
On the archimedean Euler factors for spin L–functions

Ralf Schmidt

Abstract. The archimedean Euler factor in the completed spin L–function of a

Siegel modular form is computed. Several formulas are obtained, relating this factor

to the recursively defined factors of Andrianov and to symmetric power L–factors

for GL(2). The archimedean ε–factor is also computed. Finally, the critical points of

certain motives in the sense of Deligne are determined.

Introduction

Let f be a classical holomorphic Siegel modular form of weight k and degree n, assumed to be an
eigenform of the Hecke algebra. Andrianov [An] has associated to f an L–function Zf (s) as an Euler
product over all finite primes, where the Euler factor at p is a polynomial in p−s of degree 2n. This is
called the spin L–function of f since it is attached to the 2n–dimensional spin representation of the
L–group Spin(2n+ 1,C) of the underlying group PGSp(2n), see [AS].

A serious problem is that of obtaining the analytic continuation and a functional equation for Zf (s).
The case n = 1 is the classical Hecke theory, the case n = 2 was done by Andrianov in [An]. Beyond
that, very little is presently known.

To obtain smooth functional equations, the partial L–function Zf (s) has to be completed with an Eu-
ler factor at the archimedean prime. For example, for n = 1, the function L(s, f) = (2π)−sΓ(s)Zf (s)
has the functional equation L(s, f) = (−1)k/2L(k − s, f). For n = 2, the definition L(s, f) =
(2π)−2sΓ(s)Γ(s− k+ 2)Zf (s) leads to the functional equation L(s, f) = (−1)kL(2k− 2− s) proved in
[An].

The purpose of this paper is to give formulas for the archimedean Euler factor in any degree. Auto-
morphic representation theory provides the recipe to compute this factor. Let Πk be the archimedean
component of the automorphic representation of PGSp(2n,A) attached to the eigenform f (see [AS]).
By the local Langlands correspondence over R, there is an associated local parameter ϕ : WR →
Spin(2n + 1,C), where WR is the real Weil group. Let ρ be the spin representation. Then the factor
we are looking for is

L(s, Πk, ρ) = L(s, ρ ◦ ϕ),

where on the right we have the L–factor attached to a finite-dimensional representation of the Weil
group.

The formulas we will thus obtain coincide for n = 1 and n = 2 with the Γ–factors from above, except
for some constants. Note however that we are working with the automorphic normalization that is
designed to yield a functional equation relating s and 1 − s. To compare with the classical formulas,
we have to make a shift in the argument s.

At the end of the paper [An] Andrianov gives another definition of an archimedean Euler factor by a
recursion formula. It turns out that for n ≥ 3 this definition leads to a factor that is different from ours.
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However, the difference is not too serious. One factor can be obtained from the other by multiplying
with a quotient of reflection polynomials, where we call a polynomial δ a reflection polynomial if its
zeros are integers or half-integers and if it has a “functional equation” δ(s) = ±δ(1−s). Therefore, for
questions of meromorphic continuation and functional equation, either factor is suitable. The difference
becomes however very relevant if one is interested in controlling poles in a global L–function.

If the degree n is even we shall establish a formula relating L(s, Πk, ρ) to symmetric power L–factors
for GL(2). To be precise, we shall prove for n = 2n′ that

L(s, Πk+n′ , ρ) = δ(s)
n′∏

j=0

∏
r∈Z

L
(
s− r/2, D(2k − 1), Symn′−j

)β(r,j,n′)
, (1)

where β(r, j, n′) are certain combinatorially defined exponents, D(2k − 1) is the discrete series rep-
resentation of PGL(2,R) of lowest weight 2k, and δ(s) is a reflection polynomial. The existence of
such a formula is already a hint that there is a “lifting” from elliptic modular forms of weight 2k to
Siegel modular forms of weight k + n′ and degree 2n′. This is indeed the case, as proved by Ikeda
[Ik]. The above formula is needed to express the completed spin L–function of an Ikeda lift in terms
of symmetric power L–functions, see [Sch].

As part of a global L–function, the reflection polynomial δ(s) in formula (1) should make a contribution
of δ = δ(s)/δ(1−s) to the global ε–factor. This is indeed the case; we shall prove the analogous formula

ε(s, Πk+n′ , ρ, ψ) = δ

n′∏
j=0

∏
r∈Z

ε
(
s− r/2, D(2k − 1), Symn′−j , ψ

)β(r,j,n′)
. (2)

We shall also compute the ε–factor in odd degree. In each case (except n = 1) it is just a sign. It is
important to know this sign because it appears in the global functional equation.

Deligne has defined critical points of motives and made conjectures about the values of the L–function
of the motive at these points. The critical points do only depend on the archimedean Euler factor.
Having these factors for spin L–functions explicitly at hand, we will compute the critical points (of
motives corresponding to Siegel modular forms) in the final part of this paper.

The first section of this paper contains background material on Weil group representations and their
L–factors. In the second section we shall compute the archimedean L–factors for symmetric powers
on GL(2), both for later use and as an illustration of our method. The next section contains the basic
formula for L(s, Πk, ρ). We shall continue by establishing a recursion formula that will enable us to
compare our factors with Andrianov’s. This is followed by a section in which the formula (1) is
established. In the next section we use similar methods to compute the archimedean ε–factor. The
final section is devoted to critical points.

I would like to thank R. Schulze–Pillot for various helpful discussions on the topics of this paper.
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1 Preparations

1.1 Representations of the Weil group

We recall some basic facts about representations of the real Weil group. References are [Ta] and [Kn].

The real Weil group WR is a semidirect product WR = C∗ o 〈j〉, where j is an element with j2 = −1
which acts on C∗ by jzj−1 = z̄. A representation ofWR in some finite-dimensional complex vector space
is called semisimple if its image consists entirely of semisimple elements. Every such representation is
fully reducible. An irreducible semisimple representation is either one- or two-dimensional. Here is a
complete list.

One-dimensional representations:

τ+,t : z 7−→ |z|t, j 7−→ 1, (3)

τ−,t : z 7−→ |z|t, j 7−→ −1. (4)

Here we have t ∈ C and | | is the usual absolute value on C (not its square).

Two-dimensional representations:

τl,t : reiθ 7−→
(
r2teilθ

r2te−ilθ

)
, j 7−→

(
(−1)l

1

)
. (5)

Here the parameters are a positive integer l and some t ∈ C. An L–factor is attached to a semisimple
representation of WR. For the irreducible representations the L–factors are given as follows (see [Kn]
(3.6)).

L(s, τ+,t) = π−(s+t)/2 Γ
(s+ t

2

)
, (6)

L(s, τ−,t) = π−(s+t+1)/2 Γ
(s+ t+ 1

2

)
, (7)

L(s, τl,t) = 2(2π)−(s+t+l/2) Γ
(
s+ t+

l

2

)
. (8)

For an arbitrary semisimple representation the associated L–factor is the product of the L–factors of
its irreducible components.

The local Langlands correspondence is a parametrization of the infinitesimal equivalence classes of
irreducible admissible representations of a real reductive group G = G(R) by admissible homomor-
phisms WR → LG into the L–group of G. If G is split over R, then LG may be replaced by its identity
component, which is a complex Lie group.

If π is an irreducible, admissible representation of G and ρ is a finite-dimensional representation of LG,
then an L–factor L(s, π, ρ) is defined as follows. Let ϕ : WR → LG be the local parameter attached
to π. Define a semisimple representation of WR by τ := ρ ◦ ϕ. Then the L–factor associated to π and
ρ is

L(s, π, ρ) := L(s, τ).
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In this paper we shall be concerned with the following situation. G is the group PGSp(2n,R) (rank
n) and π is a certain holomorphic discrete series representation (corresponding to a Siegel modular
form of weight k). The identity component of the L–group is Spin(2n+ 1). As ρ we take the smallest
genuine representation of this group, the 2n–dimensional spin representation. The resulting factor
L(s, π, ρ) is of interest because it is the “correct” archimedean Euler factor of the spin L–function of
a Siegel modular form, see [AS].

There are also ε–factors attached to semisimple representations of WR. In the archimedean case they
do not depend on the complex variable s. They do however depend on the choice of an additive
character ψ of R. Throughout we will fix the character ψ(x) = e2πix. Then the ε–factors are given on
irreducible representations as follows.

ε(s, τ+,t, ψ) = 1, (9)
ε(s, τ−,t, ψ) = i, (10)

ε(s, τl,t, ψ) = il+1. (11)

The ε–factor of an arbitrary semisimple representation is again the product of the factors of the irre-
ducible components. Via the local Langlands correspondence we have ε–factors attached to irreducible,
admissible representations of a reductive group G.

1.2 Archimedean factors for symmetric power L–functions

Let l be a positive integer, and let D(l) be the discrete series representation of SL±(2,R) = {g ∈
GL(2,R) : det(g) ∈ {±1}} with a lowest weight vector of weight k = l+1 and a highest weight vector
of weight −l − 1. For t ∈ C we consider the representation

D(l, t) = D(l)⊗ |det |t

of GL(2,R) which coincides with D(l) on SL±(2,R) and with |a|2t on matrices
(
a
a

)
, a > 0. The

connected component of the L–group of GL(2,R) is GL(2,C), and, by [Kn], the local parameter
WR → GL(2,C) attached to D(l, t) is the representation τl,t defined in (5).

For a positive integer n let Symn−1 be the n–dimensional irreducible representation of GL(2,C) on
the space of homogeneous polynomials in two variables of degree n− 1 given by

Symn−1(g)P (x, y) = P ((x, y)g), g ∈ GL(2,C).

The L–functions L(s, π,Symn−1), for a global representation π of GL(2,A), are called symmetric power
L–functions, cf. [Sh]. It is easy to compute their archimedean Euler factors, and we shall do so for the
representations D(l, t) of GL(2,R).

1.2.1 Lemma. The archimedean symmetric power L–factors for the representation D(l, t) of GL(2,R)
are given as follows.

i) If n is even, then

L(s, D(l, t), Symn−1) = 2n/2 (2π)−sn/2 (2π)−tn(n−1)/2−ln2/8
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n/2∏
j=1

Γ
(
s+ t(n− 1) +

1
2
l(n+ 1)− lj

)
.

ii) If n is odd, then

L(s, D(l, t), Symn−1) = 2(n−1)/2 (2π)−s(n−1)/2 (2π)−t(n−1)2/2−l(n2−1)/8 π−(s+ε)/2−t(n−1)( (n−1)/2∏
j=1

Γ
(
s+ t(n− 1) +

1
2
l(n+ 1)− lj

))
Γ
(s+ ε

2
+ t(n− 1)

)
,

where

ε =
{

0 if n ≡ 1 mod 4,
1 if n ≡ 3 mod 4.

Proof: We have to decompose the composition

τ : WR −→ GL(2,C) −→ GL(n,C)

into irreducibles, where the first map is τl,t and the second one is Symn−1. If we take the natural basis
xn−1−jyj , j ∈ {0, . . . , n− 1}, for the space of Symn−1, then this representation is explicitly given by

reiθ 7−→ r2t(n−1)


eil(n−1)θ

eil(n−3)θ

. . .
e−il(n−3)θ

e−il(n−1)θ

 ,

j 7−→


−1

1
. .

.

1
−1

 .

From this the irreducible components are obvious. If n is even, we have

τ =
n/2⊕
j=1

τl(n+1−2j),t(n−1),

with τl,t as in (5), and if n is odd, then

τ =
( (n−1)/2⊕

j=1

τl(n+1−2j),t(n−1)

)
⊕ τ∗,2t(n−1),

where ∗ means “+” if n ≡ 1 mod 4 and “−” if n ≡ 3 mod 4 (see (3) and (4)). Using the definitions
(6) to (8), the assertion is now easily obtained.
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For later use we shall rewrite the formulas in the lemma slightly, assuming that t = 0. If n is odd,
then

L(s,D(l), Symn) =
n−1∏
j=0

(step 2)

L(s, τl(n−j),0)

=
(
2(2π)−s

)(n+1)/2 (2π)−l(n+1)2/8
n−1∏
j=0

(step 2)

Γ
(
s+

1
2
ln− 1

2
lj

)
. (12)

If n is even, then

L(s,D(l), Symn) =
( n−2∏

j=0
(step 2)

L(s, τl(n−j),0)
)
L(s, τ∗,0)

=
(
2(2π)−s

)n/2 (2π)−ln(n+2)/8 π−(s+ε)/2

( n−2∏
j=0

(step 2)

Γ
(
s+

1
2
ln− 1

2
lj

))
Γ
(s+ ε

2

)
(13)

where

ε =
{

0 if n ≡ 0 mod 4,
1 if n ≡ 2 mod 4, ∗ =

{
+ if n ≡ 0 mod 4,
− if n ≡ 2 mod 4.

2 The Euler factor for the spin representation

2.1 Basic computation

Let X (resp. P , Q) denote the character lattice (resp. weight lattice, root lattice) and X∨ (resp. P∨,
Q∨) the cocharacter lattice (resp. coweight lattice, coroot lattice) of the group PGSp(2n). We can
choose a basis e1, . . . , en of X ⊗Z Q and a dual basis f1, . . . , fn of X∨⊗Z Q such that these lattices are
given as follows:

P = 〈e1, . . . , en〉 P∨ = {
∑
cifi : ci ∈ Z ∀i or ci ∈ Z + 1

2 ∀i}
2| ‖
X = {

∑
ciei :

∑
ci ∈ 2Z} X∨

‖ 2|
Q = 〈e1 − e2, . . . , en−1 − en, 2en〉 Q∨ = 〈f1 − f2, . . . , fn−1 − fn, fn〉

The root datum of Spin(2n + 1) is dual to this one, meaning that characters (cocharacters) become
cocharacters (characters). Thus the e1, . . . , en identify with cocharacters of Spin(2n+1) and f1, . . . , fn

identify with characters of Spin(2n+ 1). See [Sp] for basic facts about root data.

Let us choose the standard set e1 − e2, . . . , en−1 − en, 2en of simple roots of PGSp(2n). The element

ν = (k − 1)e1 + . . .+ (k − n)en ∈ P
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then lies in the fundamental Weyl chamber provided k > n. It is the Harish-Chandra parameter for
a certain discrete series representation Πk of PGSp(2n,R). This representation has a scalar minimal
K–type with highest weight ke1 + . . .+ken. It appears as the archimedean component of automorphic
representations of PGSp(2n,AQ) attached to classical Siegel modular forms of weight k, see [AS]. If
k = n then we get a representation Πk which is a limit of discrete series.

2.1.1 Proposition. Let n and k be positive integers with k ≥ n, and let Πk be the (limit of) discrete
series representation of PGSp(2n,R) considered above. Let ρ be the 2n–dimensional spin representation
of the dual group Spin(2n+ 1,C). Then

L(s, Πk, ρ) =
( ∏

ε1,...,εn∈{±1}∑
εi>0

2(2π)−s(2π)−|k
∑

εi−
∑

iεi|/2 Γ
(
s+

|k
∑
εi −

∑
iεi|

2

))
( ∏

ε1,...,εn∈{±1}∑
εi=0,

∑
iεi>0

2(2π)−s(2π)−
∑

iεi/2 Γ
(
s+

1
2

∑
iεi

))(
2(2π)−s Γ(s)

)N/2

. (14)

Here N = #{(ε1, . . . , εn) ∈ {±1}n :
∑
εi =

∑
iεi = 0}. The second line of the formula can be

ommitted for odd n.

Proof: As before let e1, . . . , en span the character lattice and f1, . . . , fn span the cocharacter lattice
of PGSp(2n), in a way such that ei(fi(z)) = z and ei(fj(z)) = 1 for i 6= j. The e1, . . . , en identify
with cocharacters of Spin(2n+ 1), and the f1, . . . , fn identify with characters. Let

ν = (k − 1)e1 + . . .+ (k − n)en

be the Harish-Chandra parameter of our representation Πk. The local parameter ϕ : WR → Spin(2n+
1,C) attached to Πk is then given by

ϕ(z) = zν z̄−ν (z ∈ C∗), ϕ(j) = w,

where w is a representative for the longest Weyl group element (sending ei to −ei for each i, see [Bo]
10.5). We have to consider the decomposition of τ := ρ ◦ ϕ into irreducibles.

The weights of the spin representation ρ are well known; they are

ε1f1 + . . .+ εnfn

2
, εi ∈ {±1}.

Each weight space is one-dimensional, so that ρ is a 2n–dimensional representation. Let vε1,...,εn
be

vectors spanning the one-dimensional weight spaces. Then, writing z = reiθ,

τ(z)vε1,...,εn = ρ(zν z̄−ν)vε1,...,εn = ρ((eiθ)2ν)vε1,...,εn

= (ε1f1 + . . .+ εnfn)((eiθ)ν)vε1,...,εn

= ei(ε1(k−1)+...+εn(k−n))θvε1,...,εn
= ei(k

∑
εi−

∑
iεi)θvε1,...,εn

. (15)
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Since w represents the longest Weyl group element, we have that

τ(j)vε1,...,εn
is a multiple of v−ε1,...,−εn

It follows that the two-dimensional spaces 〈vε1,...,εn
v−ε1,...,−εn

〉 are invariant for the action of WR. Let
τε1,...,εn be the representation on this two-dimensional space. If l := k

∑
εi−

∑
iεi 6= 0, then obviously

τε1,...,εn = τ|l|,0 where τl,t was defined in (5). The associated L–factor is

L(s, τε1,...,εn) = 2(2π)−(s+|l|/2)Γ(s+ |l|/2), l = k
∑

εi −
∑

iεi. (16)

On the other hand, if l = 0, then τε1,...,εn
= τ+,0 ⊕ τ−,0, with associated L–factor

L(s, τε1,...,εn
) = π−s/2 Γ

(s
2

)
π−(s+1)/2 Γ

(s+ 1
2

)
.

By Legendre’s formula for the Γ–function, this is the same factor as if we put l = 0 in (16). The formula
(14) is obtained by taking the product of all these factors over a certain system of representatives of
{±1}n/〈−1〉.

Examples: For n = 1 we obtain

L(s, Πk, ρ) = 2(2π)−(s+(k−1)/2) Γ
(
s+

k − 1
2

)
.

This is the archimedean Euler factor in the Jacquet–Langlands L–function for an automorphic form on
PGL(2,AQ) of weight k. Up to a factor 2 and a shift by k−1

2 it is also the classical Γ–factor attached
to an elliptic modular form of weight k.

For n = 2 and k ≥ 2 our formula yields

L(s, Πk, ρ) = 4(2π)−2s(2π)1−k Γ
(
s+ k − 3

2

)
Γ
(
s+

1
2

)
.

Replacing s with s− k + 3
2 we get

4(2π)k−2(2π)−2sΓ(s)Γ(s− k + 2).

Up to the constant 4(2π)k−2 this is the factor used by Andrianov in [An] to complete the partial
L–function for classical Siegel modular forms of degree 2.

The absolute values in formula (14) are inconvenient for computations, and we would like to remove
them. Let us define L̃(s, Πk, ρ) by the same formula, but without the absolute values, i.e.,

L̃(s, Πk, ρ) =
( ∏

ε1,...,εn∈{±1}∑
εi>0

2(2π)−s(2π)(
∑

iεi−k
∑

εi)/2 Γ
(
s+

k
∑
εi −

∑
iεi

2

))
( ∏

ε1,...,εn∈{±1}∑
εi=0,

∑
iεi>0

2(2π)−s(2π)−
∑

iεi/2 Γ
(
s+

1
2

∑
iεi

))(
2(2π)−s Γ(s)

)N/2

. (17)
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Then

L(s, Πk, ρ) = L̃(s, Πk, ρ)
∏

ε1,...,εn∈{±1}n∑
εi>0

(2π)−|k
∑

εi−
∑

iεi|/2 Γ
(
s+ |k

∑
εi−

∑
iεi|

2

)
(2π)−(k

∑
εi−

∑
iεi)/2 Γ

(
s+ k

∑
εi−

∑
iεi

2

) .
If we put

δm(s) := (2π)−m Γ
(
s+ m

2

)
Γ
(
s− m

2

) (18)

then we can write L(s, Πk, ρ) = δ(s)L̃(s, Πk, ρ) with

δ(s) =
∏

ε1,...,εn∈{±1}∑
εi>0

k
∑

εi−
∑

iεi<0

δ∑ iεi−k
∑

εi
(s). (19)

Note that for non-negative integers m the function δm is a polynomial: using repeatedly the functional
equation sΓ(s) = Γ(s+ 1) we get

δm(s) =
m∏

j=1

(
s+

m

2
− j

)
.

It is immediate from this description that

δm(s) = (−1)mδm(1− s).

Let us call a polynomial p a reflection polynomial if p(s) = ±p(1 − s) for some sign ±, and if all the
zeros of p are either integers or half-integers. Then all the δm, and therefore the function δ also, are
reflection polynomials.

2.1.2 Proposition. With notations as in Proposition 2.1.1 we have

L(s, Πk, ρ) = δ(s)L̃(s, Πk, ρ),

where L̃(s, Πk, ρ) is defined in (17) and where δ(s), defined in (19), is a reflection polynomial (de-
pending on n and k). If k is large enough, specifically,

k ≥


1
4
(n+ 1)2 for n odd,

1
8
(n2 + 4n) for n even,

(20)

then δ(s) = 1.
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Proof: Only the last assertion remains to be proved. By definition, δ(s) = 1 if k
∑
εi −

∑
iεi ≥ 0

for each choice of εi ∈ {±1} such that
∑
εi > 0. Let j be the number of indices i such that εi = −1.

Then 0 ≤ j ≤ n−1
2 (n odd) resp. 0 ≤ j ≤ n

2 − 1 (n even) and
∑
εi = n− 2j. Since

n∑
i=1

iεi ≤ −
j∑

i=1

i+
n∑

i=j+1

i =
1
2
(n2 + n)− j2 − j,

we have

k
∑

εi −
∑

iεi ≥ k(n− 2j)− 1
2
(n2 + n) + j2 + j.

Thus we get k
∑
εi −

∑
iεi ≥ 0 if

k ≥ n2 + n

2(n− 2j)
− j2 + j

n− 2j
=

1
2
(n+ 2j + 1) +

j2

n− 2j
.

The expression on the right grows with j, so we get an upper bound for it if we put j = n−1
2 (n odd)

resp. j = n
2 − 1 (n even). The upper bound is the one given on the right hand side of (20).

Remark: Suppose our local factor L(s, Πk, ρ) appears as the archimedean factor in some global
L–function L(s, Π, ρ). Then, since δ(s) is a reflection polynomial, one can replace L(s, Πk, ρ) by
L̃(s, Πk, ρ) if one is only concerned with questions of meromorphic continuation and functional equa-
tion. Of course, to know the precise sign in the functional equation, or to control poles, one has to
take the “correct” L(s, Πk, ρ).

2.2 Recursion formulas

We are now seeking a relation between the factors L(s, Πk, ρ) in degree n and degree n+ 1 and shall
therefore more precisely write L(s, Πk,n, ρn) for the factor in degree n.

2.2.1 Proposition. We have the following recursion formulas for the factors L̃(s, Πk, ρ) defined in
(17). Let s0 = (k − n− 1)/2.

i) If n is even, then

L̃(s, Πk,n+1, ρn+1) = L̃(s+ s0, Πk,n, ρn)L̃(s− s0, Πk,n, ρn)δeven(s), (21)

where δeven(s) is a quotient of reflection polynomials given by

δeven(s) =
( ∏

ε1,...,εn∈{±1}∑
εi=0,

∑
iεi>0

δ2s0−
∑

iεi
(s)

)
δ2s0(s)

N/2.

Here N = #{(ε1, . . . , εn) ∈ {±1}n :
∑
εi =

∑
iεi = 0} and δm(s) is defined in (18).

ii) If n is odd, then

L̃(s, Πk,n+1, ρn+1) = L̃(s+ s0, Πk,n, ρn)L̃(s− s0, Πk,n, ρn)δodd(s), (22)
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where δodd(s) is a quotient of reflection polynomials given by

δodd(s) =
∏

ε1,...,εn∈{±1}∑
εi=1,

∑
iεi>n+1

δ∑ iεi−n−1(s).

Proof: We shall prove the first statement; the manipulations for the second one are similar. The
summations in the following formulas are from 1 to n, except in the first line, where they are from 1
to n+ 1.

L̃(s, Πk,n+1, ρn+1) =
∏

ε1,...,εn+1∈{±1}∑
εi>0

2(2π)−s(2π)(
∑

iεi−k
∑

εi)/2 Γ
(
s+

k
∑
εi −

∑
iεi

2

)

=
∏

ε1,...,εn∈{±1}∑
εi+1>0

2(2π)−s(2π)(
∑

iεi+(n+1)−k(
∑

εi+1))/2 Γ
(
s+

k(
∑
εi + 1)−

∑
iεi − (n+ 1)

2

)

·
∏

ε1,...,εn∈{±1}∑
εi−1>0

2(2π)−s(2π)(
∑

iεi−(n+1)−k(
∑

εi−1))/2 Γ
(
s+

k(
∑
εi − 1)−

∑
iεi + (n+ 1)

2

)

=
∏

ε1,...,εn∈{±1}∑
εi>0

2(2π)−(s+s0)(2π)(
∑

iεi−k
∑

εi)/2 Γ
(
s+ s0 +

k
∑
εi −

∑
iεi

2

)
(23)

·
∏

ε1,...,εn∈{±1}∑
εi=0

2(2π)−(s+s0)(2π)
∑

iεi/2 Γ
(
s+ s0 −

∑
iεi

2

)
(24)

·
∏

ε1,...,εn∈{±1}∑
εi>0

2(2π)−(s−s0)(2π)(
∑

iεi−k
∑

εi)/2 Γ
(
s− s0 +

k
∑
εi −

∑
iεi

2

)
. (25)

For the last line note that
∑
εi > 1 is equivalent to

∑
εi > 0 since n is even. Now we are going to

write the product (24) in the form

(24) =
∏

ε1,...,εn∈{±1}∑
εi=0,

∑
iεi>0

2(2π)−(s+s0)(2π)−
∑

iεi/2 Γ
(
s+ s0 +

∑
iεi

2

)
(26)

·
∏

ε1,...,εn∈{±1}∑
εi=0,

∑
iεi>0

2(2π)−(s−s0)(2π)−
∑

iεi/2 Γ
(
s− s0 +

∑
iεi

2

)
(27)

·
∏

ε1,...,εn∈{±1}∑
εi=0,

∑
iεi>0

2(2π)−(s+s0)(2π)
∑

iεi/2 Γ
(
s+ s0 −

∑
iεi

2

)
2(2π)−(s−s0)(2π)−

∑
iεi/2 Γ

(
s− s0 +

∑
iεi

2

) (28)

·
(
2(2π)−(s+s0)Γ(s+ s0)

)N/2

(29)
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·
(
2(2π)−(s−s0)Γ(s− s0)

)N/2

(30)

·
(

2(2π)−(s+s0)Γ(s+ s0)
2(2π)−(s−s0)Γ(s− s0)

)N/2

. (31)

The terms (23), (26) and (29) combine to L̃(s+ s0, Πk,n, ρn). The terms (25), (27) and (30) combine
to L̃(s− s0, Πk,n, ρn). The terms (28) and (31) combine to the factor δeven(s). This factor is indeed
a quotient of reflection polynomials since s0 ∈ 1

2Z (we cannot conclude that it is itself a reflection
polynomial since it may happen that 2s0 −

∑
iεi < 0).

At the end of the paper [An] Andrianov defines an archimedean Euler factor for the spin L–function
as

An,k(s) := (2π)−2n−1s γn,k(s) (32)

(actually the exponent in Andrianov’s paper is −2ns, but this is an obvious misprint), where the
γn,k are defined recursively by γ1,k(s) = Γ(s) and

γn+1,k(s) = γn,k(s) γn,k(s− k + n+ 1), n ≥ 1. (33)

This Euler factor is designed to fit into a global L–function that conjecturally has analytic continuation
and a functional equation with center point

s =
nk

2
− n(n+ 1)

4
+

1
2
.

To compare An,k(s) with our factor L(s, Πk,n, ρn) we shall make a shift in the argument to make 1/2
the center point, and consider

Ãn,k(s) := An,k

(
s+

nk

2
− n(n+ 1)

4

)
, γ̃n,k(s) := γn,k

(
s+

nk

2
− n(n+ 1)

4

)
. (34)

We see that both Ãn,k(s) and L(s, Πk,n, ρn) contain a factor (2π)−2n−1s. Disregarding constant factors,
what we really have to compare is γ̃n,k(s) and the Γ–functions in our formula (14). It follows from
(33) that

γ̃n+1,k(s) = γ̃n,k(s+ s0) γ̃n,k(s− s0), s0 =
k − n− 1

2
, (35)

a recursion formula very similar to (21) and (22), except that the δ–factors are missing. Thus we
can say that, except for n = 1 and n = 2, Andrianov’s factor An,k(s) is not the standard auto-
morphic archimedean spin Euler factor, but differs from L(s, Πk,n, ρn) only by a quotient of reflection
polynomials. As mentioned before, this does not make a big difference for questions of meromorphic
continuation and functional equation.

2.3 Connection with symmetric power L–functions

In this section we shall show that if the degree n is even, then the L–factor L(s, Πk, ρ) can be
expressed as a reflection polynomial times a product of symmetric power L–factors for GL(2). This
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was in principle already done in [Sch] and used to express the spin L–functions of the lifts constructed
by Ikeda in [Ik] in terms of symmetric power L–functions for GL(2). Here we will present a more
direct computation, but at one point will also use a result of [Sch].

Throughout we will assume that n is even and write n = 2n′. For an integer l let us abbreviate

f(l) := 2(2π)−(s+l/2)Γ
(
s+

l

2

)
.

Our L–factor from Proposition 2.1.1 may then be written as

L(s, Πk, ρ) =
∏

(ε1,...,εn)∈{±1}n/〈−1〉

f
(∣∣k∑

εi −
∑

iεi

∣∣).
We shall work with the modified factor

L̃(s, Πk, ρ) =
( ∏

ε1,...,εn∈{±1}∑
εi>0

f
(
k

∑
εi −

∑
iεi

))( ∏
ε1,...,εn∈{±1}∑

εi=0,
∑

iεi>0

f
( ∑

iεi

))
f(0)N/2 (36)

defined in (17), which differs from L(s, Πk, ρ) at most by a reflection polynomial. For ε1, . . . , εn ∈ {±1}
let j be the number of negative εi’s. Then

∑
εi = n− 2j, and the condition

∑
εi > 0 allows j to run

between 0 and n′ − 1. With

α̃(r, j, n) := #
{

(ε1, . . . , εn ∈ {±1}n :
∑

εi = n− 2j,
∑

iεi = r
}

we may then write

L̃(s, Πk, ρ) =
( n′−1∏

j=0

∏
r∈Z

f
(
k(n− 2j)− r

)α̃(r,j,n)
)( ∏

r>0

f(r)α̃(r,n′,n)

)
f(0)α̃(0,n′,n)/2. (37)

Actually our interest is in L̃(s, Πk+n′ , ρ). The numbers α̃(r, j, n) can be described as follows. Let

α(k, j, n′) = number of possibilities to choose j numbers from the set (38)
{1− 2n′, 3− 2n′, . . . , 2n′ − 1} such that their sum equals k.

This is the dimension of the weight–k space of the representation
∧j

Vn of SL(2,C), where Vn is the
n–dimensional irreducible representation of this group (n = 2n′). It is an easy exercise to show that

α̃(r, j, n) = α
(
r + (n+ 1)(j − n′), j, n′

)
.

We therefore have

L̃(s, Πk+n′ , ρ) =
( n′−1∏

j=0

∏
r∈Z

f
(
(2k−1)(n′− j)−r

)α(r,j,n′)
)( ∏

r>0

f(r)α(r,n′,n′)

)
f(0)α(0,n′,n′)/2. (39)

Note that for a function of integers g(j) and integers αj we have
m∏

j=0

g(j)αj =
m∏

j0=0

m∏
j=j0

j≡j0 mod 2

g(j)αj0−αj0−2 , (40)
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provided α−2 = α−1 = 0. Applying this to the above equation we get

n′−1∏
j=0

f
(
(2k − 1)(n′ − j)− r

)α(r,j,n) =
n′−1∏
j0=0

n′−1−ε′(j0)∏
j=j0

(step 2)

f
(
(2k − 1)(n′ − j)− r

)β(r,j0,n′)
, (41)

where

ε′(j0) =
{

0 if n′ − 1 ≡ j0 mod 2,
1 if n′ ≡ j0 mod 2.

and where β(r, j, n′) = α(r, j, n′) − α(r, j − 2, n′). The following properties of the numbers α and β
are all easy to see.

2.3.1 Lemma. Let r, j, n′ be integers with 0 ≤ j ≤ n′.

i) α(r, j, n′) = 0 unless j(j − 2n′) ≤ r ≤ j(2n′ − j) and r ≡ j mod 2. Similar for β(r, j, n′).

ii) α(r, j, n′) = α(−r, j, n′). Similar for β(r, j, n′).

iii)

j(2n′−j)∑
r=j(j−2n′)

(step 2)

α(r, j, n′) =
(

2n′

j

)
,

j(2n′−j)∑
r=j(j−2n′)

(step 2)

β(r, j, n′) =
(

2n′

j

)
−

(
2n′

j − 2

)
.

iv)
n′∑

j=0
j≡n′ mod 2

β(r, j, n′) = α(r, n′, n′).

If we consider a fixed j0 and put m = n′ − j0, then

n′−1−ε′(j0)∏
j=j0

(step 2)

f
(
(2k − 1)(n′ − j)− r

)
=

m−1−ε′(j0)∏
j=0

(step 2)

f
(
(2k − 1)(n′ − j0 − j)− r

)
(42)

=
m−1−ε′(j0)∏

j=0
(step 2)

L
(
s− r

2
, τ(2k−1)(m−j),0

)
. (43)

If we assume ε′(j0) = 0, or equivalently m odd, then this expression is precisely L(s − r/2, D(2k −
1), Symm), see (12). This is not quite the case for ε′(j0) = 1, or m even. In this case we have (see
(13))

n′−1−ε′(j0)∏
j=j0

(step 2)

f
(
(2k − 1)(n′ − j)− r

)
= L

(
s− r

2
, D(2k − 1), Symm

)
L

(
s− r

2
, τ∗(j0),0

)−1
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where

∗(j0) =
{

+ if n′ − j0 ≡ 0 mod 4,
− if n′ − j0 ≡ 2 mod 4.

Putting everything together we obtain

L̃(s, Πk+n′ , ρ) =
( n′−1∏

j0=0

∏
r∈Z

L
(
s− r/2, D(2k − 1), Symn′−j0

)β(r,j0,n′)
)

( n′−1∏
j0=0

ε′(j)=1

∏
r∈Z

L
(
s− r

2
, τ∗(j0),0

)−β(r,j0,n′)
)( ∏

r>0

f(r)α(r,n′,n′)

)
f(0)α(0,n′,n′)/2

= δ(s)
n′∏

j=0

∏
r∈Z

L
(
s− r/2, D(2k − 1), Symn′−j

)β(r,j,n′) (44)

with

δ(s) =
( n′∏

j=0
ε′(j)=1

∏
r∈Z

L
(
s− r

2
, τ∗(j),0

)−β(r,j,n′)
)( ∏

r>0

f(r)α(r,n′,n′)

)
f(0)α(0,n′,n′)/2. (45)

Note that by Legendre’s formula Γ(s/2)Γ((s+ 1)/2) = 21−sπ1/2Γ(s) we have

f(r) = L
(
s+

r

2
, τ+,0

)
L

(
s+

r

2
, τ−,0

)
for each r ∈ Z.

Applying Lemma 2.3.1 iv) we therefore have

δ(s) =
n′∏

j=0
ε′(j)=1

∏
r>0

(
L(s+ r/2, τ+,0)L(s+ r/2, τ−,0)

L(s− r/2, τ∗(j),0)L(s+ r/2, τ∗(j),0)

)β(r,j,n′)

( n′∏
j=0

ε′(j)=1

L
(
s, τ∗(j),0

)−β(0,j,n′)
)(

L(s, τ+,0)L(s, τ−,0)
)α(0,n′,n′)/2

=
( n′∏

j=0
ε′(j)=1

∏
r>0

δr,∗(j)(s)β(r,j,n′)

)
δ0,+(s)K ,

where we put

δr,∗(s) =
L(s+ r/2, τ+,0)L(s+ r/2, τ−,0)
L(s− r/2, τ∗,0)L(s+ r/2, τ∗,0)

and

K =
1
2

n′∑
j=0

ε′(j)=1

(−1)(n
′−j)/2β(0, j, n′). (46)
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First assume that n′ is odd. Then K = 0 by Lemma 2.3.1 i), and our formula reads

δ(s) =
n′∏

j=1
step 2

∏
r odd

δr,∗(j)(s)β(r,j,n′). (47)

It is easy to see that for odd r the factors δr,∗ are just reflection polynomials. Consequently δ(s) is
itself a reflection polynomial.

Now assume that n′ is even, so that

δ(s) =
( n′∏

j=0
step 2

∏
r even

δr,∗(j)(s)β(r,j,n′)

)
δ0,+(s)K . (48)

In this case no δr,∗ is a polynomial. Nevertheless, it is still true that δ(s) is a reflection polynomial.
This was proved in [Sch] using some finite-dimensional representation theory, and we are not going
to reprove it here (in this paper we wrote δr,0 for δr,+ and δr,1 for δr,−). In [Sch] there is also more
precise information on the location and order of zeros of the polynomial δ(s). To summarize:

2.3.2 Theorem. The archimedean spin Euler factor in even degree n = 2n′ can be expressed as

L(s, Πk+n′ , ρ) = δ(s)
n′∏

j=0

∏
r∈Z

L
(
s− r/2, D(2k − 1), Symn′−j

)β(r,j,n′)

with a reflection polynomial δ(s).

Remark: The formula in this theorem is important for the following reason. Ikeda constructed a
lifting map from elliptic cusp forms of weight 2k to Siegel modular forms of degree n = 2n′ and weight
k+n′, see [Ik]. A group theoretic interpretation of this lifting was given in [Sch]. If π is a holomorphic
cuspform of weight 2k on PGL(2), and Π is its Ikeda lift to PGSp(2n), then the spin L–function of Π
is expressed through symmetric power L–functions of π. The Euler factor at a real place is handled by
Proposition 2.3.2, while at unramified places a similar formula holds, but without the δ(s). In this way
one reduces the analytic properties of the spin L–functions of the lifts to those of symmetric power
L–functions for GL(2).

2.4 The ε–factor

We shall fix the additive character ψ(x) = e2πix of R and give some information on the spin ε–factor
ε(s,Πk, ρ, ψ). The basic computation is as in the proof of Proposition 2.1.1. With notation as in this
proof, the two-dimensional WR–representation τε1,...,εn has ε–factor

ε(s, τε1,...,εn , ψ) = i|l|+1, l = k

n∑
j=1

εj −
n∑

j=1

jεj ,
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regardless of l being zero or not (see (9) – (11)). Consequently

ε(s,Πk, ρ, ψ) =
∏

(ε1,...,εn)∈{±1}n/〈−1〉

i|k
∑

εj−
∑

jεj |+1

= i2
n−1

( ∏
ε1,...,εn∈{±1}∑

εj>0

i|k
∑

εj−
∑

jεj |
)( ∏

ε1,...,εn∈{±1}∑
εj=0,

∑
jεj>0

i
∑

jεj

)
. (49)

For example, if n = 1 we get ε(s,Πk, ρ, ψ) = ik. This is the number appearing in the functional
equation of the L–function of a classical elliptic modular form of weight k. If n = 2 and k ≥ 2 (note
our overall assumption k ≥ n) then we get

ε(s,Πk, ρ, ψ) = (−1)k.

This is the sign in the functional equation of the spin L–function associated to a degree 2 Siegel
modular form, see [An] Theorem 3.1.1.

2.4.1 Lemma. For a positive integer n we have

∑
ε1,...,εn∈{±1}∑

εj>0

( n∑
j=1

εj

)
=


1
2
n

(
n

n/2

)
if n is even,

n

(
n− 1

(n− 1)/2

)
if n is odd.

If n is even and ≥ 4, this number is divisible by 4.

Proof: Assume that n is even; the other case is similar. For (ε1, . . . , εn) ∈ {±1}n let l be the number
of negative εj ’s. Then, for

∑
εj to be positive, l is allowed to run from 0 to n

2 − 1. Thus

∑
ε1,...,εn∈{±1}∑

εj>0

( n∑
j=1

εj

)
=

(n−2)/2∑
l=0

(n− 2l)
(
n

l

)
.

The first assertion now follows from the elementary formulas

(n−2)/2∑
l=0

(
n

l

)
= 2n−1 − 1

2

(
n

n/2

)
and

(n−2)/2∑
l=0

l

(
n

l

)
= n2n−2 − 1

2
n

(
n

n/2

)
.

The last statement is a consequence of the following lemma.

2.4.2 Lemma. i) For any positive integer n,(
2n
n

)
≡

{
2 mod 4 if n is a power of 2,
0 mod 4 otherwise.
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ii) For any odd positive integer n ≥ 3,

1
2

(
2n
n

)
≡

{
2 mod 4 if n− 1 is a power of 2,
0 mod 4 otherwise.

Proof: i) This is an easy exercise; consider the 2–adic valuation of n!.

ii) We have 1
2

(
2n
n

)
= 2n−1

n

(
2n−2
n−1

)
. Since n is odd, the 2–adic valuation of the left hand side equals that

of
(
2n−2
n−1

)
. Thus we are reduced to i).

The case that n is odd

In this case the formula (49) simplifies to

ε(s,Πk, ρ, ψ) = iM with M =
∑

ε1,...,εn∈{±1}∑
εj>0

|k
∑

εj −
∑

jεj |

(we are assuming that n ≥ 3). Let us assume that k is large enough, so that the absolute values can
be omitted (see Proposition 2.1.2). Then

M =
(
k − n+ 1

2

) ∑
ε1,...,εn∈{±1}∑

εj>0

( ∑
εj

)
−

∑
ε1,...,εn∈{±1}∑

εj>0

(
j − n+ 1

2

)
εj .

The second sum changes its sign if εj is replaced by ε′j := εn+1−j and therefore vanishes. The first
sum was computed in Lemma 2.4.1, so we get

M =
(
k − n+ 1

2

)
n

(
n− 1

(n− 1)/2

)
. (50)

Note that the representation Πk, considered as a representation of GSp(2n,R), has trivial central
character. The minimal K–type is the character

g 7−→ det(CZ +D)k for g =
(
A B
C D

)
∈ K,

where K is the standard maximal compact subgroup of GSp(2n) (its identity component is isomorphic
to U(n)). Therefore, since n is odd, k must necessarily be even. But

(
n−1

(n−1)/2

)
is also even, so we get

M ≡ n(n+ 1)
2

(
n− 1

(n− 1)/2

)
≡ n+ 1

2

(
n− 1

(n− 1)/2

)
=
n− 1

2

(
n− 1

(n− 1)/2

)
+

(
n− 1

(n− 1)/2

)
≡

(
n− 1

(n− 1)/2

)
mod 4,

the last congruence being true for n ≥ 5 (see Lemma 2.4.1). In view of Lemma 2.4.2 we get the
following result.
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2.4.3 Proposition. Assume that n ≥ 3 is an odd integer. Then for the spin ε–factor in degree n we
have

ε(s,Πk, ρ, ψ) =
{

−1 if n = 2m + 1 for some m ≥ 2,
1 otherwise,

for any even weight k ≥ 1
4 (n+ 1)2.

The case that n is even

If we assume that n ≥ 4 is even and k is large enough (see (20)), then formula (49) gives ε(s,Πk, ρ, ψ) =
iM with

M =
∑

ε1,...,εn∈{±1}∑
εj>0

(k
∑

εj −
∑

jεj) +
∑

ε1,...,εn∈{±1}∑
εj=0,

∑
jεj>0

( ∑
jεj

)
.

If we replace k by k + 1, then, by Lemma 2.4.1, M changes by a number that is divisible by 4. It
follows that ε(s,Πk, ρ, ψ) = iM is independent of k (note this is not true for n = 2).

If we put f(l) = il+1, then we can also proceed as in section 2.3. In analogy with formula (39) we
obtain

ε(s, Πk+n′ , ρ, ψ) =
( n′−1∏

j=0

∏
r∈Z

f
(
(2k − 1)(n′ − j)− r

)α(r,j,n′)
)

( ∏
r>0

f(r)α(r,n′,n′)

)
f(0)α(0,n′,n′)/2. (51)

Note that here we can omit the r from f((2k − 1)(n′ − j)− r) since
∑

r∈Z rα(r, j, n′) = 0 by Lemma
2.3.1 ii). We then apply (40) and get a formula similar to (41), namely

n′−1∏
j=0

f
(
(2k − 1)(n′ − j)

)α(r,j,n) =
n′−1∏
j0=0

n′−1−ε′(j0)∏
j=j0

(step 2)

f
(
(2k − 1)(n′ − j)

)β(r,j0,n′)
, (52)

If we consider a fixed j0 and put m = n′ − j0, then we get the analogue of equation (42):

n′−1−ε′(j0)∏
j=j0

(step 2)

f
(
(2k − 1)(n′ − j)

)
=

m−1−ε′(j0)∏
j=0

(step 2)

f
(
(2k − 1)(n′ − j0 − j)

)
(53)

=
m−1−ε′(j0)∏

j=0
(step 2)

ε
(
s− r

2
, τ(2k−1)(m−j),0, ψ

)
. (54)

Note that archimedean ε–factors are independent of s, so we are free to put the shift of r/2 here. If
m is odd, this equals ε(s − r/2, D(2k − 1), Symm, ψ). If m is even, there is a correcting factor of
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ε(s, τ∗(j0),0). Thus we get, as in (44) and (45),

ε(s, Πk+n′ , ρ, ψ) = δ
n′∏

j=0

∏
r∈Z

ε
(
s− r/2, D(2k − 1), Symn′−j , ψ

)β(r,j,n′) (55)

with

δ =
( n′∏

j=0
ε′(j)=1

∏
r∈Z

ε
(
s− r

2
, τ∗(j),0, ψ

)−β(r,j,n′)
)( ∏

r>0

f(r)α(r,n′,n′)

)
f(0)α(0,n′,n′)/2

=
n′∏

j=0
ε′(j)=1

∏
r>0

(
ir+1

ε
(
s− r/2, τ∗(j),0, ψ

)
ε
(
s+ r/2, τ∗(j),0, ψ

))β(r,j,n′)

( n′∏
j=0

ε′(j)=1

ε
(
s, τ∗(j),0, ψ

)−β(r,j,n′)
)
iα(0,n′,n′)/2+1

=
( n′∏

j=0
ε′(j)=1

∏
r>0

(
ir+1−2ε(j)

)β(r,j,n′)
)
iK , (56)

where

ε(j) =
{

0 if n′ − j ≡ 0 mod 4,
1 if n′ − j ≡ 2 mod 4, (57)

and K is as in (46). Consider first the case that n′ is odd and let us compare the formulas (47) and
(56). One easily shows that for each of the reflection polynomials δr,∗ in (47) the “functional equation”

δr,∗(j)(s)
δr,∗(j)(1− s)

= ir+1−2ε(j)

holds (r is odd, so this is just a sign). It follows that

δ =
δ(s)

δ(1− s)
(58)

is the sign appearing in the functional equation of the polynomial δ(s). Now assume that n′ is even.
Using some standard formulas for the Γ–function, one shows that for each of the factors δr,∗ appearing
in formula (48) one has

δr,∗(j)(s)
δr,∗(j)(1− s)

= tan
(πs

2

)σ

, σ = ir−2ε(j).

In other words, if r − 2ε(j) ≡ 0 mod 4, then we get a contribution of tan(πs/2) to δ(s)/δ(1 − s),
and if r − 2ε(j) ≡ 2 mod 4 we get a contribution of tan(πs/2)−1. From the factors δ0,+(s) we get a
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contribution of tan(πs/2)K . Furthermore, we know the total contribution is 1, i.e. δ(s) = δ(1 − s),
because δ(s) is known to be a polynomial.

Comparing this to (56) we see that each factor tan(πs/2)±1 corresponds to a factor i±1. Since we just
saw that there are as many positive as negative exponents, it follows that δ = 1. In particular, (58)
holds in all cases. We summarize:

2.4.4 Proposition. Assume k > 1
8n

2 and let δ(s) be the reflection polynomial of Proposition 2.3.2.
Then the archimedean spin epsilon factor in even degree n = 2n′ can be expressed as

ε(s, Πk+n′ , ρ, ψ) = δ
n′∏

j=0

∏
r∈Z

ε
(
s− r/2, D(2k − 1), Symn′−j , ψ

)β(r,j,n′)

where δ = δ(s)/δ(1− s). If n′ is even, then δ = 1.

Remark: This proposition makes sense, since, as part of a global L–function, the factor δ(s) obviously
contributes the number δ(s)/δ(1− s) to the global ε–factor appearing in the functional equation.

In fact, we can say more about the symmetric power part of the ε–factor.

2.4.5 Proposition. Under the hypotheses of the previous proposition, we have

n′∏
j=0

∏
r∈Z

ε
(
s− r/2, D(2k − 1), Symn′−j , ψ

)β(r,j,n′) =
{

−1 if n′ − 1 is a power of 2,
1 otherwise.

Proof: Let

M =
∑

ε1,...,εn∈{±1}∑
εj>0

(
k

∑
εj −

∑
jεj + 1

)
,

so that iM is the “first part” of our ε–factor, see (49). Similarly as in (50) we compute

M =
(
k − n+ 1

2

)n
2

(
n

n/2

)
+ 2n−1 − 1

2

(
n

n/2

)
≡ (n+ 1)n

4

(
n

n/2

)
− 1

2

(
n

n/2

)
mod 4 (59)

(see Lemma 2.4.1). On the other hand, during the course of proving (55), we saw that

iM =
( n′∏

j=0

∏
r∈Z

ε
(
s− r/2, D(2k − 1), Symn′−j , ψ

)β(r,j,n′)
)

( n′∏
j=0

ε′(j)=1

∏
r∈Z

ε
(
s− r

2
, τ∗(j),0, ψ

)−β(r,j,n′)
)
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=
( n′∏

j=0

∏
r∈Z

ε
(
s− r/2, D(2k − 1), Symn′−j , ψ

)β(r,j,n′)
)
i−M ′

with

M ′ =
n′∑

j=0
ε′(j)=1

∑
r∈Z

ε(j)β(r, j, n′) =
n′∑

j=0
j≡n′ mod 2

ε(j)
((

n

j

)
−

(
n

j − 2

))

(and ε(j) as in (57)). Here we used Lemma 2.3.1 iii). It is an exercise to compute this number; one
obtains

M ′ =
1
2

(
2n′

n′

)
− 2n′−1.

It follows that

M +M ′ ≡ (n+ 1)n
4

(
n

n/2

)
mod 4.

This proves the assertion in view of Lemma 2.4.2.

2.5 Critical points

We shall now work with the geometric normalization used in Andrianov’s paper [An] and put

Lg(s, Πk, ρ) := L
(
s− nk

2
+
n(n+ 1)

4
, Πk, ρ

)
,

cf. (34). This L–factor fits into a global L–function that (conjecturally) admits a functional equation
with center point

s0 =
nk

2
− n(n+ 1)

4
+

1
2
. (60)

Assume f is a Siegel modular form of degree n and weight k > n, and let M(f) be the (conjectural)
associated motive such that

L(s, M(f)) = L(s, f, ρ),

where on the right we have the spin L–function of f . From the functional equation

L(s, f, ρ) = ε(s, f, ρ)L
(
nk − n(n+ 1)

2
+ 1− s, f, ρ

)
we conclude that M(f) is of weight

w = nk − n(n+ 1)
2

(note that this is also the value of k
∑
εi −

∑
iεi for the extreme case ε1 = . . . = εn = 1). The

archimedean Euler factor of L(s, f, ρ) (and of L(s, M(f))) is precisely our Lg(s, Πk, ρ). Following
Deligne, an integer n ∈ Z is called critical for M(f) if neither Lg(s, Πk, ρ) nor Lg(nk−n(n+1)/2+
1− s, Πk, ρ) has a pole at s = n.
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2.5.1 Proposition. Let f be a Siegel modular form of degree n and weight k > n, and let M(f) be

the motive whose L–function coincides with the spin L–function of f . Let s0 = nk
2 − n(n+1)

4 + 1
2 be

the center point of the functional equation. Then the critical points of M(f) are given as follows.

i) Assume n is odd. If k ≥ (n+1)2

4 , then there are k − (n+1)2

4 critical points, namely the integer
points in the interval[n− 1

2
k − n2 − 1

8
+ 1, . . . ,

n+ 1
2

k − (n+ 1)(3n+ 1)
8

]
.

If k < (n+1)2

4 and n ≡ 1 mod 4, then we have the single critical point s0. If k < (n+1)2

4 and n ≡ 3
mod 4, then there are no critical points.

ii) Assume n is even. If n ≡ 0 mod 4, then there are no critical points. If n ≡ 2 mod 4, then s0 is
the only critical point.

Proof: i) In the odd case we have

Lg(s, Πk, ρ) := L
(
s+

1
2
− s0, Πk, ρ

)
= g(s)

∏
∑

εi>0

Γ(s− r(ε1, . . . , εn)),

where

r(ε1, . . . , εn) = s0 −
1
2
− |k

∑
εi −

∑
iεi|

2

and where g(s) is an entire function without zeros. The factor Γ(s − r(ε1, . . . , εn)) contributes poles
at s = r(ε1, . . . , εn) − N0, where N0 = {0, 1, 2, . . .}. Thus we need to find the maximal r(ε1, . . . , εn),
or, equivalently, the minimal |k

∑
εi −

∑
iεi|.

First assume that k ≥ (n+1)2/4, so that k
∑
εi−

∑
iεi takes only non-negative values (see Proposition

2.1.2). Indeed, the minimum value of this expression is then k − (n + 1)2/4, so that the maximum
value of r(ε1, . . . , εn) is n−1

2 k − n2−1
8 . Note this is indeed an integer. Thus all the integers greater

than this number and less or equal s0 are critical. The critical points lie symmetric about s0, proving
the first assertion.

Now assume k < (n+ 1)2/4. Let j be the number of negative εi’s. For fixed j let aj be the minimum
and bj the maximum of the expression k

∑
εi−

∑
iεi. This expression takes every second integer value

in [aj , bj ]. It is easy to see that

a(n−1)/2 < 0 < b(n−1)/2 for k <
(n+ 1)2

4
. (61)

Furthermore, we have

k
∑

εi −
∑

iεi ≡
{

1 mod 2, if n ≡ 1 mod 4,
0 mod 2, if n ≡ 3 mod 4 (62)

(note that k is necessarily even in the odd case). It follows from (61) and (62) that the minimal value
of |k

∑
εi −

∑
iεi| is 1 if n ≡ 1 mod 4 and 0 if n ≡ 3 mod 4. Thus the maximum value of r(ε1, . . . , εn)
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is s0 − 1 resp. s0 − 1/2. The assertion follows, since in the first case we have s0 ∈ Z, while in the
second case s0 ∈ 1

2 + Z.

ii) These are similar considerations, and we omit the details.

Remark: The recursive definition (32) and (33) of archimedean Euler factors is not motivic in the
following sense. As is easily seen, the An,k(s) thus defined contains a factor Γ(s − (n − 1)k + n(n +
1)/2− 1). The point (n− 1)k − n(n+ 1)/2 + 1 lies on the right of the center s0 (given by (60)). But
a motivic Euler factor contains only Γ–factors of the form Γ(s− p) with p < s0 − 1

2 (coming from the
Hodge types (p, q), (q, p) with p < q and p+ q = w = 2s0 − 1) and of the form Γ((s+ ε− p)/2) with
2p = w and ε ∈ {±1} (coming from Hodge type (p, p)), see [De] 5.3. In particular, using Andrianov’s
factors one would conclude that there are no critical points as soon as n ≥ 3.
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