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ANALYTIC L-FUNCTIONS:

DEFINITIONS, THEOREMS, AND CONNECTIONS

DAVID W. FARMER, AMEYA PITALE, NATHAN C. RYAN, AND RALF SCHMIDT

Abstract. L-functions can be viewed axiomatically, such as in the formula-
tion due to Selberg, or they can be seen as arising from cuspidal automorphic
representations of GL(n), as first described by Langlands. Conjecturally, these
two descriptions of L-functions are the same, but it is not even clear that these
are describing the same set of objects. We propose a collection of axioms that
bridges the gap between the very general analytic axioms due to Selberg and
the very particular and representation-theoretic construction due to Langlands.
Along the way we prove theorems about L-functions that satisfy our axioms
and state conjectures that arise naturally from our axioms.
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1. Introduction

Different mathematicians mean different things when they say “L-function”.
Some mean an element of the Selberg class and others might mean a Dirichlet series
with Euler product and require that it be associated to an automorphic form. For
some people an L-function has to be entire, for others it can have poles on the edge
of the critical strip, for yet others it can even have poles in other locations.

In this paper we show how one can attach adjectives to L-functions (and which
adjectives one should attach, as determined by one’s goals) in such a way that the
resulting classes of L-functions provide a detailed framework for understanding L-
functions. This framework can be used to clarify the distinctions between various
classes and also to unify by showing connections between them. In Section 2, we
define the following sets of L-functions (see Section 2 for definitions):
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Figure 1. Conjectured relationships between the sets of L-
functions considered in this paper.

• Tempered balanced analytic primitive entire L-functions. These L-func-
tions are defined axiomatically, with precise restrictions on their functional
equation and Euler product.

• Q-automorphic L-functions. These L-functions are associated to tempered
balanced unitary cuspidal automorphic representations of GL(n,AQ).

The above sets are believed to contain all primitive L-functions that are expected
to satisfy analogues of the Riemann hypothesis, and conjecturally the two sets are
essentially equal.

Within each of the above sets are distinguished subsets which, conjecturally,
contain all L-functions arising from arithmetic objects.

• L-functions of algebraic type (analytic and Q-automorphic). These are char-
acterized by conditions on the Γ-factors in the functional equation.

• L-functions of arithmetic type (analytic and Q-automorphic). These are
characterized by conditions on the coefficients in the Dirichlet series.

Conjecturally, all four of these sets of L-functions are equal and arise from the
following arithmetic objects:

• pure motives;
• geometric Galois representations.

Associated to each such arithmetic object is an L-function. Conjecturally, those
sets of L-functions are equal, and coincide with the four subsets of L-functions men-
tioned previously. The conjectured relationships between these sets of L-functions
is shown in Figure 1.

In Figure 2 in Section 5 we discuss in more detail the conjectured relationships
between the sets of L-functions described above. Precise descriptions of each of
these sets are given in Sections 2 and 4.

2. Two views of L-functions

2.1. Analytic L-functions. The first set of L-functions in our discussion is defined
axiomatically.

Throughout the axioms, s = σ + it is a complex variable with σ and t real.
A tempered balanced analytic L-function is a function L(s) which satisfies the

five axioms below. In this paper we will also refer to tempered analytic L-functions
and analytic L-functions, which are obtained by relaxing some of these axioms; see
Section 2.1.1 for a discussion.
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Axiom 1 (Analytic properties). L(s) is given by a Dirichlet series

(Ax1.1) L(s) =
∞∑

n=1

an
ns

,

where an ∈ C.
(a) Convergence: L(s) converges absolutely for σ > 1.
(b) Analytic continuation: L(s) continues to a meromorphic function hav-

ing only finitely many poles, with all poles lying on the σ = 1 line.
Axiom 2 (Functional equation). There is a positive integer N called the con-

ductor of the L-function, a positive integer d called the degree of the L-
function, a pair of nonnegative integers (d1, d2) called the signature of the

L-function (where d = d1+2d2), and complex numbers {μj}d1
j=1 and {νk}d2

k=1

called the spectral parameters of the L-function, such that the completed
L-function

(Ax2.1) Λ(s) = Ns/2
d1∏
j=1

ΓR(s+ μj)

d2∏
k=1

ΓC(s+ νk) · L(s)

has the following properties :
(a) Bounded in vertical strips: Away from the poles of the L-function,

Λ(s) is bounded in vertical strips σ1 ≤ σ ≤ σ2.
(b) Functional equation: There exists ε ∈ C, called the sign of the func-

tional equation, such that

(Ax2.2) Λ(s) = εΛ(1− s).

Axiom 3 (Euler product). There is a product formula

(Ax3.1) L(s) =
∏

p prime

Fp(p
−s)−1,

absolutely convergent for σ > 1.
(a) Polynomial: Fp is a polynomial with Fp(0) = 1.
(b) Degree: Let dp be the degree of Fp. If p � N , then dp = d, and if p | N ,

then dp < d.
Axiom 4 (Temperedness). The spectral parameters and Satake parameters sat-

isfy precise bounds :
(a) Selberg bound: For every j we have Re(μj) ∈ {0, 1} and Re(νk) ∈

{ 1
2 , 1,

3
2 , 2, . . .}.

(b) Ramanujan bound: Write Fp in factored form as

(Ax4.1) Fp(z) = (1− α1,pz) · · · (1− αdp,pz)

with αj,p �= 0. If p � N, then |αj,p| = 1 for all j. If p | N , then

|αj,p| = p−mj/2 for some mj ∈ {0, 1, 2, . . .}, and
∑

mj ≤ d− dp.
Axiom 5 (Central character). There exists a Dirichlet character χ mod N ,

called the central character of the L-function.
(a) Highest degree term: For every prime p,

(Ax5.1) Fp(z) = 1− apz + · · ·+ (−1)dχ(p)zd.

(b) Balanced: We have Im (
∑

μj +
∑

(2νk + 1)) = 0.
(c) Parity: The spectral parameters determine the parity of the central

character

(Ax5.2) χ(−1) = (−1)
∑

μj+
∑

(2νk+1).
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2.1.1. Comments on the terminology. The term balanced is described by Axiom
5(b). The summand “+1” can obviously be omitted from the condition, but we
include it for uniformity with Axiom 5(c). Note that Axiom 5(c) would be prob-
lematic if it were not assumed that the exponent on −1 was an integer. If we omit
the modifier “balanced” when describing an L-function, then we mean a function of
the form L(s+ iy), where L(s) is balanced and y ∈ R. If L(s) is a (not necessarily
balanced) L-function, then it is straightforward to check that there exists exactly
one y0 ∈ R such that L(s+ iy0) is balanced.

The term tempered refers to both the Selberg bound in Axiom 4(a) and the
Ramanujan bound in Axiom 4(b). Neither bound has been proven for most auto-
morphic L-functions, but if those axioms fail for an automorphic L-function, they
must fail in a specific way arising from the fact that the underlying representation
is unitary. A precise description of the possibilities is given by the unitary pairing
condition, described in Appendix A.

In the functional equation (Ax2.2), the function Λ is the Schwartz reflection of

Λ, defined for arbitrary analytic functions f by f(z) = f(z). The tuple

(ε,N, {μ1, . . . , μd1
}, {νk, . . . , νd2

})
is the functional equation data of the L-function. The sign ε of the functional
equation has absolute value 1: to see this, apply the functional equation twice to
get Λ(s) = εεΛ(s).

In the Euler product, the polynomials Fp are known as the local factors, and the
reciprocal roots αj,p are called the Satake parameters at p. If p | N , then we say p
is a bad prime, and if p � N , then p is good.

It follows straight from the definition that if L1(s) and L2(s) are analytic L-
functions, then so is L1(s)L2(s). And if both L1 and L2 are balanced, or tempered,
then so is their product. If the analytic L-function L(s) cannot be written nontriv-
ially as L(s) = L1(s)L2(s), then we say that L is primitive. Here “nontrivially”
refers to the fact that the constant function 1 is a degree 0 L-function.

Because the degree is additive, every L-function can be written as a finite product
of primitive L-functions. It is not obvious that the factors are unique, and indeed
this has not been shown without additional assumptions, such as the following
conjecture of Selberg.

Conjecture 2.1 (Selberg orthogonality). Suppose L1(s) =
∑

ann
−s and L2(s) =∑

bnn
−s are primitive analytic (not necessarily tempered or balanced) L-functions.

Then

(2.1)
∑
p<X

apbp
p

= δL1,L2
log logX +O(1),

where δL1,L2
= 1 if L1 = L2 and 0 otherwise.

Selberg orthogonality was originally conjectured [24] for the Selberg class, which
includes an assumption of temperedness. In the general (not necessarily tempered)
case, one might consider including prime powers in the sum (2.1). If one has
sufficient progress toward temperedness, such as θ < 1

4 (see Appendix A.2 for the
definition of θ), or an averaged version, such as Rudnick and Sarnak’s “Hypothesis
H” [21], then such prime power terms do not contribute to the sum. We have
omitted such terms for the practical matter that the prime sum version (2.1) gives
a straightforward proof of unique factorization.
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Theorem 2.2. If L(s) is an analytic L-function, then

(2.2) L(s) = L1(s) · · ·Ln(s),

where each Lj is a nontrivial primitive analytic L-function. If L(s) is tempered,
then each Li(s) is tempered. Assuming the Selberg orthogonality conjecture, the
representation is unique, except for the order of the factors.

Proof. The first statement is immediate from the definition of primitivity and the
fact that the degree of a product is the sum of the degrees of the factors. The
second statement is immediate from the definition of tempered. Assuming Selberg
orthogonality, uniqueness follows from [8, proof of Proposition 4.4]. �

If “balanced” is included as a condition in Theorem 2.2, then the conclusion can
be written as

(2.3) L(s) = L1(s+ iy1) · · ·Ln(s+ iyn),

where each Lj is balanced, yj ∈ R, and
∑

djyj = 0, where dj is the degree of
Lj . Examples such as ζ(s + 5i)ζ(s − 5i) and L(s + 6i, χ)L(s − 3i, E) show that
a nonprimitive balanced L-function cannot necessarily be written as a product of
primitive balanced L-functions.

The motivation for the central character axioms comes from the Q-automorphic
L-functions that we describe in the next section; see the discussion preceding equa-
tions (3.3) and (3.5), and note, in particular, that the discussion explains why
Axioms 5(a) and 5(b) are equivalent if the L-function is Q-automorphic.

2.2. Q-automorphic L-functions. For a number field F , let AF denote the ring
of adeles of F . In this section we consider L-functions of cuspidal automorphic
representations π of the group GL(n,AQ). For such π we will always use the same
conventions as in [7]; in particular, we assume π to be irreducible and unitary. Then
π admits a unitary central character ωπ, which is a character of

Q×\A×
Q = R>0 ×

∏
p<∞

Z×
p .

There exists a unique real number y and a character χ of Q×\A×
Q of finite order

such that ωπ = | · |iyχ. The character χ corresponds to a Dirichlet character, also
denoted by χ:

(2.4) ωπ(x) = xiy for x ∈ R>0.

We say π is balanced if the restriction of ωπ to R>0 is trivial; that is, if y = 0. Evi-
dently, this is equivalent to ωπ being of finite order. In this case ωπ corresponds to a
Dirichlet character χ. The correspondence is such that if ωπ factors as

∏
p≤∞ ωπ,p,

then

(2.5) ωπ,p(p) = χ(p)

for all primes p not dividing the conductor of χ, and

(2.6) ωπ,∞(−1) = χ(−1).

Definition 2.3. Let π =
⊗

p≤∞ πp be a cuspidal automorphic representation of

GL(d,AQ). Let

L(s, π) =
∏
p<∞

L(s, πp)
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be the finite part of the Langlands L-function associated to π with respect to
the standard representation of the dual group GL(d,C). We call L(s, π) a Q-
automorphic L-function.

We do not consider automorphic representations for groups other than GL(n) or
for number fields other than Q. This is not a serious restriction since more general
automorphic representations can always be transferred to GL(n) over Q, at least
conjecturally; see [1] for some recent and deep results. This transfer may not be
cuspidal, however, so our definition will exclude some more general automorphic
L-functions. The following examples will illustrate why restricting to GL(n) over
Q is not harmful, and in fact it is desirable for our purposes.

First consider Hilbert modular cuspforms on a real quadratic number field F .
As explained in [19], such modular forms correspond to cuspidal automorphic rep-
resentations π of GL(2,AF ). The L-function L(s, π) is a degree 2 L-function over
F . We may consider the automorphic induction AIF/Q(π), which is an automor-
phic representation of GL(4,AQ). It has the same L-function L(s, π), but now we
consider it as a degree 4 L-function over Q. If AIF/Q(π) is cuspidal, then L(s, π)
is included in our definition of automorphic L-function. Assume that AIF/Q(π)
is not cuspidal. Then, by [2, §3.6], π is Galois invariant, and therefore it is in
the image of the base change map from GL(2,AQ) to GL(2,AF ). It follows that
there exists a cuspidal, automorphic representation πQ of GL(2,AQ) such that
L(s, π) = L(s, πQ)L(s, πQ ⊗ χF/Q), where χF/Q is the quadratic character corre-
sponding to the extension F/Q. We will later compare the class of L-functions
according to Definition 2.3 with the class of primitive analytic L-functions. It is
therefore advantageous to exclude a nonprimitive example such as L(s, π) from our
definition of automorphic L-functions.

As our second example, consider Siegel modular cuspforms F of degree 2. Such
F correspond to cuspidal automorphic representations π of GSp(4,AQ), which, at
least conjecturally, can be transferred to GL(4,AQ). For example, if F has full
level and is not a Saito–Kurokawa lifting, then the transfer is established in [18].
This transfer is again cuspidal, and thus the spin (degree 4) L-function L(s, π) is
included in Definition 2.3. Assume however that F is a Saito–Kurokawa lifting.
Then the transfer to GL(4,AQ) still exists but is no longer cuspidal. Hence, in
this case, L(s, π) is not included in our definition of automorphic L-function. This
is desirable, since L(s, π) is of the form ζ(s − 1

2 )ζ(s +
1
2 )L(s, f), which is neither

primitive nor satisfies the Ramanujan condition. Thus, it should be excluded from
our comparison with the class of primitive tempered analytic L-functions.

We see from these examples that L-functions of cuspidal automorphic represen-
tations are in general not primitive, in the sense that they may factor as products
of L-functions of smaller degrees. The following lemma shows that this cannot
happen for Q-automorphic L-functions.

Lemma 2.4. Let π be a cuspidal automorphic representation of GL(d,AQ). Then
the Q-automorphic L-function L(s, π) is primitive; i.e., if

(2.7) L(s, π) =
m∏
j=1

L(s, πj)

with cuspidal automorphic representations πj of GL(dj ,AQ) (dj > 0) for 1 ≤ j ≤ m,
then m = 1.
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Proof. We consider partial L-functions and twist (2.7) by the contragredient π∨
1 of

π1:

(2.8) LS(s, π × π∨
1 ) =

m∏
j=1

LS(s, πj × π∨
1 ).

By [7, Corollary to Theorem 2.4], LS(s, π1 × π∨
1 ) has a pole at s = 1. By [27,

Theorem 5.2], LS(s, πj × π∨
1 ) has no zeros on Re(s) = 1 for any j. It follows that

the right-hand side of (2.8) has a pole at s = 1. Hence, so does the left-hand side,
which again by [7, Theorem 2.4] implies that π = π1. In other words, we must have
m = 1. �

Remark. For an alternative proof of Lemma 2.4, see [16].

3. Q-automorphic L-functions and the axioms

Now that we have defined Q-automorphic L-functions and have identified a col-
lection of axioms for analytic L-functions, we begin to show that Q-automorphic
L-functions satisfy the axioms.

Theorem 3.1. Let L(s, π) be a Q-automorphic L-function. There is a positive
integer N , a pair of nonnegative integers (d1, d2) so that d1+2d2 = d, and complex
numbers {μj} and {νj} such that

(3.1) Λ(s, π) = Ns/2
d1∏
j=1

ΓR(s+ μj)

d2∏
j=1

ΓC(s+ νj) · L(s, π)

has the following properties:

(1) Λ(s, π) is entire.
(2) Λ(s, π) is bounded in vertical strips σ1 ≤ σ ≤ σ2.
(3) There exists ε ∈ C such that

Λ(s, π) = εΛ(1− s, π).

(4) If π is balanced, then L(s, π) is balanced.

In other words, Q-automorphic L-functions satisfy Axioms 1 and 2 as described
in Section 2.1.

Proof. For items (1), (2), and (3) above, see [7, Theorems 2.3 and 2.4]. Note that
the functional equation in [7] is written as Λ(s, π) = εΛ(1 − s, π̃), where π̃ is the
contragredient representation; one can show that Λ(1 − s, π̃) = Λ̄(1 − s, π) for

unitary π (recall that f̄(s) = f(s̄) for a function of a complex variable).
Item (4) follows by considering the local Langlands parameter at the archimedean

place, keeping in mind that the determinant of this parameter corresponds to the
central character of π∞. �

The integer N appearing in the functional equation equals
∏

p p
a(πp), where

a(πp) is the exponent of the conductor of the local representation πp. Let M =∏
p p

a(ωπ,p), where a(ωπ,p) is the exponent of the conductor of ωπ,p, the central
character of πp. By reduction to the supercuspidal case and using the existence of
the distinguished vector exhibited in [12], one can easily prove that a(ωπ,p) ≤ a(πp).
Consequently, M |N . We may therefore consider χ, which originally was a Dirichlet
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character mod M , as a Dirichlet character mod N . This character is the character
required by Axiom 5.

By definition, L(s, π) is an Euler product

(3.2) L(s, π) =
∏

p prime

Fp(p
−s)−1,

where each Fp is a polynomial of degree at most d (as required by Axiom 3(b)),
with Fp(0) = 1. Considering Langlands parameters at the nonarchimedean places,
it follows from (2.5) that

(3.3) Fp(z) = 1 + · · ·+ (−1)dχ(p)zd,

as required by Axioms 3(a) and 5(a).
Considering Langlands parameters at the archimedean place, it follows that

(3.4) ωπ(x) = xIm(
∑

μj+
∑

(2νk+1)) for x ∈ R>0,

and so, from (2.6), it follows that

(3.5) χ(−1) = (−1)
∑

μj+
∑

(2νj+1),

showing that Q-automorphic L-functions satisfy Axioms 5(b) and 5(c).
Conjecturally, each local component πp of a cuspidal, automorphic representation

π as in Definition 2.3 is tempered ; see [22] or [5, Conjecture 1.6]. The following
lemma lists some consequences of temperedness for the spectral parameters and
Satake parameters.

Lemma 3.2. Assume that π =
⊗

πp is a cuspidal automorphic representation of
GL(d,AQ). Let μj , νj be as in Theorem 3.1. Let the polynomial Fp(z) in (3.3) be
factored as

(3.6) Fp(z) = (1− α1,pz) · · · (1− αdp,pz)

with 0 ≤ dp ≤ d and αj,p ∈ C.

(1) Assume that π∞ is tempered. Then for every j we have Re(μj) ∈ {0, 1}
and Re(νj) ∈ { 1

2 , 1,
3
2 , 2, . . .}.

(2) Assume that πp is tempered for p < ∞ with p � N . Then |αj,p| = 1 for all
j ∈ {1, . . . , d}.

(3) Assume that πp is tempered for p < ∞ with p|N . Then |αj,p| = p−mj/2 for
some mj ∈ {0, 1, 2, . . .}, and

∑
mj ≤ d− dp.

This lemma implies that Q-automorphic L-functions satisfy Axiom 4: the first
item in the statement is about Axiom 4(a) and the second two are about Axiom 4(b).

Proof. (1) follows from the fact that a representation of GL(d,R) is tempered if
and only if its Langlands parameter has bounded image. For (2), see [22] (also, (2)
is a special case of (3)). For (3), we consider the local parameter of πp, which is an
admissible homomorphism ϕ : W ′(Q̄p/Qp) → GL(d,C). Here, W ′(Q̄p/Qp) is the
Weil–Deligne group; see [20] for precise definitions and [14] for properties of the
local Langlands correspondence. Let sp(n) be the n-dimensional indecomposable
representation of W ′(Q̄p/Qp) defined in [20, §5]. We can write

(3.7) ϕ =
t⊕

j=1

ρj ⊗ sp(nj),



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ANALYTIC L-FUNCTIONS 269

with uniquely determined irreducible representations ρj of the Weil group
W (Q̄p/Qp) and with uniquely determined positive integers ni. Evidently, d =∑t

j=1 dim(ρj)nj . The Euler factor L(s, πp) is equal to the L-factor of ϕ, as defined

in [20, §8]. By the Proposition in [20, §8],

(3.8) L(s, π) =

t∏
j=1

L(s+ nj − 1, ρj).

Assume that ρ1, . . . , ρr are unramified characters ofW (Q̄p/Qp) and that ρr+1, . . . ,ρt
are either ramified characters or of dimension greater than 1. Then

(3.9) L(s, π) =
r∏

j=1

L(s+ nj − 1, ρj) =
r∏

j=1

1

1− ρj(p)p−s−nj+1
,

where we identified ρ1, . . . , ρr with characters of Q×
p . Comparison with (3.6) shows

that dp = r and, after an appropriate permutation,

(3.10) αj,p = ρj(p)p
−nj+1 for j = 1, . . . , r.

Now πp is tempered if and only if the representations | · |(ni−1)/2
p ⊗ ρi are bounded

for i = 1, . . . , t; see [14, §2.2]. In particular, assuming πp is tempered, we have

|ρj(p)| = p(nj−1)/2, and thus |αj,p| = p−(nj−1)/2. Setting mj = nj − 1, we have

|αj,p| = p−mj/2 and
dp∑
j=1

mj =

dp∑
j=1

nj − dp ≤ d− dp.

This concludes the proof. �

Proposition 3.3. Assume that π =
⊗

πp is a cuspidal automorphic representation
of GL(d,AQ) such that each local component πp is tempered. Then L(s, π) is a
tempered analytic L-function in the sense of section 2.1. If π is balanced, then
L(s, π) is balanced.

Proof. In the balanced case, this follows from Theorem 3.1, equations (3.3) and
(3.5), and Lemma 3.2. Assume π is not balanced. Then there exists y ∈ R such
that | · |iy⊗π is balanced. Hence L(s, | · |iy⊗π) = L(s+iy, π) is a balanced tempered
analytic L-function. Consequently, L(s, π) is a tempered analytic L-function. �

4. Algebraic and arithmetic L-functions

The most widely studied L-functions are those arising from arithmetic objects
such as elliptic and higher-genus curves, holomorphic modular forms, number fields,
Artin representations, Galois representations, and motives. We give two character-
izations of such L-functions: one in terms of their Dirichlet coefficients and the
other in terms of their spectral parameters.

4.1. Analytic L-functions of algebraic type. In [3] Booker, Strömbergsson,
and Venkatesh—building on ideas of Stark and Hejhal—carried out computations
that support the conjecture that if λ > 1

4 is the Laplacian eigenvalue of a Maass
form, then λ is transcendental. Since the Γ-shifts in the associated L-function have

imaginary part ±
√
λ− 1

4 , one expects that the imaginary part of any Γ-shift in a
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primitive balanced analytic L-function is either 0 or transcendental. This motivates
the following definition.

Definition 4.1. Suppose L(s) is an analytic L-function with spectral parameters
{μj} and {νk}. We say that L(s) is of algebraic type if either every μj and νk is in
Z or every μj and νk is in 1

2 +Z. The integer walg = 2max{0, ν1, . . . , νd2
} is called

the algebraic weight of the L-function.

The second option, that μj and νk are in 1
2 + Z, implies that there are no μj ,

because if L is tempered, then μj ∈ {0, 1} and, in general (see Appendix A on the
unitary pairing condition), μj ∈ (− 1

2 ,
1
2 ) ∪ ( 12 ,

3
2 ).

In [5, Definition 1.6], Clozel defined the notion of algebraic automorphic represen-
tation of GL(n) over a number field. We use the term of algebraic type because our
notion applies to the L-function, not its underlying representation; see section 4.3
for more details.

The term algebraic weight was chosen because if M is a motive of weight w, then
by Serre’s recipe [26] L(s,M) will have algebraic weight w.

4.2. Analytic L-functions of arithmetic type. The computations of Booker,
Strömbergsson, and Venkatesh in [3] also support the conjecture that in general
the Fourier coefficients of Maass forms with Laplacian eigenvalue λ > 1

4 are tran-
scendental and algebraically independent except for the constraints imposed by the
Hecke relations. Thus we have a complement to the previous definition, involving
a condition on the Dirichlet coefficients.

Definition 4.2. Suppose L(s) =
∑

ann
−s is an analytic L-function. We say that

L(s) is of arithmetic type if there exists war ∈ Z and a number field F such that
ann

war/2 ∈ OF for all n. The smallest such F is called the field of coefficients, and
the smallest such war is called the arithmetic weight of the L-function.

An analytic L-function with algebraic coefficients is not necessarily of arithmetic
type, as shown by the example L(s) = L(s, χ)L(s, E), where χ is a primitive Dirich-
let character and E/Q is an elliptic curve. As indicated in Figure 2, it is conjectured
that such examples must be nonprimitive.

As we will explain in Section 5, by combining existing conjectures, one obtains
the conjecture that a primitive balanced analytic L-function is of algebraic type if
and only if it is of arithmetic type. Furthermore, we have the Hodge conjecture:
walg = war.

4.3. Q-automorphic L-functions of algebraic type. Let AF be the ring of
adeles of a number field F . In [5], Clozel considered isobaric automorphic rep-
resentations of GL(n,AF ). He called such a representation algebraic if the local
Langlands parameters at all archimedean places satisfy certain integrality condi-
tions. More generally, for a connected, reductive F -group G and an automorphic
representation of G(AF ), Buzzard and Gee in [4] defined the notions of C-algebraic
and L-algebraic. If G = GL(n) and π is isobaric, then

π is algebraic ⇐⇒ π is C-algebraic ⇐⇒ π| · |
n−1
2 is L-algebraic.

In the case of a tempered automorphic representation π ∼=
⊗

πp of GL(d,AQ),
the notions of C-algebraic and L-algebraic can easily be expressed in terms of the
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archimedean Euler factor. Recall that this factor is of the general form

(4.1) L(s, π∞) =

d1∏
j=1

ΓR(s+ μj)

d2∏
k=1

ΓC(s+ νk)

with complex numbers μj and νk, and d = d1 + 2d2.

Lemma 4.3. Let π ∼=
⊗

πp be an automorphic representation of GL(d,AQ) such
that π∞ is tempered. Let L(s, π∞) be as in (4.1).

(1) Assume that d is even. Then
• π is C-algebraic if and only if d1 = 0 and νk ∈ 1

2 + Z≥0 for k =
1, . . . , d/2.

• π is L-algebraic if and only if μj ∈ {0, 1} for j = 1, . . . , d1 and νk ∈
Z>0 for k = 1, . . . , d2.

(2) Assume that d is odd. Then π is C-algebraic if and only if π is L-algebraic
if and only if μj ∈ {0, 1} for j = 1, . . . , d1 and νk ∈ Z>0 for k = 1, . . . , d2.

Proof. This follows in a straightforward manner from [4, Definitions 5.7 and 5.9]
and the well known recipe of attaching Γ-factors to representations of the real Weil
group. �
Remark 4.4. Suppose L(s, π) is a Q-automorphic L-function, coming from a unitary
cuspidal automorphic representation π =

⊗
p≤∞ πp of GL(d,AQ), as in Definition

2.3. In particular, as shown in the course of Section 3, L(s, π) is an analytic
L-function. Thus, we can say that L(s, π) is of algebraic type if it satisfies the
conditions of Definition 4.1.

Therefore, by the lemma we have:

Remark 4.5. By the Ramanujan conjecture, all local components πp of the cuspidal
automorphic representation π are tempered. Assuming this is the case, we see that
L(s, π) is of algebraic type if and only if π is either C-algebraic or L-algebraic.

4.4. Q-automorphic L-functions of arithmetic type. Let G be a connected,
reductive group over the number field F , and let π ∼=

⊗
πv be an automorphic

representation of G(AF ). Buzzard and Gee [4] define the notions of π being C-
arithmetic and L-arithmetic in terms of the Satake parameters of πv at almost all
places. For G = GL(n) it is true that

π is C-arithmetic ⇐⇒ π| · |n−1
2 is L-arithmetic.

The conditions can easily be reformulated in terms of L-functions:

Lemma 4.6. Let π ∼=
⊗

πp be an automorphic representation of GL(d,AQ). Let
S be a finite set of primes such that πp is unramified for primes p /∈ S. Let

(4.2) L(s, πp) =
1

(1− αp,1p−s) · . . . · (1− αp,dp−s)

be the Euler factor for p /∈ S.

(1) Assume that d is even. Then
• π is C-arithmetic if and only if there exists a number field E such that
αp,1

√
p, . . . , αp,d

√
p ∈ E for almost all p /∈ S.

• π is L-arithmetic if and only if there exists a number field E such that
αp,1, . . . , αp,d ∈ E for almost all p /∈ S.
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(2) Assume that d is odd. Then π is C-arithmetic if and only if π is L-
arithmetic if and only if there exists a number field E such that αp,1, . . . ,
αp,d ∈ E for almost all p /∈ S.

The following is equivalent to Definition 4.2, but we include this formulation
because it is stated in terms of the parameters which are more natural for Q-
automorphic L-functions.

Definition 4.7. Let L(s, π) be a Q-automorphic L-function, coming from a cusp-
idal automorphic representation π =

⊗
p≤∞ πp of GL(d,AQ), as in Definition 2.3.

Let

(4.3) L(s, πp) =
1

(1− αp,1p−s) · . . . · (1− αp,dp−s)

be the Euler factor at a prime p. We say that L(s, π) is of arithmetic type if there
exists a number field E such that either

(4.4) αp,1, . . . , αp,d ∈ E for almost all good primes p

or

(4.5) αp,1
√
p, . . . , αp,d

√
p ∈ E for almost all good primes p.

Remark 4.8. Let π be as in Definition 4.7, and suppose d is odd. Then (4.5) cannot
occur. Indeed, if (4.5) would hold, then we would also have

(4.6) αp,1 · . . . · αp,d
√
p ∈ E for almost all good primes p.

But the numbers αp,1 · . . . · αp,d are the Satake parameters of the central character
ωπ of π, which, up to a unitary twist, corresponds to a Dirichlet character χ; see
(2.5). Hence we would have

(4.7) χ(p)pit
√
p = χ(p)pit+

1
2 ∈ E for almost all good primes p

for some real number t, so in particular

(4.8) pit+
1
2 ∈ E for infinitely many p.

This is impossible for t ∈ R because of the following consequence of the Six Expo-
nentials Theorem [30].

Lemma 4.9. If α ∈ C and E/Q is a number field with pα ∈ E for infinitely many
primes p, then α ∈ Z.

Proof. Suppose α �∈ Z. We cannot have α ∈ Q because E is a finite extension of
Q. Thus, {1, α} is linearly independent over the rationals. (We also cannot have α
algebraic because, by the Gelfond–Schneider theorem, pα would be transcendental.
This does not seem to be needed in the proof.)

Suppose p1, p2, and p3 are distinct primes with pαj ∈ E. Since {log p1, log p2,
log p3} is linearly independent over the rationals, we have a contradiction because
by the Six Exponentials Theorem [30], one of p1, p2, p3, p

α
1 , p

α
2 , and pα3 must be

transcendental. �

As a consequence of Lemma 4.6 and the above remark, we see that L(s, π)
is of arithmetic type if and only if π is either C-arithmetic or L-arithmetic (see
Section 5). So the conjectures of Clozel [5] and Buzzard and Gee [4] yield:
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Conjecture 4.10. A Q-automorphic L-function is of algebraic type if and only if
it is of arithmetic type.

A more general conjecture for automorphic representations π of G(AF ) was made
by Buzzard and Gee in [4]. Namely, π is L-algebraic if and only if it is L-arithmetic,
and π is C-algebraic if and only if it is C-arithmetic. The surprising fact about
these conjectures is that a condition purely in terms of archimedean L-parameters
is conjecturally equivalent to a condition purely in terms of nonarchimedean L-
parameters.

For isobaric automorphic representations of GL(n,AF ), the conjecture that C-
algebraic implies C-arithmetic is also a consequence of the more general conjectures
made in [5, 6]; see [4, §8.1].

4.5. L-functions of motives. Let F be a number field. The category of motives
over F was constructed by Grothendieck in the 1960s. The first article about
motives seems to be [9]. More contemporary and useful surveys are [13], [23], and
[17]. We will not recall here the construction of the category of motives. What
is important for us is that, given a pure motive M of weight w, there is an L-
function L(M, s) attached to it, which, after completing it to a function Λ(M, s)
using appropriate Γ-factors, conjecturally satisfies a functional equation Λ(M, s) =
±Λ̄(M, 1 + w − s). We write Λ(M, s) and not Λ(s,M), because the functional
equation relates s and 1 + w − s, and not s and 1− s.

We briefly recall the shape of Λ(M, s), using [26] as our reference. We assume
that the ground field is Q for simplicity. For each nonarchimedean place p the char-
acteristic polynomial Pw,p of the action of Frobenius on the inertia-fixed points of
the wth étale cohomology group (at least conjecturally) has coefficients in Z. We set

(4.9) Lp(M, s) =
1

Pw,p(p−s)
,

and L(M, s) =
∏

p<∞ Lp(M, s). There exists a positive integer d, called the rank
of M , such that for almost all places the polynomial Pw,p will have degree d. For
all “good” places p, if we factor

(4.10) Pw,p(T ) =

bw∏
j=1

(1− αj,pT ), αj,p ∈ C×,

then it is conjectured that

(4.11) |αj,p| = pw/2

(see C7 in § 2.3 of [26]). At the archimedean place ∞ we have

(4.12) L∞(M, s) = ΓR

(
s− w

2

)hw/2,+

ΓR

(
s− w

2
+ 1

)hw/2,− ∏
p+q=w
p<q

ΓC(s− p)h
p,q

,

with the first two factors only appearing if w is even. Here, the hp,q are the
dimensions of the spaces Hp,q in the Hodge decomposition of the Betti realization of
M . If w is even, then there is a spaceHp,p (p = w/2), on which complex conjugation
acts as an involution; the number hp,± is the dimension of the ±1-eigenspace.

Conjecturally, there exists a positive integer N such that

(4.13) Λ(M, s) = N (s−w/2)/2L∞(M, s)L(M, s)
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extends to an entire function on all of C, is bounded in vertical strips, and satisfies
the functional equation Λ(M, s) = ±Λ̄(M, 1 + w − s).

Replacing s by s+w/2, we obtain the analytically normalized functions L(s,M :=
L(M, s + w/2) and Λ(s,M) := Λ(M, s + w/2). The functional equation becomes
Λ(s,M) = ±Λ̄(1− s,M). The factor (4.12) turns into

(4.14) L∞(M, s+ w/2) = ΓR(s)
hw/2,+

ΓR(s+ 1)h
w/2,− ∏

p+q=w
p<q

ΓC

(
s+

q − p

2

)hp,q

.

By (4.11), the roots of the denominator polynomials of L(s,M) will have absolute
value 1.

As described in [5, §4.3]:

Conjecture 4.11. There exists a one-to-one correspondence between irreducible,
pure motives M over Q of rank d, and C-algebraic cuspidal automorphic represen-
tations π of GL(d,AQ), such that L(s,M) = L(s, π).

The conjecture implies that the class of analytically normalized L-functions aris-
ing from irreducible, pure motives is the same as the class of Q-automorphic L-
functions of algebraic type. The conjecture that L(s,M) should satisfy the re-
quired analytic properties shared by the class of analytic L-functions as defined in
Section 2.1 is known as the Hasse–Weil conjecture.

Remark 4.12. Given a Γ-factor in the analytic normalization (4.14), it is not pos-
sible to determine the weight of the underlying motive. Indeed, the motives which
(conjecturally) are attached to the L-function form an equivalence class, where
the members are Tate twists of each other. It is natural to choose a twist so
that nonvanishing Hodge numbers of that motive are among (hw,0, . . . , h0,w), with
hw,0 = h0,w > 0. The weight, w, of that motive will equal the algebraic weight of
the L-function, which explains our choice of terminology.

4.6. L-functions of Galois representations. Let Gal(Q̄/Q) be the absolute Ga-
lois group of Q. Let L be a finite extension of Q� for some prime �. A continuous
homomorphism ρ : Gal(Q̄/Q) → GL(d, L) will be referred to as a Galois represen-
tation; see [25] for basic facts. In [10] the class of geometric Galois representations
was defined. As summarized in Taylor [29], Galois representations arising from
motives are geometric. Conversely, the Fontaine–Mazur conjecture asserts that
any geometric Galois representation is motivic. Hence, the class of (analytically
normalized) L-functions arising from geometric Galois representations should be
the same as the class of (analytically normalized) L-functions attached to Galois
representations. Assuming Conjecture 4.11, this is also the same as the class of Q-
automorphic L-functions of algebraic type. This explains the triangle in the upper
left corner of Figure 2.

Conjecture 5.16 of [4], forG = GL(d) over Q, makes the statement that a geomet-
ric Galois representation is attached to an L-algebraic automorphic representation
π of GL(d,AQ); for recent progress on this conjecture, see [28] and [11]. That every
Galois representation arises from an automorphic representation is known as the
Modularity Conjecture.
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5. Connections

The equalities between sets of L-functions in Figure 1 are a consequence of the
12 relations shown in Figure 2, where an arrow means “can be viewed as a natural
subset of”. Most of those arrows are at least partially conjectural. More detailed
explanations of these arrows can be found in Tables 1 and 2.

Table 1. Explanations of the arrows in Figure 2 between analytic
L-functions and Q-automorphic L-functions. These explanations
and these arrows correspond to Section 3 and Sections 4.1–4.4. If
the justification for a connection is “formal”, this means that it is
an immediate corollary of the axioms or properties satisfied by the
sets of L-functions being connected.

Connection Label Justification

Q ⊂ A J-PS-S A result generally due to Cogdell–
Piatetski-Shapiro and Jacquet–Piatetski-
Shapiro–Shalika [7, 12] as formulated in
Proposition 3.3.

A ⊂ Q S Selberg [24] identified a class of axioms
for L-functions and implicitly conjectured
that this class is contained in the class as-
sociated to automorphic representations
as defined by Langlands [15]. A and Q
are, respectively, subsets of these classes
with the same formal properties.

Q∗ ⊂ Q Restriction to a subset.

Q1 ∪Q2 = Q∗ Remark 4.5.

Q1 = Q2 B-G A conjecture due to Buzzard–Gee [4] as
formulated in Conjecture 4.10.

A∗ ⊂ A Restriction to a subset.

Q1 = A1 Formal, if we assume A = Q.

Q2 ⊂ A2 A result of Clozel [5] implies that the
(suitably) rescaled coefficients are inte-
gers and the inclusion otherwise is formal.

A2 ⊂ Q2 Formal.

A1 = A2 Piecing together previous connections.

A∗ = A1 = A2

= Q1 = Q2 = Q∗

Piecing together previous connections.
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Table 2. Explanations of arrows in Figure 2 between various
sources of L-functions as described in Sections 4.5 and 4.6.

Connection Label Justification

M ⊂ A∗ H-W In our notation this is a restatement of
the Hasse–Weil conjecture.

M = Q∗ C Conjecture due to Clozel [5, 6].

M ⊂ G T Taylor [29, pp, 77, 79–80] distills the work
of many people and describes how to at-
tach a Galois representation to a motive.

G ⊂ M F-M Fontaine–Mazur conjecture [10].

G ⊂ Q∗ Modularity The general conjecture asserts that to a
Galois representation one can attach an
automorphic representation so that the
two L-functions agree.

Q∗ ⊂ G B-G Conjecture due to Buzzard–Gee [4].

M = A∗ = Q∗ = G Piecing together previous connections.

Appendix A. Nontempered L-functions

If an L-function fails to be tempered, the failure could either occur in the Γ-
factors or in the local factors of the Euler product. The failure must occur in a
specific form, which we call the unitary pairing condition. Our motivation is that
the unitary pairing condition holds for the factors arising from generic unitary local
representations.

A.1. The unitary pairing condition at infinity. In the definition we use the
following notation: if x ∈ R and ξ ∈ C, then (x, ξ)∗ = (x,−ξ). Also, we introduce
a parameter θ < 1

2 which measures how far the L-function is from being tempered
at infinity.

Definition A.1. The multisets {μj} and {νj}meet the unitary pairing condition at
infinity if it is possible to write μj = δj+αj and νj = ηj+βj , where δj ∈ {0, 1} and
ηj ∈ { 1

2 , 1,
3
2 , . . .}, with |Re(αj)|, |Re(βj)| < θ, such that the multisets {(δj , αj)}

and {(ηj , βj)} are closed under the operation S → S∗.

For example, the following Γ-factor satisfies the unitary pairing condition:

ΓR(s− 0.2)ΓR(s+ 0.2)ΓR(s)
3ΓR(s+ 0.9)ΓR(s+ 1.1)

× ΓC(s+ 0.7)ΓC(s+ 1.3)2ΓC(s+ 1.7)ΓC(s+ 7),
(A.1)

as does this one

ΓR(s− 0.2 + 3i)ΓR(s+ 0.2 + 3i)ΓR(s+ 1)ΓR(s+ 1− 8i)

× ΓC(s+ 0.7)ΓC(s+ 1.3)ΓC(s+ 1.3− 7i)ΓC(s+ 1.7− 7i).
(A.2)

A.2. The unitary pairing condition at p. Just as in the archimedean case, we
introduce a parameter θ < 1

2 which provides a weak version of the Ramanujan

bound: |αj,p| ≤ pθ. At a good prime the unitary pairing condition is easy to state.
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Definition A.2. Suppose p is a good prime. The multiset {α1, . . . , αd} meets the
unitary pairing condition at p with partial Ramanujan bound θ < 1

2 , if |αj | ≤ pθ and
the multiset is closed under the operation x → 1/x. Equivalently, the polynomial
F (z) =

∏
j(1 − αjz) has all its roots in |z| ≥ p−θ and satisfies the self-reciprocal

condition

(A.3) F (z) = ξzdF (z−1),

where ξ = (−1)d
∏

j αj .

The term self-reciprocal refers to the fact that, up to multiplication by a constant,
the coefficients of the polynomial are the same if read in either order.

If |αj | = 1, then the unitary pairing condition at p says nothing, because αj =
1/αj . But those Satake parameters which are not on the unit circle occur in pairs:
if αj = reiθ with r �= 1, then r−1eiθ is also a Satake parameter. Those two points
are located symmetrically with respect to the unit circle.

The general case of the unitary pairing condition at p, which includes the good
prime version above, closely follows the archimedean case. Specifically, the ΓR

factors are like the good primes, and the ΓC factors are similar to the bad primes.
Recall the notation (x, ξ)∗ = (x,−ξ).

Definition A.3. The multiset {α1, . . . , αM} meets the unitary pairing condition
at p of degree d and partial Ramanujan bound θ < 1

2 , if it is possible to write

αj = p−ηj−βj where ηj ∈ {0, 1
2 , 1,

3
2 , . . .}, with

∑
2ηj ≤ d − M and |Re(βj)| ≤ θ,

such that the multiset S = {(ηj , βj)} is closed under the operation S → S∗.
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France, Paris, 2016, pp. 29–60. MR3642468

[7] J. W. Cogdell and I. I. Piatetski-Shapiro, Remarks on Rankin-Selberg convolutions, Contri-
butions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press,

Baltimore, MD, 2004, pp. 255–278. MR2058610
[8] J. B. Conrey and A. Ghosh, On the Selberg class of Dirichlet series: small degrees, Duke

Math. J. 72 (1993), no. 3, 673–693, DOI 10.1215/S0012-7094-93-07225-0. MR1253620
[9] Michel Demazure, Motifs des variétés algébriques, Séminaire Bourbaki Vol. 1969, Exp. 365.
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