∈ F and v ∈ V . The non-vanishing of c and (105) imply that

(S(F, V )/S(F×, V ))[ 1 ∗
1
1
1

]

,ψc

= 0.

Therefore, (
S(F, V )/S(F×, V )

)
[ 1 ∗ ∗

1 ∗
1
1

]

,θ

= 0.

Next, we define a vector space isomorphism of S(F×, V ) with itself and then
transfer the action. For f in S(F×, V ), set f̃(u) = π([ u 1 ])f(u) for u in F×.
The map defined by f 7→ f̃ is an automorphism of vector spaces. The transfer

of the action of

[
1 ∗ ∗
1 ∗
1
1

]
is given by

(

[ 1 y z
1 y
1
1

]
f)(u) = ψ(a(2uy + u2z))π(

[
1 uy+u2z

1

]
)f(u)

for f ∈ S(F×, V ), y, z ∈ F , and u ∈ F×. Now define a linear map

p : S(F×, V ) −→ S(F×, V[ 1 ∗
1 ],ψ

−2a)

by composing the elements of S(F×, V ) with the natural projection from V to
V[ 1 ∗

1 ],ψ
−2a = V/V ([ 1 ∗

1 ] , ψ
−2a). The map p is surjective. Let f be in S(F×, V ).

Since f has compact support and is locally constant, we see that f is in the
kernel of p if and only if

there exists l > 0 such that

∫

p−l

ψ(2ay)π(
[
1 y
1

]
)f(u) dy = 0 for all u ∈ F×.

(106)
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Also, f is in S(F×, V )(

[
1 ∗
1 ∗
1
1

]
) if and only if

there exists k > 0 such that

∫

p−k

ψ(2auy)π(
[
1 uy

1

]
)f(u) dy = 0 for all u ∈ F×.

(107)
Since f is locally constant and compactly supported the conditions (106) and
(107) are equivalent. It follows that p induces an isomorphism of vector spaces:

S(F×, V )[ 1 ∗
1 ∗
1
1

]

,ψb

= S(F×, V )[ 1 ∗
1 ∗
1
1

]

∼−→ S(F×, V[ 1 ∗
1 ],ψ

−2a).

Transferring the action of

[
1 ∗
1
1
1

]
on the first space to the last space results

in the formula
[
1 z
1
1
1

]
f(u) = ψ(au2z)π(

[
1 u2z

1

]
)f(u) = ψ(−au2z)f(u), z ∈ F, u ∈ F×,

for f in S(F×, V[ 1 ∗
1 ],ψ

−2a).

Assume that L is a field; we will prove that

S(F×, V[ 1 ∗
1 ],ψ

−2a)[ 1 ∗
1
1
1

]

,ψc

= 0. (108)

Let f be in S(F×, V[ 1 ∗
1 ],ψ

−2a). Since the support of f is compact, and since

there exists no u in F× such that c+ au2 = 0 as D = b2/4 − ac = −ac is not
in F×2, there exists a positive integer l such that

∫

p−l

ψ(−(c+ au2)z) dz = 0 (109)

for u in the support of f . Hence, for u in F×,

(

∫

p−l

ψ(−cz)
[
1 z
1
1
1

]
f dz)(u) =

( ∫

p−l

ψ(−(c+ au2)z) dz
)
f(u) = 0. (110)

This proves (108), and completes the argument that (I1/I2)N,θ = 0 in the case
L is a field.
Now assume that L is not a field. We may further assume that a = 1 and
c = −1 while retaining b = 0. The group T = T[ a b/2

b/2 c

] = T[ 1
−1

] consists of

the elements

t =

[ x y
y x

x −y
−y x

]
(111)
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with x, y ∈ F such that x2 6= y2. Define

S(F×, V[ 1 ∗
1 ],ψ

−2a) −→ V[ 1 ∗
1 ],ψ

−2a ⊕ V[ 1 ∗
1 ],ψ

−2a (112)

by f 7→ f(1)⊕ f(−1). We assert that the kernel of this linear map is

S(F×, V[ 1 ∗
1 ],ψ

−2a)(

[
1 ∗
1
1
1

]
, ψc).

Evidently, this subspace is contained in the kernel. Conversely, let f ∈
S(F×, V[ 1 ∗

1 ],ψ
−2a) be such that f(1) = f(−1) = 0. Then there exists a positive

integer l such that (109) holds for u in the support of f , implying that (110)
holds. This proves our assertion. The map (112) is clearly surjective, so that
we obtain an isomorphism

S(F×, V[ 1 ∗
1 ],ψ

−2a)[ 1 ∗
1
1
1

]

,ψc

∼−→ V[ 1 ∗
1 ],ψ

−2a ⊕ V[ 1 ∗
1 ],ψ

−2a .

We now have an isomorphism (I1/I2)N,θ
∼−→ V[ 1 ∗

1 ],ψ
−2a ⊕ V[ 1 ∗

1 ],ψ
−2a . A

calculation shows that the transfer of the action of T to V[ 1 ∗
1 ],ψ

−2a⊕V[ 1 ∗
1 ],ψ

−2a

is given by

t(v1 ⊕ v2) =
∣∣∣x− y

x+ y

∣∣∣
1/2

σ
(
(x− y)(x+ y)

)
ωπ(x− y)v1⊕

⊕
∣∣∣x− y

x+ y

∣∣∣
−1/2

σ
(
(x− y)(x+ y)

)
ωπ(x+ y)v2

for t as in (111) and v1, v2 ∈ V[ 1 ∗
1 ],ψ

−2a . Finally, the result stated in ii) is

written with respect to S =
[

1/2
1/2

]
. To change to this choice note that the

map
C : (I1/I2)N,θ[ a b/2

b/2 c

] −→ (I1/I2)N,θ[ 1/2
1/2

]

defined by v 7→
[ g

g′
]
v, where g =

[
−1 1
1 1

]
, is a well-defined isomorphism; recall

that a = 1, b = 0, c = −1. Moreover, C(tv) = t′C(v) for t as in (111) and

t′ =

[
x−y

x+y
x−y

x+y

]
∈ T[ 1/2

1/2

].

It follows that the group T[ 1/2
1/2

] acts on the isomorphic vector spaces

(I1/I2)N,θ[ 1/2
1/2

]

∼= V[ 1 ∗
1 ],ψ

−2a ⊕ V[ 1 ∗
1 ],ψ

−2a
∼= V[ 1 ∗

1 ],ψ
⊕ V[ 1 ∗

1 ],ψ

via the formula in ii).
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Next, we consider the quotient I2/I3 = c-IndPM (σ2) from iii) of Lemma 5.2.1.
By Lemma 5.1.2, restriction of functions in the standard model of this repre-
sentation to N gives an N -isomorphism c-IndPM (σ2) ∼= S(N, V ). An application
of i) and ii) of Lemma 5.1.1 shows that S(N, V )N,θ ∼= V via the map defined
by

f 7−→
∫

N

θ(n)−1f(n) dn.

Transferring the action of T we find that t ∈ T acts by σ2(t) on V . If t =[
g
det(g)g′

]
as in (16), then

σ2(t) = σ(det(g))ωπ(det(g))π(g
′).

This concludes the proof.

In case of a one-dimensional representation of M , it follows from this lemma
that

(χ1GL(2) ⋊ σ)N,θ = C(σχ)◦NL/F
(113)

as T -modules. In case L is a field and π is irreducible, it follows from Lemma
5.2.2 that

HomT ((π ⋊ σ)N,θ,CΛ) = HomT (σπ,CΛ). (114)

Hence, in view of (20), the space of (Λ, θ)-Bessel functionals on π ⋊ σ is iso-
morphic to the space of (Λ, θ)-Waldspurger functionals on σπ.

5.3 Klingen induced representations

Let π be an admissible representation of GL(2, F ), let χ be a character of F×,
and let χ⋊π be as defined in Sect. 1.2; see (10). In this section we will calculate
the twisted Jacquet modules (χ⋊ π)N,θ for any non-degenerate character θ of
N as a module of T . In the split case our results make several corrections to
Proposition 2.3 and Proposition 2.4 of [23].

5.3.1 Lemma. Let χ be a character of F× and π an admissible representation
of GL(2, F ). Let I be the space of the Klingen induced representation χ ⋊ π.
There is a filtration of P -modules

I2 = 0 ⊂ I1 ⊂ I0 = I.

with the quotients given as follows.

i) I0/I1 = c-IndPBσ0, where

σ0(

[ t ∗ ∗ ∗
a b ∗
d ∗
adt−1

]
) = χ(t) |t|2 |ad|−1 π(

[
a b
d

]
)

for b in F and a, d, t in F×.
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ii) I1/I2 = c-IndP[ ∗ ∗ ∗
∗
∗ ∗
∗

]σ1, where

σ1(

[
t ∗ x
a
d ∗
adt−1

]
) = χ(d) |a−1d|π(

[
t x
adt−1

]
)

for x in F and a, d, t in F×.

Proof. This follows by going through the procedure of Sections 6.2 and 6.3 of
[5].

5.3.2 Lemma. Let χ be a character of F×, and let (π, V ) be an admissible
representation of GL(2, F ). We assume that π has a central character ωπ. Let
I be the standard space of the Klingen induced representation χ ⋊ π. Let
N be the unipotent radical of the Siegel parabolic subgroup, and let θ be
the character of N defined in (15). We assume that the associated quadratic
extension L is a field. Then, as T -modules,

IN,θ ∼=
⊕

Λ|F×=χωπ

d · Λ, where d = dimHom[ 1 ∗
1 ]
(π, ψ).

In particular, IN,θ = 0 if π is one-dimensional.

Proof. We will first prove that (I0/I1)N,θ = 0, where the notations are as
in Lemma 5.3.1. We may assume that the element b appearing in the matrix
S in (15) is zero. For f in the standard space of the induced representation
I0/I1 = c-IndPBσ0, let

f̃(u) = f(

[
1
u 1

1
−u 1

]
), u ∈ F.

Let W be the space of all functions F → C of the form f̃ , where f runs
through c-IndPBσ0. Since the map f 7→ f̃ is injective, we obtain a vector space
isomorphism c-IndPBσ0

∼=W . The identity

[
1
u 1

1
−u 1

]
=

[
1 u−1

1
1 −u−1

1

][
−u−1

u
u−1

−u

]
s1

[
1 u−1

1
1 −u−1

1

]
,

where s1 is as in (7), shows that f̃ satisfies

f̃(u) = χ(−u−1)|u|−2π([ u u−1 ])f(s1) for |u| ≫ 0. (115)

The spaceW consists of locally constant functions. Furthermore,W is invariant
under translations, i.e., if f ′ ∈ W , then the function u 7→ f ′(u + x) is also in
W , for any x in F .
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We claim that W contains S(F, V ). Since W is translation invariant, it is
enough to prove that W contains the function

fN,v(u) =

{
v if u ∈ pN ,

0 if u /∈ pN ,

for any v in V and any positive integer N . Again by translation invariance, we
may assume that N is large enough so that

σ0(b)v = v for b ∈ B ∩ ΓN , (116)

where ΓN is as in (100). Define f : P → V by

f(g) =

{
σ0(b)v if g = bk with b ∈ B, k ∈ ΓN ,

0 g /∈ BΓN .

Then, by (116), f is a well-defined element of c-IndPBσ0. It is easy to verify
that f̃ = fN,v. This proves our claim that W contains S(F, V ).

We define a linear map W → V by sending f̃ to the vector f(s1) in (115).
Then the kernel of this map is S(F, V ). We claim that the map is surjective.
To see this, let v be in V . Again choose N large enough so that (116) holds.
Then the function f : P → V given by

f(g) =

{
σ0(b)v if g = bs1k with b ∈ B, k ∈ ΓN ,

0 g /∈ Bs1ΓN .

is a well-defined element of c-IndPBσ0 with f(s1) = v. This proves our claim
that the map W → V is surjective. We therefore get an exact sequence

0 −→ S(F, V ) −→W −→ V −→ 0. (117)

The transfer of the action of N to W is given by

(

[ 1 y z
1 x y
1

1

]
f̃)(u) = π(

[
1 x+2uy+u2z

1

]
)f̃(u)

for all x, y, z, u in F . Evidently, the subspace S(F, V ) is invariant under N .
Moreover, the action of N on V is given by

[ 1 y z
1 x y

1
1

]
v = π([ 1 z1 ])v (118)

for all x, y, z in F and v in V .
To prove that (I0/I1)N,θ = 0, it suffices to show that S(F, V )N,θ = 0 and
VN,θ = 0. Since the element a in the matrix S is non-zero, it follows from (118)
that VN,θ = 0.
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To prove that S(F, V )N,θ = 0, we define a map p from S(F, V ) to

S(F, V[ 1 ∗
1 ],ψ

a) = S(F, V/V ([ 1 ∗
1 ], ψ

a))

by sending f to f composed with the projection from V to V/V ([ 1 ∗
1 ], ψ

a).
This map is surjective. It is easy to see that p induces an isomorphism

S(F, V )[ 1
1 ∗
1
1

]

,ψa

∼= S(F, V[ 1 ∗
1 ],ψ

a).

For the space on the right we have the action

(

[ 1 y z
1 y
1

1

]
f)(u) = π(

[
1 2uy+u2z

1

]
)f(u), u ∈ F.

By iii) of Lemma 5.1.1, the map f 7→ f(0) induces an isomorphism

S(F, V[ 1 ∗
1 ],ψ

a)[ 1 ∗
1 ∗
1
1

]
∼= V[ 1 ∗

1 ],ψ
a .

For the space on the right we have the action

[
1 z
1
1
1

]
v = v. Taking a twisted

Jacquet module with respect to the character ψc gives zero, since c 6= 0. This
concludes our proof that (I0/I1)N,θ = 0.
Next let σ1 be as in ii) of Lemma 5.3.1. Let

H1 =

[
∗ ∗ ∗
∗
∗ ∗
∗

]

and H2 = TN . By Lemma 2.3.1, we have P = H1H2. To verify the hypotheses
of Lemma 5.1.2, let K be a compact subset of P . Write P = MN and let
p : P → N be the resulting projection map. Since p is continuous, the set p(K)
is compact. There exists a compact subset KT of T such that T = F×KT .
Then M ⊂ H1KT by Lemma 2.3.1. Therefore K ⊂ H1K2 with K2 = KT p(K).
By Lemma 5.1.2, restriction of functions gives a TN isomorphism

c-IndP[ ∗ ∗ ∗
∗
∗ ∗
∗

]σ1 ∼= c-IndTNF×ZJ (σ1
∣∣
F×ZJ ).

Note that F× acts via the character χωπ on this module. Since T is compact
modulo F×, the Jacquet module (c-IndTNF×ZJ (σ1

∣∣
F×ZJ ))N,θ is a direct sum over

characters of T . Let Λ be a character of T . It is easy to verify that

HomT

(
(c-IndTNF×ZJ (σ1

∣∣
F×ZJ ))N,θ,Λ

)
= HomTN

(
c-IndTNF×ZJ (σ1

∣∣
F×ZJ ),Λ ⊗ θ

)
.

By Frobenius reciprocity, the space on the right is isomorphic to

HomF×ZJ

(
σ1

∣∣
F×ZJ , (Λ⊗ θ)

∣∣
F×ZJ

)
. (119)
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This space is zero unless the restriction of Λ to F× equals χωπ. Assume this
is the case. Then (119) is equal to

Hom[ 1 ∗
1 ]
(π, ψc) ∼= Hom[ 1 ∗

1 ]
(π, ψ).

This concludes the proof.

5.3.3 Lemma. Let χ be a character of F× and π an admissible representation
of GL(2, F ). Let I be the space of the Klingen induced representation χ ⋊ π.
There is a filtration of Q-modules

I3 = 0 ⊂ I2 ⊂ I1 ⊂ I0 = I.

with the quotients given as follows.

i) I0/I1 = σ0, where

σ0(

[ t ∗ ∗ ∗
a b ∗
c d ∗

(ad−bc)t−1

]
) = χ(t) |t2(ad− bc)−1|π(

[
a b
c d

]
)

for
[
a b
c d

]
in GL(2, F ) and t in F×.

ii) I1/I2 = c-IndQ[ ∗ ∗ ∗
∗ ∗ ∗
∗
∗

]σ1, where

σ1(

[ t ∗ x
a b ∗
d
adt−1

]
) = χ(a) |ad−1|π(

[
t x
adt−1

]
)

for b, x in F and a, d, t in F×.

iii) I2/I3 = I2 = c-IndQ[ ∗
∗ ∗
∗ ∗

∗

]σ2, where

σ2(

[ t
a b
c d

(ad−bc)t−1

]
) = χ(t−1(ad− bc)) |t−2(ad− bc)|π(

[
a b
c d

]
)

for
[
a b
c d

]
in GL(2, F ) and t in F×.

Proof. This follows by going through the procedure of Sections 6.2 and 6.3 of
[5].

5.3.4 Lemma. Let χ be a character of F×, and let (π, V ) be an admissible
representation of GL(2, F ). Let I be the standard space of the Klingen induced
representation χ ⋊ π. Let N be the unipotent radical of the Siegel parabolic
subgroup, and let θ be the character of N defined in (23) (i.e., we consider the
split case). Then there is a filtration

0 ⊂ J3 ⊂ J2 ⊂ J1 = IN,θ,

with the quotients given as follows.
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• J1/J2 ∼= V

• J2/J3 ∼= V[ 1∗ 1 ]
.

• J3 ∼= S(F×, V[ 1∗ 1 ],ψ
).

The action of the stabilizer of θ is given as follows,

diag(a, b, a, b)v = χ(a)π([ a b ])v for v ∈ J1/J2,

diag(a, b, a, b)v = χ(b)π([ a b ])v for v ∈ J2/J3,

(diag(a, b, a, b)f)(u) = χ(b)π([ a a ])f(a
−1bu) for f ∈ J3, u ∈ F×,

for all a and b in F×. In particular, we have the following special cases.

i) Assume that π = σ1GL(2). Then the twisted Jacquet module IN,θ =
I/〈θ(n)v − ρ(n)v : n ∈ N, v ∈ I〉 is two-dimensional. More precisely,
there is a filtration

0 ⊂ J2 ⊂ J1 = IN,θ,

where J2 and J1/J2 are both one-dimensional, and the action of the
stabilizer of θ is given as follows,

diag(a, b, a, b)v = χ(a)σ(ab)v for v ∈ J1/J2,

diag(a, b, a, b)v = χ(b)σ(ab)v for v ∈ J2,

for all a and b in F×.

ii) Assume that π is infinite-dimensional and irreducible. Then there is a
filtration

0 ⊂ J3 ⊂ J2 ⊂ J1 = IN,θ,

with the quotients given as follows.

• J1/J2 ∼= V

• J2/J3 ∼= V[ 1∗ 1 ]
. Hence, J2/J3 is 2-dimensional if π is a principal

series representation, 1-dimensional if π is a twist of the Steinberg
representation, and 0 if π is supercuspidal.

• J3 ∼= S(F×).

The action of the stabilizer of θ is given as follows,

diag(a, b, a, b)v = χ(a)π([ a b ])v for v ∈ J1/J2,

diag(a, b, a, b)v = χ(b)π([ a b ])v for v ∈ J2/J3,

(diag(a, b, a, b)f)(u) = χ(b)ωπ(a)f(a
−1bu) for f ∈ J3, u ∈ F×,

for all a and b in F×.
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Proof. It will be easier to work with the conjugate subgroup Nalt and the
character θalt of Nalt defined in (26). For the top quotient from i) of Lemma
5.3.3 we have

(I0/I1)Nalt,θalt = 0,

since the subgroup

[
1 ∗
1
1 ∗
1

]
acts trivially on I0/I1, but θalt is not trivial on this

subgroup. We consider the quotient I1/I2 = c-IndQHσ1, where H =

[
∗ ∗ ∗
∗ ∗ ∗
∗
∗

]
,

and with σ1 as in ii) of Lemma 5.3.3. We first show that for each function f in
the standard model of this representation, the function f◦ : F → V , given by

f◦(w) = f(

[
1 −w

1
1 w

1

]
),

has compact support. Let K be a compact subset of Q such that the support
of f is contained in HK. If

[
1 −w

1
1 w

1

]
=

[ t ∗ x
a b ∗
d
adt−1

] [ k0 x1 x2 x3

k1 k2 x4

k3 k4 x5

k5

]
,

with the rightmost matrix being in K, then calculations show that k3 = 0 and
w = k−1

4 x5. Since k−1
4 and x5 vary in bounded subsets, w is confined to a

compact subset of F . This proves our assertion that f◦ has compact support.
Next, for each function f in the standard model of c-IndQHσ1, consider the

function f̃ : F 2 → V given by

f̃(u,w) = f(

[
1 −w

1
u 1 w

1

]
).

Let W be the space of all such functions f̃ . Since the map f 7→ f̃ is injective,
we get a vector space isomorphism c-IndQHσ1

∼= W . Evidently, in this new
model, the action of Nalt is given by

(

[ 1 −y z
1
x 1 y

1

]
f̃)(u,w) = f̃(u+ x,w + y). (120)

We claim that W contains S(F 2, V ). Since W is translation invariant, it is
enough to prove that W contains the function

fN,v(u,w) =

{
v if u,w ∈ pN ,

0 if u /∈ pN or w /∈ pN ,

for any v in V and any positive integer N . Again by translation invariance, we
may assume that N is large enough so that

σ1(h)v = v for h ∈ H ∩ ΓN , (121)
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where

ΓN =




1+p
N

p
N

p
N

p
N

1+p
N

p
N

p
N

p
N 1+p

N
p
N

1+p
N


 ∩Q. (122)

Define f : Q→ V by

f(g) =

{
σ1(h)v if g = hk with h ∈ H, k ∈ ΓN ,

0 g /∈ HΓN .

Then, by (121), f is a well-defined element of c-IndQHσ1. It is easy to verify

that f̃ = fN,v. This proves our claim that W contains S(F 2, V ).
Now consider the map

W −→ S(F, V ), f̃ 7−→
(
w 7→ f(

[
1 −w

1
1 w

1

]
s2)

)
, (123)

where s2 is defined in (7). This map is well-defined, since the function on
the right is (s2f)

◦, which we showed above has compact support. Similar
considerations as above show that the map (123) is surjective.
We claim that the kernel of (123) is S(F 2, V ). First suppose that f̃ lies in the
kernel; we have to show that f̃ has compact support. Choose N large enough
so that f is right invariant under ΓN . Then, for u not in p−N and w in F ,

f̃(u,w) = f(

[
1 −w

1
u 1 w

1

]
)

= f(

[
1 −w

1
1 w

1

] [
1
1 u−1

1
1

] [ 1
−u−1

−u
1

]
s2

[
1
1 u−1

1
1

]
)

= f(

[
1 −wu−1 w2u−1

1 u−1 −wu−1

1
1

] [
1 −w

1
1 w

1

] [ 1
−u−1

−u
1

]
s2)

= π(
[
1 w2u−1

1

]
)f(

[
1 −w

1
1 w

1

] [ 1
−u−1

−u
1

]
s2)

= χ(−u−1)|u|−2π(
[
1 w2u−1

1

]
)f(

[
1 wu−1

1
1 −wu−1

1

]
s2).

This last expression is zero by assumption. For fixed u in p−N , the function
f̃(u, ·) has compact support; this follows because each f◦ has compact support.
Combining these facts shows that f̃ has compact support. Conversely, assume
f̃ is in S(F 2, V ). Then we can find a large enoughN such that if u has valuation
−N , the function f̃(u, ·) is zero. Looking at the above calculation, we see that,
for fixed such u,

f(

[
1 wu−1

1
1 −wu−1

1

]
s2) = 0
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for all w in F . This shows that f̃ is in the kernel of the map (123), completing
the proof of our claim about this kernel. We now have an exact sequence

0 −→ S(F 2, V ) −→W −→ S(F, V ) −→ 0. (124)

Note that the space S(F 2, V ) is invariant under the action (120) of Nalt. A
calculation shows that the action of Nalt on S(F, V ) is given by

(

[ 1 −y z
1
x 1 y

1

]
f)(w) = π(

[
1 z−2wy−w2x

1

]
)f(w) (125)

for x, y, z, w in F and f in S(F, V ).
We claim that S(F, V )Nalt,θalt = 0. To prove this, we calculate this Jacquet
module in stages. We define a map p from S(F, V ) to

S(F, V[ 1 ∗
1 ]
) = S(F, V/V ([ 1 ∗

1 ]))

by sending f to f composed with the natural projection from V to V/V ([ 1 ∗
1 ]).

This map is surjective and has kernel S(F, V )(

[
1 ∗
1
1
1

]
). Hence, we obtain an

isomorphism
S(F, V )[ 1 ∗

1
1
1

]
∼= S(F, V[ 1 ∗

1 ]
).

The action of the group

[
1 ∗
1
∗ 1 ∗

1

]
on these spaces is trivial. Since θalt is not

trivial on this group, this proves our claim that S(F, V )Nalt,θalt = 0.
By (124), we now have WNalt,θalt

∼= S(F 2, V )Nalt,θalt . The action of Nalt on
S(F 2, V ) is given by (120). Since S(F 2, V ) = S(F ) ⊗ S(F )⊗ V , Lemma 5.1.1
implies that the map

f 7−→
∫

F

∫

F

f(u,w)ψ(−w) du dw

induces an isomorphism S(F 2, V )Nalt,θalt
∼= V . Moreover, a calculation shows

that diag(a, a, b, b) acts on S(F 2, V )Nalt,θalt
∼= V by χ(a)π([ a b ]).

Finally, we consider the bottom quotient I2/I3 = c-IndQ[ ∗
∗ ∗
∗ ∗

∗

]σ2 with σ2 as

in iii) of Lemma 5.3.3. If we associate with a function f in the standard model
of this induced representation the function

f̃(u, v, w) = f(

[
1 −v u w

1 u
1 v

1

]
),

then, by Lemma 5.1.2, we obtain an isomorphism I2/I3 ∼= S(F 3, V ). A calcu-
lation shows that the action of Nalt on S(F 3, V ) is given by

(

[ 1 −y z
1
x 1 y

1

]
f)(u, v, w) = π([ 1x 1 ])f(u, v + y − ux,w + z + uy) (126)
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for x, y, z, u, v, w in F and f in S(F 3, V ). This time we take Jacquet modules
step by step, starting with the z-variable. Lemma 5.1.1 shows that the map

f 7−→
(
(u, v) 7→

∫

F

f(u, v, w) dw

)

induces an isomorphism S(F 3, V )[ 1 ∗
1
1
1

] ∼= S(F 2, V ). On S(F 2, V ) we have

the action

(

[ 1 −y
1
x 1 y

1

]
f)(u, v) = π([ 1x 1 ])f(u, v + y − ux)

for x, y, u, v in F and f in S(F 2, V ). Part ii) of Lemma 5.1.1 shows that the
map

f 7−→
(
u 7→

∫

F

f(u, v)ψ(−v) dv
)

induces an isomorphism S(F 2, V )[ 1 ∗
1
1 ∗
1

]

,ψ

∼= S(F, V ). A calculation shows

that on S(F, V ) we have the actions

(

[
1
1
x 1

1

]
f)(u) = ψ(−ux)π([ 1x 1 ])f(u) (127)

for x, u in F , and

(

[
a
a
b
b

]
f)(u) = χ(b)π([ a b ])f(a

−1bu) (128)

for u in F and a, b in F×. The subspace S(F×, V ) consisting of functions that
vanish at zero is invariant under these actions. We consider the exact sequence

0 −→ S(F×, V ) −→ S(F, V ) −→ S(F, V )/S(F×, V ) −→ 0.

The quotient S(F, V )/S(F×, V ) is isomorphic to V via the map f 7→ f(0). The
actions of the above subgroups on V are given by

[
1
1
x 1

1

]
v = π([ 1x 1 ])v (129)

and [
a
a
b
b

]
v = χ(b)π([ a b ])v. (130)

Taking Jacquet modules on the above sequence gives

0 −→ S(F×, V )[ 1
1
∗ 1

1

] −→ S(F, V )[ 1
1
∗ 1

1

]
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−→
(
S(F, V )/S(F×, V )

)
[ 1

1
∗ 1

1

] −→ 0.

In view of (129), the Jacquet module on the right is isomorphic to V[ 1∗ 1 ]
. The

action of the diagonal subgroup on V[ 1∗ 1 ]
is given by the same formula as in

(130).
We consider the map from S(F×, V ) to itself given by f 7→

(
u 7→ π([ 1 u ])f(u)

)
.

This map is an isomorphism of vector spaces. The actions (127) and (128) turn
into

(

[
1
1
x 1

1

]
f)(u) = ψ(−ux)π([ 1

ux 1 ])f(u) (131)

and

(

[
a
a
b
b

]
f)(u) = χ(b)π([ a a ])f(a

−1bu). (132)

We define a map p from S(F×, V ) to

S(F×, V[ 1∗ 1 ],ψ
) = S(F×, V/V ([ 1∗ 1 ], ψ))

by sending f to f composed with the projection from V to V/V ([ 1∗ 1 ], ψ). This
map is surjective. The kernel of p consists of all f in S(F×, V ) for which there
exists a positive integer l such that

∫

p−l

ψ(−x)π([ 1x 1 ])f(u) dx = 0 for all u ∈ F×. (133)

Let W be the space of f in S(F×, V ) for which there exists a positive integer
k such that ∫

p−k

[
1
1
x 1

1

]
f dx = 0, (134)

so that S(F×, V )/W = S(F×, V )[ 1
1
∗ 1

1

]. Let f be in W . The condition

(134) means that
∫

p−k

ψ(−ux)π([ 1
ux 1 ])f(u) dx = 0 for all u ∈ F×. (135)

Since f has compact support in F×, the conditions (133) and (135) are equiv-
alent. It follows that

S(F×, V )[ 1
1
∗ 1

1

]
∼= S(F×, V[ 1∗ 1 ],ψ

).

The diagonal subgroup acts on S(F×, V[ 1∗ 1 ],ψ
) by the same formula as in (132).
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6 The main results

Having assembled all the required tools, we are now ready to prove the three
main results of this paper mentioned in the introduction.

6.1 Existence of Bessel functionals

In this section we prove that every irreducible, admissible representation (π, V )
of GSp(4, F ) which is not a twist of the trivial representation admits a Bessel
functional. The proof uses the P3-module VZJ and the GJ -module VZJ ,ψ. The
first module is closely related to the theory of zeta integrals. The second module
VZJ ,ψ is the quotient of V by the vector subspace generated by the elements of

the form π(

[
1 z
1
1
1

]
)v − ψ(z)v for v ∈ V and z ∈ F . Evidently, VZJ ,ψ is a GJ

module. This module is closely related to the theory of representations of the
metaplectic group S̃L(2, F ).

6.1.1 Lemma. Let (π, V ) be a smooth representation of N . Then there exists
a character θ of N such that VN,θ 6= 0.

Proof. This follows immediately from Lemma 1.6 of [29].

Let S̃L(2, F ) be the metaplectic group, defined as in Sect. 1 of [29]. Let m be

in F×. We will use the Weil representation πmW of S̃L(2, F ) on S(F ) associated
to the quadratic form q(x) = x2 and ψm. This is as defined on pp. 3-4 of [39]
and p. 223 of [41]. The only explicit property of πm

W
we will use is

(πm
W
([ 1 b1 ], 1)f)(x) = ψ(mbx2)f(x), (136)

for b in F and f in S(F ). We define an action of NQ, introduced in (6), on the
Schwartz space S(F ) by

πm
S
(

[
1 λ µ κ

1 µ
1 −λ

1

]
f)(x) = ψm(κ+ (2x+ λ)µ)f(x + λ) (137)

for f in S(F ). This representation of NQ is called the Schrödinger representa-
tion.
Given a smooth, genuine representation (τ,W ) of S̃L(2, F ), we define a repre-
sentation τJ of GJ on the space W ⊗ S(F ) by the formulas

τJ (

[
1
a b
c d

1

]
)(v ⊗ f) = τ(

[
a b
c d

]
, 1)v ⊗ πm

W
(
[
a b
c d

]
, 1)f, (138)

τJ (

[
1 λ µ κ

1 µ
1 −λ

1

]
)(v ⊗ f) = v ⊗ πm

S
(

[
1 λ µ κ

1 µ
1 −λ

1

]
)f. (139)
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Computations show that τJ is a smooth representation of GJ . Moreover, the
map that sends τ to τJ is a bijection between the set of equivalence classes
of smooth, genuine representations of S̃L(2, F ), and smooth representations of
GJ with central character ψm. The proof of this fact is based on the Stone-von
Neumann Theorem; see Theorem 2.6.2 of [2]. Under this bijection, irreducible
τ correspond to irreducible τJ .

6.1.2 Lemma. Let m be in F×. Let (τJ ,W J) be a non-zero, irreducible,
smooth representation of GJ with central character ψm. Then dimW J

N,θa,0,m
≤

1 for all a in F× and dimW J
N,θa,0,m

= 1 for some a in F×. This dimension

depends only on the class of a in F×/F×2.

Proof. By the above discussion, there exists an irreducible, genuine, admissible
representation τ of S̃L(2, F ) such that τJ ∼= τ ⊗ πmSW . Using (136), (137) and
iii) of Lemma 5.1.1, an easy calculation shows that

W J
[ 1 ∗ ∗

1 ∗ ∗
1
1

]

,θa,0,m

∼=W[ 1 ∗
1 ],ψ

a .

By Lemme 2 on p. 226 of [41], the space on the right is at most one-dimensional,
and is one-dimensional for some a in F×. Moreover, the dimension depends
only on the class of a in F×/F×2.

6.1.3 Proposition. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ). Then the following statements are equivalent.

i) π is not a twist of the trivial representation.

ii) There exists a non-trivial character θ of N such that VN,θ 6= 0.

iii) There exists a non-degenerate character θ of N such that VN,θ 6= 0.

Proof. i) ⇒ ii) Assume that VN,θ = 0 for all non-trivial θ. By Lemma
6.1.1, it follows that VN,1 6= 0. In particular, the P3-module VZJ is non-zero.
By using Theorem 3.2.1 and inspecting tables A.5 and A.6 in [28], one can
see that VZJ contains an irreducible subquotient τ of the form τP3

GL(0)(1), or

τP3

GL(1)(χ) for a character χ of F×, or τP3

GL(2)(ρ) for an irreducible, admissible,

infinite-dimensional representation ρ of GL(2, F ); it is here that we use the
hypothesis that π is not one-dimensional. For a, b in F we define a character

of the subgroup
[
1 ∗ ∗
1
1

]
of P3 by

θa,b(
[
1 x y

1
1

]
) = ψ(ax+ by). (140)

Documenta Mathematica 21 (2016) 467–553



536 Brooks Roberts and Ralf Schmidt

By Lemma 2.5.4 or Lemma 2.5.5 of [28], or the infinite-dimensionality of ρ if
τ = τP3

GL(2)(ρ),

τ[ 1 ∗ ∗
1
1

]

,θa,b

6= 0

for some (a, b) 6= (0, 0). This implies that VN,θa,b,0
6= 0, contradicting our

assumption.
ii) ⇒ iii) The hypothesis implies that VZJ ,ψm is non-zero for some m in F×.
We observe that VZJ ,ψm is a smooth GJ representation. By Lemma 2.6 of
[3], there exists an irreducible subquotient (τJ ,W J) of this GJ module. By
Lemma 6.1.2, we have dimW J

N,θa,0,m
= 1 for some a in F×. This implies that

VN,θa,0,m 6= 0.
iii) ⇒ i) is obvious.

6.1.4 Theorem. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ). Assume that π is not one-dimensional. Then π admits a (Λ, θ)-
Bessel functional for some non-degenerate character θ of N and some character
Λ of T . If π is non-generic and supercuspidal, then every Bessel functional for
π is non-split.

Proof. By Proposition 6.1.3, there exists a non-degenerate θ such that VN,θ 6=
0. Assume that θ is non-split. Then, since the center F× of GSp(4, F ) acts by
a character on VN,θ and T/F× is compact, VN,θ decomposes as a direct sum
over characters of T . It follows that a (Λ, θ)-Bessel functional exists for some
character Λ of T .
Now assume that θ is split. We may assume that S is the matrix in (22). Let
V0, V1, V2 be the modules appearing in the P3-filtration, as in Theorem 3.2.1.
Since VN,θ 6= 0, we must have

(V0/V1)[ 1 ∗ ∗
1
1

]

,θ0,1
6= 0, (V1/V2)[ 1 ∗ ∗

1
1

]

,θ0,1
6= 0, or (V2)[ 1 ∗ ∗

1
1

]

,θ0,1
6= 0,

where we use the notation (140). It is immediate from (38) that the first
space is zero. If the second space is non-zero, then π admits a split Bessel
functional by iii) of Proposition 3.5.1. If the third space is non-zero, then π
is generic by Theorem 3.2.1, and hence, by Proposition 3.4.2, admits a split
Bessel functional.
For the last statement, assume that π is non-generic and supercuspidal. Then
VZJ = 0 by Theorem 3.2.1. Hence, VN,θ = 0 for any split θ. It follows that all
Bessel functionals for π are non-split.

6.2 The table of Bessel functionals

In this section, given a non-supercuspidal representation π, or a π that is in
an L-packet with a non-supercuspidal representation, we determine the set of
(Λ, θ) for which π admits a (Λ, θ)-Bessel functional.
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6.2.1 Lemma. Let θ be as in (15), and let T be the corresponding torus. As-
sume that the associated quadratic extension L is a field. Let V1, V2, V3 and
W be smooth representations of T . Assume that these four representations
all have the same central character. Assume further that there is an exact
sequence of T -modules

0 −→ V1 −→ V2 −→ V3 −→ 0.

Then the sequence of T -modules

0 −→ HomT (V3,W ) −→ HomT (V2,W ) −→ HomT (V1,W ) −→ 0

is exact.

Proof. It is easy to see that the sequence

0 −→ HomT (V3,W ) −→ HomT (V2,W ) −→ HomT (V1,W )

is exact. We will prove the surjectivity of the last map. Let f be in
HomT (V1,W ). We extend f to a linear map f1 from V2 to W . We define
another linear map f2 from V2 to W by

f2(v) =

∫

T/F×

t−1 · f1(t · v) dt.

This is well-defined by the condition on the central characters, the compactness
of T/F×, and the smoothness hypothesis. Evidently, f2 is in HomT (V2,W ) and
maps to a multiple of f .

6.2.2 Theorem. The following table shows the Bessel functionals admitted
by the irreducible, admissible, non-supercuspidal representations of GSp(4, F ).
The column “L↔ ξ” indicates that the field L is the quadratic extension of F
corresponding to the non-trivial, quadratic character ξ of F×; this is only rel-
evant for representations in groups V and IX. The pairs of characters (χ1, χ2)
in the “L = F × F” column for types IIIb and IVc refer to the characters of
T = {diag(a, b, a, b) : a, b ∈ F×} given by diag(a, b, a, b) 7→ χ1(a)χ2(b). In
representations of group IX, the symbol µ denotes a non-Galois-invariant char-
acter of L×, where L is the quadratic extension corresponding to ξ. The Galois
conjugate of µ is denoted by µ′. The irreducible, admissible, supercuspidal
representation of GL(2, F ) corresponding to µ is denoted by π(µ). Finally, the
symbol N in the table stands for the norm map NL/F . In the split case, the
character σ ◦ N is the same as (σ, σ). In the table, the phrase “all Λ” means
all characters Λ of T whose restriction to F× is the central character of the
representation of GSp(4, F ).
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representation (Λ, θ)-Bessel functional exists exactly for . . .

L = F × F L/F a field extension

L↔ ξ L 6↔ ξ

I χ1 × χ2 ⋊ σ (irred.) all Λ all Λ

II a χStGL(2) ⋊ σ all Λ Λ 6= (χσ) ◦N

b χ1GL(2) ⋊ σ Λ = (χσ) ◦N Λ = (χσ) ◦N

III a χ⋊ σStGSp(2) all Λ all Λ

b χ⋊ σ1GSp(2) Λ ∈ {(χσ, σ), (σ, χσ)} —

IV a σStGSp(4) all Λ Λ 6= σ ◦N

b L(ν2, ν−1σStGSp(2)) Λ = σ ◦N Λ = σ ◦N

c L(ν3/2StGL(2), ν
−3/2σ) Λ = (ν±1σ, ν∓1σ) —

d σ1GSp(4) — —

V a δ([ξ, νξ], ν−1/2σ) all Λ Λ 6= σ ◦ N σ ◦ N 6= Λ 6= (ξσ) ◦N

b L(ν1/2ξStGL(2), ν
−1/2σ) Λ = σ ◦N — Λ = σ ◦N

c L(ν1/2ξStGL(2), ξν
−1/2σ) Λ = (ξσ) ◦ N — Λ = (ξσ) ◦ N

d L(νξ, ξ ⋊ ν−1/2σ) — Λ = σ ◦ N —

VI a τ (S, ν−1/2σ) all Λ Λ 6= σ ◦N

b τ (T, ν−1/2σ) — Λ = σ ◦N

c L(ν1/2StGL(2), ν
−1/2σ) Λ = σ ◦N —

d L(ν, 1F× ⋊ ν−1/2σ) Λ = σ ◦N —

VII χ⋊ π all Λ all Λ

VIII a τ (S, π) all Λ HomT (π,CΛ) 6= 0

b τ (T, π) — HomT (π,CΛ) = 0

IX a δ(νξ, ν−1/2π(µ)) all Λ µ 6= Λ 6= µ′ all Λ

b L(νξ, ν−1/2π(µ)) — Λ = µ or Λ = µ′ —

X π ⋊ σ all Λ HomT (σπ,CΛ) 6= 0

XI a δ(ν1/2π, ν−1/2σ) all Λ Λ 6= σ ◦N and HomT (σπ,CΛ) 6= 0

b L(ν1/2π, ν−1/2σ) Λ = σ ◦N Λ = σ ◦ N and HomT (π,C1) 6= 0

Va∗ δ∗([ξ, νξ], ν−1/2σ) — Λ = σ ◦ N —

XIa∗ δ∗(ν1/2π, ν−1/2σ) — Λ = σ ◦ N and HomT (π
JL,C1) 6= 0
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Proof. We will go through all representations in the table and explain how

the statements follow from our preparatory sections.
I: This follows from Proposition 3.4.2 and Lemma 5.3.2.
IIa: In the split case this follows from Proposition 3.4.2. In the non-split case
it follows from Lemma 5.2.2 together with (36).
IIb: This follows from Lemma 5.2.2; see (113).
IIIa: This follows from Proposition 3.4.2 and Lemma 5.3.2.
IIIb: It follows from Lemma 5.3.2 that IIIb type representations have no non-
split Bessel functionals. The split case follows from either Proposition 3.5.1
or i) of Lemma 5.3.4. Note that the characters (χσ, σ) and (σ, χσ) are Galois
conjugates of each other.
IVd: It is easy to see that the twisted Jacquet modules of the trivial represen-
tation are zero.
IVb: By (2.9) of [28] there is a short exact sequence

0 −→ IVb −→ ν3/21GL(2) ⋊ ν−3/2σ −→ σ1GSp(4) −→ 0.

Taking twisted Jacquet modules and observing (113), we get

(IVb)N,θ ∼= (ν3/21GL(2) ⋊ ν−3/2σ)N,θ = Cσ◦NL/F

as T -modules.
IVc: By (2.9) of [28] there is a short exact sequence

0 −→ IVc −→ ν2 ⋊ ν−1σ1GSp(2) −→ σ1GSp(4) −→ 0.

Taking twisted Jacquet modules gives

(IVc)N,θ ∼= (ν2 ⋊ ν−1σ1GSp(2))N,θ.

Hence IVc admits the same Bessel functionals as the full induced representation
ν2 ⋊ ν−1σ1GSp(2). By Lemma 5.3.2, any such Bessel functional is necessarily
split. Assume that θ is as in (23). Then, using Lemma 5.3.4, it follows that
IVc admits the (Λ, θ)-Bessel functional for

Λ(

[
a
b
a
b

]
) = ν(ab−1)σ(ab), (141)

which we write as (νσ, ν−1σ). By (29), IVc also admits a (Λ, θ)-Bessel func-
tional for Λ = (ν−1σ, νσ). Again by Lemma 5.3.4, IVc does not admit a
(Λ, θ)-Bessel functional for any other Λ.
IVa: In the split case this follows from Proposition 3.4.2. Assume θ is non-split.
By (2.9) of [28], there is an exact sequence

0 −→ σStGSp(4) −→ ν2 ⋊ ν−1σStGSp(2) −→ IVb −→ 0.

Taking Jacquet modules, we get

0 −→ (σStGSp(4))N,θ −→ (ν2 ⋊ ν−1σStGSp(2))N,θ −→ (IVb)N,θ −→ 0.
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Keeping in mind Lemma 6.2.1, the result now follows from Lemma 5.3.2 and
the result for IVb.
Vd: This was proved in Corollary 4.7.2.
Vb and Vc: Let ξ be a non-trivial quadratic character of F×. By (2.10) of [28],
there are exact sequences

0 −→ Vb −→ ν1/2ξ1GL(2) ⋊ ξν−1/2σ −→ Vd −→ 0

and
0 −→ Vc −→ ν1/2ξ1GL(2) ⋊ ν−1/2σ −→ Vd −→ 0.

Taking Jacquet modules and observing (113), we get

0 −→ (Vb)N,θ −→ Cσ◦NL/F
−→ (Vd)N,θ −→ 0 (142)

and
0 −→ (Vc)N,θ −→ C(ξσ)◦NL/F

−→ (Vd)N,θ −→ 0. (143)

Hence the results for Vb and Vc follow from the result for Vd.
Va: In the split case this follows from Proposition 3.4.2. Assume θ is non-split.
Assume first that ξ corresponds to the quadratic extension L/F . As we just
saw, (Vb)N,θ = 0 in this case. By (2.10) of [28], there is an exact sequence

0 −→ Va −→ ν1/2ξStGL(2) ⋊ ν−1/2σ −→ Vb −→ 0.

Taking Jacquet modules, it follows that

(Va)N,θ = (ν1/2ξStGL(2) ⋊ ν−1/2σ)N,θ.

By Lemma 5.2.2, the space of (Λ, θ)-Bessel functionals on the representation Va
is isomorphic to HomT (σξStGL(2),CΛ). Using (36), it follows that Va admits a
(Λ, θ)-Bessel functional if and only if Λ 6= (σξ) ◦NL/F = σ ◦NL/F .
Now assume that ξ does not correspond to the quadratic extension L/F . Then,
by what we already proved for Vb, we have an exact sequence

0 −→ (Va)N,θ −→ (ν1/2ξStGL(2) ⋊ ν−1/2σ)N,θ −→ Cσ◦NL/F
−→ 0. (144)

Using Lemma 6.2.1, it follows that the possible characters Λ for Va are those
of (ν1/2ξStGL(2)⋊ ν

−1/2σ)N,θ with the exception of σ ◦NL/F . By Lemma 5.2.2
and (36), these are all characters other than σ ◦NL/F and (ξσ) ◦NL/F .
VIc and VId: By (2.11) of [28], there is an exact sequence

0 −→ VIc −→ 1F× ⋊ σ1GSp(2) −→ VId −→ 0.

It follows from Lemma 5.3.2 that VIc and VId have no non-split Bessel func-
tionals. The split case follows from Proposition 3.5.1.
VIa: In the split case this follows from Proposition 3.4.2. Assume that θ is
non-split. By (2.11) of [28], there is an exact sequence

0 −→ VIa −→ ν1/2StGL(2) ⋊ ν−1/2σ −→ VIc −→ 0. (145)
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Taking Jacquet modules and observing the result for VIc, we get (VIa)N,θ =
(ν1/2StGL(2) ⋊ ν−1/2σ)N,θ. Hence the result follows from Lemma 5.2.2 and
(36).
VIb: By (2.11) of [28], there is an exact sequence

0 −→ (VIb)N,θ −→ (ν1/21GL(2) ⋊ ν−1/2σ)N,θ −→ (VId)N,θ −→ 0. (146)

By (113), the middle term equals Cσ◦NL/F
. One-dimensionality implies that

the sequence splits, so that

HomT (Cσ◦NL/F
,CΛ) = HomD(VIb,CΛ⊗θ)⊕HomD(VId,CΛ⊗θ) (147)

(D is the Bessel subgroup defined in (17)). Hence the VIb case follows from
the known result for VId.
VII: This follows from Proposition 3.4.2 and Lemma 5.3.2.
VIIIa and VIIIb: In the split case this follows from Proposition 3.4.2 and v) of
Proposition 3.5.1. Assume that θ is non-split. Since we are in a unitarizable
situation, the sequence

0 −→ VIIIa −→ 1F× ⋊ π −→ VIIIb −→ 0

splits. It follows that

HomD(1F× ⋊ π,CΛ⊗θ) = HomD(VIIIa,CΛ⊗θ)⊕HomD(VIIIb,CΛ⊗θ). (148)

By Lemma 5.3.2, the space on the left is one-dimensional for any Λ. Therefore
the Bessel functionals of VIIIb are complementary to those of VIIIa.
Assume that VIIIa admits a (Λ, θ)-Bessel functional. Then, by Corollary 4.7.1
and Theorem 4.6.3, we have HomT (π,CΛ) 6= 0. Conversely, assume that
HomT (π,CΛ) 6= 0 and assume that VIIIa does not admit a (Λ, θ)-Bessel func-
tional; we will obtain a contradiction. By (148), we have HomD(VIIIb,CΛ⊗θ) 6=
0. By Corollary 4.7.1 and Theorem 4.6.3, we have HomT (π

JL,CΛ) 6= 0. This
contradicts (34).
The result for VIIIb now follows from (148).
IXb: This was proved in Corollary 4.7.2.
IXa: In the split case this follows from Proposition 3.4.2. Assume that θ is
non-split. We have an exact sequence

0 −→ IXa −→ νξ ⋊ ν−1/2π −→ IXb −→ 0.

By Lemma 5.3.2, the space HomD(νξ ⋊ ν−1/2π,CΛ⊗θ) is one-dimensional, for
any character Λ of L× satisfying the central character condition. It follows that
the possible Bessel functionals of IXa are complementary to those of IXb.
X: In the split case this follows from Proposition 3.4.2. In the non-split case it
follows from Lemma 5.2.2.
XIa and XIb: In the split case this follows from Proposition 3.4.2 and Proposi-
tion 3.5.1; note that the V1/V2 quotient of XIb equals τP3

GL(1)(νσ) by Table A.6

of [28]. Assume that L/F is not split, and consider the exact sequence

0 −→ (XIa)N,θ −→ (ν1/2π ⋊ ν−1/2σ)N,θ −→ (XIb)N,θ −→ 0. (149)
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It follows from Lemma 6.2.1 that

HomD(ν
1/2π ⋊ ν−1/2σ,CΛ⊗θ) = HomD(XIa,CΛ⊗θ)⊕HomD(XIb,CΛ⊗θ).

(150)
Observe here that, by Lemma 5.2.2, the left side equals HomT (σπ,CΛ), which
is at most one-dimensional.
Assume that the representation XIa admits a (Λ, θ)-Bessel functional. Then
Λ 6= σ ◦ NL/F and HomT (σπ,CΛ) 6= 0 by Corollary 4.7.1 and Theorem 4.6.3.
Conversely, assume that Λ 6= σ ◦ NL/F and HomT (σπ,CΛ) 6= 0. Assume also
that XIa does not admit a (Λ, θ)-Bessel functional; we will obtain a contradic-
tion. By the one-dimensionality of the space on the left hand side of (150),
we have HomD(XIb,CΛ⊗θ) 6= 0. By Corollary 4.7.1 and Theorem 4.6.3, we
conclude Λ = σ ◦NL/F , contradicting our assumption.
Assume that the representation XIb admits a (Λ, θ)-Bessel functional. Then
Λ = σ ◦ NL/F and HomT (π,C1) 6= 0 by Corollary 4.7.1 and Theorem 4.6.3.
Conversely, assume that Λ = σ◦NL/F and HomT (π,C1) 6= 0. Assume also that
XIb does not admit a (Λ, θ)-Bessel functional; we will obtain a contradiction.
By our assumption, the space on the left hand side of (150) is one-dimensional.
Hence HomD(XIa,CΛ⊗θ) 6= 0. By what we have already proven, this implies
Λ 6= σ ◦NL/F , a contradiction.
Va∗: This was proved in Corollary 4.7.2.
XIa∗: By Proposition 3.5.1, the representation XIa∗ has no split Bessel func-
tionals. Assume that θ is non-split. By Corollary 4.7.1 and Theorem 4.6.3, if
XIa∗ admits a (Λ, θ)-Bessel functional, then Λ = σ◦N and HomT (π

JL,C1) 6= 0.
Conversely, assume that Λ = σ◦N and HomT (π

JL,C1) 6= 0. By Corollary 4.7.3,
the twisted Jacquet module δ∗(ν1/2π, ν−1/2σ)N,θ is one-dimensional. There-
fore, XIa∗ does admit a (Λ′, θ)-Bessel functional for some Λ′. By what we
already proved, Λ′ = Λ.
This concludes the proof.

6.3 Some cases of uniqueness

Let (π, V ) be an irreducible, admissible representation of GSp(4, F ). Using the
notations from Sect. 2.4, consider (Λ, θ)-Bessel functionals for π. We say that
such functionals are unique if the dimension of the space HomD(V,CΛ⊗θ) is at
most 1. In this section we will prove the uniqueness of split Bessel functionals
for all representations, and the uniqueness of non-split Bessel functionals for
all non-supercuspidal representations.
As far as we know, a complete proof that Bessel functionals are unique for
all (Λ, θ) and all representations π has not yet appeared in the literature. In
[17] it is proved that (1, θ)-Bessel functionals are unique if π has trivial central
character. The main ingredient for this proof is Theorem 1’ of [10]. In [15]
it is proved that (Λ, θ)-Bessel functionals are unique if π has trivial central
character. The proof is based on a generalization of Theorem 1’ of [10]. In
[31] it is stated, without proof, that (Λ, θ)-Bessel functionals are unique if π
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is supercuspidal and has trivial central character. In [23] it is remarked that
the uniqueness of (Λ, θ)-Bessel functionals in the general case can be proven by
extending the arguments of [17] and [15], though a proof of this is not given in
[23].

6.3.1 Lemma. Let σ1 be a character of F×, and let (π1, V1) be an irreducible,
admissible representation of GL(2, F ). Let the matrix S be as in (22), and θ
be as in (24). The resulting group T is then given by (24). Let (π, V ) be an
irreducible, admissible representation of GSp(4, F ). Assume there is an exact
sequence

π1 ⋊ σ1 −→ π −→ 0. (151)

Let Λ be a character of T . If Λ is not equal to one of the characters Λ1 or Λ2,
given by

Λ1(diag(a, b, a, b)) = ν1/2(a)ν−1/2(b)σ1(ab)ωπ1
(a), (152)

Λ2(diag(a, b, a, b)) = ν−1/2(a)ν1/2(b)σ1(ab)ωπ1
(b), (153)

then (Λ, θ)-Bessel functionals are unique.

Proof. Since π is a quotient of π1 ⋊ σ1, it suffices to prove that HomD(π1 ⋊
σ1,CΛ⊗θ) is at most one-dimensional. Any element β of this space factors
through the Jacquet module (π1 ⋊ σ1)N,θ. These Jacquet modules were cal-
culated in Lemma 5.2.2 ii). Using the notation of this lemma, the assumption
about Λ implies that restriction of β to J2 establishes an injection

HomD(π1 ⋊ σ1,CΛ⊗θ) −→ Hom[ ∗ ∗ ]
(σ1π1,CΛ).

The space on the right is at most one-dimensional; see Sect. 5.2. This proves
our statement.

6.3.2 Theorem. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ).

i) Split Bessel functionals for π are unique.

ii) Non-split Bessel functionals for π are unique, if π is not supercuspidal,
or if π is of type Va∗ or XIa∗.

Proof. i) By Proposition 3.5.1, we may assume that π is generic. Let the
matrix S be as in (22), and θ be as in (23). The resulting group T is then given
by (24). Let Λ be a character of T . We use the fact that any (Λ, θ)-Bessel
functional β on V factors through the P3-module VZJ .
Assume that π is supercuspidal. Then, by Theorem 3.2.1, the associated P3-
module VZJ equals τP3

GL(0)(1). Therefore, the space of (Λ, θ)-Bessel functionals
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on V equals the space of linear functionals considered in Lemma 2.5.4 of [28].
By this lemma, this space is one-dimensional.
Now assume that π is non-supercuspidal. As in the proof of Proposition 3.5.1,
we write the semisimplification of the quotient V1/V2 in the P3-filtration as∑n

i=1 τ
P3

GL(1)(χi) with characters χi of F
×. Let C(π) be the set of characters

χi. Proposition 2.5.7 of [28] states that if the character a 7→ Λ(diag(a, 1, a, 1)) is
not contained in the set ν−1C(π), then the set of (Λ, θ)-Bessel functionals is at
most one-dimensional (note that the arguments in the proof of this proposition
do not require the hypothesis of trivial central character). The table below lists
the sets ν−1C(π) for all generic non-supercuspidal representations. This table
implies that (Λ, θ)-Bessel functionals for types VII, VIIIa and IXa are unique.
Assume that π is not one these types. Then there exists a sequence as in
(151) for some irreducible, admissible representation π1 of GL(2, F ) and some
character σ1 of F×. These π1 and σ1 are listed in the table below. Let Λ1, Λ2

be the characters defined in (152) and (153). Note that, since Λ1 and Λ2 are
Galois conjugate, we have

dimHomD(π,CΛ1⊗θ) = dimHomD(π,CΛ2⊗θ) (154)

by (29). By Lemma 6.3.1, it suffices to prove that these spaces are one-
dimensional. Define characters λ1, λ2 of F× by

λ1(a) = Λ1(diag(a, 1, a, 1)) = ν1/2(a)σ1(a)ωπ1
(a),

λ2(a) = Λ2(diag(a, 1, a, 1)) = ν−1/2(a)σ1(a).

The set {λ1, λ2} is listed in the table below for each representation. By the
previous paragraph, the spaces (154) are one-dimensional if {λ1, λ2} is not a
subset of ν−1C(π). This can easily be verified using the table below.

π π1 σ1 {λ1, λ2} ν−1C(π)

I χ1 × χ2 σ {ν1/2χ1χ2σ, ν
−1/2σ} {ν1/2χ1χ2σ, ν

1/2χ1σ,

ν1/2χ2σ, ν
1/2σ}

IIa χStGL(2) σ {ν1/2χ2σ, ν−1/2σ} {ν1/2χ2σ, ν1/2σ, νχσ}

IIIa χ−1 × ν−1 ν1/2χσ {σ, χσ} {νχσ, νσ}

IVa ν−3/2StGL(2) ν3/2σ {ν−1σ, νσ} {ν2σ}

Va ν−1/2ξStGL(2) ν1/2ξσ {ξσ} {νσ, νξσ}

VIa ν−1/2StGL(2) ν1/2σ {σ} {νσ}

VII — — — ∅

VIIIa — — — ∅

IXa — — — ∅

X π σ {ν1/2ωπσ, ν
−1/2σ} {ν1/2ωπσ, ν

1/2σ}

XIa ν−1/2π ν1/2σ {σ} {νσ}
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ii) Assume first that π is not supercuspidal. Then there exist an irreducible,
admissible representation π1 of GL(2, F ) and a character σ of F× such that π
is either a quotient of π1 ⋊ σ, or a quotient of σ ⋊ π1. The assertion of ii) now
follows from i) of Lemma 5.2.2 and Lemma 5.3.2.

Now assume that π = δ∗([ξ, νξ], ν−1/2σ) is of type Va∗. Suppose that
HomD(π,CΛ⊗θ) is non-zero for some θ and Λ, with L being a field. By our
main result Theorem 6.2.2, the quadratic extension L is the field correspond-
ing to ξ and Λ = σ ◦ NL/F . By Corollary 4.7.3, the Jacquet module πN,θ is
one-dimensional. This implies that HomD(π,CΛ⊗θ) is one-dimensional.

Finally, assume that π = δ∗(ν1/2π, ν−1/2σ) is of type XIa∗. Suppose that
HomD(π,CΛ⊗θ) is non-zero for some θ and Λ, with L being a field. By our
main result Theorem 6.2.2, we have Λ = σ ◦ NL/F and HomT (π

JL,C1) 6= 0.
By Corollary 4.7.3, the Jacquet module πN,θ is one-dimensional. This implies
that HomD(π,CΛ⊗θ) is one-dimensional.

7 Some applications

We present two applications that result from the methods used in this paper.
The first application is a characterization of irreducible, admissible, non-generic
representations of GSp(4, F ) in terms of their twisted Jacquet modules and
their Fourier-Jacobi quotient. The second application concerns the existence
of certain vectors with good invariance properties.

7.1 Characterizations of non-generic representations

As before, we fix a non-trivial character ψ of F .

7.1.1 Lemma. Let (π, V ) be a non-generic, supercuspidal, irreducible, admis-
sible representation of GSp(4, F ). Then dimVN,θ < ∞ for all non-degenerate
θ.

Proof. If θ is split, then VN,θ = 0 by Theorem 3.2.1. Assume that θ is not
split. Let θ = θS with S as in (11). We may assume that dimVN,θ 6= 0. Let
X be as in (57). By Theorem 5.6 of [8], there exists an irreducible, admissible
representation σ of GO(X) such that HomR(ω, π ⊗ σ) 6= 0; here, ω is the
Weil representation defined in Sect. 4.4. By i) of Theorem 4.4.6, the set ΩS is
non-empty. By Proposition 4.4.7, the dimension of VN,θ is finite.

Let W be a smooth representation of N . We will consider the dimensions of
the complex vector spacesWN,θa,b,c

. Fix representatives a1, . . . , at for F
×/F×2.

We define

d(W ) =
t∑

i=1

dimWN,θai,0,1
.
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If 0 =W0 ⊂W1 ⊂W2 ⊂ · · · ⊂Wk =W is a chain of N subspaces, then

d(W ) =
k∑

j=1

d(Wj/Wj−1). (155)

If one of the spaces WN,θai,0,1
is infinite-dimensional, then this equality still

holds in the sense that both sides are infinite.

7.1.2 Lemma. Let W J be a non-zero, irreducible, smooth representation of
GJ admitting ψ as a central character. Then 1 ≤ d(W J) ≤ #F×/F×2.

Proof. This follows immediately from Lemma 6.1.2.

7.1.3 Lemma. Let (τJ ,W J) be a smooth representation of GJ . Then W J has
finite length if and only if d(W J ) is finite. If it has finite length, then

length(W J) ≤ d(W J ) ≤ length(W J) ·#F×/F×2.

Proof. Assume that W J has finite length. Let

0 =W0 ⊂W1 ⊂W2 ⊂ · · · ⊂Wk =W J

be a chain of GJ spaces such that Wj/Wj−1 is not zero and irreducible. By
(155), we have

d(W J ) =
k∑

j=1

d(Wj/Wj−1).

By Lemma 7.1.2, 1 ≤ d(Wj/Wj−1) ≤ #F×/F×2 for j = 1, . . . , k. It follows
that d(W J ) is finite, and that the asserted inequalities hold.

If W J has infinite length, a similar argument shows that d(W ) is infinite.

7.1.4 Theorem. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ). The following statements are equivalent.

i) π is not generic.

ii) dimVN,θ <∞ for all split θ.

iii) dimVN,θ <∞ for all non-degenerate θ.

iv) The GJ -representation VZJ ,ψ has finite length.
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Proof. i) ⇒ iii) Assume that π is not generic. Let θ be a non-degenerate
character of N . Assume first that θ is split. Then VN,θ can be calculated from
the P3-filtration of π. As in the proof of Proposition 3.5.1 we see that VN,θ is
finite-dimensional.
Now assume that θ is not split. If π is supercuspidal, then dimVN,θ < ∞ by
Lemma 7.1.1. Assume that π is not supercuspidal. Then the table of Bessel
functionals shows that π admits (Λ, θ)-Bessel functionals only for finitely many
Λ. Since every Λ can occur in VN,θ at most once by the uniqueness of Bessel
functionals (Theorem 6.3.2), this implies that VN,θ is finite-dimensional.
iii) ⇒ ii) is trivial.
ii) ⇒ i) Assume that π is generic. Then the subspace V2 of the P3-module VZJ

from Theorem 3.2.1 is non-zero. In fact, this subspace is isomorphic to the
representation τP3

GL(0)(1) defined in (37). By Lemma 2.5.4 of [28], the space

(V2)[ 1 ∗ ∗
1
1

]

,θ0,1
,

where θa,b is defined in (140), is infinite-dimensional. This implies that VN,θ0,1,0
is infinite-dimensional, contradicting the hypothesis in ii).
iii) ⇔ iv) Let W J = VZJ ,ψ. Then W

J
N,θa,0,1

= VN,θa,0,1 for any a in F×, so that

d(W J ) = d(V ). Lemma 7.1.3 therefore implies that iii) and iv) are equivalent.

For more thoughts on VZJ ,ψ, see [1]. Theorem 7.1.4 answers one of the questions
mentioned at the end of this paper.

7.2 Invariant vectors

Let (π, V ) be an irreducible, admissible representation of GSp(4, F ). In this
section we will prove the existence of a vector v in V such that diag(1, 1, c, c)v =
v for all units c in the ring of integers o of F . This result was motivated by a
question of Abhishek Saha; see [33].
Our main tool will be the GJ -module VZJ ,ψ for a smooth representation (π, V )
of GSp(4, F ). Throughout this section we will make a convenient assumption
about the character ψ of F , namely that ψ has conductor o. By definition, this
means that ψ is trivial on o, but not on p−1, where p is the maximal ideal of
o. We normalize the Haar measure on F such that o has volume 1. Let q be
the cardinality of the residue class field o/p.
In this section, we will abbreviate

d(c) =

[
1
1
c
c

]
, z(x) =

[
1 x
1
1
1

]

for c in F× and x in F .

7.2.1 Lemma. Let (π, V ) be a smooth representation of GSp(4, F ). Let p :
V → VZJ ,ψ be the projection map, and let w in VZJ ,ψ be non-zero. Then there
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exists a positive integer m and a non-zero vector v in V with the following
properties.

i) p(v) = w.

ii) π(z(x))v = ψ(x)v for all x ∈ p−m.

iii) π(d(c))v = v for all c ∈ 1 + pm.

Proof. Let v0 in V be such that p(v0) = w. Let m be a positive integer such
that π(d(c))v0 = v0 for all c ∈ 1 + pm. Set v = q−m

∫
p−m

ψ(−x)π(z(x))v0 dx.

Then p(v) = w. In particular, v is not zero. Evidently, v has property ii).
Moreover, for c in 1 + pm,

π(d(c))(v) = q−m
∫

p−m

ψ(−x)π(z(xc−1)d(c))v0 dx

= q−m
∫

p−m

ψ(−xc)π(z(x))v0 dx

= q−m
∫

p−m

ψ(−x)π(z(x))v0 dx

= v.

This concludes the proof.

7.2.2 Lemma. Let (π, V ) be a smooth representation of GSp(4, F ). Let p :
V → VZJ ,ψ be the projection map. Let m be a positive integer. Assume that
v in V is such that π(z(x))v = ψ(x)v for all x ∈ p−m. If c is in o× but not in
1 + pm, then p(π(d(c))v) = 0.

Proof. Let w = π(d(c))v. To show that p(w) = 0 it is enough to show that

∫

p−m

ψ(−x)π(z(x))w dx = 0

because p(
∫
p−m ψ(−x)π(z(x))w dx) =

∫
p−m ψ(−x)ψ(x)p(w) dx = qmp(w). In-

deed,
∫

p−m

ψ(−x)π(z(x))w dx =

∫

p−m

ψ(−x)π(z(x)d(c))v dx

= π(d(c))

∫

p−m

ψ(−x)π(z(xc))v dx
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= π(d(c))

∫

p−m

ψ(−x)ψ(xc)v dx

=
( ∫

p−m

ψ(x(c − 1)) dx
)
π(d(c))v

= 0,

since c /∈ 1 + pm and ψ has conductor o.

7.2.3 Proposition. Let (π, V ) be a smooth representation of GSp(4, F ). Let
p : V → VZJ ,ψ be the projection map. Let w be in VZJ ,ψ. Then there exists a
unique vector v in V with the following properties.

i) p(v) = w.

ii) π(z(x))v = v for all x ∈ o.

iii)
∫

p−1

π(z(x))v dx = 0.

iv) π(d(c))v = v for all c ∈ o×.

Proof. For the existence part we may assume that w is non-zero. Let the posi-
tive integer m and v in V be as in Lemma 7.2.1. Define v1 = qm

∫
o×

π(d(c))v dc.

Then, by Lemma 7.2.2,

p(v1) = qm
∫

o×

p(π(d(c))v) dc

= qm
∫

1+pm

p(π(d(c))v) dc

= qm
∫

1+pm

p(v) dc

= w.

Evidently, v1 has property iv). To see properties ii) and iii), let x be in p−1.
By ii) of Lemma 7.2.1,

π(z(x))v1 = qm
∫

o×

π(d(c)z(xc))v dc = qm
∫

o×

ψ(xc)π(d(c))v dc.

It follows that v1 has property ii). Integrating over x in p−1 shows that v1 has
property iii) as well.
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To prove that v1 is unique, let V1 be the subspace of V consisting of vectors v
satisfying properties ii), iii) and iv). We will prove that the restriction of p to
V1 is injective (so that p induces an isomorphism V1 ∼= VZJ ,ψ). Let v be in V1
and assume that p(v) = 0. Then there exists a positive integer m such that

∫

p−m

ψ(−x)π(z(x))v dx = 0.

Applying d(c) to this equation, where c is in o×, leads to

∫

p−m

ψ(−cx)π(z(x))v dx = 0.

Integrating over c in o×, we obtain

q−1

∫

p−1

π(z(x))v dx =

∫

o

π(z(x))v dx.

Using properties ii) and iii) it follows that v = 0. This concludes the proof.

7.2.4 Corollary. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ) that is not a twist of the trivial representation. Then there exists a
vector v in V that is invariant under all elements d(c) with c in o×.

Proof. By Proposition 7.2.3, it is enough to show that VZJ ,ψ is non-zero. By
Proposition 6.1.3, there exists a non-trivial character θ ofN such that VN,θ 6= 0.
We may assume that θ is of the form (15) with c = 1. The assertion follows.
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