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Abstract
We prove several dimension formulas for spaces of
scalar-valued Siegel modular forms of degree 2 with
respect to certain congruence subgroups of level 4.
In case of cusp forms, all modular forms considered
originate from cuspidal automorphic representations
of GSp(4, 𝔸) whose local component at 𝑝 = 2 admits
nonzero fixed vectors under the principal congruence
subgroup of level 2. Using known dimension formulas
combined with dimensions of spaces of fixed vectors
in local representations at 𝑝 = 2, we obtain formulas
for the number of relevant automorphic representations.
These, in turn, lead to new dimension formulas, in par-
ticular for Siegel modular forms with respect to the
Klingen congruence subgroup of level 4.
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1 INTRODUCTION

In this work, we consider dimension formulas for spaces of scalar-valued Siegel modular forms
of degree 2, weight 𝑘, and level dividing 4. The notion of level is ambiguous; for example, level 4
could refer to modular forms with respect to the paramodular group 𝐾(4), the Siegel congruence
subgroup Γ0(4), the Klingen congruence subgroup Γ′0(4), or others. We consider the following 11
congruence subgroups of Sp(4, ℚ), all of which are in some sense level 1, 2, or 4:

(1)

The connecting lines indicate inclusions (with the bigger group on top), and their labels show
indices. The group Γ(2) is the principal congruence subgroup of level 2, 𝐵(2) is the Borel con-
gruence subgroup of level 2, Γ∗

0
(4) is a certain subgroup of index 2 in Γ0(4), and 𝑀(4) is the

“middle” group, which lies between Γ′
0
(4) and 𝐾(4). For precise definitions, see Table 1 in the

notations section.
For many of the subgroups Γ in (1), the dimension of the space of Siegel modular forms𝑀𝑘(Γ)

and the subspace of cusp forms 𝑆𝑘(Γ) is known; Table B.1 gives some references. In case a con-
jugate of Γ lies between Γ(2) and Sp(4, ℤ), there is a well-known method based on Igusa’s classic
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paper [20]. Theorem 2 of [20] gives the character of the representation of Sp(4, ℤ∕2ℤ) ≅ 𝑆6 on
𝑀𝑘(Γ(2)). Using standard character theory, one can thus easily calculate dim𝑀𝑘(Γ). This method
works for all groups in (1) except 𝐾(2) and Γ′

0
(4). The results are summarized in Table B.2. All the

dimension formulas in this paper are packaged into generating series like
∑∞
𝑘=0 dim𝑀𝑘(Γ)𝑡

𝑘.
The result for 𝐾(2) in Table B.2 is taken from the literature. The result for Γ′

0
(4), which fol-

lows fromour considerations using automorphic representation theory, is new. In fact, calculating
dim𝑀𝑘(Γ

′
0
(4)) and dim𝑆𝑘(Γ′0(4)) provided the original motivation for the present work.

At least for 𝑘 ⩾ 6, the codimension dim𝑀𝑘(Γ) − dim𝑆𝑘(Γ) can be determined from the cusp
structure of the Satake compactification and Satake’s characterization of the image of the global
Φ-map. In degree 2, the method distills down to a simple formula, which we record in Theo-
rem 4.3. We thus obtain codimension formulas for all the groups in (1); see Table 8. Together with
the information about dim𝑀𝑘(Γ) in Table B.2, we get the dimension formulas for dim𝑆𝑘(Γ) in
Table B.3 for all Γ except Γ′

0
(4).

To obtain further results, we consider the automorphic representations 𝜋 generated by the
eigenforms in 𝑆𝑘(Γ) for Γ in (1). If we factor an irreducible such 𝜋 into local representations
𝜋 ≅ ⊗𝜋𝑣 with irreducible, admissible representations 𝜋𝑣 of GSp(4, ℚ𝑣), then 𝜋∞ is a “holomor-
phic” representation of lowest weight 𝑘, and 𝜋𝑝 is unramified for all primes 𝑝 ⩾ 3. If Γ is not
equal to Γ′

0
(4), then Γ contains a conjugate of Γ(2), and consequently, 𝜋2 will have nonzero fixed

vectors under the local principal congruence subgroup Γ(𝔭), where 𝔭 = 2ℤ2. A complete determi-
nation of such 𝜋2, which are also known as representations with nonzero hyperspecial parahoric
restriction, has been achieved in [28]. We reproduce the list of irreducible, admissible representa-
tions ofGSp(4, ℚ2)with nonzero hyperspecial parahoric restriction in Table 4. They are organized
into types I, IIa, IIb, . . . . We let 𝑆𝑘(Ω) be the set of cuspidal, automorphic representations that are
holomorphic of weight 𝑘 at the archimedean place, unramified outside 2, and are of type Ω with
nonzero hyperspecial parahoric restriction at 𝑝 = 2; see Definition 5.1 for more details. We note
that 𝑆𝑘(Ω) is a finite set; see [5].
A key result which allows us to get information about Γ′

0
(4) is [47, Lemma 4]. It implies that

if an irreducible, admissible representation of GSp(4, ℚ2) has nonzero Γ′0(𝔭
2)-invariant vectors,

then it also has nonzero Γ(𝔭)-invariant vectors, and hence, appears in Table 4. Therefore, eigen-
forms in 𝑆𝑘(Γ′0(4)) also generate elements of 𝑆𝑘(Ω) for someΩ. Conversely, given an automorphic
representation𝜋 ≅ ⊗𝜋𝑣 in 𝑆𝑘(Ω) and a nonzero vector in𝜋2 invariant under the local congruence
subgroup𝐶 analogous to Γ for some Γ in (1), we can construct an element of 𝑆𝑘(Γ) by “descending”
to the Siegel upper half space2. We thus get the relation

dim𝑆𝑘(Γ) =
∑
Ω

𝑠𝑘(Ω)𝑑𝐶,Ω, (2)

where 𝑠𝑘(Ω) = |𝑆𝑘(Ω)| and 𝑑𝐶,Ω is the common dimension of the space of 𝐶-invariant vectors in
representations of type Ω occurring in Table 4. The numbers 𝑑𝐶,Ω can all be calculated and are
listed in Table 5.
Observe that (2) is a system of linear equations relating the dim𝑆𝑘(Γ) for all Γ and the 𝑠𝑘(Ω)

for allΩ. Recall that the dim𝑆𝑘(Γ) are already known for all Γ except Γ′0(4). Essentially now what
happens is that as Γ runs through the subgroups in (1) except Γ′

0
(4) the system (2) provides enough

equations in order to determine the 𝑠𝑘(Ω). Once these are known we use (2) again, this time for
Γ = Γ′

0
(4), to determine dim𝑆𝑘(Γ′0(4)).

In full detail, the situation is slightly more complicated because the system (2) has more
unknowns than equations. This hurdle is overcome by exploiting that automorphic representa-
tions of GSp(4, 𝔸) are categorized into six different kinds of Arthur packets. In Proposition 5.3,
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we will prove that only packets of “general type,” denoted by (G), and packets of Saito–Kurokawa
type, denoted by (P), are relevant. Considering the (G) version and the (P) version of (2) sepa-
rately reduces the number of equations and makes the method work. As a by-product, we obtain
refined dimension formulas for the spaces of nonlifts 𝑆(G)

𝑘
(Γ) and the spaces of lifts 𝑆(P)

𝑘
(Γ) (see

Section 5.1 for a more precise definition of these spaces). We remark that we included the groups
Γ∗
0
(4) and 𝑀(4) in our list (1) in order to obtain two more linear equations; without these, the

system (2) would still be underdetermined.
There are only two spaces which are not accessible with the above methods, namely,𝑀2(Γ

′
0
(4))

and 𝑀4(Γ
′
0
(4)). Their dimensions have been determined by Cris Poor and David S. Yuen in

Appendix A.
Asmentioned above,many dimension formulas for Siegelmodular forms are already contained

in the literature. The new contributions of the present work are as follows.

∙ Siegel modular forms for the groups Γ∗
0
(4) and 𝑀(4) have not previously received much

attention in the literature. (See, however, the “paramodular groups with level” defined in [6].)
∙ The dimension formulas for Γ′

0
(4) are new. Until now, the literature only contains dimension

formulas for Γ′
0
(𝑝) where 𝑝 is prime; see [12, 15, 18, 46].

∙ We obtain the refined dimension formulas for the spaces of lifts 𝑆(P)
𝑘
(Γ) and nonlifts 𝑆(G)

𝑘
(Γ).

∙ We obtain formulas for 𝑠𝑘(Ω), the number of cuspidal automorphic representations of
PGSp(4, 𝔸) of weight 𝑘, unramified outside 2, and with a representation of type Ω at 𝑝 = 2
admitting nonzero Γ(𝔭)-invariant vectors.

The paper is organized as follows. In Section 3, we collect the necessary facts from local repre-
sentation theory. The main outcomes are Table 4, the complete list of all relevant representations,
and Table 5, which contains the dimensions of the spaces of fixed vectors in these representations
under all relevant local congruence subgroups. In Section 4, which is largely independent from
Section 3, we first utilize Satake’s method to obtain codimension formulas for all Γ in (1). Com-
bined with Igusa’s result, we thus obtain dimension formulas for𝑀𝑘(Γ) and 𝑆𝑘(Γ) for all Γ in (1)
except 𝐾(2) and Γ′

0
(4). The formulas for 𝐾(2) are already known, and the ones for Γ′

0
(4) will fol-

low as a consequence of our other results. Section 5 begins with a review of Arthur packets for
GSp(4). We make the connection between Siegel modular forms and representations, resulting in
the system of linear equations (2). We then derive the numbers 𝑠𝑘(Ω), first for Saito–Kurokawa
lifts, then for representations of general type. Finally, as an application, we obtain the desired
dimension formulas for Γ′

0
(4).

Most of our results are summarized in table form in Appendix B. More precisely, Tables B.2
and B.3 contain dimension formulas for 𝑀𝑘(Γ) and 𝑆𝑘(Γ), respectively. Tables B.4 and B.5 are
for dimension formulas of 𝑆(P)

𝑘
(Γ) and 𝑆(G)

𝑘
(Γ), respectively. Tables B.10 and B.11 contain formulas

for 𝑠(P)
𝑘
(Ω) and 𝑠(G)

𝑘
(Ω), respectively. Here, 𝑠(∗)

𝑘
(Ω) = |𝑆(∗)

𝑘
(Ω)| (see Section 5.1). Tables B.6–B.9 and

B.12 provide numerical examples for weight 𝑘 ⩽ 20. Appendix A, provided by Cris Poor and David
S. Yuen, fills the final gap by calculating dim𝑀𝑘(Γ

′
0
(4)) for 𝑘 = 2 and 𝑘 = 4.

2 NOTATION AND PRELIMINARIES

The symbols ℤ, ℚ, ℝ have the usual meaning. The symbol ℚ𝑝 stands for the field of 𝑝-adic
numbers. We will write 𝔽𝑝 for the field with 𝑝 elements; only 𝔽2 is needed in this work.
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Let 𝐽 be a 4 × 4 antisymmetric matrix over a field 𝐹. We consider the symplectic similitude
group

𝐺 = GSp(4) ∶= {g ∈ GL(4)∶ 𝑡g𝐽g = 𝜆(g)𝐽, 𝜆(g) ∈ GL(1)}, (3)

which is an algebraic 𝐹-group. The function 𝜆 is called themultiplier homomorphism. The kernel
of this function is the symplectic group Sp(4). Let 𝑍 be the center of GSp(4) and PGSp(4) ∶=
GSp(4)∕𝑍.
While all choices of 𝐽 lead to isomorphic groups, one or the other choice might be more con-

venient depending on the context. When working with classical Siegel modular forms, the usual
choice for 𝐽 is†

𝐽1 =

[
1

1
−1

−1

]
, (4)

leading to the “classical” version of the symplectic group. When working with local representa-
tions, it is often more convenient to use

𝐽2 =

[
1

1
−1

−1

]
, (5)

resulting in the “symmetric” version of the symplectic group. For example, the standard Borel
subgroup in the second version consists of upper triangular matrices. We will allow ourselves to
use both versions ofGSp(4). An isomorphism between them is obtained by switching the first two
rows and columns.
We will utilize the following representatives for elements of the Weyl group,

𝑠1 =

[
1

1
1

1

]
, 𝑠2 =

[
1

1
−1

1

]
, (6)

given in the 𝐽1 version of Sp(4).
Local and global congruence subgroups. For a positive integer 𝑁, we define Γ(1)

0
(𝑁) ∶=

SL(2, ℤ) ∩
[
ℤ ℤ
𝑁ℤ ℤ

]
. In degree 2, we will work with a number of congruence subgroups of “level

2” and “level 4.” The global subgroups are contained in Sp(4, ℚ), and except for the paramodular
group 𝐾(2), all of them can be conjugated into the full modular group Sp(4, ℤ). Locally, we work
over the field ℚ2 and denote by 𝔬 its ring of integers ℤ2 and by 𝔭 the maximal ideal 2ℤ2 of 𝔬.
All our subgroups will be contained in 𝐺1 ∶= {g ∈ GSp(4, ℚ2) ∶ 𝜆(g) ∈ 𝔬×}, and except for the
paramodular group 𝐾(𝔭), all of them can be conjugated into the hyperspecial maximal compact
subgroup𝐾 ∶= GSp(4, ℤ2). Table 1 shows the notations we use for various congruence subgroups.
Note that for the global groups, we use the symplectic form 𝐽1, and for the local groups, we use
the symplectic form 𝐽2.

Siegel modular forms
Let 𝑛 be the Siegel upper half space of degree 𝑛, that is, 𝑛 consists of all symmetric com-
plex 𝑛 × 𝑛matrices whose imaginary part is positive definite. The principal congruence subgroup
Γ(𝑁) of Sp(2𝑛, ℤ) is the kernel of the reduction map Sp(2𝑛, ℤ) → Sp(2𝑛, ℤ∕𝑁ℤ). By a congruence

†Empty entries in matrices mean zeros.



DIMENSION FORMULAS FOR SIEGEL MODULAR FORMS OF LEVEL 4 801

subgroup of Sp(2𝑛, ℚ), we mean a subgroup of Sp(2𝑛, ℚ) which, for some 𝑁, contains Γ(𝑁) with
finite index.

Definition 2.1. A Siegel modular form of degree 𝑛 and weight 𝑘 with respect to a congruence
subgroup Γ of Sp(2𝑛, ℚ) is a holomorphic function 𝑓 ∶ 𝑛 → ℂwith the transformation property

(𝑓|𝑘g)(𝑍) = 𝑗(g , 𝑍)−𝑘𝑓((𝐴𝑍 + 𝐵)(𝐶𝑍 + 𝐷)−1) = 𝑓(𝑍) for g =
[
𝐴 𝐵
𝐶 𝐷

]
∈ Γ,

where 𝑗(g , 𝑍) = det(𝐶𝑍 + 𝐷), and which satisfies the usual moderate growth condition if 𝑛 = 1.

We call a Siegel modular form 𝑓 a cusp form if

lim
𝜆→∞

(𝑓|𝑘g)([𝜏 𝑖𝜆

])
= 0 for all g ∈ Sp(2𝑛, ℚ) and 𝜏 ∈ 𝑛−1.

In this work, we will primarily consider Siegel modular forms of degree 2, and occasionally mod-
ular forms of degree 1. We denote by 𝑀𝑘(Γ) the space of Siegel modular forms of degree 2 and
weight 𝑘 with respect to the congruence subgroup Γ of Sp(4, ℚ), and by 𝑆𝑘(Γ) its subspace of cusp
forms. We denote by𝑀(1)

𝑘
(Γ) the space of modular forms of degree 1 and weight 𝑘 with respect to

the congruence subgroup Γ of SL(2, ℚ), and by 𝑆(1)
𝑘
(Γ) its subspace of cusp forms.

A lemma on rational points and integral points. For lack of a good reference, we include
a proof of the following result. It will be used in Section 4.1.

Lemma 2.2. Let 𝑛 be a positive integer. Let 𝑅 be any standard parabolic subgroup of Sp(2𝑛). Then

Sp(2𝑛, ℚ) = 𝑅(ℚ)Sp(2𝑛, ℤ).

Proof. Let g ∈ Sp(2𝑛, ℚ). For any place 𝑝, let 𝐾𝑝 be the standard maximal compact subgroup of
Sp(2𝑛, ℚ𝑝). Let 𝐾 =

∏
𝐾𝑝. Use the Iwasawa decomposition to write g = 𝑟𝑝𝜅𝑝, with 𝑟𝑝 ∈ 𝑅(ℚ𝑝)

and 𝜅𝑝 ∈ 𝐾𝑝. Then g = 𝑟𝜅, where 𝑟 = (𝑟𝑝) and 𝜅 = (𝜅𝑝). Let 𝑅 = 𝑀𝑁 be the Levi decomposition
of 𝑅. Write 𝑟 = 𝑚𝑛 with𝑚 ∈ 𝑀(𝔸) and 𝑛 ∈ 𝑁(𝔸). By strong approximation, we may write

𝑚 = 𝑚ℚ𝑚ℝ𝑚𝐾 with𝑚ℚ ∈ 𝑀(ℚ), 𝑚ℝ ∈ 𝑀(ℝ), 𝑚𝐾 ∈ 𝑀(𝔸) ∩ 𝐾.

The element 𝑚𝐾 may be absorbed into 𝐾 (possibly modifying 𝑛), and may therefore assumed to
be 1. Using 𝔸 = ℚ + ℝ +

∏
𝑝<∞ ℤ𝑝, we can write

𝑛 = 𝑛ℚ𝑛ℝ𝑛𝐾, 𝑛ℚ ∈ 𝑁(ℚ), 𝑛ℝ ∈ 𝑁(ℝ), 𝑛𝐾 ∈ 𝑁(𝔸) ∩ 𝐾.

The element 𝑛𝐾 may be absorbed into 𝐾, and therefore, assumed to be 1. Summarizing, we see
that we can write

g = 𝑟ℚ𝑟ℝ𝜅, 𝑟ℚ ∈ 𝑅(ℚ), 𝑟ℝ ∈ 𝑅(ℝ), 𝜅 ∈ 𝐾.

The matrix 𝑟−1
ℚ

g lies in Sp(2𝑛, ℤ𝑝) for all finite 𝑝, and hence in Sp(2𝑛, ℤ). This concludes the
proof. □
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3 LOCAL DIMENSIONS

We will start this section by collecting some facts about the symmetric group 𝑆6. In Subsections
3.2 and 3.3, we work over the 𝑝-adic field ℚ2 and write 𝔬 for its ring of integers and 𝔭 for the
maximal ideal of 𝔬. In this local context, it is convenient to work with the “symmetric” version of
the symplectic group, defined by the symplectic form 𝐽2 given in (5).

3.1 Preliminaries on 𝑺𝟔

Let (𝜌,𝑈) be a representation of a finite group 𝐺, and let 𝐻 be a subgroup of 𝐺. Then 𝑝 =
1|𝐻| ∑ℎ∈𝐻 𝜌(ℎ) is a projector onto the subspace 𝑈𝐻 of𝐻-fixed vectors. Hence,

dim𝑈𝐻 = Tr(𝑝) = 1|𝐻| ∑
ℎ∈𝐻

𝜒𝜌(ℎ), (7)

where 𝜒𝜌 is the character of 𝜌. More generally, if 𝜏 is a representation of 𝐻, then the multiplicity
of 𝜏 in 𝜌|𝐻 is

mult𝜌(𝜏) =
1|𝐻| ∑

ℎ∈𝐻

𝜒𝜏(ℎ)𝜒𝜌(ℎ). (8)

We will apply this principle to the finite group Sp(4, ℤ)∕Γ(2) ≅ Sp(4, 𝔽2). In order to do so, we will
exhibit an explicit isomorphism with the symmetric group 𝑆6.
Consider the natural permutation action of 𝑆6 on the space of column vectors (𝔽2)6. Let𝑊 be

the five-dimensional subspace of vectors whose coordinates add up to zero. Let𝑈 be the subspace
of𝑊 spanned by 𝑢 = 𝑡(1, 1, 1, 1, 1, 1). Then𝑊 and𝑈 are both invariant under the action of 𝑆6, so
that we get an action on the four-dimensional space𝑊∕𝑈. There is a symplectic (and symmetric)
form on𝑊 given by

⟨𝑥, 𝑦⟩ = 6∑
𝑖=1

𝑥𝑖𝑦𝑖, 𝑥 = 𝑡(𝑥1, … , 𝑥6), 𝑦 =
𝑡(𝑦1, … , 𝑦6).

This form is degenerate with radical 𝑈, thus inducing a nondegenerate symplectic form on the
quotient𝑊∕𝑈. Evidently, this form is invariant under the action of 𝑆6. We thus obtain a nontrivial
homomorphism 𝑆6 → Sp(4, 𝔽2). Since the image of this map has more than two elements, and
since 𝐴6 is the only nontrivial, proper, normal subgroup of 𝑆6, the map is injective. Since both
groups have the same number of elements, it is an isomorphism. To make the isomorphismmore
explicit, let

𝑒1 =

⎡⎢⎢⎢⎢⎢⎢⎣

1

1

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝑒2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1

1

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝑓2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

1

0

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝑓1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0

1

1

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
.
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Then, 𝑊 = ⟨𝑒1, 𝑒2, 𝑓2, 𝑓1, 𝑢⟩. The images of 𝑒1, 𝑒2, 𝑓2, 𝑓1 form a basis of 𝑊∕𝑈, with respect to
which the form ⟨ , ⟩ has matrix 𝐽2 defined in (5). Easy calculations then show that on certain ele-
ments, the isomorphism 𝑆6 → Sp(4, 𝔽2) = {g ∈ GL(4, 𝔽2) ∶ 𝑡g𝐽2g = 𝐽2} has the following explicit
description.

(16)(25)(34)⟼

⎡⎢⎢⎢⎢⎣
1

1

1

1

⎤⎥⎥⎥⎥⎦
, (46)⟼

⎡⎢⎢⎢⎢⎣
1

1

1

1

⎤⎥⎥⎥⎥⎦
, (9)

(13)(46)⟼

⎡⎢⎢⎢⎢⎣
1

1

1

1

⎤⎥⎥⎥⎥⎦
, (12)(36)(45)⟼

⎡⎢⎢⎢⎢⎣
1 1

1

1 1

1

⎤⎥⎥⎥⎥⎦
, (10)

(12)(34)(56)⟼

⎡⎢⎢⎢⎢⎣
1 1

1 1

1

1

⎤⎥⎥⎥⎥⎦
, (12)⟼

⎡⎢⎢⎢⎢⎣
1 1

1

1

1

⎤⎥⎥⎥⎥⎦
, (11)

(135)(246)⟼

⎡⎢⎢⎢⎢⎣
1 1

1

1 1

1

⎤⎥⎥⎥⎥⎦
, (153)(264)⟼

⎡⎢⎢⎢⎢⎣
1

1 1

1

1 1

⎤⎥⎥⎥⎥⎦
. (12)

Using such a description, it is easy to determine the number of elements of a given cycle type in
certain subgroups of Sp(4, 𝔽2) ≅ 𝑆6. Table 2 shows such data for a number of subgroups of Sp(4, 𝔽2)
(the first one of which is the trivial and the second one of which is the full subgroup). All these
subgroups are obtained as the image of a conjugate of a congruence subgroup Γ of Sp(4, ℚ), this
conjugate lying between Γ(2) and Sp(4, ℤ), under the projection map Sp(4, ℤ) → Sp(4, 𝔽2); the
first column of Table 2 shows the congruence subgroup Γ.
Both the conjugacy classes and the irreducible characters of 𝑆6 (also referred to as 𝑆6-types)

are parametrized by partitions of 6. We write [𝑛1, … , 𝑛𝑟] for the irreducible character of 𝑆6 corre-
sponding to the partition 6 = 𝑛1 +⋯ + 𝑛𝑟. For example, [6] is the trivial character and [1,1,1,1,1,1]
is the sign character of 𝑆6. The character table of 𝑆6 is given in [20, p. 400]. Using formula (7), the
data in Table 2, and the character table, we obtain the dimension of the space of fixed vectors in
each 𝑆6-type under the subgroups listed in Table 2. The results are summarized in Table 3. The
last two rows of Table 3 indicate the generic representations (i.e., those which admit a nonzero
Whittaker functional) and the cuspidal representations (i.e., those with no nonzero fixed vectors
under the unipotent radicals of the parabolic subgroups).

3.2 Parahoric restriction

In this section, we consider irreducible, admissible representations ofGSp(4, ℚ2)with trivial cen-
tral character that have nonzero fixed vectors under the principal congruence subgroup Γ(2).
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TABLE 2 The number of elements of a given cycle type in some subgroups of Sp(4, 𝔽2) ≅ 𝑆6. Here, we use
the “symmetric” form of Sp(4), that is, the one defined with the symplectic form 𝐽2 as in (5). The third column
shows the cardinality of the subgroup.

𝟏 (𝟏𝟐)(𝟑𝟒) (𝟏𝟐𝟑) (𝟏𝟐𝟑)(𝟒𝟓𝟔) (𝟏𝟐𝟑𝟒)(𝟓𝟔) (𝟏𝟐𝟑𝟒𝟓𝟔)

𝚪 ⊂ 𝐒𝐩(𝟒, 𝔽𝟐) # (𝟏𝟐) (𝟏𝟐)(𝟑𝟒)(𝟓𝟔) (𝟏𝟐𝟑)(𝟒𝟓) (𝟏𝟐𝟑𝟒) (𝟏𝟐𝟑𝟒𝟓)

Γ(2)

⎡⎢⎢⎢⎢⎣
∗

∗

∗

∗

⎤⎥⎥⎥⎥⎦
1 1 0 0 0 0 0 0 0 0 0 0

Sp(4, ℤ)

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎦
720 1 15 45 15 40 120 40 90 90 144 120

𝐾(4)

⎡⎢⎢⎢⎢⎣
∗ ∗

∗ ∗

∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎦
36 1 6 9 0 4 12 4 0 0 0 0

Γ0(2)

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎦
48 1 3 9 7 0 0 8 6 6 0 8

Γ0(4)

⎡⎢⎢⎢⎢⎣
∗ ∗

∗ ∗

∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎦
6 1 0 0 3 0 0 2 0 0 0 0

Γ∗
0
(4) index 2 in

⎡⎢⎢⎢⎢⎣
∗ ∗

∗ ∗

∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎦
3 1 0 0 0 0 0 2 0 0 0 0

Γ′
0
(2)

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗

⎤⎥⎥⎥⎥⎦
48 1 7 9 3 8 8 0 6 6 0 0

𝑀(4)

⎡⎢⎢⎢⎢⎣
∗

∗ ∗

∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎦
12 1 4 3 0 2 2 0 0 0 0 0

𝐵(2)

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗

⎤⎥⎥⎥⎥⎦
16 1 3 5 3 0 0 0 2 2 0 0
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TABLE 3 The dimensions of the spaces of fixed vectors in each 𝑆6-type under some subgroups of
Sp(4, 𝔽2) ≅ 𝑆6. Here, we use the “symmetric” form of Sp(4), that is, the one defined with the symplectic form 𝐽2 as
in (5). The “Γ(2)” row shows the dimensions of each 𝑆6-type.

[𝟔] [𝟒,𝟐] [𝟑,𝟑] [𝟑,𝟏,𝟏,𝟏] [𝟐,𝟐,𝟏,𝟏] [𝟏,𝟏,𝟏,𝟏,𝟏,𝟏]

𝚪 ⊂ 𝐒𝐩(𝟒, 𝔽𝟐) [𝟓,𝟏] [𝟒,𝟏,𝟏] [𝟑,𝟐,𝟏] [𝟐,𝟐,𝟐] [𝟐,𝟏,𝟏,𝟏,𝟏]

Γ(2)

⎡⎢⎢⎢⎢⎣
∗

∗

∗

∗

⎤⎥⎥⎥⎥⎦
1 5 9 10 5 16 10 5 9 5 1

Sp(4, ℤ)

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎦
1 0 0 0 0 0 0 0 0 0 0

𝐾(4)

⎡⎢⎢⎢⎢⎣
∗ ∗

∗ ∗

∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎦
1 1 1 0 1 0 0 0 0 0 0

Γ0(2)

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎦
1 0 1 0 0 0 0 1 0 0 0

Γ0(4)

⎡⎢⎢⎢⎢⎣
∗ ∗

∗ ∗

∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎦
1 0 3 1 0 2 3 3 0 1 0

Γ∗
0
(4) index 2 in

⎡⎢⎢⎢⎢⎣
∗ ∗

∗ ∗

∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎦
1 1 3 4 3 4 4 3 3 1 1

Γ′
0
(2)

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗

⎤⎥⎥⎥⎥⎦
1 1 1 0 0 0 0 0 0 0 0

𝑀(4)

⎡⎢⎢⎢⎢⎣
∗

∗ ∗

∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎦
1 2 2 1 1 1 0 0 0 0 0

𝐵(2)

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗

⎤⎥⎥⎥⎥⎦
1 1 2 0 0 1 0 1 0 0 0

generic ∙ ∙ ∙ ∙

cuspidal ∙ ∙



806 ROY et al.

TABLE 4 Hyperspecial parahoric restriction for GSp(4, ℚ2). All characters 𝜒, 𝜒1, 𝜒2, 𝜎, 𝜉 are assumed to be
unramified, and the supercuspidal representation 𝜋 of GL(2, ℚ2) has depth 0.

Representation a 𝜺 Temp Para Parahoric restriction (G) (P)
I 𝜒1 × 𝜒2 ⋊ 𝜎 (irred.) 0 + ∙ ∙ [6]+[5,1]+2[4,2]+[3,2,1]+[2,2,2] ∙

II a 𝜒StGL(2) ⋊ 𝜎 1 ± ∙ ∙ [5,1]+[4,2]+[3,2,1] ∙

b 𝜒𝟏GL(2) ⋊ 𝜎 0 + ∙ [6]+[4,2]+[2,2,2] ∙

III a 𝜒 ⋊ 𝜎StGSp(2) 2 + ∙ ∙ [4,2]+[3,2,1]+[2,2,2] ∙

b 𝜒 ⋊ 𝜎𝟏GSp(2) 0 + ∙ [6]+[5,1]+[4,2]
IV a 𝜎StGSp(4) 3 ± ∙ ∙ [3,2,1] ∙

b 𝐿(𝜈2, 𝜈−1𝜎StGSp(2)) 2 + ∙ [4,2]+[2,2,2]
c 𝐿(𝜈3∕2StGL(2), 𝜈

−3∕2𝜎) 1 ± ∙ [4,2]+[5,1]
d 𝜎𝟏GSp(4) 0 + ∙ [6]

V a 𝛿([𝜉, 𝜈𝜉], 𝜈−1∕2𝜎) 2 – ∙ ∙ [5,1]+[3,2,1] ∙

b 𝐿(𝜈1∕2𝜉StGL(2), 𝜈
−1∕2𝜎) 1 ± ∙ [4,2] ∙

c 𝐿(𝜈1∕2𝜉StGL(2), 𝜉𝜈
−1∕2𝜎) 1 ± ∙ [4,2] ∙

d 𝐿(𝜈𝜉, 𝜉 ⋊ 𝜈−1∕2𝜎) 0 + ∙ [6]+[2,2,2]
VI a 𝜏(𝑆, 𝜈−1∕2𝜎) 2 + ∙ ∙ [4,2]+[3,2,1] ∙

b 𝜏(𝑇, 𝜈−1∕2𝜎) 2 + ∙ [2,2,2] ∙ ∙

c 𝐿(𝜈1∕2StGL(2), 𝜈
−1∕2𝜎) 1 ± ∙ [5,1] ∙

d 𝐿(𝜈, 1𝐹× ⋊ 𝜈−1∕2𝜎) 0 + ∙ [6]+[4,2]
VII 𝜒 ⋊ 𝜋 4 + ∙ ∙ [3,1,1,1]+[2,1,1,1,1] ∙

VIII a 𝜏(𝑆, 𝜋) 4 + ∙ ∙ [3,1,1,1] ∙

b 𝜏(𝑇, 𝜋) 4 + ∙ [2,1,1,1,1] ∙

IX a 𝛿(𝜈𝜉, 𝜈−1∕2𝜋) 4 + ∙ ∙ [3,1,1,1] ∙

b 𝐿(𝜈𝜉, 𝜈−1∕2𝜋) 4 + [2,1,1,1,1]
X 𝜋 ⋊ 𝜎 2 – ∙ ∙ [4,1,1]+[3,3] ∙

XI a 𝛿(𝜈1∕2𝜋, 𝜈−1∕2𝜎) 3 ± ∙ ∙ [4,1,1] ∙

b 𝐿(𝜈1∕2𝜋, 𝜈−1∕2𝜎) 2 – ∙ [3,3] ∙

Va∗ 𝛿∗([𝜉, 𝜈𝜉], 𝜈−1∕2𝜎) 2 – ∙ [1,1,1,1,1,1] ∙ ∙

sc(16) 4 – ∙ ∙ [2,2,1,1] ∙

Table 4 contains a complete list of such representations. Their central characters are necessar-
ily unramified, so after a twist, we may assume that the central character is trivial. All characters
in the representations appearing in Table 4 are assumed to be unramified.
Let (𝜋, 𝑉) be an irreducible, admissible representation of GSp(4, ℚ2). The hyperspecial maxi-

mal compact subgroup𝐾 = GSp(4, ℤ2) ofGSp(4, ℚ2) normalizes Γ(𝔭). Hence,𝐾 acts on the space
𝑉Γ(𝔭) of Γ(𝔭)-fixed vectors. The resulting representation of𝐾∕Γ(𝔭) ≅ Sp(4, 𝔽2) is called the hyper-
special parahoric restriction of 𝜋 and denoted by 𝑟𝐾(𝜋). It has been calculated for all 𝜋 in [28,
29].
Table 4 contains a list of all irreducible, admissible representations of PGSp(4, ℚ2) for which

𝑟𝐾(𝜋) ≠ 0, using notations as in [27, 32]. Since hyperspecial parahoric restriction commutes with
induction by [28, Theorem 2.19], all the parameters in Table 4 must have nonzero parahoric
restriction on GL(1) or GL(2). This means the characters 𝜒, 𝜒1, 𝜒2, 𝜎, 𝜉 of ℚ×2 are assumed to be
unramified, and the supercuspidal representation 𝜋 in types VII–XIb is an unramified twist of the
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unique supercuspidal representation 𝜋 of PGL(2, ℚ2) of conductor exponent 2. The “𝑎” column
shows the (exponent of the) conductor of the representation. The “𝜀” column shows the possibili-
ties for the value of the 𝜀-factor at 1∕2. The “temp” column indicates the tempered representations,
under the assumption that the inducing data is unitary. The “para” column indicates the rep-
resentations that have nonzero paramodular vectors (in which case the minimal paramodular
level coincides with the conductor). The hyperspecial parahoric restriction for nonsupercuspidal
representations is given in [29, Table 3] and [28, Table 3.1]; see [28, p. 103] for the translation of
Enomoto’s notation to standard 𝑆6 notation.
There are two supercuspidal representations in Table 4, the nongeneric 𝛿∗([𝜉, 𝜈𝜉], 𝜈−1∕2𝜎) of

type Va∗ and the generic 𝗌𝖼(16). The representation 𝛿∗([𝜉, 𝜈𝜉], 𝜈−1∕2𝜎) is invariant under twist-
ing by 𝜉, so there is only one representation of type Va∗. It shares an 𝐿-packet with the unique
representation of type Va; both have 𝐿-parameter st2 ⊕ ξst2, where st2 is the 𝐿-parameter of
the Steinberg representation StGL(2) of GL(2, ℚ2). So, the parahoric restriction information for
Va∗ comes from [28, Tables 4.2 and 5.2]. By Frobenius reciprocity and the proposition in [22,
Section 1.4], it follows that

𝛿∗([𝜉, 𝜈𝜉], 𝜈−1∕2𝜎) = c-Ind𝐺𝑍𝐾([1, 1, 1, 1, 1, 1]), (13)

where we inflate [1,1,1,1,1,1], the sign character of𝐾∕Γ(2) ≅ Sp(4, 𝔽2) to𝐾 and then extend it to𝑍𝐾
by having 𝑍 act trivially. By [28, Table 4.2], there are no nongeneric supercuspidals of PGSp(4, ℚ2)
with nonzero hyperspecial parahoric restriction besides Va∗.
By [23] and [28, Proposition 2.16], there are no generic supercuspidals of PGSp(4, ℚ2) with

nonzero hyperspecial parahoric restriction besides 𝗌𝖼(16). In this case, we have

𝗌𝖼(16) = c-Ind𝐺𝑍𝐾([2, 2, 1, 1]). (14)

The parahoric restriction for 𝗌𝖼(16) follows from [28, Lemma 2.18].

3.3 Local fixed vectors

Table 5 lists the dimensions of the space of fixed vectors under various congruence subgroups for
the same class of representations as in Table 4. These are the irreducible, admissible representa-
tions 𝜋 of GSp(4, ℚ2) for which the hyperspecial parahoric restriction 𝑟𝐾(𝜋) is nonzero, that is,
which have nonzero vectors fixed under the principal congruence subgroup Γ(𝔭).

Theorem 3.1. Let (𝜋, 𝑉) be an irreducible, admissible representation ofGSp(4, ℚ2). Let𝐻 be one of
the congruence subgroups listed in the first row of Table 5.

(i) If 𝑟𝐾(𝜋) ≠ 0, so that 𝜋 occurs among the representations in Tables 4, then dim𝑉𝐻 is given as in
Table 5.

(ii) If dim𝑉𝐻 ≠ 0, then 𝑟𝐾(𝜋) ≠ 0, so that 𝜋 occurs among the representations in Tables 4.

Proof.

(i) For𝐻 = K(𝔭), see [27, Section A.8]. For𝐻 = Γ′
0
(𝔭2), see [47, Table 1]. For every other𝐻, there

exists a conjugate subgroup �̃� such that Γ(𝔭) ⊂ �̃� ⊂ 𝐾. If 𝑟𝐾(𝜋) = 𝜌1 ⊕ …⊕ 𝜌𝑚 with 𝑆6-types
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TABLE 5 The dimensions of the spaces of fixed vectors under various congruence subgroups of the
irreducible, admissible representations of GSp(4, ℚ2) with nonzero hyperspecial parahoric restriction. (See
Table 4 for the precise notation for these representations.).

𝛀 𝚪(𝖕) K 𝐊(𝖕) 𝐊(𝖕𝟐) 𝚪𝟎(𝖕) 𝚪𝟎(𝖕
𝟐) 𝚪∗

𝟎
(𝖕𝟐) 𝚪′

𝟎
(𝖕) 𝚪′

𝟎
(𝖕𝟐) 𝑴(𝖕𝟐) 𝑩(𝖕)

I 45 1 2 4 4 12 15 4 11 8 8
II a 30 0 1 2 1 5 8 2 7 5 4

b 15 1 1 2 3 7 7 2 4 3 4
III a 30 0 0 1 2 8 10 1 5 3 4

b 15 1 2 3 2 4 5 3 6 5 4
IV a 16 0 0 0 0 2 4 0 2 1 1

b 14 0 0 1 2 6 6 1 3 2 3
c 14 0 1 2 1 3 4 2 5 4 3
d 1 1 1 1 1 1 1 1 1 1 1

V a 21 0 0 1 0 2 5 1 5 3 2
b 9 0 1 1 1 3 3 1 2 2 2
c 9 0 1 1 1 3 3 1 2 2 2
d 6 1 0 1 2 4 4 1 2 1 2

VI a 25 0 0 1 1 5 7 1 5 3 3
b 5 0 0 0 1 3 3 0 0 0 1
c 5 0 1 1 0 0 1 1 2 2 1
d 10 1 1 2 2 4 4 2 4 3 3

VII 15 0 0 0 0 4 5 0 2 0 0
VIII a 10 0 0 0 0 3 4 0 2 0 0

b 5 0 0 0 0 1 1 0 0 0 0
IX a 10 0 0 0 0 3 4 0 1 0 0

b 5 0 0 0 0 1 1 0 1 0 0
X 15 0 0 1 0 1 7 0 3 2 0
XI a 10 0 0 0 0 1 4 0 2 1 0

b 5 0 0 1 0 0 3 0 1 1 0
Va∗ 1 0 0 0 0 0 1 0 0 0 0
sc(16) 9 0 0 0 0 0 3 0 1 0 0

(𝜌𝑖, 𝑈𝑖), then

dim𝑉𝐻 = dim 𝑟𝐾(𝜋)
�̃� =

𝑚∑
𝑖=1

dim𝑈�̄�𝑖 , (15)

where �̄� is the image of �̃� in 𝐾∕Γ(𝔭) ≅ Sp(4, 𝔽2). The dimensions 𝑈�̄� are listed in Table 3,
for each 𝑆6-type (𝜌,𝑈). We thus get the desired dimensions from the 𝑟𝐾(𝜋) listed in Table 4.

(ii) If 𝐻 ≠ Γ′
0
(𝔭2), then a conjugate of 𝐻 contains Γ(𝔭), so that 𝑟𝐾(𝜋) = 𝑉Γ(𝔭) ⊃ 𝑉𝐻 ≠ 0. If 𝐻 =

Γ′
0
(𝔭2), then [47, Lemma 4] shows that 𝑉Γ(𝔭) ≠ 0. □

We remark that for most of the congruence subgroups, the dimensions in Table 5 appear else-
where in the literature. For all the subgroups containing 𝐵(𝔭), see [35]. For the paramodular
groups, see [27]. For𝑀(𝔭2) and Γ′

0
(𝔭2), see [47].
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4 GLOBAL DIMENSIONS AND CODIMENSIONS

The goal of this section is to derive the dimension formulas in Tables B.2 and B.3 for all congru-
ence subgroups except Γ′

0
(4). Most of these formulas are already contained in the literature, but

we give a unified approach. First, we derive a general formula in degree 2 for the codimension
dim𝑀𝑘(Γ) − dim𝑆𝑘(Γ) based on the Satake compactification and the global Φ map; see Theo-
rem 4.3. We thus obtain the codimensions summarized in Table 8 for all congruence subgroups
of interest to us.
To obtain the actual dimensions, we note that most of our congruence subgroups Γ, after an

appropriate conjugation, lie between Γ(2) and Sp(4, ℤ). One can thus use Igusa’s result [20, Theo-
rem 2] to calculate dim𝑀𝑘(Γ); see Section 4.3. The only subgroup other than Γ′0(4) for which this
does not work is 𝐾(2), for which the result is already contained in the literature.

4.1 A general codimension formula

In this section, we will find a general formula for calculating the codimension of 𝑆𝑘(Γ) in𝑀𝑘(Γ)

for a congruence subgroup Γ of Sp(4, ℚ). A summary of the method for any degree is given in
[25, Section 3]. It is based on [33] and the surjectivity of the global Φ operator proven in [34]. We
specialize to the degree 2 case, resulting in the formula in Theorem 4.3 below.
We define the symplectic group Sp(4) with respect to the form 𝐽1 given in (4), and use the

following parabolic subgroups;

𝐵 =

⎡⎢⎢⎢⎢⎣
∗ 0 ∗ ∗

∗ ∗ ∗ ∗

0 0 ∗ ∗

0 0 0 ∗

⎤⎥⎥⎥⎥⎦
∩ Sp(4), 𝑃 =

⎡⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 ∗ ∗

0 0 ∗ ∗

⎤⎥⎥⎥⎥⎦
∩ Sp(4), 𝑄 =

⎡⎢⎢⎢⎢⎣
∗ 0 ∗ ∗

∗ ∗ ∗ ∗

∗ 0 ∗ ∗

0 0 0 ∗

⎤⎥⎥⎥⎥⎦
∩ Sp(4). (16)

Consider the homomorphisms 𝜔∶ 𝑄(ℝ) → SL(2, ℝ) and 𝜄 ∶ SL(2, ℝ) → 𝑄(ℝ) given by

𝜔∶ 𝑄(ℝ)⟶ SL(2, ℝ), 𝜄 ∶ SL(2, ℝ)⟶ 𝑄(ℝ), (17)

⎡⎢⎢⎢⎢⎣
𝑎 0 𝑏 ∗

∗ ∗ ∗ ∗

𝑐 0 𝑑 ∗

0 0 0 ∗

⎤⎥⎥⎥⎥⎦
⟼

[
𝑎 𝑏

𝑐 𝑑

]
,

[
𝑎 𝑏

𝑐 𝑑

]
⟼

⎡⎢⎢⎢⎢⎣
𝑎 0 𝑏 0

0 1 0 0

𝑐 0 𝑑 0

0 0 0 1

⎤⎥⎥⎥⎥⎦
.

Let Γ be a congruence subgroup of Sp(4, ℚ). We will describe how the geometry of the Satake
compactification (Γ∖2) is reflected algebraically via double cosets.
Let 𝑋 be a fixed set of representatives for the double cosets Γ∖Sp(4, ℚ)∕𝑃(ℚ), and let 𝑌 be

a fixed set of representatives for the double cosets Γ∖Sp(4, ℚ)∕𝑄(ℚ). (Note that the quotient
Sp(4, ℝ)pr∕𝐻(ℝ)pr appearing in [25, p. 451] simplifies to Sp(4, ℚ)∕𝐻(ℚ) for any of the subgroups
𝐻 in (16)). Since Sp(4, ℚ) = Sp(4, ℤ)𝐵(ℚ) (by taking inverses in Lemma 2.2), we may assume that
𝑋,𝑌 ⊂ Sp(4, ℤ). There is a bijection between 𝑋 and the zero-dimensional cusps of Γ. Similarly,
there is a bijection between 𝑌 and the one-dimensional cusps of Γ. For 𝑦 ∈ 𝑌, let 𝐶𝑦 be the 1-cusp
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corresponding to 𝑦, and let

Γ𝑦 = 𝜔
(
𝑦−1Γ𝑦 ∩ 𝑄(ℚ)

)
, (18)

which is a congruence subgroup of SL(2, ℚ). Let 𝑅𝑦 be a fixed set of representatives for the double
cosets Γ𝑦∖SL(2, ℚ)∕𝐵1(ℚ), where 𝐵1 is the upper triangular subgroup of SL(2). As is well known,
there is a bijection between 𝑅𝑦 and the set of cusps of Γ𝑦 , which are points in the Satake com-
pactification (Γ𝑦∖1). There is an embedding Γ𝑦∖1 → Γ∖2, which extends to a continuous
map (Γ𝑦∖1) → (Γ∖2). Let 𝐶𝑦,𝜌 be the image of the cusp corresponding to 𝜌 ∈ 𝑅𝑦 under this
map. It is a 0-cusp of (Γ∖2) lying on the 1-cusp 𝐶𝑦 . The double coset corresponding to 𝐶𝑦,𝜌 is
Γ𝑦𝜄(𝜌)𝑃(ℚ). We see:

∙ If Γ𝑦1𝜄(𝜌1)𝑃(ℚ) = Γ𝑦2𝜄(𝜌2)𝑃(ℚ) for two distinct 𝑦1, 𝑦2 ∈ 𝑌 and some 𝜌1 ∈ 𝑅𝑦1 , 𝜌2 ∈ 𝑅𝑦2 , then it
means that 𝐶𝑦1 and 𝐶𝑦2 intersect at 𝐶𝑦1,𝜌1 = 𝐶𝑦2,𝜌2 .

∙ If Γ𝑦𝜄(𝜌1)𝑃(ℚ) = Γ𝑦𝜄(𝜌2)𝑃(ℚ) for 𝑦 ∈ 𝑌 and distinct 𝜌1, 𝜌2 ∈ 𝑅𝑦 , then it means that 𝐶𝑦 has a
self-intersection at 𝐶𝑦,𝜌1 = 𝐶𝑦,𝜌2 .

In this way, we find the cusp structure diagram for Γ. It consists of |𝑌| curves representing the 1-
cusps𝐶𝑦 , and |𝑋| points representing the 0-cusps𝐶𝑦,𝜌 for 𝜌 ∈ 𝑅𝑦 , with𝐶𝑦,𝜌 lying on𝐶𝑦 indicating
the intersections and self-intersections.
For 𝑓 ∈ 𝑀𝑘(Γ), the Siegel Φ-operator produces a function Φ𝑓 on1 defined by

(Φ𝑓)(𝜏) = lim
𝜆→∞

𝑓

([
𝜏

𝑖𝜆

])
, 𝜏 ∈ 1. (19)

It follows from the Fourier expansion of 𝑓 that, in fact,

(Φ𝑓)(𝜏) = lim
𝜆→∞

𝑓

([
𝜏 𝑧

𝑧 𝑖𝜆

])
for any 𝑧 ∈ ℂ. (20)

We also define a Φ-operator on modular forms on 1. If 𝑓 is such a modular form, then Φ𝑓 is
simply the number lim𝜆→∞ 𝑓(𝑖𝜆).

Lemma 4.1. Let

𝑢 =

⎡⎢⎢⎢⎢⎣
∗ 0 ∗ ∗

∗ ∗ ∗ ∗

∗ 0 ∗ ∗

0 0 0 𝑟

⎤⎥⎥⎥⎥⎦
∈ 𝑄(ℚ) (21)

and 𝑓 be a modular form of weight 𝑘 on2 with respect to some congruence subgroup. Then

Φ(𝑓|𝑢) = 𝑟−𝑘(Φ𝑓)|𝜔(𝑢). (22)

Proof. See the calculation in [24, p. 2464] to obtain (22). □

Lemma 4.2. Let Γ be a congruence subgroup of Sp(4, ℚ) and 𝑓 ∈ 𝑀𝑘(Γ). Let 𝑦 ∈ 𝑌.
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(i) If 𝑘 ⩾ 1 is even, then Φ(𝑓|𝑦) ∈ 𝑀(1)
𝑘
(Γ𝑦), where Γ𝑦 is the group defined in (18).

(ii) If 𝑘 ⩾ 1 is odd and

[
1

−1
1

−1

]
∈ 𝑦−1Γ𝑦, then Φ(𝑓|𝑦) = 0.

Proof. Let

𝑢 =

⎡⎢⎢⎢⎢⎣
∗ 0 ∗ ∗

∗ ∗ ∗ ∗

∗ 0 ∗ ∗

0 0 0 𝑟

⎤⎥⎥⎥⎥⎦
∈ 𝑦−1Γ𝑦 ∩ 𝑄(ℚ). (23)

We claim that 𝑟 ∈ {±1}. Indeed, the map 𝑦−1Γ𝑦 ∩ 𝑄(ℚ𝑝) → ℚ×𝑝 that sends any matrix to its
(4,4)-coefficient is a continuous group homomorphism. Since 𝑦−1Γ𝑦 ∩ 𝑄(ℚ𝑝) lies in a compact
subset of 𝑄(ℚ𝑝), the image of this homomorphism lies in ℤ×𝑝 . This is true for all 𝑝, and hence
𝑟 ∈ {±1}.
Applying Lemma 4.1 to g ∶= 𝑓|𝑦 instead of 𝑓 and 𝑢 as in (23), we see that

Φg = 𝑟−𝑘(Φg)|𝜔(𝑢). (24)

Now both (i) and (ii) follow easily. □

Theorem 4.3. Let Γ be a congruence subgroup of Sp(4, ℚ). Let 𝑋, 𝑌 and Γ𝑦 be as defined above.
Then, for even 𝑘 ⩾ 6, we have

dim𝑀𝑘(Γ) − dim𝑆𝑘(Γ) = |𝑋| +∑
𝑦∈𝑌

dim𝑆(1)
𝑘
(Γ𝑦). (25)

Proof. Observing Lemma 4.2 (i), we define

Φ̃∶ 𝑀𝑘(Γ)⟶
⨁
𝑦∈𝑌

𝑀(1)
𝑘
(Γ𝑦), 𝑓 ⟼ (𝑓𝑦)𝑦∈𝑌, where 𝑓𝑦 = Φ(𝑓|𝑦). (26)

One may think of 𝑓𝑦 as the restriction of 𝑓 to 𝐶𝑦 . Evidently, ker(Φ̃) = 𝑆𝑘(Γ), so that we have an
exact sequence

0⟶ 𝑆𝑘(Γ)⟶𝑀𝑘(Γ)⟶ Im(Φ̃)⟶ 0. (27)

Hence, our desired codimension equals dim Im(Φ̃). To understand Im(Φ̃), note that the 𝑓𝑦 satisfy
the following compatibility condition: For all 𝑦1, 𝑦2 ∈ 𝑌, 𝜌1 ∈ 𝑅𝑦1 and 𝜌2 ∈ 𝑅𝑦2 ,

Γ𝑦1𝜄(𝜌1)𝑃(ℚ) = Γ𝑦2𝜄(𝜌2)𝑃(ℚ) ⟹ Φ(𝑓𝑦1 |𝜌1) = Φ(𝑓𝑦2 |𝜌2). (28)

(This amounts to saying that 𝑓𝑦1 and 𝑓𝑦2 agree on the intersection points of the 1-cusps 𝐶𝑦1 and
𝐶𝑦2 ; see [25, (1)].) Satake [34] proved that Im(Φ̃) is characterized by this compatibility condition.
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In particular, ⨁
𝑦∈𝑌

𝑆(1)
𝑘
(Γ𝑦) ⊂ Im(Φ̃). (29)

To further study Im(Φ̃), we choose for every 𝑥 ∈ 𝑋 a 𝑦𝑥 ∈ 𝑌 and a 𝜌𝑥 ∈ 𝑅𝑦𝑥 such that the 0-cusp
represented by 𝑥 equals 𝐶𝑦𝑥,𝜌𝑥 . In terms of double cosets, this means

Γ𝑥𝑃(ℚ) = Γ𝑦𝑥𝜄(𝜌𝑥)𝑃(ℚ). (30)

Then, we define the map

𝜃∶ Im(Φ̃)⟶ ℂ|𝑋|, (𝑓𝑦)𝑦∈𝑌 ⟼
(
Φ(𝑓𝑦𝑥 |𝜌𝑥))𝑥∈𝑋. (31)

The compatibility condition (28) assures that 𝜃 is independent of the choices of 𝑦𝑥 and 𝜌𝑥.
It is clear that

⨁
𝑦∈𝑌 𝑆

(1)
𝑘
(Γ𝑦) ⊆ ker 𝜃 by definition of 𝜃. To prove the reverse inclusion, suppose

(𝑓𝑦)𝑦∈𝑌 ∈ Im(Φ̃) lies in the kernel of 𝜃, that is,Φ(𝑓𝑦𝑥 |𝜌𝑥) = 0 for all 𝑥 ∈ 𝑋. We want to show that
Φ(𝑓𝑦|𝜌) = 0 for all 𝑦 ∈ 𝑌 and 𝜌 ∈ 𝑅𝑦 . Let 𝑎 ∈ 𝑋 be such that Γ𝑦𝜄(𝜌)𝑃(ℚ) = Γ𝑎𝑃(ℚ). Since also
Γ𝑎𝑃(ℚ) = Γ𝑦𝑎𝜄(𝜌𝑎)𝑃(ℚ), we have

Φ(𝑓𝑦|𝜌) = Φ(𝑓𝑦𝑎 |𝜌𝑎) = 0
by the compatibility condition (28). This proves ker 𝜃 =

⨁
𝑦∈𝑌 𝑆

(1)
𝑘
(Γ𝑦).

Next, we show that 𝜃 is surjective. Let 𝑥 ∈ 𝑋. It follows from [7, Theorem 3.5.1] that we can find
an 𝑓𝑦 ∈ 𝑀

(1)
𝑘
(Γ𝑦) such that, for all 𝜌 ∈ 𝑅𝑦 ,

Φ(𝑓𝑦|𝜌) ={1 if Γ𝑥𝑃(ℚ) = Γ𝑦𝜄(𝜌)𝑃(ℚ),
0 otherwise.

The family of 𝑓𝑦 thus defined satisfies the compatibility condition (28), so that (𝑓𝑦)𝑦∈𝑌 lies in
the image of Φ̃. Hence, we constructed an element of Im(Φ̃) that does not vanish at the 0-cusp
corresponding to 𝑥, but vanishes at all other 0-cusps. It follows that 𝜃 is surjective.
We proved that there is an exact sequence

0⟶
⨁
𝑦∈𝑌

𝑆(1)
𝑘
(Γ𝑦)⟶ Im(Φ̃)⟶ ℂ|𝑋|⟶0. (32)

Our assertion now follows from (27) and (32). □

4.2 Codimension formulas for some congruence subgroups

In this section, we determine the codimension dim𝑀𝑘(Γ) − dim𝑆𝑘(Γ) for the congruence sub-
groups Γ listed below in Theorem4.4. One of them is a group Γ∗

0
(4) defined as follows.We consider
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the character of the group Γ0(4) obtained as the composition

Γ0(4)⟶ GL(2, ℤ)⟶ SL(2, ℤ∕2ℤ)
∼
⟶ 𝑆3 ⟶ {±1}, (33)

where the first map is given by
[
𝐴 𝐵
𝐶 𝐷

]
↦ 𝐷, the second map is reduction modulo 2, the third map

is any isomorphism, and the last map is the sign character of the symmetric group 𝑆3. Let Γ∗0(4)
be the kernel of this character. Explicitly,

Γ∗0(4) =

{
g =
[
𝐴 𝐵

𝐶 𝐷

]
∈ Γ0(4) ∶ 𝐷 ≡

[
1 0

0 1

]
,

[
0 1

1 1

]
,

[
1 1

1 0

]
mod 2

}
. (34)

Evidently, Γ0(4) = Γ∗0(4) ⊔ Γ
∗
0
(4)𝑠1, where 𝑠1 is defined in (6).

For odd weights, we have the following result.

Theorem4.4. Suppose that 𝑘 ⩾ 1 is odd, and that Γ is conjugate to one of the congruence subgroups
in (1). Then𝑀𝑘(Γ) = 𝑆𝑘(Γ).

Proof. Let 𝑌 ⊂ Sp(4, ℤ) be a fixed set of representatives for the double cosets Γ∖Sp(4, ℚ)∕𝑄(ℚ). If
we can verify the condition in Lemma 4.2 (ii) for all 𝑦 ∈ 𝑌, then𝑀𝑘(Γ) = 𝑆𝑘(Γ) will follow from
(26) and (27); note that (26) and (27) hold for both even and odd 𝑘.
If Γ′ is conjugate to Γ by an element of Sp(4, ℚ), then 𝑀𝑘(Γ

′) = 𝑆𝑘(Γ
′) if and only if 𝑀𝑘(Γ) =

𝑆𝑘(Γ). Hence, we need only consider the groups in (1).
The condition in Lemma 4.2 (ii) is satisfied for the normal subgroup Γ(2) of Sp(4, ℤ), and

then also for any subgroup containing Γ(2). Up to conjugation, this covers all groups in (1)
except Γ′

0
(4). For Γ′

0
(4), one can verify the condition directly using the representatives 𝑦 given in

Table 7. □

We turn to evenweights, considering the case 𝑘 ⩾ 6. Recall that for the codimension formula in
Theorem 4.3, we need |𝑋|, which is the cardinality of the double coset space Γ∖Sp(4, ℚ)∕𝑃(ℚ), and
we need to know the groups Γ𝑦 defined in (18), where 𝑦 runs through a system of representatives
for the double coset space Γ∖Sp(4, ℚ)∕𝑄(ℚ).
For Γ equal to the principal congruence subgroup Γ(2), it is well known that both double coset

spaces have 15 elements, and that each group Γ𝑦 equals Γ(1)(2). A quick derivation uses the fact
that Sp(4, 𝔽2) ≅ 𝑆6 has 720 elements (see Section 4.3). Note Sp(4, ℚ)∕𝑃(ℚ) ≅ Sp(4, ℤ)∕𝑃(ℤ) and
Sp(4, ℚ)∕𝑄(ℚ) ≅ Sp(4, ℤ)∕𝑄(ℤ). Hence,

Γ(2)∖Sp(4, ℚ)∕𝑃(ℚ) ≅ Sp(4, 𝔽2)∕𝑃(𝔽2) and Γ(2)∖Sp(4, ℚ)∕𝑄(ℚ) ≅ Sp(4, 𝔽2)∕𝑄(𝔽2). (35)

Since 𝑃(𝔽2) and 𝑄(𝔽2) both have 48 elements, it follows that both double coset spaces have car-
dinality 15. Moreover, since Γ(2) is normal in Sp(4, ℤ), each Γ𝑦 equals 𝜔(Γ ∩ 𝑄(ℚ)) = SL(2, ℤ) ∩[
ℤ 2ℤ
2ℤ ℤ

]
, which is conjugate (by an element of SL(2, ℚ)) to Γ(1)

0
(4). From Theorem 4.3, we thus get

dim𝑀𝑘(Γ(2)) − dim𝑆𝑘(Γ(2)) = 15 + 15 dim𝑆𝑘(Γ
(1)
0
(4)) for even 𝑘 ⩾ 6.

For the congruence subgroups in (1) other than Γ(2), the last column of Table 6 shows the
cardinality ofΓ∖Sp(4, ℚ)∕𝑃(ℚ). The table also indicates representatives for this double coset space,
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TABLE 6 Double coset representatives for Γ∖Sp(4, ℚ)∕𝑃(ℚ).

𝚪 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 #
Sp(4, ℤ) ∙ 1
𝐾(2) ∙ 1
𝐾(4) ∙ ∙ 2
Γ0(2) ∙ ∙ ∙ 3
Γ0(4) ∙ ∙ ∙ ∙ ∙ ∙ ∙ 7
Γ∗
0
(4) ∙ ∙ ∙ ∙ ∙ ∙ ∙ 7

Γ′
0
(2) ∙ ∙ 2

Γ′
0
(4) ∙ ∙ ∙ ∙ 4

𝑀(4) ∙ ∙ ∙ 3
𝐵(2) ∙ ∙ ∙ ∙ 4

using the following notations:

𝑥1 = 𝐈4 𝑥2 = 𝑠2 =

⎡⎢⎢⎢⎢⎣
1

1

−1

1

⎤⎥⎥⎥⎥⎦
𝑥3 = 𝑠1𝑠2 =

⎡⎢⎢⎢⎢⎣
1

1

1

−1

⎤⎥⎥⎥⎥⎦
𝑥4 = 𝑠2𝑠1𝑠2 =

⎡⎢⎢⎢⎢⎣
1

1

−1

−1

⎤⎥⎥⎥⎥⎦
𝑥5 =

⎡⎢⎢⎢⎢⎣
1

1

1

2 1

⎤⎥⎥⎥⎥⎦
𝑥6 =

⎡⎢⎢⎢⎢⎣
1

1

2 1

2 1

⎤⎥⎥⎥⎥⎦
𝑥7 =

⎡⎢⎢⎢⎢⎣
1

1

2 1

2 1

⎤⎥⎥⎥⎥⎦
𝑥8 =

⎡⎢⎢⎢⎢⎣
1

1

2 1

−1

⎤⎥⎥⎥⎥⎦
. (36)

For the group Sp(4, ℤ), the information in Table 6 is trivial, for𝐾(2) and𝐾(4) see [25, Theorem 1.3].
Representatives for Γ0(2) follow from

Γ0(2)∖Sp(4, ℚ)∕𝑃(ℚ) ≅ 𝑃(𝔽2)∖Sp(4, 𝔽2)∕𝑃(𝔽2) (37)

and the Bruhat decomposition; similarly, for Γ′
0
(2) and𝐵(2). For Γ′

0
(4) and𝑀(4), see [47, Lemma 1,

Lemma 2]. For Γ = Γ0(4), see [42, Proposition 2.6]. It is an exercise to derive the result for Γ∗0(4)
from that for Γ0(4), using that Γ0(4) = Γ∗0(4) ⊔ Γ

∗
0
(4)𝑠1.

Table 7 gives double coset representatives for Γ∖Sp(4, ℚ)∕𝑄(ℚ). The notation used is

𝑦1 = 𝐈4 𝑦2 = 𝑠1 =

⎡⎢⎢⎢⎢⎣
1

1

1

1

⎤⎥⎥⎥⎥⎦
𝑦3 = 𝑠2𝑠1 =

⎡⎢⎢⎢⎢⎣
1

1

−1

1

⎤⎥⎥⎥⎥⎦
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TABLE 7 Double coset representatives for Γ∖Sp(4, ℚ)∕𝑄(ℚ). The groups Γ𝑦 defined in (18) are obtained by
intersecting the given sets of 2 × 2matrices with SL(2, ℚ).

𝚪 𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔 𝒚𝟕 𝒚𝟖 𝒚𝟗 #

Sp(4, ℤ)

[
ℤ ℤ

ℤ ℤ

]
1

𝐾(2)

[
ℤ ℤ

ℤ ℤ

] [
ℤ 2−1ℤ

2ℤ ℤ

]
2

𝐾(4)

[
ℤ ℤ

ℤ ℤ

] [
ℤ 4−1ℤ

4ℤ ℤ

] [
ℤ ℤ

2ℤ ℤ

]
3

Γ0(2)

[
ℤ ℤ

2ℤ ℤ

] [
ℤ ℤ

2ℤ ℤ

]
2

Γ0(4)

[
ℤ ℤ

4ℤ ℤ

] [
ℤ 4ℤ

ℤ ℤ

] [
ℤ ℤ

4ℤ ℤ

] [
ℤ ℤ

4ℤ ℤ

]
4

Γ∗
0
(4)

[
ℤ ℤ

4ℤ ℤ

] [
ℤ 4ℤ

ℤ ℤ

] [
ℤ ℤ

4ℤ ℤ

] [
ℤ ℤ

4ℤ ℤ

] [
ℤ ℤ

4ℤ ℤ

]
5

Γ′
0
(2)

[
ℤ ℤ

ℤ ℤ

] [
ℤ ℤ

2ℤ ℤ

] [
ℤ ℤ

ℤ ℤ

]
3

Γ′
0
(4)

[
ℤ ℤ

ℤ ℤ

] [
ℤ ℤ

4ℤ ℤ

] [
ℤ ℤ

ℤ ℤ

] [
ℤ ℤ

ℤ ℤ

] [
ℤ ℤ

2ℤ ℤ

] [
ℤ ℤ

4ℤ ℤ

]
6

𝑀(4)

[
ℤ ℤ

ℤ ℤ

] [
ℤ 2−1ℤ

4ℤ ℤ

] [
ℤ ℤ

ℤ ℤ

] [
ℤ ℤ

2ℤ ℤ

] [
ℤ 2−1ℤ

4ℤ ℤ

]
5

𝐵(2)

[
ℤ ℤ

2ℤ ℤ

] [
ℤ ℤ

2ℤ ℤ

] [
ℤ ℤ

2ℤ ℤ

] [
ℤ ℤ

2ℤ ℤ

]
4

𝑦4 = 𝑠1𝑠2𝑠1 =

⎡⎢⎢⎢⎢⎣
1

1

1

−1

⎤⎥⎥⎥⎥⎦
𝑦5 =

⎡⎢⎢⎢⎢⎣
1

1

1

2 1

⎤⎥⎥⎥⎥⎦
𝑦6 =

⎡⎢⎢⎢⎢⎣
1 −2

1

1

2 1

⎤⎥⎥⎥⎥⎦
𝑦7 =

⎡⎢⎢⎢⎢⎣
1

1

2 1

2 1

⎤⎥⎥⎥⎥⎦
𝑦8 =

⎡⎢⎢⎢⎢⎣
1

1

2 1

1

⎤⎥⎥⎥⎥⎦
𝑦9 =

⎡⎢⎢⎢⎢⎣
1

1

2 1

2 1

⎤⎥⎥⎥⎥⎦
. (38)

A nonempty entry in the row for Γ and the column for 𝑦𝑖 indicates that 𝑦𝑖 is to be included in the
set 𝑌 of representatives for Γ∖Sp(4, ℚ)∕𝑄(ℚ). The entry itself indicates the group Γ𝑦𝑖 , obtained by
intersecting the given set with SL(2, ℚ). For most of the groups, the references are the same as
given above for Table 6. For Γ = Γ0(4), see [42, Proposition 2.5]. Again, the result for Γ∗0(4) can be
derived from that for Γ0(4).
The following generating series can easily be derived from well-known dimension formulas;

see, for example, [7, Theorem 3.5.1].

∞∑
𝑘=0

dim𝑆𝑘(SL(2, ℤ))𝑡
𝑘 =

∞∑
𝑘=6
𝑘 even

dim𝑆𝑘(SL(2, ℤ))𝑡
𝑘 =

𝑡12

(1 − 𝑡4)(1 − 𝑡6)
, (39)
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TABLE 8 Codimension formulas valid for even weight 𝑘 ⩾ 6, given in the form
dim𝑀𝑘(Γ) − dim𝑆𝑘(Γ) = 𝛼 dim𝑆𝑘(SL(2, ℤ)) + 𝛽 dim𝑆𝑘(Γ

(1)
0
(2)) + 𝛾 dim𝑆𝑘(Γ

(1)
0
(4)) + 𝛿.

𝚪 𝜶 𝜷 𝜸 𝜹

∞∑

𝒌=𝟔

(𝐝𝐢𝐦𝑴𝒌(𝚪) − 𝐝𝐢𝐦𝑺𝒌(𝚪))𝒕
𝒌

Γ(2) 0 0 15 15 15 𝑡
6(2−𝑡2)

(1−𝑡2)2

Sp(4, ℤ) 1 0 0 1 𝑡6(1+𝑡2−𝑡8)

(1−𝑡4)(1−𝑡6)

𝐾(2) 2 0 0 1 𝑡6(1+𝑡2+𝑡6−𝑡8)

(1−𝑡4)(1−𝑡6)

𝐾(4) 2 1 0 2 𝑡6(2+3𝑡2+𝑡4+𝑡6−2𝑡8)

(1−𝑡4)(1−𝑡6)

Γ0(2) 0 2 0 3 𝑡6(3+2𝑡2−3𝑡4)

(1−𝑡2)(1−𝑡4)

Γ0(4) 0 0 4 7 𝑡6(11−7𝑡2)

(1−𝑡2)2

Γ∗
0
(4) 0 0 5 7 𝑡6(12−7𝑡2)

(1−𝑡2)2

Γ′
0
(2) 2 1 0 2 𝑡6(2+3𝑡2+𝑡4+𝑡6−2𝑡8)

(1−𝑡4)(1−𝑡6)

Γ′
0
(4) 3 1 2 4 𝑡6(6+9𝑡2+5𝑡4+2𝑡6−4𝑡8)

(1−𝑡4)(1−𝑡6)

𝑀(4) 2 3 0 3 𝑡6(3+6𝑡2+3𝑡4+2𝑡6−3𝑡8)

(1−𝑡4)(1−𝑡6)

𝐵(2) 0 4 0 4 4 𝑡
6(1+𝑡2−𝑡4)

(1−𝑡2)(1−𝑡4)

∞∑
𝑘=0

dim𝑆𝑘(Γ
(1)
0
(2))𝑡𝑘 =

∞∑
𝑘=6
𝑘 even

dim𝑆𝑘(Γ
(1)
0
(2))𝑡𝑘 =

𝑡8

(1 − 𝑡2)(1 − 𝑡4)
, (40)

∞∑
𝑘=0

dim𝑆𝑘(Γ
(1)
0
(4))𝑡𝑘 =

∞∑
𝑘=6
𝑘 even

dim𝑆𝑘(Γ
(1)
0
(4))𝑡𝑘 =

𝑡6

(1 − 𝑡2)2
. (41)

Using these formulas, Theorem 4.3, and the information in Tables 6 and 7, we now get the
following result.

Theorem 4.5. For even 𝑘 ⩾ 6 and a congruence subgroup Γ as in (1), the quantity dim𝑀𝑘(Γ) −

dim𝑆𝑘(Γ) is given as in Table 8.

Remark 4.6. After we calculate dim𝑀4(Γ) and dim𝑆4(Γ) in the next section, it will turn out that
the codimension formulas in Table 8 also hold for 𝑘 = 4. See [4] for other cases in which Satake’s
method still works for 𝑘 = 4.

4.3 Dimension formulas for some congruence subgroups

In this section, we determine dim𝑀𝑘(Γ) and dim𝑆𝑘(Γ) for all nonnegative integers 𝑘 and all con-
gruence subgroups Γ in (1) except Γ′

0
(4). Many of the dimension formulas for these groups have

appeared before in the literature, but to the best of our knowledge, the groups Γ∗
0
(4) and 𝑀(4)

have not been previously considered. References are contained in Tables B.2 and B.3. Except for
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𝐾(2) and Γ′
0
(4), the dimension of𝑀𝑘(Γ) for Γ in (1) can be determined from [20, Theorem 2]. The

method is well known, but we summarize it for completeness.
Let Γ be a congruence subgroup of Sp(4, ℚ) for which there exists an element g ∈ Sp(4, ℚ) such

that the group Γ̃ ∶= gΓg−1 satisfies Γ(2) ⊂ Γ̃ ⊂ Sp(4, ℤ). Evidently dim𝑀𝑘(Γ) = dim𝑀𝑘(Γ̃). The
group Sp(4, ℤ)∕Γ(2) ≅ Sp(4, 𝔽2) ≅ 𝑆6 acts naturally on the space𝑀𝑘(Γ(2)). The character of this
action has been determined in [20, Theorem 2]. The space𝑀𝑘(Γ̃) is the fixed space of this action
under the subgroup Γ̃∕Γ(2). Hence, we can use formula (7) and [20, Theorem 2] to calculate
dim𝑀𝑘(Γ̃). All we need to know is how many elements of each conjugacy class of 𝑆6 are con-
tained in Γ̃∕Γ(2). For our subgroups of interest, we have already summarized this information in
Table 2.

Proposition 4.6. With the possible exception of Γ = Γ′
0
(4), the generating series for dim𝑀𝑘(Γ) given

in Table B.2 and for dim𝑆𝑘(Γ) given in Table B.3 hold.

Proof. The dimensions of𝑀𝑘(𝐾(2)) and 𝑆𝑘(𝐾(2)) are given in [13, Proposition 2]. (Note that the
generating series for dim𝑆𝑘(𝐾(2)) given in [13, Proposition 2] is missing the odd weights. The
correct formula, given in Table B.3, can be derived from the original source [16, Theorem 4].)
We may therefore assume that a conjugate of Γ lies between Γ(2) and Sp(4, ℤ). For such Γ, the
dimension of𝑀𝑘(Γ) can be derived from (7) and [20, Theorem 2], as explained above. Hence, we
obtain the information in Table B.2.
The quantity

∑∞
𝑘=6 dim𝑆𝑘(Γ) follows from Tables 8 and B.2. It remains to explain dim𝑆𝑘(Γ) for

𝑘 ∈ {1, 2, 3, 4, 5}. For odd 𝑘, we have dim𝑀𝑘(Γ) = dim𝑆𝑘(Γ) by Theorem 4.4. We have 𝑆4(Γ(2)) =
0 by [40, p. 882]. Hence also 𝑆2(Γ(2)) = 0, and 𝑆2(Γ) = 𝑆4(Γ) = 0 for all Γ that contain a conjugate
of Γ(2). This concludes the proof. □

For illustration, we have listed dim𝑀𝑘(Γ) and dim𝑆𝑘(Γ) for weights 𝑘 ⩽ 20 in
Tables B.6 and B.7.

5 COUNTING AUTOMORPHIC REPRESENTATIONS

This section contains our main results. In essence, we will use the dimension formulas proven
or quoted so far in order to count the number of certain automorphic representations. Then, we
will use these counts to derive more dimension formulas. It is essential to consider the packet
structure of the discrete automorphic spectrum of GSp(4, 𝔸), which we recall first.

5.1 Arthur packets

We recall from [2] that there are six types of automorphic representations of GSp(4, 𝔸) in the dis-
crete spectrum. We are only interested in representations with trivial central character, for which
the description simplifies as follows.

∙ The general type (G): These representations are characterized by the fact that they lift to cusp
forms on GL(4, 𝔸) with trivial central character. They consist of finite, tempered, and stable
packets. The latter means that if 𝜋 ≅ ⊗𝜋𝑣 is such a representation, and if one of the local
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components 𝜋𝑤 is part of a local 𝐿-packet {𝜋𝑤, 𝜋′𝑤}, then 𝜋
′ ∶= 𝜋′𝑤 ⊗ (⊗𝑣≠𝑤𝜋𝑣) is also an

automorphic representation in the discrete spectrum. All these representations are cuspidal.
∙ TheYoshida type (Y): These packets are parametrized by pairs of distinct, cuspidal automorphic
representations 𝜇1, 𝜇2 of GL(2, 𝔸) with trivial central character. The packets are tempered and
finite, but they are not stable. If 𝜋 ≅ ⊗𝜋𝑣 is parametrized by 𝜇1 ≅ ⊗𝜇1,𝑣 and 𝜇2 ≅ ⊗𝜇2,𝑣, then
the local 𝐿-parameter of 𝜋𝑣 is the direct sum of the 𝐿-parameters of 𝜇1,𝑣 and 𝜇2,𝑣. Given 𝜇1 and
𝜇2, if the 𝜋𝑣 are chosen from the local 𝐿-packets parametrized by 𝜇1,𝑣 and 𝜇2,𝑣, then 𝜋 = ⊗𝜋𝑣
belongs to the discrete spectrum if and only if the number of nongeneric 𝜋𝑣 is even.

∙ The Saito–Kurokawa type (P): These packets are parametrized by pairs (𝜇, 𝜎), where 𝜇 is a cus-
pidal, automorphic representation ofGL(2, 𝔸)with trivial central character, and 𝜎 is a quadratic
Hecke character. We will see in Lemma 5.4 below that only the case 𝜎 = 1 is relevant to us, in
which case we say that 𝜋 is a Saito–Kurokawa lift of 𝜇. The packets are finite, nontempered,
and not stable. Given 𝜇, if the 𝜋𝑣 are chosen from local Arthur packets (listed in [37, Table 2])
parametrized by 𝜇𝑣, then 𝜋 = ⊗𝜋𝑣 belongs to the discrete spectrum if and only if the parity
condition

𝜀(1∕2, 𝜇) = (−1)𝑛 (42)

is satisfied, where 𝑛 is the number of places where 𝜋𝑣 is not the base point in the local Arthur
packet.

∙ The Soudry type (Q): These are parametrized by self-dual, cuspidal, automorphic representa-
tions of GL(2, 𝔸) with nontrivial central character. The packets are nontempered, infinite, and
stable. The local Arthur packets are given in [37, Table 3].

∙ The Howe–Piatetski–Shapiro type (B): The packets are parametrized by pairs of distinct,
quadratic Hecke characters. They are nontempered, infinite and unstable. The local Arthur
packets are given in [37, Table 1].

∙ The finite type (F): These are one-dimensional representations. They are not relevant for this
work, because they are not cuspidal.

We next determine how these types intersect with the representations of interest to us. For the
following definition, letΩ be one of the representation types I, IIa, IIb, . . . , XIb, Va∗, 𝗌𝖼 appearing
in Table 4.

Definition 5.1. Let 𝑘 be a positive integer. Let 𝑆𝑘(Ω) be the set of cuspidal automorphic
representations 𝜋 ≅ ⊗𝑣𝜋𝑣 of GSp(4, 𝔸) with the following properties:

(i) 𝜋 has trivial central character.
(ii) 𝜋∞ is the lowest weight module with minimal 𝐾-type (𝑘, 𝑘); it is a holomorphic discrete

series representation if 𝑘 ⩾ 3, a holomorphic limit of discrete series representation if 𝑘 = 2,
and a nontempered representation if 𝑘 = 1. (It was denoted by 𝑘,0 in [36, Section 3.5].)

(iii) 𝜋𝑝 is unramified for each finite 𝑝 ≠ 2.
(iv) 𝜋2 is an irreducible, admissible representation of GSp(4, ℚ2) of type Ω with nontrivial Γ(𝔭)-

invariant vectors.

We note a peculiarity about representation types Vb and Vc. While these occupy two different
rows in Table 4, the resulting sets of representations are identical, if the parameters in Table 4 are
allowed to vary over all possibilities. Therefore, 𝑆𝑘(Vb) = 𝑆𝑘(Vc). In the following, we will work
with Vb and ignore Vc.
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Proposition 5.2. Let Γ be one of the congruence subgroups of Sp(4, ℚ) in (1). Suppose that𝜋 is one of
the cuspidal, automorphic representations ofGSp(4, 𝔸) generated by the adelization of some nonzero
𝑓 ∈ 𝑆𝑘(Γ). Then 𝜋 ∈ 𝑆𝑘(Ω) for someΩ.

Proof. Recall from [36, Section 4.2] (among other places) that the adelization Φ of 𝑓 ∈ 𝑆𝑘(Γ) is
the unique function 𝐺(𝔸) → ℂ, which is left invariant under 𝐺(ℚ), invariant under the center of
𝐺(𝔸), right invariant under

𝐶2 ×
∏
𝑝<∞
𝑝≠2

𝐺(ℤ𝑝), (43)

and satisfies

Φ(g) = (𝑓|𝑘g)([𝑖 𝑖

]
) for all g ∈ Sp(4, ℝ). (44)

Here, 𝐶2 is the congruence subgroup of 𝐺(ℚ2) analogous to Γ, or more precisely, the closure of Γ
in Sp(4, ℚ2) times the group of “multiplier matrices” diag(1, 1, 𝑥, 𝑥) with 𝑥 ∈ ℤ×2 .
If 𝜋 ≅ ⊗𝜋𝑣 is one of the irreducible components of the representation generated by Φ under

right translation, then it is clear that each 𝜋𝑝 for primes 𝑝 ≠ 2 is spherical, and that 𝜋2 con-
tains nonzero 𝐶2-invariant vectors. By Theorem 3.1 (ii), the representation 𝜋2 contains nonzero
Γ(𝔭)-invariant vectors. Finally, it follows from the holomorphy of 𝑓 that 𝜋∞ is a lowest weight
representation minimal 𝐾-type (𝑘, 𝑘); see [3]. Hence, 𝜋 ∈ 𝑆𝑘(Ω) for some Ω. □

The point of Proposition 5.2 is that if Γ is one of the congruence subgroups in (1), then no
cuspidal, automorphic representation of GSp(4, 𝔸) besides those in 𝑆𝑘(Ω), whereΩ runs through
the types occurring in Table 4, will contribute to 𝑆𝑘(Γ). Of course, the 𝑆𝑘(Ω) contribute to 𝑆𝑘(Γ′)
for many other congruence subgroups Γ′ (e.g., subgroups or conjugates of any of the Γ’s in (1)).
Let 𝑆(G)

𝑘
(Ω) be the subset of 𝜋 ∈ 𝑆𝑘(Ω) that are of type (G), and similarly for the other Arthur

types. Let 𝑠𝑘(Ω) be the cardinality of 𝑆𝑘(Ω), and 𝑠
(∗)
𝑘
(Ω) be the cardinality of 𝑆(∗)

𝑘
(Ω). Evidently,

𝑆𝑘(Ω) = 𝑆
(G)
𝑘
(Ω) ⊔ 𝑆

(Y)
𝑘
(Ω) ⊔ 𝑆

(P)
𝑘
(Ω) ⊔ 𝑆

(Q)
𝑘
(Ω) ⊔ 𝑆

(B)
𝑘
(Ω), (45)

so that

𝑠𝑘(Ω) = 𝑠
(G)
𝑘
(Ω) + 𝑠

(Y)
𝑘
(Ω) + 𝑠

(P)
𝑘
(Ω) + 𝑠

(Q)
𝑘
(Ω) + 𝑠

(B)
𝑘
(Ω). (46)

It follows from Proposition 5.2 that

𝑆𝑘(Γ) = 𝑆
(G)
𝑘
(Γ) ⊕ 𝑆

(Y)
𝑘
(Γ) ⊕ 𝑆

(P)
𝑘
(Γ) ⊕ 𝑆

(Q)
𝑘
(Γ) ⊕ 𝑆

(B)
𝑘
(Γ) (47)

for any of the congruence subgroups Γ in (1), the obvious notation being that elements of 𝑆(∗)
𝑘
(Ω)

(for any possible Ω) give rise to elements of 𝑆(∗)
𝑘
(Γ). Hence,

dim𝑆𝑘(Γ) = dim𝑆
(G)
𝑘
(Γ) + dim𝑆

(Y)
𝑘
(Γ) + dim𝑆

(P)
𝑘
(Γ) + dim𝑆

(Q)
𝑘
(Γ) + dim𝑆

(B)
𝑘
(Γ). (48)

Proposition 5.3. Let 𝑘 be a positive integer. Then

𝑆(Y)
𝑘
(Ω) = 𝑆(Q)

𝑘
(Ω) = 𝑆(B)

𝑘
(Ω) = ∅ (49)
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for anyΩ, and hence,

𝑆
(Y)
𝑘
(Γ) = 𝑆

(Q)
𝑘
(Γ) = 𝑆

(B)
𝑘
(Γ) = 0 (50)

for any of the congruence subgroups Γ in (1).

Proof. For types (Q) or (B), the proof is analogous to that of [30, Proposition 2.1]. If𝜋 ≅ ⊗𝜋𝑣 lies in
an Arthur packet of type (Q) or (B), then the characters parametrizing the packet are ramified at
least at one prime 𝑝. A look at [37, Table 1, Table 3] shows that𝜋𝑝 is not among the representations
listed in Table 4. (Recall that all the characters appearing in Table 4 are unramified.) Therefore,
𝜋 ∉ 𝑆𝑘(Ω) for any Ω.
Now consider a cuspidal, automorphic representation 𝜋 = ⊗𝜋𝑣 of type (Y). Recall that the

packet containing 𝜋 is parametrized by two distinct, cuspidal automorphic representations 𝜇1 =
⊗𝜇1,𝑣 and 𝜇2 = ⊗𝜇2,𝑣 of GL(2, 𝔸) with trivial central character. Chasing through archimedean
Langlands parameters, we see that in order for 𝜋∞ to be a lowest weight representation of weight
𝑘, the only possibility, up to order, is that 𝜇1,∞ is a discrete series representation of PGL(2, ℝ) of
lowest weight 2𝑘 − 2, and 𝜇2,∞ is a discrete series representation of PGL(2, ℝ) of lowest weight
2. Hence, 𝜇1 corresponds to a newform 𝑓1 ∈ 𝑆2𝑘−2(Γ

(1)
0
(𝑁1)) and 𝜇2 corresponds to a newform

𝑓2 ∈ 𝑆2(Γ
(1)
0
(𝑁2)) for some levels 𝑁1,𝑁2. If we want 𝜋 to be in 𝑆𝑘(Ω) for some Ω, then 𝑁1

and 𝑁2 both have to be powers of 2. Now 𝑆2(Γ
(1)
0
(4)) = 0, so that we would need 𝑁2 = 2𝑛 for

some 𝑛 ⩾ 3. But then the local component 𝜇2,2, whose 𝐿-parameter is a direct summand of the
𝐿-parameter of 𝜋2, is such that 𝜋2 is not among the representations listed in Table 4; see [31,
Equation (16)] for the possible local Yoshida packets. It follows that 𝜋 cannot be in 𝑆𝑘(Ω) for any
Ω.
Note that (50) follows from (49) in view of Proposition 5.2. □

As a consequence of Proposition 5.3,

𝑆𝑘(Ω) = 𝑆
(G)
𝑘
(Ω) ⊔ 𝑆

(P)
𝑘
(Ω), (51)

so that 𝑠𝑘(Ω) = 𝑠
(G)
𝑘
(Ω) + 𝑠

(P)
𝑘
(Ω), and

𝑆𝑘(Γ) = 𝑆
(G)
𝑘
(Γ) ⊕ 𝑆

(P)
𝑘
(Γ), (52)

so that dim𝑆𝑘(Γ) = dim𝑆
(G)
𝑘
(Γ) + dim𝑆

(P)
𝑘
(Γ). In Section 5.3, we will determine the numbers

𝑠
(P)
𝑘
(Ω).
The sets 𝑆(G)

𝑘
(Ω) are empty for certainΩ, because the local Arthur packets (which are 𝐿-packets

in this case) must contain a tempered element. The (G) column in Table 4 indicates which Ω
can occur in packets of type (G). Similarly, the sets 𝑆(P)

𝑘
(Ω) are empty for certain Ω, because

the local Arthur packets can only contain the representations listed in [37, Table 2]. The (P)
column in Table 4 indicates which Ω can occur in packets of type (P). We see that the only
representations that can occur in packets of both Arthur types (G) and (P) or those of type VIb
and Va∗.
Since Arthur packets of type (G) are stable, one can switch within local 𝐿-packets and still

retain the automorphic property. Most representations in Table 4 constitute singleton 𝐿-packets,
except {Va, Va∗}, {VIa, VIb}, and {VIIIa, VIIIb}, which constitute two-element 𝐿-packets (XIa is
also part of an 𝐿-packet {XIa, XIa∗}, but XIa∗ does not appear in Table 4).
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Hence, 𝑠(G)
𝑘
(Va) = 𝑠

(G)
𝑘
(Va∗), 𝑠(G)

𝑘
(VIa) = 𝑠

(G)
𝑘
(VIb), 𝑠(G)

𝑘
(VIIIa) = 𝑠

(G)
𝑘
(VIIIb) and we denote

these common numbers as follows:

𝑠
(G)
𝑘
(Va∕a∗) ∶= 𝑠

(G)
𝑘
(Va) = 𝑠

(G)
𝑘
(Va∗), (53)

𝑠
(G)
𝑘
(VIa∕b) ∶= 𝑠

(G)
𝑘
(VIa) = 𝑠

(G)
𝑘
(VIb), (54)

𝑠
(G)
𝑘
(VIIIa∕b) ∶= 𝑠

(G)
𝑘
(VIIIa) = 𝑠

(G)
𝑘
(VIIIb). (55)

We observe from Table 5 that for each of the congruence subgroups 𝐻 in this table, the dimen-
sion of the space of 𝐻-invariant vectors in a type IIIa (resp. VII) representation equals the sum
of the dimensions of the spaces of 𝐻-invariant vectors for the 𝐿-packet VIa/b (resp. VIIIa/b).
(The reason is that IIIa is a parabolically induced representation 𝜒 ⋊ 𝜎StGSp(2) for an unramified,
nontrivial character 𝜒, and VIa/b are the two constituents of the same induced representation
when 𝜒 is trivial. Similarly, VII is 𝜒 ⋊ 𝜋 for an unramified, nontrivial 𝜒 and VIIIa/b are the two
constituents of the same induced representation with trivial 𝜒.) Since our methods cannot deter-
mine the numbers 𝑠(G)

𝑘
(IIIa) and 𝑠(G)

𝑘
(VIa∕b) (resp. 𝑠(G)

𝑘
(VII) and 𝑠(G)

𝑘
(VIIIa∕b)) separately, we

consider

𝑠
(G)
𝑘
(IIIa + VIa∕b) ∶= 𝑠

(G)
𝑘
(IIIa) + 𝑠

(G)
𝑘
(VIa∕b), (56)

𝑠
(G)
𝑘
(VII + VIIIa∕b) ∶= 𝑠

(G)
𝑘
(VII) + 𝑠

(G)
𝑘
(VIIIa∕b). (57)

5.2 Siegel modular forms and representations in 𝑺𝒌(𝛀)

Consider 𝜋 ≅
⨂

𝑝⩽∞ 𝜋𝑝 ∈ 𝑆𝑘(Ω). Recall that 𝜋2 is an irreducible, admissible representation of
PGSp(4, ℚ2) of type Ω with nonzero hyperspecial parahoric restriction 𝑟𝐾(𝜋2). Let 𝐶 be one of
the compact open subgroups in Table 4, and let Γ be the corresponding congruence subgroup of
Sp(4, ℚ). More precisely,

Γ = Sp(4, ℚ) ∩

⎛⎜⎜⎜⎝𝐶 ×
∏
𝑝<∞
𝑝≠2

GSp(4, ℤ𝑝)

⎞⎟⎟⎟⎠. (58)

Then every eigenform (for the Hecke operators at all odd primes) 𝑓 ∈ 𝑆𝑘(Γ) arises from a vector
in 𝜋𝐶

2
, for some 𝜋 ∈ 𝑆𝑘(Ω), by a procedure similar to the one explained in [30, Section 2.1]. Thus,

we obtain the formula

dim𝑆𝑘(Γ) =
∑
Ω

∑
𝜋∈𝑆𝑘(Ω)

dim𝜋𝐶2 =
∑
Ω

𝑠𝑘(Ω)𝑑𝐶,Ω, (59)

where 𝑑𝐶,Ω is the common dimension of the space of 𝐶-fixed vectors of the representations 𝜋2 of
type Ω with 𝑟𝐾(𝜋2) ≠ 0. The 𝑑𝐶,Ω are the numbers listed in Table 5. Hence, Equations (59) for all
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Γ and all Ω are equivalent to the matrix equation

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dim𝑆𝑘(Γ(2))

dim𝑆𝑘(Sp(4, ℤ))

dim𝑆𝑘(𝐾(2))

dim𝑆𝑘(𝐾(4))

dim𝑆𝑘(Γ0(2))

dim𝑆𝑘(Γ0(4))

dim𝑆𝑘(Γ
∗
0
(4))

dim𝑆𝑘(Γ
′
0
(2))

dim𝑆𝑘(Γ
′
0
(4))

dim𝑆𝑘(𝑀(2))

dim𝑆𝑘(𝐵(2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

45 30 15 30 16 21 9 25 5 5 15 10 5 10 15 10 5 1 9

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

4 2 2 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0

4 1 3 2 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

12 5 7 8 2 2 3 5 3 0 4 3 1 3 1 1 0 0 0

15 8 7 10 4 5 3 7 3 1 5 4 1 4 7 4 3 1 3

4 2 2 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0

11 7 4 5 2 5 2 5 0 2 2 2 0 1 3 2 1 0 1

8 5 3 3 1 3 2 3 0 2 0 0 0 0 2 1 1 0 0

8 4 4 4 1 2 2 3 1 1 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠𝑘(I)

𝑠𝑘(IIa)

𝑠𝑘(IIb)

𝑠𝑘(IIIa)

𝑠𝑘(IVa)

𝑠𝑘(Va)

𝑠𝑘(Vb)

𝑠𝑘(VIa)

𝑠𝑘(VIb)

𝑠𝑘(VIc)

𝑠𝑘(VII)

𝑠𝑘(VIIIa)

𝑠𝑘(VIIIb)

𝑠𝑘(IXa)

𝑠𝑘(X)

𝑠𝑘(XIa)

𝑠𝑘(XIb)

𝑠𝑘(Va
∗)

𝑠𝑘(𝗌𝖼(16))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(60)

Here, we have omitted those Ω that do not occur in packets of type (G) or (P), because for
these 𝑠𝑘(Ω) = 0 by Proposition 5.3. Note also that the class of representations of type Vb is the
same as the class of representations of type Vc, since the parameter 𝜎 in Table 4 runs through all
possibilities. We therefore include only Vb in (60).
The identity (60) still holds if we put a (G) or a (P) on all the 𝑆𝑘(Γ) and all the 𝑠𝑘(Ω); this is the

definition of the spaces 𝑆(G)
𝑘
(Γ) and 𝑆(P)

𝑘
(Γ). More of the 𝑠(∗)

𝑘
(Ω)will then be zero; see Table 4. We

will utilize the (P) version of (60) in the proof of Corollary 5.6, and the (G) version in the proof of
Theorem 5.8. More precisely, we will proceed as follows.

∙ Exploiting the fact that packets of type (P) are parametrized by cuspidal, automorphic represen-
tations of GL(2, 𝔸), the numbers 𝑠(P)

𝑘
(Ω) can be determined for allΩ from dimension formulas

for elliptic modular forms. (Theorem 5.5)
∙ We then use the (P) version of (60) to calculate dim𝑆(P)

𝑘
(Γ) for all Γ (Corollary 5.6).

∙ Since we already determined dim𝑆𝑘(Γ) for all Γ except Γ′0(4), we can calculate dim𝑆
(G)
𝑘
(Γ) for

all Γ except Γ′
0
(4). (Proposition 5.7)

∙ Then we use the (G) version of (60), with the row for Γ′
0
(4) omitted, to determine the 𝑠(G)

𝑘
(Ω).

Here, it is necessary to combine some types Ω, which cannot be distinguished by their fixed
vector dimensions; see (56) and (57). This step reduces the number of unknowns to 10, the same
as the number of equations. (Theorem 5.8)

∙ Next, we use the Γ′
0
(4)-row of the (G) version of (60) to determine dim𝑆(G)

𝑘
(Γ′
0
(4)). Since we

already have dim𝑆(P)
𝑘
(Γ′
0
(4)), this gives us dim𝑆𝑘(Γ′0(4)). (Corollary 5.9)

Finally, we will be able to fill in the row for dim𝑀𝑘(Γ
′
0
(4)) in Table B.2, using the codimension

formula for 𝑘 ⩾ 6 given in Table 8, and the low weight results from Appendix A.
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TABLE 9 Some spaces of elliptic cusp forms and their Saito–Kurokawa lifts.

Space 𝒌 𝜺∞ 𝜺𝟐 𝝁𝟐 𝑺 𝝅𝟐

𝑆2𝑘−2(SL(2, ℤ)) Even −1 1 Spherical {∞} IIb
Odd 1 1 Spherical No lifting

𝑆+,new
2𝑘−2

(Γ(1)
0
(2)) Even −1 −1 StGL(2) {∞, 2} VIb

Odd 1 1 𝜉StGL(2) {∞, 2} Va∗

𝑆−,new
2𝑘−2

(Γ(1)
0
(2)) Even −1 1 𝜉StGL(2) {∞} Vb

Odd 1 −1 StGL(2) {∞} VIc
𝑆+,new
2𝑘−2

(Γ(1)
0
(4)) Even −1 −1 𝜏2 {∞, 2} XIa∗

Odd 1 1 No possible 𝜇2
𝑆−,new
2𝑘−2

(Γ(1)
0
(4)) Even −1 1 No possible 𝜇2

Odd 1 −1 𝜏2 {∞} XIb

5.3 Saito–Kurokawa type

Recall from Section 5.1 that Arthur packets of type (P) are parametrized by pairs (𝜇, 𝜎), where
𝜇 is a cuspidal, automorphic representation of GL(2, 𝔸) with trivial central character, and 𝜎 is a
quadratic Hecke character.

Lemma 5.4. Suppose that the cuspidal, automorphic representation 𝜋 lies in a packet of type (P),
parametrized by the pair (𝜇, 𝜎), where 𝜇 is a cuspidal, automorphic representation of GL(2, 𝔸) with
trivial central character, and 𝜎 is a quadratic Hecke character. Suppose that also𝜋 ∈ 𝑆𝑘(Ω) for some
Ω. Then 𝜎 is trivial.

Proof. Wewrite𝜋 = ⊗𝜋𝑣 and 𝜎 = ⊗𝜎𝑣. The local representation𝜋𝑣 occurs in [37, Table 2], for any
place 𝑣. Since 𝜋𝑝 is spherical for 𝑝 ⩾ 3, we see from [37, Table 2] that 𝜎𝑝 is unramified. Since 𝜋2
occurs in Table 4, inspecting [37, Table 2] shows that 𝜎2 is also unramified. Hence, the character
𝜎, being unramified everywhere, must be trivial. □

If 𝜋 lies in a packet of type (P), parametrized by the pair (𝜇, 𝜎) with trivial 𝜎 as in the lemma,
then we say that “𝜋 is a Saito–Kurokawa lift of 𝜇.” Note that a given 𝜇 may have multiple Saito–
Kurokawa lifts, depending on the size of the Arthur packet. As the proof of the next result shows,
those 𝜇 corresponding to eigenforms in 𝑆new

𝑘
(Γ(1)
0
(𝑁))with𝑁 ∈ {2, 4} admit a unique holomorphic

Saito–Kurokawa lift.

Theorem 5.5. The generating series for the numbers 𝑠(P)
𝑘
(Ω) given in Table B.10 hold. If a

representation typeΩ is not listed in Table B.10, then 𝑠(P)
𝑘
(Ω) = 0 for all 𝑘.

Proof. Table 9 shows several spaces of elliptic modular newforms, and how an eigenform in one
of these spaces Saito–Kurokawa lifts toGSp(4, 𝔸). The notation 𝑆±,new

2𝑘−2
(Γ(1)
0
(𝑁)) indicates the sub-

space of 𝑆new
2𝑘−2

(Γ(1)
0
(𝑁)) spanned by eigenforms with sign ±1 in the functional equation of their

𝐿-function. If 𝜇 ≅ ⊗𝜇𝑣 is the cuspidal, automorphic representation of GL(2, 𝔸) corresponding to
an eigenform in one of these spaces, then the sign in the functional equation coincides with the
global 𝜀-factor 𝜀(1∕2, 𝜇) = 𝜀∞𝜀2, where 𝜀∞ ∶= 𝜀(1∕2, 𝜇∞) = (−1)

𝑘−1 and 𝜀2 ∶= 𝜀(1∕2, 𝜇2). In the
𝜇2 column of Table 9, the symbol 𝜉 stands for the unique nontrivial, unramified, quadratic char-
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acter of ℚ×
2
, and 𝜏2 denotes the unique irreducible, admissible representation of GL(2, ℚ2) with

trivial central character and conductor exponent 2; it is a depth zero supercuspidal.
Now 𝜇𝑣, or rather the pair (𝜇𝑣, 1𝑣), where 1𝑣 is the trivial character of ℚ×𝑣 , determines a

local Arthur packet consisting of one or two representations, for each place 𝑣. These local pack-
ets are explicitly given in [37, Table 2], and each one of them contains a “base point.” The
packet is a singleton if and only if 𝜇𝑣 is not a discrete series representation, in which case the
unique representation in the packet is also the base point. Recall from (42) that in order for the
global Saito–Kurokawa packet 𝜇 to contain the cuspidal, automorphic representation 𝜋 ≅ ⊗𝜋𝑣
of GSp(4, 𝔸), the parity condition 𝜀(1∕2, 𝜇) = (−1)𝑛 has to be satisfied, where 𝑛 is the number of
places for which 𝜋𝑣 is not the base point in the local Arthur packet. Since we want 𝜋 to corre-
spond to holomorphic Siegel modular forms, the set 𝑆 of places where 𝜋𝑣 is not the base point
must include the archimedean place, the reason being that the nonbase point in the archimedean
local packet is the holomorphic discrete series representation ofPGSp(4, ℝ) of lowestweight (𝑘, 𝑘).
Hence, the set 𝑆 must be {∞} if 𝜀(1∕2, 𝜇) = −1 and must be {∞, 2} if 𝜀(1∕2, 𝜇) = 1. The final col-
umn of Table 9, which can be read off [37, Table 2], shows the type of 𝜋2, the local component at
𝑝 = 2 of the unique cuspidal, automorphic representation 𝜋 in the global packet parametrized by
𝜇 which has the required discrete series representation at the archimedean place.
The upshot is that each newform in one of the spaces given in Table 9 gives rise to a unique

“holomorphic” cuspidal representation of PGSp(4, 𝔸), the only exception being that eigenforms
in 𝑆2𝑘−2(SL(2, ℤ)) for odd 𝑘 cannot be lifted, because it is impossible to satisfy the parity condition.
We can thus produce elements of 𝑆(P)

𝑘
(Ω) for those types Ω listed in the last column of Table 9.

Note that representations of type XIa∗ do not appear in Table 4, and hence, those Saito–Kurokawa
lifts are not relevant for our purposes.
Conversely, suppose that𝜋 ≅ ⊗𝜋𝑣 is an element of 𝑆

(P)
𝑘
(Ω) for someΩ. Then, by Lemma 5.4, the

Arthur packet containing 𝜋 is parametrized by a cuspidal, automorphic representation 𝜇 ≅ ⊗𝜇𝑣
and the trivial character 𝜎. Looking at the archimedean parameters in [37, Table 2], we see that
𝜇 corresponds to a newform of weight 2𝑘 − 2. There can be no ramification outside 2, so that the
level of this newform is a power of 2. In fact, the level must be 1, 2, or 4, since otherwise a look at
the nonarchimedean packets in [37, Table 2] would show that the local component 𝜇2 would be
such that the elements of the local Arthur packet at 𝑝 = 2 would not appear in Table 4. Hence, 𝜋
is a lift of a newform of one of the spaces appearing in Table 9.
This discussion shows that

𝑠(P)
𝑘
(IIb) =

{
dim𝑆2𝑘−2(SL(2, ℤ)) if k is even,
0 if k is odd,

𝑠
(P)
𝑘
(VIb) =

{
dim𝑆+,new

2𝑘−2
(Γ(1)
0
(2)) if k is even,

0 if k is odd,

𝑠
(P)
𝑘
(Va∗) =

{
0 if k is even,
dim𝑆+,new

2𝑘−2
(Γ(1)
0
(2)) if k is odd,

𝑠
(P)
𝑘
(Vb) =

{
dim𝑆−,new

2𝑘−2
(Γ(1)
0
(2)) if 𝑘 is even,

0 if 𝑘 is odd,
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𝑠
(P)
𝑘
(VIc) =

{
0 if 𝑘 is even,
dim𝑆−,new

2𝑘−2
(Γ(1)
0
(2)) if 𝑘 is odd,

𝑠
(P)
𝑘
(XIb) =

{
0 if 𝑘 is even,
dim𝑆−,new

2𝑘−2
(Γ(1)
0
(4)) if 𝑘 is odd.

Now the asserted formulas follow from (39), (40), (41), the dimension formula for 𝑆±,new
𝑘

(Γ(1)
0
(2))

in [21, Theorem 2.2], and straightforward calculations.
If Ω ∉ {IIb, Vb, VIb, VIc, XIb, Va∗, XIa∗}, then 𝑠(P)

𝑘
(Ω) = 0, because type Ω does not appear

in local Arthur packets of type (P); see [37, Table 2]. Furthermore, 𝑠(P)
𝑘
(XIa∗) = 0 because the

hyperspecial parahoric restriction for representations of type XIa∗ is zero. □

We note that the cases of 𝑠𝑘(Ω) for Ω ∈ {IIb, Vb, VIb, VIc} can be found in [30, (3.6) and
Section 3.2].

Corollary 5.6. The dimension formulas for Saito–Kurokawa cusp forms given in Table B.4 hold.

Proof. This is immediate from Theorem 5.5 and the following (P) version of (60).⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dim𝑆
(P)
𝑘
(Γ(2))

dim𝑆
(P)
𝑘
(Sp(4, ℤ))

dim𝑆
(P)
𝑘
(𝐾(2))

dim𝑆
(P)
𝑘
(𝐾(4))

dim𝑆
(P)
𝑘
(Γ0(2))

dim𝑆
(P)
𝑘
(Γ0(4))

dim𝑆
(P)
𝑘
(Γ∗
0
(4))

dim𝑆
(P)
𝑘
(Γ′
0
(2))

dim𝑆(P)
𝑘
(Γ′
0
(4))

dim𝑆
(P)
𝑘
(𝑀(4))

dim𝑆(P)
𝑘
(𝐵(2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 9 5 5 5 1

1 0 0 0 0 0

1 1 0 1 0 0

2 1 0 1 1 0

3 1 1 0 0 0

7 3 3 0 0 0

7 3 3 1 3 1

2 1 0 1 0 0

4 2 0 2 1 0

3 2 0 2 1 0

4 2 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠
(P)
𝑘
(IIb)

𝑠
(P)
𝑘
(Vb)

𝑠
(P)
𝑘
(VIb)

𝑠
(P)
𝑘
(VIc)

𝑠
(P)
𝑘
(XIb)

𝑠
(P)
𝑘
(Va∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (61)

□

For illustration, we have listed dim𝑆(P)
𝑘
(Γ) and 𝑠(P)

𝑘
(Ω) forweights 𝑘 ⩽ 20 in Tables B.8 and B.12.

5.4 General type

In this section, we will determine the numbers 𝑠(G)
𝑘
(Ω). As an application, we obtain dimension

formulas for the congruence subgroup Γ′
0
(4).

Proposition 5.7. With the possible exception of Γ = Γ′
0
(4), the generating series for dim𝑆(G)

𝑘
(Γ)

given in Table B.5 hold.

Proof. Recall from Proposition 4.7 that the formulas given in Table B.3 have been proven except
for Γ = Γ′

0
(4). The formulas in Table B.4 have been proven for all Γ; see Corollary 5.6. In view of

(52), all we have to do is subtract the formulas in Table B.4 from those in Table B.3. □
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Theorem 5.8. The generating series for the numbers 𝑠(G)
𝑘
(Ω) given in Table B.11 hold. If a

representation typeΩ is not listed in Table B.11, then 𝑠(G)
𝑘
(Ω) = 0 for all 𝑘.

Proof. The (G) version of (60), with appropriate columns combined and the row for Γ′
0
(4) omitted,

is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dim𝑆
(G)
𝑘
(Γ(2))

dim𝑆
(G)
𝑘
(Sp(4, ℤ))

dim𝑆
(G)
𝑘
(𝐾(2))

dim𝑆
(G)
𝑘
(𝐾(4))

dim𝑆
(G)
𝑘
(Γ0(2))

dim𝑆
(G)
𝑘
(Γ0(4))

dim𝑆
(G)
𝑘
(Γ∗
0
(4))

dim𝑆
(G)
𝑘
(Γ′
0
(2))

dim𝑆
(G)
𝑘
(𝑀(4))

dim𝑆
(G)
𝑘
(𝐵(2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

45 30 30 16 22 15 10 15 10 9

1 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0

4 2 1 0 1 0 0 1 0 0

4 1 2 0 0 0 0 0 0 0

12 5 8 2 2 4 3 1 1 0

15 8 10 4 6 5 4 7 4 3

4 2 1 0 1 0 0 0 0 0

8 5 3 1 3 0 0 2 1 0

8 4 4 1 2 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠
(G)
𝑘
(I)

𝑠
(G)
𝑘
(IIa)

𝑠
(G)
𝑘
(IIIa+VIa/b)

𝑠
(G)
𝑘
(IVa)

𝑠
(G)
𝑘
(Va/a∗)

𝑠
(G)
𝑘
(VII+VIIIa/b)

𝑠
(G)
𝑘
(IXa)

𝑠
(G)
𝑘
(X)

𝑠
(G)
𝑘
(XIa)

𝑠
(G)
𝑘
(sc(16))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (62)

The 10 × 10matrix is invertible, so that we can solve for the 𝑠(G)
𝑘
(Ω). □

Corollary 5.9. For Γ = Γ′
0
(4), the results given in Tables B.2, B.3, and B.5 hold.

Proof. The row for Γ′
0
(4) in the (G) version of (60) is

dim𝑆(G)
𝑘
(Γ′0(4)) =

[
11 7 5 2 5 2 1 3 2 1

]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠
(G)
𝑘
(I)

𝑠
(G)
𝑘
(IIa)

𝑠
(G)
𝑘
(IIIa+VIa/b)

𝑠
(G)
𝑘
(IVa)

𝑠
(G)
𝑘
(Va/a∗)

𝑠
(G)
𝑘
(VII+VIIIa/b)

𝑠
(G)
𝑘
(IXa)

𝑠
(G)
𝑘
(X)

𝑠
(G)
𝑘
(XIa)

𝑠
(G)
𝑘
(sc(16))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (63)

The numbers on the right-hand side are all known and given in Table B.11, allowing us to calculate
dim𝑆

(G)
𝑘
(Γ′
0
(4)). Since dim𝑆(P)

𝑘
(Γ′
0
(4)) is already known by Corollary 5.6, we obtain dim𝑆𝑘(Γ′0(4))

by (52). We then obtain
∑∞
𝑘=6 dim𝑀𝑘(Γ

′
0
(4))𝑡𝑘 using the codimensions from Table 8. Evidently,

dim𝑀0(Γ
′
0
(4)) = 1, and 𝑀𝑘(Γ

′
0
(4)) = 0 for 𝑘 ∈ {1, 3, 5} by Theorem 4.4. Finally, dim𝑀𝑘(Γ

′
0
(4))

for 𝑘 ∈ {2, 4} are determined in Appendix A. □

For illustration,wehave listeddim𝑆(G)
𝑘
(Γ) and 𝑠(G)

𝑘
(Ω) forweights 𝑘 ⩽ 20 in Tables B.9 andB.12.
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APPENDIX A: MODULAR FORMS OF KLINGEN LEVEL 4 AND SMALLWEIGHT
by Cris Poor and David S. Yuen

A.1 Introduction and notation

This appendix proves dim𝑀4(Γ
′
0
(4)) = 4 and dim𝑀2(Γ

′
0
(4)) = 0. The proof proceeds by getting

upper and lower bounds that agree. The proofs of the upper bounds rely on the known dimen-
sions dim𝑀8(Γ

′
0
(4)) = 12 and dim𝑀8(𝑀(4)) = 8. Proving the nontrivial lower bound relies on

constructing Gritsenko lifts of linearly independent Jacobi–Eisenstein series.
Let J𝑘,𝑚 denote the space of Jacobi forms of weight 𝑘 and index𝑚 on SL(2, ℤ), see [9] for defini-

tions. Jacobi forms of index zero are identified with elliptic modular forms, J𝑘,0 = 𝑀𝑘(SL(2, ℤ)),
and we will need the Eisenstein series 𝐺𝑘 ∈ 𝑀𝑘(SL(2, ℤ)) for even 𝑘 ⩾ 4,

𝐺𝑘(𝜏) =
1

2
𝜁(1 − 𝑘) +

∑
𝑛⩾1

𝜎𝑘−1(𝑛)𝑞
𝑛,

for 𝜏 ∈ 1 and 𝑞 = 𝑒(𝜏) = 𝑒2𝜋𝑖𝜏. For 𝑧 ∈ ℂ and 𝑦 = 𝑒(𝑧), let

𝐸𝑘,1(𝜏, 𝑧) =
∑

𝑛,𝑟∈ℤ∶𝑛,4𝑛−𝑟2⩾0

𝐻(𝑘 − 1, 4𝑛 − 𝑟2)

𝐻(𝑘 − 1, 0)
𝑞𝑛𝑦𝑟 ∈ J𝑘,1

be the Jacobi–Eisenstein series of even weight 𝑘 ⩾ 4 and index one from Eichler–Zagier [9, p. 22].
Here, the Cohen numbers 𝐻(𝑟, 𝑛) for 𝑛 ⩾ 0, 𝑟 ⩾ 2 are directly computed as 𝐻(𝑟, 0) = 𝜁(1 − 2𝑟);
𝐻(𝑟, 𝑛) = 0 for 𝑛 ∈ ℕ such that (−1)𝑟𝑛 ≡ 2, 3 mod 4; and, for 𝑛 ∈ ℕ such that (−1)𝑟𝑛 ≡ 0, 1 mod

4, as

𝐻(𝑟, 𝑛) = 𝐿(1 − 𝑟, 𝜒𝐷)
∑
𝑑|𝑓 𝜇(𝑑)𝜒𝐷(𝑑)𝑑

𝑟−1𝜎2𝑟−1(𝑓∕𝑑),

where 𝐷 is the fundamental discriminant of ℚ(
√
(−1)𝑟𝑛), (−1)𝑟𝑛 = 𝐷𝑓2 for 𝑓 ∈ ℕ, 𝜇 is the

Möbius function, and 𝜒𝐷 ∶ ℤ → {−1, 0, 1} is the Kronecker symbol. The 𝐿-function 𝐿(𝑠, 𝜒𝐷) =∑
𝑛∈ℕ

𝜒𝐷(𝑛)

𝑛𝑠
is defined by analytic continuation, and its special values are given by twisted

Bernoulli numbers 𝐵𝑘,𝜒𝐷

|𝐷|∑
𝑎=1

𝜒𝐷(𝑎)
𝑡𝑒𝑎𝑡

𝑒|𝐷|𝑡 − 1 =
∞∑
𝑘=0

𝐵𝑘,𝜒𝐷
𝑡𝑘

𝑘!
([1, p. 53]),

𝐿(1 − 𝑘, 𝜒𝐷) = −
𝐵𝑘,𝜒𝐷
𝑘

, for k ∈ ℕ ([1, p. 152]).

For𝓁 ∈ ℕ, let𝑉𝓁 ∶ J𝑘,𝑚 → J𝑘,𝑚𝓁 and𝑈𝓁 ∶ J𝑘,𝑚 → J𝑘,𝑚𝓁2 be the commuting family of index raising
operators from [9, p. 41]. In particular, for 𝜙 ∈ J𝑘,𝑚,

(𝜙|𝑉2)(𝜏, 𝑧) = 2𝑘−1𝜙(2𝜏, 2𝑧) + 12(𝜙(𝜏 + 12 , 𝑧
)
+ 𝜙
(
𝜏

2
, 𝑧
))
,

(𝜙|𝑈2)(𝜏, 𝑧) = 2𝑘 𝜙(𝜏, 2𝑧).
The lower bound dim𝑀4(Γ

′
0
(4)) ⩾ 4 will by proven by constructing four linearly independent

Gritsenko lifts of Jacobi forms. Enough information has already been presented to define the
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Jacobi forms that we will need and to compute their initial Fourier expansions. We have
normalized their constant terms to be 1.

𝜑0 =𝐸4,1 = 1 +
(
𝑦2 + 56𝑦 + 126 + 56𝑦−1 + 𝑦−2

)
𝑞

+
(
126𝑦2 + 576𝑦 + 756 + 576𝑦−1 + 126𝑦−2

)
𝑞2 +⋯

𝜑1 =
1

16
𝐸4,1|𝑈2 = 1 + (𝑦4 + 56𝑦2 + 126 + 56𝑦−2 + 𝑦−4)𝑞

+
(
126𝑦4 + 576𝑦2 + 756 + 576𝑦−2 + 126𝑦−4

)
𝑞2 +⋯

𝜑2 =
1

9
𝐸4,1|𝑉2 = 1 + (14𝑦2 + 64𝑦 + 84 + 64𝑦−1 + 14𝑦−2)𝑞
+
(
𝑦4 + 64𝑦3 + 280𝑦2 + 448𝑦 + 574 + 448𝑦−1 +⋯ + 𝑦−4

)
𝑞2 +⋯

𝜑3 =
1

81
𝐸4,1|𝑉2|𝑉2 = 1 + (19𝑦4 + 649 𝑦3 + 2809 𝑦2 +

448

9
𝑦 +

574

9
+
448

9
𝑦−1 +⋯ +

1

9
𝑦−4
)
𝑞

+
(
64

9
𝑦5 +

686

9
𝑦4 +

448

3
𝑦3 + 320𝑦2 +

896

3
𝑦 +

1372

3
+
896

3
𝑦−1 +⋯ +

64

9
𝑦−5
)
𝑞2 +⋯

A.2 Proofs

Let Jmero
𝑘,𝑚

be the ℂ-vector space of meromorphic functions on 1 × ℂ spanned by 𝑎∕𝑏 such that
𝑎 ∈ J𝑘1,𝑚1 , 𝑏 ∈ J𝑘2,𝑚2 ⧵ {0}, and 𝑘1 − 𝑘2 = 𝑘,𝑚1 −𝑚2 = 𝑚; define𝑀

mero
𝑘

(Γ) similarly.

LemmaA.1. A basis for J4,0 is𝐺4. A basis for J4,1 is 𝜑0. A basis for J4,2 is 𝜑2. A basis for J4,4 is 𝜑1, 𝜑3.
We have 𝜑2

2
∕𝐺4 ∈ J

mero
4,4

⧵ J4,4.

Proof. From [9, pp. 103–105], we have dim J4,𝑚 = 1, 1, 2 for 𝑚 = 1, 2, 4. The Fourier expansions
show the linear independence. Assume 𝜑2

2
∕𝐺4 ∈ J4,4, then its Fourier expansion would be given

by the quotient of the series for 𝜑2
2
by 𝐺4 =

1

240
+ 𝑞 + 9𝑞2 + 28𝑞3 +⋯. The formal series for

𝜑2
2
∕(240𝐺4) begins:

1+
(
28𝑦2 + 128𝑦 − 72 + 128𝑦−1 + 28𝑦−2

)
𝑞 + (198𝑦4 + 1920𝑦3 + 288𝑦2

− 17280𝑦 + 31908 − 17280𝑦−1 +⋯ + 198𝑦−4)𝑞2 +⋯ .

However, by the Fourier expansions, this is not in the span of 𝜑1 and 𝜑3. □

Remark. Let 𝜗(𝜏, 𝑧) =
∑
𝑛∈ℤ(−1)

𝑛 𝑞(2𝑛+1)
2∕8𝑦(2𝑛+1)∕2 define the odd Jacobi theta function; then

𝜗8 ∈ J4,4, and we may check 𝜗8 =
9

8
(𝜑1 − 𝜑3).

Each Siegel modular form 𝑓 ∈ 𝑀𝑘(Γ
′
0
(𝑁)) has a unique Fourier–Jacobi expansion

𝑓

(
𝜏 𝑧

𝑧 𝜔

)
=

∞∑
𝑚=0

𝜙𝑚(𝜏, 𝑧)𝑒(𝑚𝜔) (A.1)

for which 𝜙𝑚 ∈ J𝑘,𝑚; to see this, use Γ′0(𝑁) ∩ 𝑄 = Sp(4, ℤ) ∩ 𝑄 and [9, Theorem 6.1]. Setting 𝜉 =
𝑒(𝜔), we write this more briefly as 𝑓 =

∑∞
𝑚=0 𝜙𝑚𝜉

𝑚. The following theorem [10] will allow us to
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obtain paramodular forms as Gritsenko lifts of the Jacobi forms 𝜑𝑗 . In this theorem, 𝑐(0, 0; 𝜙) is
the constant term of the Fourier expansion of the Jacobi form 𝜙.

Theorem A.2. Let 𝑘,𝑁 ∈ ℕ. For 𝜙 ∈ J𝑘,𝑁 , we have 𝑐(0, 0; 𝜙) = 0 unless 𝑘 ⩾ 4 is even. An injective
linear map Grit ∶ J𝑘,𝑁 → 𝑀𝑘(𝐾(𝑁)) is defined by

Grit(𝜙) = 𝑐(0, 0; 𝜙)𝐺𝑘 +
∑
𝑚∈ℕ

𝜙|𝑉𝑚 𝜉𝑁𝑚.
Definition A.3. Let g𝑗 = Grit(𝜑𝑗) ∈ 𝑀4(𝐾(𝑁𝑗)) for 𝑁0 = 1, 𝑁1 = 4, 𝑁2 = 2, and 𝑁3 = 4.

Lemma A.4. The elements g0, g1, g2, g3 ∈ 𝑀4(Γ
′
0
(4)) are linearly independent. Each element of

Span(g0, g1, g2, g3) is determined by its Fourier–Jacobi coefficients through index 4. The elements
g1, g2, g3 ∈ 𝑀4(𝑀(4)) are linearly independent.

Proof. SinceΓ′
0
(4) ⊆ 𝐾(𝑁) for𝑁 = 1, 2, 4, wehave g0, g1, g2, g3 ∈ 𝑀4(Γ

′
0
(4)). ByTheoremA.2, their

Fourier–Jacobi expansions through index four are

g0 = 𝐺4 + 𝜑0𝜉 + 9𝜑2𝜉
2 + 𝜑0|𝑉3𝜉3 + 𝜑0|𝑉4𝜉4 +⋯

g1 = 𝐺4 + 0𝜉 + 0𝜉
2 + 0𝜉3 + 𝜑1𝜉

4 +⋯ (A.2)

g2 = 𝐺4 + 0𝜉 + 𝜑2𝜉
2 + 0𝜉3 + 9𝜑3𝜉

4 +⋯

g3 = 𝐺4 + 0𝜉 + 0𝜉
2 + 0𝜉3 + 𝜑3𝜉

4 +⋯ .

We first show that the subspace of Span(g0, g1, g2, g3)whose Fourier–Jacobi coefficients of index 0,
1, and 2 vanish is the one-dimensional space spanned by g1 − g3; this subspace defined by
vanishing conditions is well defined because Fourier–Jacobi expansions are unique. Let 𝑓 =∑
𝑗 𝑐𝑗g𝑗 ∈ Span(g0, g1, g2, g3) for 𝑐𝑗 ∈ ℂ. The vanishing of the Jacobi coefficient of index zero gives

𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 = 0; of index 1, 𝑐0 = 0; and of index 2, 9𝑐0 + 𝑐2 = 0. Hence, we have 𝑐0 = 𝑐2 = 0,
𝑐3 = −𝑐1, and 𝑓 =

∑
𝑗 𝑐𝑗g𝑗 = 𝑐1(g1 − g3) = 𝑐1(𝜑1 − 𝜑3)𝜉4 +⋯. Since 𝜑1 and 𝜑3 are linearly inde-

pendent by Lemma A.1, if we additionally demand that the fourth Jacobi coefficient 𝑐1(𝜑1 − 𝜑3)
vanishes, then 𝑐1 = 0 and 𝑓 = 0. Hence, Span(g0, g1, g2, g3) is determined by the Fourier–Jacobi
coefficients through index 4.
On the other hand, 𝑓 = 0 implies that the Fourier–Jacobi expansion of 𝑓 vanishes though

index 4, so that 𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 = 0, 𝑐0 = 0, 9𝑐0 + 𝑐2 = 0, and 𝑐1 = 0, implying 𝑐0 = 𝑐1 = 𝑐2 =
𝑐3 = 0. Thus, the g𝑗 are linearly independent. Since𝑀(4) ⊆ 𝐾(𝑁) for𝑁 = 2, 4, we have g1, g2, g3 ∈
𝑀4(𝑀(4)). We have already seen their linear independence. □

Remark. In terms of the global paramodular newform theory of [26], the level one Eisenstein
series g0 is a newform for 𝐾(1) = Sp(4, ℤ), and g2 is the oldform above g0 in 𝐾(2), and g1, g3 are
the oldforms above g0 in 𝐾(4).

Lemma A.5. Products from𝑀4(𝑀(4)) span a six-dimensional space in𝑀8(𝑀(4)).

Proof. Since dim𝑀4(𝑀(4)) = 3, Lemma A.4 shows that g1, g2, g3 is a basis. Thus, we need to
show that the six products g2

1
, g1g2, g1g3, g22 , g2g3, and g2

3
are linearly independent in𝑀8(𝑀(4)).
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Multiplying the expansions (A.2), their Fourier–Jacobi expansions through index 4 are

g21 = 𝐺
2
4 + 2𝐺4𝜑1𝜉

4 +⋯ ,

g1g2 = 𝐺
2
4 + 𝐺4𝜑2𝜉

2 + (9𝐺4𝜑3 + 𝐺4𝜑1)𝜉
4 +⋯ ,

g1g3 = 𝐺
2
4 + (𝐺4𝜑3 + 𝐺4𝜑1)𝜉

4 +⋯ ,

g22 = 𝐺
2
4 + 2𝐺4𝜑2𝜉

2 + (18𝐺4𝜑3 + 𝜑
2
2)𝜉

4 +⋯ ,

g2g3 = 𝐺
2
4 + 𝐺4𝜑2𝜉

2 + 10𝐺4𝜑3𝜉
4 +⋯ ,

g23 = 𝐺
2
4 + 2𝐺4𝜑3𝜉

4 +⋯ .

To prove linear independence, let
∑
1⩽𝑖⩽𝑗⩽3 𝑐𝑖𝑗g𝑖g𝑗 = 0 for some 𝑐𝑖𝑗 ∈ ℂ. Using the linear indepen-

dence of 𝜑1, 𝜑3, and 𝜑22∕𝐺4 from Lemma A.1, the vanishing of the Fourier–Jacobi coefficients of
indices 0, 2, and 4 implies 𝑐11 = 𝑐23 + 𝑐33, 𝑐12 = −𝑐23, 𝑐13 = −𝑐23 − 2𝑐33, and 𝑐22 = 0, and∑

1⩽𝑖⩽𝑗⩽3

𝑐𝑖𝑗g𝑖g𝑗 = (g1 − g3)
(
𝑐23(g1 − g2) + 𝑐33(g1 − g3)

)
.

By Lemma A.4, g1 − g2 and g1 − g3 are linearly independent, so we obtain 𝑐23 = 𝑐33 = 0. □

The following proof is the most interesting. It leverages dimensions of spaces of higher weight
to deduce the dimension of a space of lower weight.

Proposition A.6. We have dim𝑀4(Γ
′
0
(4)) = 4.

Proof. We know g0, g1, g2, g3 ∈ 𝑀4(Γ
′
0
(4)) are linearly independent by Lemma A.4. Suppose by

way of contradiction that an 𝑓 ∈ 𝑀4(Γ
′
0
(4)) exists with 𝑓, g0, g1, g2, g3 linearly independent. Using

the known dimension dim𝑀8(𝑀(4)) = 8, let ℎ1, … , ℎ8 be a basis of 𝑀8(𝑀(4)). The 14 elements
𝑓g1, 𝑓g2, 𝑓g3, g0g1, g0g2, g0g3, ℎ1, … , ℎ8, are in𝑀8(Γ

′
0
(4)), which is known to be 12-dimensional, so

that there must be at least two linearly independent relations

𝑓g4 + g0g5 + ℎ0 = 0; 𝑓g ′4 + g0g
′
5 + ℎ

′
0 = 0, (A.3)

for some g4, g5, g
′
4
, g ′5 ∈ Span(g1, g2, g3) = 𝑀4(𝑀(4)) and some ℎ0, ℎ′0 ∈ 𝑀8(𝑀(4)).

We will show that g4 is not identically zero. If g4 and g5 were both trivial, then ℎ0 would also
be trivial, contradicting that the relations (A.3) have rank two. If g4 ≡ 0 and g5 ≢ 0, then

g0 = −
ℎ0
g5
∈ 𝑀mero

4 (𝑀(4)) ∩ 𝑀4

(
Γ′0(4)
)
= 𝑀4(𝑀(4)) = Span(g1, g2, g3),

contradicting the linear independence of g0, g1, g2, g3. We will refer to this argument, that a mero-
morphic form for 𝑀(4) that is also a holomorphic form for Γ′

0
(4) must be a holomorphic form

for 𝑀(4), as the integral closure argument. The principle is general: For congruence subgroups
Γ1 ⊆ Γ2 of Sp(2𝑛, ℚ), we have𝑀mero

𝑘
(Γ2) ∩ 𝑀𝑘(Γ1) = 𝑀𝑘(Γ2). To prove this, take 𝑓 ∈ 𝑀mero

𝑘
(Γ2) ∩

𝑀𝑘(Γ1) and 𝛾 ∈ Γ2. We have 𝑓|𝛾 = 𝑓 on some dense open subset of𝑛. Since 𝑓 ∈ 𝑀𝑘(Γ1) is holo-
morphic, we have 𝑓|𝛾 = 𝑓 on𝑛 and 𝑓 ∈ 𝑀𝑘(Γ2). Similarly to g4, we have g ′

4
not identically zero.

Since 𝑓, g1, g2, g3 are linearly independent, the integral closure argument also shows that g5, g
′
5

are not identically zero.
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We will show that g4g ′5 − g ′
4
g5 is identically zero. If not then(

𝑓

g0

)
=

1

g4g
′
5 − g ′

4
g5

(
g ′5 −g5
−g ′

4
g4

)(
−ℎ0
−ℎ′

0

)
∈ 𝑀4(𝑀(4)) × 𝑀4(𝑀(4))

by the integral closure argument. However, the linear dependence of 𝑓 and g0 on g1, g2, g3
contradicts the assumption that 𝑓, g0, g1, g2, g3 are linearly independent.
We use Lemma A.5. Since g4g

′
5 = g ′

4
g5 for nontrivial g4, g5, g ′4, g

′
5 ∈ 𝑀4(𝑀(4)) and the six prod-

ucts g𝑖g𝑗 , for 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 3, are linearly independent, it follows that there exists a unit 𝛼 ∈ ℂ∗ such
that g4 = 𝛼g ′4 and g5 = 𝛼g

′
5, org4 = 𝛼g5 and g ′

4
= 𝛼g ′5. In the first case, the two linear relations (A.3)

become

𝛼𝑓g ′4 + 𝛼g0g
′
5 + ℎ0 = 0; 𝑓g ′4 + g0g

′
5 + ℎ

′
0 = 0,

so that ℎ0 = 𝛼ℎ′0 and the relations are not linearly independent. In the second case, we obtain

𝛼𝑓g5 + g0g5 + ℎ0 = 0; 𝛼𝑓g ′5 + g0g
′
5 + ℎ

′
0 = 0,

and 𝛼𝑓 = −g0 − ℎ0∕g5 ∈ 𝑀4(𝑀(4)) by the integral closure argument, contradicting the linear
independence of 𝑓, g1, g2, g3. Thus, no 𝑓 ∈ 𝑀4(Γ

′
0
(4)) with 𝑓, g0, g1, g2, g3 linearly independent

can exist. □

Proposition A.7. We have dim𝑀2(Γ
′
0
(4)) = 0.

Proof. Take 𝑓 ∈ 𝑀2(Γ
′
0
(4)) with Fourier–Jacobi expansion 𝑓 =

∑∞
𝑚=0 𝜙𝑚𝜉

𝑚 for 𝜙𝑚 ∈ J2,𝑚. We
have dim J2,𝑚 ⩽ 0 for𝑚 ⩽ 2 by the corollary on [9, p. 103]. Therefore,𝑓 =

∑∞
𝑚=3 𝜙𝑚𝜉

𝑚 has order at
least index 3 and 𝑓2 ∈ 𝑀4(Γ

′
0
(4)) = Span(g0, g1, g2, g3) has order at least index 6. By Lemma A.4,

this span is determined by the Fourier–Jacobi coefficients of index through 4; thus 𝑓2 = 0 and
𝑓 = 0. □

APPENDIX B: TABLES

B.1 History of dimension formulas

TABLE B . 1 History of dimension formulas for𝑀𝑘(Γ) and 𝑆𝑘(Γ) for some Γ.
Earlier references appear left of later (relevant) references in the reference column.

𝚪 Weight Reference
Sp(4, ℤ) 𝑘 ⩾ 0 [20, Theorem 2], [11, Theorem 6-2]
Γ(2) 𝑘 ⩾ 0 [20, Theorem 2], [40, p. 882]
𝐾(2) 𝑘 = 1 [18, Theorem 6.1]

𝑘 = 2 [15, Section 1]
𝑘 = 3 [18, Theorem 2.1]
𝑘 = 4 [18, Section 2.4]
𝑘 ⩾ 5 [16, Theorem 4]

(Continues)
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TABLE B . 1 (Continued)

𝚪 Weight Reference
Γ0(2) 𝑘 = 1 [18, Theorem 6.1]

𝑘 = 2 [15, Section 1]
𝑘 = 3 [18, Theorem 2.2]
𝑘 = 4 [41, Corollary 4.12], [18, Section 2.4]
𝑘 ⩾ 5 [14, 41, Corollary 4.12], [45, Theorem 7.4]

Γ′
0
(2) 𝑘 = 1 [18, Theorem 6.1]

𝑘 = 2 [15, Section 1]
𝑘 = 3 [18, Theorem 2.4]
𝑘 = 4 [18, Section 2.4]
𝑘 ⩾ 5 [14, 46, Theorem A.1]

𝐵(2) 𝑘 = 1 [18, Theorem 6.1]
𝑘 = 2 [15, Section 1]
𝑘 = 3 [18, Theorem 2.3]
𝑘 = 4 [18, Section 2.4]
𝑘 ⩾ 5 [14, 46, Theorem A.2]

𝐾(4) 𝑘 ⩾ 0 [25, Theorem 1.1]
Γ0(4) 𝑘 ⩾ 0 [42, Proposition 5.4]

𝑘 ⩾ 5 [38, Theorem 3.5]
Γ∗
0
(4), Γ′

0
(4), 𝑀(4) 𝑘 ⩾ 0 Tables B.2 and B.3

B.2 Dimension formulas for all weights

TABLE B . 2 Dimension formulas for𝑀𝑘(Γ). The second column indicates those cases that follow directly
from [20, Theorem 2]. The last column gives references for some other places where these formulas appear in the
literature.

𝚪 Igusa
∞∑

𝒌=𝟎

𝐝𝐢𝐦𝑴𝒌(𝚪)𝒕
𝒌 Reference

Γ(2) ∙ (1+𝑡2)(1+𝑡4)(1+𝑡5)

(1−𝑡2)4
[40, p. 883]

Sp(4, ℤ) ∙ 1+𝑡35

(1−𝑡4)(1−𝑡6)(1−𝑡10)(1−𝑡12)
[20, p. 402]

𝐾(2) (1+𝑡10)(1+𝑡12)(1+𝑡11)

(1−𝑡4)(1−𝑡6)(1−𝑡8)(1−𝑡12)
[13, Proposition 2]

𝐾(4) ∙ (1+𝑡12)(1+𝑡6+𝑡7+𝑡8+𝑡9+𝑡10+𝑡11+𝑡17)

(1−𝑡4)2(1−𝑡6)(1−𝑡12)
[19, p. 121]

Γ0(2) ∙ 1+𝑡19

(1−𝑡2)(1−𝑡4)2(1−𝑡6)
[17, Theorem A,C]

Γ0(4) ∙ 1+𝑡4+𝑡11+𝑡15

(1−𝑡2)3(1−𝑡6)
[42, Proposition 5.4]

Γ∗
0
(4) ∙ (1+𝑡4+𝑡6+𝑡10)(1+𝑡5)

(1−𝑡2)3(1−𝑡6)

(Continues)
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TABLE B . 2 (Continued)

𝚪 Igusa
∞∑

𝒌=𝟎

𝐝𝐢𝐦𝑴𝒌(𝚪)𝒕
𝒌 Reference

Γ′
0
(2) ∙ (1+𝑡6+𝑡8+𝑡10+𝑡12+𝑡18)(1+𝑡11)

(1−𝑡4)2(1−𝑡6)(1−𝑡12)
[13, Proposition 2]

Γ′
0
(4) 1+2𝑡4+4𝑡6+𝑡7+5𝑡8+2𝑡9+4𝑡10+5𝑡11+5𝑡12+4𝑡13+2𝑡14+5𝑡15+𝑡16+4𝑡17+2𝑡19+𝑡23

(1−𝑡4)2(1−𝑡6)2

𝑀(4) ∙ (1+𝑡4)(1+2𝑡6+𝑡7+3𝑡8+𝑡9+𝑡10+2𝑡11+𝑡12+𝑡13+2𝑡14+𝑡15+𝑡16+3𝑡17+𝑡18+2𝑡19+𝑡25)

(1−𝑡4)2(1−𝑡6)(1−𝑡12)

𝐵(2) ∙ (1+𝑡6)(1+𝑡11)

(1−𝑡2)(1−𝑡4)3
[17, Theorem B,C]

We remark that all the numerator polynomials in Table B.2 are palindromic. By [39, Theo-
rem 4.4], this is related to the graded algebra

⨁
𝑘⩾0 𝑀𝑘(Γ) being a Gorenstein ring. (For the

question of being Cohen-Macaulay, see [8, 43, 44].)

TABLE B . 3 Dimension formulas for 𝑆𝑘(Γ). The second column indicates those cases that follow directly
from [20, Theorem 2], together with the codimension formulas given in Table 8. The last column gives references
for some other places where these formulas appear in the literature.

𝚪 Igusa
∞∑

𝒌=𝟎

𝐝𝐢𝐦𝑺𝒌(𝚪)𝒕
𝒌 Reference

Γ(2) ∙ 𝑡5(1+5𝑡+𝑡2+4𝑡3+𝑡4−5𝑡5+𝑡6)

(1−𝑡2)4
[40, p. 882]

Sp(4, ℤ) ∙ 1+𝑡35

(1−𝑡4)(1−𝑡6)(1−𝑡10)(1−𝑡12)
− 1

(1−𝑡4)(1−𝑡6)
[20, Theorem 3]

𝐾(2) 𝑡8(1+𝑡12)(1+𝑡2+𝑡3+𝑡4−𝑡12+𝑡13)

(1−𝑡4)(1−𝑡6)(1−𝑡8)(1−𝑡12)
[16, Theorem 4]

𝐾(4) ∙ 𝑡7(1+𝑡+𝑡2+2𝑡3+𝑡4+2𝑡5+𝑡9+𝑡10+2𝑡11+𝑡12+𝑡13+𝑡14+𝑡16−𝑡21+𝑡22)

(1−𝑡4)2(1−𝑡6)(1−𝑡12)
[25, Theorem 2]

Γ0(2) ∙ 𝑡6(1+𝑡2−𝑡8+𝑡13)

(1−𝑡2)(1−𝑡4)2(1−𝑡6)
[17, Theorem A,C]

Γ0(4) ∙ 𝑡6(3+𝑡4+𝑡5−2𝑡6+𝑡9)

(1−𝑡2)3(1−𝑡6)

Γ∗
0
(4) ∙ 𝑡5(1+3𝑡+𝑡3+𝑡4+2𝑡5+𝑡6−𝑡7−𝑡9+𝑡10)

(1−𝑡2)3(1−𝑡6)

Γ′
0
(2) ∙ 𝑡8(1+𝑡2+𝑡3+𝑡4−𝑡5−𝑡6+𝑡7+2𝑡8+𝑡11−𝑡14+𝑡15+𝑡16−𝑡17−𝑡18+𝑡19)

(1−𝑡2)(1−𝑡4)(1−𝑡6)(1−𝑡12)
[46, Theorem A.1]

Γ′
0
(4) 𝑡7(1+3𝑡+2𝑡2+9𝑡3+5𝑡4+13𝑡5+4𝑡6+6𝑡7+5𝑡8+4𝑡10−3𝑡11+2𝑡12−2𝑡13−2𝑡15+𝑡16)

(1−𝑡4)2(1−𝑡6)2

𝑀(4) ∙ 𝑡7(1+2𝑡+2𝑡3+3𝑡4+4𝑡5−𝑡6+4𝑡8+5𝑡9+3𝑡12+2𝑡13−2𝑡15+2𝑡16+𝑡17−𝑡18−2𝑡19+𝑡20)

(1−𝑡2)(1−𝑡4)(1−𝑡6)(1−𝑡12)

𝐵(2) ∙ 𝑡6(1+𝑡2−𝑡4+𝑡5+𝑡6−𝑡7−𝑡8+𝑡9)

(1−𝑡2)2(1−𝑡4)2
[17, Theorem B,C]
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TABLE B . 4 Dimension formulas for cusp forms of Saito–Kurokawa type.

𝚪

∞∑

𝒌=𝟎

𝐝𝐢𝐦𝑺(P)
𝒌
(𝚪)𝒕𝒌

Γ(2)
𝑡5(1 + 𝑡 + 𝑡2)(1 + 4𝑡 + 10𝑡3 − 5𝑡4 + 10𝑡5)

(1 − 𝑡4)(1 − 𝑡6)

Sp(4, ℤ)
𝑡10

(1 − 𝑡2)(1 − 𝑡6)

K(2)
𝑡8(1 + 𝑡2 + 𝑡3 + 𝑡4)

(1 − 𝑡4)(1 − 𝑡6)

K(4)
𝑡7(1 + 𝑡 + 𝑡2 + 2𝑡3 + 𝑡4 + 2𝑡5)

(1 − 𝑡4)(1 − 𝑡6)

Γ0(2)
𝑡6(1 + 𝑡2 + 2𝑡4)

(1 − 𝑡2)(1 − 𝑡6)

Γ0(4)
𝑡6(3 + 3𝑡2 + 4𝑡4)

(1 − 𝑡2)(1 − 𝑡6)

Γ∗
0
(4)

𝑡5(1 − 𝑡 + 𝑡2)(1 + 4𝑡 + 5𝑡2 + 4𝑡3)

(1 − 𝑡2)(1 − 𝑡6)

Γ′
0
(2)

𝑡8(1 + 𝑡 + 𝑡2)(1 − 𝑡 + 2𝑡2)

(1 − 𝑡4)(1 − 𝑡6)

Γ′
0
(4)

𝑡7(1 + 2𝑡 + 𝑡2 + 4𝑡3 + 2𝑡4 + 4𝑡5)

(1 − 𝑡4)(1 − 𝑡6)

𝑀(4)
𝑡7(1 + 𝑡 + 𝑡2)(1 + 𝑡 − 𝑡2 + 3𝑡3)

(1 − 𝑡4)(1 − 𝑡6)

𝐵(2)
𝑡6(1 + 𝑡 + 𝑡2)(1 − 𝑡 + 3𝑡2 − 2𝑡3 + 3𝑡4)

(1 − 𝑡4)(1 − 𝑡6)
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TABLE B . 5 Dimension formulas for cusp forms of general type.

𝚪

∞∑

𝒌=𝟎

𝐝𝐢𝐦𝑺(G)
𝒌
(𝚪)𝒕𝒌

Γ(2)
𝑡8(1 + 𝑡 + 𝑡2)(10 − 𝑡 + 12𝑡2 − 5𝑡3 + 2𝑡4 + 13𝑡5 − 16𝑡6 + 𝑡7)

(1 − 𝑡2)2(1 − 𝑡4)(1 − 𝑡6)

Sp(4, ℤ)
𝑡20(1 + 𝑡2 + 𝑡4 − 𝑡12 − 𝑡14 + 𝑡15)

(1 − 𝑡4)(1 − 𝑡6)(1 − 𝑡10)(1 − 𝑡12)

K(2)
𝑡16(1 + 𝑡3 + 𝑡4 + 𝑡7 + 𝑡8 − 2𝑡9 − 2𝑡10 + 𝑡11)

(1 − 𝑡2)(1 − 𝑡4)(1 − 𝑡6)(1 − 𝑡12)

K(4)
𝑡11(1 + 𝑡 + 𝑡3 + 𝑡4 + 2𝑡5 + 2𝑡8 + 2𝑡9 + 𝑡12 + 𝑡13 − 2𝑡14 − 3𝑡15 + 𝑡16)

(1 − 𝑡2)(1 − 𝑡4)(1 − 𝑡6)(1 − 𝑡12)

Γ0(2)
𝑡12(2 + 2𝑡2 − 𝑡4 − 2𝑡6 + 𝑡7)

(1 − 𝑡2)(1 − 𝑡4)2(1 − 𝑡6)

Γ0(4)
𝑡8(3 + 𝑡3 + 3𝑡4 − 4𝑡6 + 𝑡7)

(1 − 𝑡2)3(1 − 𝑡6)

Γ∗
0
(4)

𝑡8(4 + 3𝑡 + 𝑡2 + 𝑡3 + 4𝑡4 − 𝑡5 − 5𝑡6 + 𝑡7)

(1 − 𝑡2)3(1 − 𝑡6)

Γ′
0
(2)

𝑡12(1 + 𝑡2 + 𝑡3 + 2𝑡4 + 𝑡7 + 𝑡8 + 2𝑡11 + 𝑡12 − 2𝑡13 − 3𝑡14 + 𝑡15)

(1 − 𝑡2)(1 − 𝑡4)(1 − 𝑡6)(1 − 𝑡12)

Γ′
0
(4)

𝑡8(1 + 𝑡 + 5𝑡2 + 4𝑡3 + 11𝑡4 + 6𝑡5 + 12𝑡6 + 8𝑡7 + 8𝑡8 + 5𝑡9 − 𝑡10 + 𝑡11 − 6𝑡12 − 2𝑡13 − 6𝑡14 + 𝑡15)

(1 − 𝑡4)2(1 − 𝑡6)2

𝑀(4)
𝑡10(1 + 2𝑡 + 4𝑡2 + 𝑡3 + 3𝑡4 + 4𝑡5 + 5𝑡6 + 4𝑡9 + 4𝑡10 − 𝑡12 + 3𝑡13 + 𝑡14 − 3𝑡15 − 5𝑡16 + 𝑡17)

(1 − 𝑡2)(1 − 𝑡4)(1 − 𝑡6)(1 − 𝑡12)

𝐵(2)
𝑡10(1 + 𝑡 + 𝑡2)(1 − 𝑡 + 4𝑡2 − 2𝑡3 + 𝑡4 + 3𝑡5 − 5𝑡6 + 𝑡7)

(1 − 𝑡2)(1 − 𝑡4)2(1 − 𝑡6)
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B.3 Dimensions for low weights

TABLE B . 6 Dimensions for low weights: All modular forms.

𝐝𝐢𝐦𝑴𝒌(𝚪) for 𝒌 =⋯

𝚪 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Γ(2) 0 5 0 15 1 35 5 69 15 121 35 195 69 295 121 425 195 589 295 791
Sp(4, ℤ) 0 0 0 1 0 1 0 1 0 2 0 3 0 2 0 4 0 4 0 5
𝐾(2) 0 0 0 1 0 1 0 2 0 2 1 5 0 3 1 7 1 7 2 10
𝐾(4) 0 0 0 2 0 2 1 4 1 5 3 10 3 9 6 17 7 19 12 27
Γ0(2) 0 1 0 3 0 4 0 7 0 9 0 14 0 17 0 24 0 29 1 38
Γ0(4) 0 3 0 7 0 14 0 24 0 38 1 57 3 81 7 111 14 148 24 192
Γ∗
0
(4) 0 3 0 7 1 15 3 27 7 45 15 71 27 105 45 149 71 205 105 273

Γ′
0
(2) 0 0 0 2 0 2 0 4 0 5 1 10 0 9 2 17 2 19 4 26

Γ′
0
(4) 0 0 0 4 0 6 1 12 2 20 7 36 10 46 22 75 32 98 50 133

𝑀(4) 0 0 0 3 0 3 1 8 1 10 5 21 5 23 13 41 16 49 28 71
𝐵(2) 0 1 0 4 0 5 0 11 0 14 1 24 1 30 4 45 5 55 11 76

TABLE B . 7 Dimensions for low weights: All cusp forms.

𝐝𝐢𝐦𝑺𝒌(𝚪) for 𝒌 =⋯

𝚪 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Γ(2) 0 0 0 0 1 5 5 24 15 61 35 120 69 205 121 320 195 469 295 656
Sp(4, ℤ) 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 2 0 2 0 3
𝐾(2) 0 0 0 0 0 0 0 1 0 1 1 2 0 2 1 4 1 4 2 7
𝐾(4) 0 0 0 0 0 0 1 1 1 2 3 4 3 5 6 10 7 12 12 19
Γ0(2) 0 0 0 0 0 1 0 2 0 4 0 7 0 10 0 15 0 20 1 27
Γ0(4) 0 0 0 0 0 3 0 9 0 19 1 34 3 54 7 80 14 113 24 153
Γ∗
0
(4) 0 0 0 0 1 3 3 10 7 23 15 44 27 73 45 112 71 163 105 226

Γ′
0
(2) 0 0 0 0 0 0 0 1 0 2 1 4 0 5 2 10 2 12 4 18

Γ′
0
(4) 0 0 0 0 0 0 1 3 2 9 7 19 10 30 22 53 32 74 50 106

𝑀(4) 0 0 0 0 0 0 1 2 1 4 5 10 5 14 13 27 16 35 28 54
𝐵(2) 0 0 0 0 0 1 0 3 0 6 1 12 1 18 4 29 5 39 11 56



DIMENSION FORMULAS FOR SIEGEL MODULAR FORMS OF LEVEL 4 837

TABLE B . 8 Dimensions for low weights: Cusp forms of Saito–Kurokawa type.

𝐝𝐢𝐦𝑺(P)
𝒌
(𝚪) for 𝒌 =⋯

𝚪 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Γ(2) 0 0 0 0 1 5 5 14 6 20 11 29 11 34 16 44 17 49 21 58
Sp(4, ℤ) 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 2 0 2 0 2
𝐾(2) 0 0 0 0 0 0 0 1 0 1 1 2 0 2 1 3 1 3 1 4
𝐾(4) 0 0 0 0 0 0 1 1 1 2 2 3 2 3 3 5 3 5 4 6
Γ0(2) 0 0 0 0 0 1 0 2 0 4 0 5 0 6 0 8 0 9 0 10
Γ0(4) 0 0 0 0 0 3 0 6 0 10 0 13 0 16 0 20 0 23 0 26
Γ∗
0
(4) 0 0 0 0 1 3 3 6 4 10 5 13 7 16 8 20 9 23 11 26

Γ′
0
(2) 0 0 0 0 0 0 0 1 0 2 1 3 0 3 1 5 1 5 1 6

Γ′
0
(4) 0 0 0 0 0 0 1 2 1 4 3 6 2 6 4 10 4 10 5 12

𝑀(4) 0 0 0 0 0 0 1 2 1 3 3 5 2 5 4 8 4 8 5 10
𝐵(2) 0 0 0 0 0 1 0 3 0 5 1 7 0 8 1 11 1 12 1 14

TABLE B . 9 Dimensions for low weights: Cusp forms of general type.

𝐝𝐢𝐦𝑺(G)
𝒌
(𝚪) for 𝒌 =⋯

𝚪 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Γ(2) 0 0 0 0 0 0 0 10 9 41 24 91 58 171 105 276 178 420 274 598
Sp(4, ℤ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
𝐾(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 3
𝐾(4) 0 0 0 0 0 0 0 0 0 0 1 1 1 2 3 5 4 7 8 13
Γ0(2) 0 0 0 0 0 0 0 0 0 0 0 2 0 4 0 7 0 11 1 17
Γ0(4) 0 0 0 0 0 0 0 3 0 9 1 21 3 38 7 60 14 90 24 127
Γ∗
0
(4) 0 0 0 0 0 0 0 4 3 13 10 31 20 57 37 92 62 140 94 200

Γ′
0
(2) 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 5 1 7 3 12

Γ′
0
(4) 0 0 0 0 0 0 0 1 1 5 4 13 8 24 18 43 28 64 45 94

𝑀(4) 0 0 0 0 0 0 0 0 0 1 2 5 3 9 9 19 12 27 23 44
𝐵(2) 0 0 0 0 0 0 0 0 0 1 0 5 1 10 3 18 4 27 10 42

B.4 Number of automorphic representations

TABLE B . 1 0 Number of automorphic representations: Saito–Kurokawa type.

𝛀

∞∑

𝒌=𝟎

𝒔(P)
𝒌
(𝛀)𝒕𝒌 𝛀

∞∑

𝒌=𝟎

𝒔(P)
𝒌
(𝛀)𝒕𝒌 𝛀

∞∑

𝒌=𝟎

𝒔(P)
𝒌
(𝛀)𝒕𝒌

IIb 𝑡10

(1 − 𝑡2)(1 − 𝑡6)
VIb 𝑡6 + 𝑡8 − 𝑡12

(1 − 𝑡4)(1 − 𝑡6)
XIb 𝑡7

(1 − 𝑡2)(1 − 𝑡6)

Vb 𝑡8

(1 − 𝑡4)(1 − 𝑡6)
VIc 𝑡11

(1 − 𝑡4)(1 − 𝑡6)
Va∗ 𝑡5

(1 − 𝑡4)(1 − 𝑡6)
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TABLE B . 1 1 Number of automorphic representations: general type.

𝛀

∞∑

𝒌=𝟎

𝒔(G)
𝒌
(𝛀)𝒕𝒌

I 𝑡20(1 + 𝑡2 + 𝑡4 − 𝑡12 − 𝑡14 + 𝑡15)

(1 − 𝑡4)(1 − 𝑡6)(1 − 𝑡10)(1 − 𝑡12)

IIa 𝑡16(1 + 𝑡2 + 𝑡3 − 𝑡4 − 𝑡6)

(1 − 𝑡4)2(1 − 𝑡5)(1 − 𝑡6)

IIIa+VIa/b 𝑡12(1 + 2𝑡2 + 2𝑡4 − 𝑡5 + 2𝑡6 − 2𝑡7 + 𝑡8 − 2𝑡9 + 𝑡10 − 2𝑡11 + 𝑡14 + 𝑡16 + 𝑡17 − 𝑡18)

(1 − 𝑡4)(1 − 𝑡5)(1 − 𝑡6)(1 − 𝑡12)

IVa 𝑡10(1 + 𝑡2 + 𝑡3 + 𝑡4 − 𝑡8 + 𝑡9 + 2𝑡10 + 2𝑡11 + 𝑡12 + 𝑡13 − 𝑡14 − 𝑡15 − 𝑡16 − 𝑡17 + 𝑡20)

(1 − 𝑡4)(1 − 𝑡5)(1 − 𝑡6)(1 − 𝑡12)

Va/a∗ 𝑡15(1 + 𝑡2 − 𝑡5 − 𝑡7 + 𝑡10)

(1 − 𝑡4)(1 − 𝑡5)(1 − 𝑡6)(1 − 𝑡12)

VII+VIIIa/b 𝑡10(1 + 𝑡2 − 𝑡6 + 𝑡7)

(1 − 𝑡4)2(1 − 𝑡6)2

IXa 𝑡8(1 + 𝑡11)

(1 − 𝑡2)(1 − 𝑡4)(1 − 𝑡6)(1 − 𝑡12)

X 𝑡11(1 + 𝑡8 + 𝑡9 − 𝑡12)

(1 − 𝑡2)(1 − 𝑡4)(1 − 𝑡6)(1 − 𝑡12)

XIa 𝑡12(1 + 𝑡3 + 𝑡4 − 𝑡7 − 𝑡8 + 𝑡11)

(1 − 𝑡2)(1 − 𝑡4)(1 − 𝑡6)(1 − 𝑡12)

sc(16) 𝑡9

(1 − 𝑡2)(1 − 𝑡4)2(1 − 𝑡5)

TABLE B . 1 2 Number of automorphic representations for low weights.

𝒔(P)
𝒌
(𝛀) or 𝒔(G)

𝒌
(𝛀) for 𝒌 =⋯

𝛀 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(P) IIb 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 2 0 2 0 2

Vb 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 2
VIb 0 0 0 0 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 2
VIc 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0
XIb 0 0 0 0 0 0 1 0 1 0 1 0 2 0 2 0 2 0 3 0
Va∗ 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 2 0 1 0

(G) I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
IIa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1
IIIa+VIa/b 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 3 0 5 0 6
IVa 0 0 0 0 0 0 0 0 0 1 0 1 1 2 1 2 2 3 4 6
Va/a∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
VII+VIIIa/b 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 3 1 5 0 5
IXa 0 0 0 0 0 0 0 1 0 1 0 2 0 3 0 4 0 5 1 8
X 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 3 0 5 1
XIa 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 3 1 4 1 5
sc(16) 0 0 0 0 0 0 0 0 1 0 1 0 3 1 3 1 6 3 7 3
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