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The work [RS] presents a theory of local new- and oldforms for representa-
tions of GSp(4, F ) with trivial central character for F a non-archimedean field
of characteristic zero. This theory considers vectors fixed by the paramodular
groups K(pn) as defined in [RS]. Let (π, V ) be an irreducible, admissible repre-
sentation of GSp(4, F ) with trivial central character. One of the main theorems
of [RS] asserts that if V contains a non-zero vector fixed by some paramodular
group K(pn), i.e., π is paramodular, and Nπ is the smallest such n, then the
space V (Nπ) of K(pNπ ) fixed vectors in V is one-dimensional. If π is paramod-
ular, then any non-zero element V (Nπ) is called a newform. Other theorems of
[RS] describe the information carried by newforms. In particular, it is proven
in [RS] that if π is generic, then π is paramodular, and there exists a newform
whose zeta integral is the L-factor L(s, π). In this work we will give an alterna-
tive proof of the following theorem. See the introduction of [RS] for an extensive
summary of the contents and proofs of [RS].

Theorem. ([RS]) Let π be a supercuspidal, generic, irreducible, admissible
representation of GSp(4, F ) with trivial central character and Whittaker model
V = W(π, ψc1,c2). Assume that V (n) is non-zero for some non-negative integer
n, and let Nπ be the smallest n such that V (n) is non-zero. Then V (Nπ) is
one-dimensional, and there exists Wπ in V (Nπ) such that

Z(s,Wπ) = L(s, π) = 1.

In what follows we will use the definitions and notation of [RS]. In particular,
let o be the ring of integers of F , let p be the maximal ideal of o, let q be the
number of elements of o/p, fix a generator $ of p, and let ψ be a non-trivial
character of F with conductor o.

1 A Useful Realization

Our alternative proof of the above theorem is based on an alternative realization
of paramodular vectors. This realization depends on the η Principle proven in
[RS]. Let π be a generic, irreducible, admissible representation of GSp(4, F ) with
trivial central character. We will work in the Whittaker model W(π, ψc1,c2) of
π. The η Principle asserts that if W is a non-zero vector in V (n) for some
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non-negative integer n and W is degenerate, i.e., Z(s,W ) = 0, then n ≥ 2 and
there exists W1 in V (n − 2) such that W = ηW1. Here, η is the level raising
operator that increases the level by 2 and is given by the action of the group
element with the same name:

η =


$−1

1
1

$

 .
Since it is given by the action of a single group element, the level raising operator
η is obviously injective. Besides vectors of the form ηW = π(η)W , in what
follows we will often encounter vectors of the form π(η−1)W . The reader should
note that π(η−1)W may not be paramodular even if W is paramodular. Indeed,
the η Principle asserts that if W is paramodular and non-zero, then π(η−1)W
is paramodular if and only if the level of W is at least 2 and W is degenerate.
To obtain another model for paramodular vectors using the η Principle, let

∆ij =


$2i+j

$i+j

$i

1


for integers i and j. For n a non-negative integer, W in V (n) and 0 ≤ i, j <∞
define

m(W )ij = W (∆ij)

and let m(W ) be the matrix

m(W ) = (m(W )ij)0≤i,j<∞.

The connection between m(W ) and η is provided by the observation that

W (∆ij) = (π(η−i)W )(∆0j) (1)

for all i and j with 0 ≤ i, j < ∞ and W ∈ V (n). Thus, the i-th row of m(W )
is obtained by evaluating the vector π(η−i)W at the points ∆0j for 0 ≤ j <∞.
We denote by M(n) the C vector space of all m(W ) for W ∈ V (n). Using the
η Principle, we can prove that M(n) is a model of V (n).

Proposition 1.1. Let π be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). For each
non-negative integer n the map

V (n) ∼−−−−→ M(n).

that sends W to m(W ) is an isomorphism of vector spaces.

Proof. Let W ∈ V (n) be non-zero. Thanks to the η Principle, Theorem 4.3.7 of
[RS], we can writeW = ηiW1 for some non-negative integer i andW1 ∈ V (n−2i)
with Z(s,W1) 6= 0. We will prove that the i-th row of m(W ) is non-zero. By
(1), the i-th row of m(W ) is

W1(∆0j), 0 ≤ j <∞.
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By Sect. 4.1 of [RS] we have

Z(s,W1) = (1− q−1)
∞∑

j=0

q3j/2W1(∆0j)(q−s)j .

Since Z(s,W1) 6= 0 we have W1(∆0j) 6= 0 for some non-negative j, so that the
i-th row of m(W ) is non-zero.

If π is a generic, irreducible, admissible representation of GSp(4, F ) with
trivial central character, V = W(π, ψc1,c2) is the Whittaker model of π, n
is a non-negative integer, and W ∈ V (n), then the matrix m(W ) may have
infinitely many non-zero entries. However, as the next proposition shows, if π
is supercuspidal, then m(W ) has only finitely many non-zero entries.

Proposition 1.2. Let π be a supercuspidal, generic, irreducible, admissible
representation of GSp(4, F ) with trivial central character, let V = W(π, ψc1,c2),
and let n ≥ 0 be a non-negative integer. If W ∈ V (n), then m(W ) has finitely
many non-zero entries.

Proof. We use the observations and notation from the proof of Proposition 2.6.4
of [RS] which involve P3-theory. By that proof, keeping in mind that V2 = VZJ

because π is supercuspidal, there exists a surjective linear map

V → c− IndP3
U3

Θ

such that if W maps to f , then W (q) = f(i(q)) for q in the Klingen parabolic
subgroup Q of GSp(4, F ) and i : Q → P3 the surjective homomorphism from
Lemma 2.5.1 of [RS]. Let W ∈ V and let W map to f . Then

W (∆ij) = f(

$i+j

$i

1

)

for any integers i and j. Since f is left invariant under a compact, open subgroup
of P3 and is compactly supported modulo the subgroup U3, the above quantity
is non-zero for only finitely many i and j.

In the remainder of this section we translate some of the operators that act
on paramodular vectors to the new model M(n). These operators include the
level raising operators η, θ and θ′. However, we will also need to describe a
formula involving a certain level lowering operator in terms of the new model.

To give the formulas we need some notation. Let M∞×∞(C) be the set
of all matrices (mij)0≤i,j<∞ with mij ∈ C. The space M(n) is contained in
M∞×∞(C). It will be convenient to write the elements A of M∞×∞(C) as a
column of rows,

A =


r0
r1
r2
...

 .
We define two shift operations Left and Right on row vectors,

Left(a0, a1, a2, . . . ) = (a1, a2, a3, . . . ),
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Right(a0, a1, a2, . . . ) = (0, a0, a1, . . . ).

Using this notation we can describe the level raising operators θ, θ′ and η in the
alternative model.

Proposition 1.3. Let π be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). For each
non-negative integer n define

θ, θ′, η : M∞×∞(C) →M∞×∞(C)

by

θ(


r0
r1
r2
...

) = q


0

Left(r0)
Left(r1)

...

 +


Right(r0)
Right(r1)
Right(r2)

...

 , θ′(


r0
r1
r2
...

) = q


r0
r1
r2
...

 +


0
r0
r1
...

 .
and

η(


r0
r1
r2
...

) =


0
r0
r1
...

 .
The diagrams

V (n) ∼−−−−→ M(n)

θ

y yθ

V (n+ 1) ∼−−−−→ M(n+ 1)

,

V (n) ∼−−−−→ M(n)

θ′

y yθ′

V (n+ 1) ∼−−−−→ M(n+ 1)

and
V (n) ∼−−−−→ M(n)

η

y yη

V (n+ 2) ∼−−−−→ M(n+ 2)

commute

Proof. This follows by direct computations using the explicit formulas from
Sect. 3.2 of [RS].

The work [RS] also introduced a certain level lowering operator δ1 that
reduces the level by 1, and we will need a formula involving δ1 in the setting of
the alternative model. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ) with trivial central character. Let n be an integer with n ≥ 1. Then
δ1 : V (n) → V (n− 1) is the natural trace operator, defined by the formula

δ1v =
∑

g∈K(pn−1)/(K(pn−1)∩K(pn))

π(g)v.

We first present and prove the relevant formula in an abstract form.
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Proposition 1.4. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). Let n be an
integer with n ≥ 2. If v ∈ V (n), then

ηδ1v = δ1θ
′v − q2v − q3

∫
o

∫
o

∫
o

π(


1 λ µ κ$−n

1 µ
1 −λ

1

 η−1)θ′v dλ dµ dκ

+q2
∫

o

∫
o

π(


1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

)v dλ dµ.

Proof. We have by (3.3.7) of [RS]

ηδ1v = q3π(η)
∫

o

∫
o

∫
o

π(


1

λ$n−1 1
µ$n−1µ 1
κ$n−1 µ$n−1 −λ$n−1 1

)v dλ dµ dκ

+q2π(η)
∫

o

∫
o

π(


1 λ µ

1 µ
1 −λ

1

 η−1)v dλdµ.

Therefore,

ηδ1v = q3
∫

o

∫
o

∫
o

π(


1

λ$n 1
µ$n 1
κ$n+1 µ$n −λ$n 1

)π(η)v dλ dµ dκ

+q2
∫

o

∫
o

π(


1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

)v dλ dµ

= q3
∫

o

∫
o

∫
o×
π(


1

λ$n 1
µ$n 1
κ$n+1 µ$n −λ$n 1

)π(η)v dλ dµ dκ

+q3
∫

o

∫
o

∫
p

π(


1

λ$n 1
µ$n 1
κ$n+1 µ$n −λ$n 1

)π(η)v dλ dµ dκ

+q2
∫

o

∫
o


1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

)v dλ dµ
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Applying the identity (2.8) from [RS] we have:

ηδ1v = q3
∫

o

∫
o

∫
o×
π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1




1 κ−1$−(n+1)

1
1

1



×


−κ−1$−(n+1)

1
1

−κ$n+1




1
1

1
−1



×


1 κ−1$−(n+1)

1
1

1

)π(η)v dλ dµ dκ

+ q2
∫

o

∫
o

π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1

)π(η)v dλ dµ

+ q2
∫

o

∫
o


1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

)v dλ dµ

= q3
∫

o

∫
o

∫
o×
π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1




1 κ$−(n+1)

1
1

1

)v dλ dµ dκ

+ q2
∫

o

∫
o

π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1

)π(η)v dλ dµ

+ q2
∫

o

∫
o


1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

)v dλ dµ

= q3
∫

o

∫
o

∫
o

π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1




1 κ$−(n+1)

1
1

1

)v dλ dµ dκ

− q3
∫

o

∫
o

∫
p

π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1




1 κ$−(n+1)

1
1

1

)v dλ dµ dκ

+ q2
∫

o

∫
o

π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1

)π(η)v dλ dµ dκ
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+ q2
∫

o

∫
o


1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

)v dλ dµ

= q2
∫

o

∫
o

π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1

)(
∑
x∈o


1 x$−(n+1)

1
1

1

)v) dλ dµ

− q2v

+ q2
∫

o

∫
o

π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1

)π(η)v dλ dµ dκ

+ q2
∫

o

∫
o


1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

)v dλ dµ

= q2
∫

o

∫
o

π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1

)(θ′v − ηv) dλ dµ

− q2v

+ q2
∫

o

∫
o

π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1

)π(η)v dλ dµ dκ

+ q2
∫

o

∫
o


1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

)v dλ dµ

= q2
∫

o

∫
o

π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1

)θ′v dλ dµ

− q2v

+ q2
∫

o

∫
o


1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

)v dλ dµ

= δ1θ
′v − q2v − q3

∫
o

∫
o

∫
o

π(


1 λ µ κ$−n

1 µ
1 −λ

1

 η−1)θ′v dλ dµ dκ
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+ q2
∫

o

∫
o


1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

)v dλdµ.

The last equality follows from (3.23) of [RS].

The next corollary translates the last proposition to the setting of the alter-
native model for V (n). In contrast to the previous proposition, the alternative
model requires that the representation is generic.

Corollary 1.5. Let (π, V ) be a generic, irreducible, admissible representation
of GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). Define

J : M∞×∞(C) →M∞×∞(C)

by

J(A) =


r0 + q2r1
q2r2
q2r3

...

 for A =


r0
r1
r2
...

 .
Let n be a non-negative integer with n ≥ 2. We have for W ∈ V (n),

m(ηδ1W ) = m(δ1θ′W )− q3m(W )− q2J(m(W )).

If A ∈ m(ker δ1), then J(A) ∈M(n). The diagram

ker(δ1)
∼−−−−→ m(ker δ1)

q−2δ1θ′−q·Id
y yJ

V (n) ∼−−−−→ M(n).

commutes.

Proof. We apply the m operator to the formula

ηδ1W = δ1θ
′W − q2W − q3

∫
o

∫
o

∫
o

π(


1 λ µ κ$−n

1 µ
1 −λ

1

 η−1)θ′W dλdµdκ

+ q2
∫
o

∫
o

π(


1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

)W dλdµ

from Proposition 1.4 by evaluating both sides of this formula at the element ∆ij

for 0 ≤ i, j <∞. We have

− q3
∫
o

∫
o

∫
o

(θ′W )(


$2i+j

$i+j

$i

1




1 λ µ κ$−n

1 µ
1 −λ

1

 η−1) dλ dµ dκ
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= −q3
∫
o

(θ′W )(


$2i+j

$i+j

$i

1




1 λ
1

1 −λ
1

 η−1) dλ

= −q3
∫
o

ψ(c1λ$i)(θ′W )(


$2i+j

$i+j

$i

1

 η−1) dλ

= −q3(θ′W )(


$2i+j+1

$i+j

$i

$−1

)

= −q3(θ′W )(


$2i+j+2

$i+j+1

$i+1

1

).

By Lemma 3.2.2 of [RS], this equals

− q3W (


$2i+j+1

$i+j+1

$i+1

$

)

− q4W (


$2i+j+2

$i+j+1

$i+1

1

)

= −q3W (


$2i+j

$i+j

$i

1

)− q4W (


$2i+j+2

$i+j+1

$i+1

1

)

= −q3m(W )ij − q4m(W )i+1,j .

Also,

q2
∫
o

∫
o

W (


$2i+j

$i+j

$i

1




1 λ$−1 µ$−1

1 µ$−1

1 −λ$−1

1

) dλ dµ

= q2
∫
o

W (


$2i+j

$i+j

$i

1




1 λ$−1

1
1 −λ$−1

1

) dλ

= q2
∫
o

ψ(c1$i−1λ)W (


$2i+j

$i+j

$i

1

) dλ

=

{
0 if i = 0,
q2m(W )ij if i > 0.
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The claims of the lemma follow from these computations.

The main application of the previous corollary will be at the minimal level
Nπ. At the minimal level, because the kernel of δ1 must be all of V (Nπ), the
map J is actually an endomorphism of V (Nπ).

Corollary 1.6. Let (π, V ) be a generic, irreducible, admissible representation
of GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). Then the
endomorphism

J : V (Nπ) → V (Nπ)

is given by

J(A) =


r0 + q2r1
q2r2
q2r3

...

 for A =


r0
r1
r2
...


is an endomorphism of V (Nπ).

2 Analysis of the Second Row

In this section we expose some properties of the second row of the matrix m(W )
associated to a paramodular vector in a generic representation. We will use these
properties, in combination with the results involving the level lowering operator
δ1 from the previous section, to give the alternative proof of the theorem from
the introduction.

To analyze the second row of m(W ) is it useful to use zeta integrals. Let
π be a generic, irreducible, admissible representation of GSp(4, F ) with trivial
central character, and let V = W(π, ψc1,c2). Let W be a paramodular vector in
V . As explained in the previous section, the second row of m(W ) is

m(W )1j = W (∆1j) = (π(η−1)W )(∆0j), 0 ≤ j <∞.

The next proposition shows that these numbers are encapsulated in a certain
auxiliary zeta integral.

Proposition 2.1. Let π be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). For W in V
define

ZN (s,W ) =
∫

F×
W (


a

a
1

1

)|a|s−3/2 d×a.

If n is a non-negative integer and W ∈ V (n), then

ZN (s, π(η−1)W ) = (1− q−1)
∞∑

j=0

q3j/2m(W )1j(q−s)j .
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Proof. Let W ∈ V (n). We claim that

W (


a

a
1

1

 η−1) = 0

for v(a) < 0. To see this, let a ∈ F× and y ∈ o. Then

W (


a

a
1

1

 η−1) = W (


a

a
1

1

 η−1


1

1 y
1

1

)

= ψ(c2ay)W (


a

a
1

1

 η−1).

Since ψ is non-trivial on p−1 our claim follows. The remainder of the proposition
follows by a computation.

Given this proposition, our next goal will be to analyze the auxiliary zeta in-
tegral ZN (s, π(η−1)W ) for a paramodular vector W . We will show that this zeta
integral satisfies a certain functional equation. This will be the basis for further
analysis of the second row of m(W ). We begin by relating ZN (s, π(η−1)W ) to
the full zeta integral Z(s, π(η−1)W ): recall that the standard zeta integral also
involves an integration over F .

Lemma 2.2. Let π be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). Let n be
a non-negative integer and W ∈ V (n). Then

Z(s, π(η−1)W ) = ZN (s, π(η−1)W ) + (q − 1)q−3(q−s)−2 ·
(
Z(s,W )−W (1)

)
.

Proof. We compute:

Z(s, η−1W )

=
∫

F×

∫
F

W (


a

a
x 1

1

 η−1)|a|s−3/2 dx d×a

=
∫

F×

∫
v(x)≥0

W (


a

a
x 1

1

 η−1)|a|s−3/2 dx d×a

+
∫

F×

∫
v(x)<0

W (


a

a
x 1

1

 η−1)|a|s−3/2 dx d×a
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=
∫

F×

W (


a

a
1

1

 η−1)|a|s−3/2 d×a

+
∫

F×

∫
v(x)<0

W (


a

a
1

1




1
1 x−1

1
1



×


1

−x−1

−x
1




1
1

−1
1



×


1

1 x−1

1
1

 η−1)|a|s−3/2 dx d×a

= ZN (s, η−1W )

+
∫

F×

∫
v(x)<0

W (


a

a
1

1




1
1 x−1

1
1



×


1

−x−1

−x
1

 η−1)|a|s−3/2 dx d×a

= ZN (s, η−1W )

+
∫

F×

∫
v(x)<0

W (


1

1 ax−1

1
1



a

a
1

1



×


1

x−1

x
1

 η−1)|a|s−3/2 dx d×a

= ZN (s, η−1W )

+
∫

F×

∫
v(x)<0

ψ(c2ax−1)W (


a

ax−1

x
1

 η−1)|a|s−3/2 dx d×a

= ZN (s, η−1W )

+
∫

F×

∫
v(x)<0

ψ(c2ax−1)W (


a$

ax−1

x
$−1

)|a|s−3/2 dx d×a.
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Now v(a$) < v(ax−1) ⇐⇒ v(x) < −1. Hence, by Lemma 4.1.2 of [RS],

Z(s, η−1W ) = ZN (s, η−1W )

+
∫

F×

∫
v(x)=−1

ψ(c2ax−1)W (


a$

ax−1

x
$−1

)|a|s−3/2 dx d×a

= ZN (s, η−1W )

+
∫

F×

∫
v(x)=−1

ψ(c2ax−1)W (


a$

a$
$−1

$−1

)|a|s−3/2 dx d×a

= ZN (s, η−1W )

+
∫

F×

(
∫

v(x)=−1

ψ(c2ax−1) dx)W (


a$2

a$2

1
1

)|a|s−3/2 d×a.

It is easily computed that∫
v(x)=−1

ψ(c2ax−1) dx =

 0 if v(a) < −2,
−1 if v(a) = −2,
q − 1 if v(a) > −2.

Hence

Z(s, η−1W ) = ZN (s, η−1W )

+ (−1)
∫

v(a)=−2

W (


1

1
1

1

)|$−2|s−3/2 d×a

+ (q − 1)
∫

v(a)>−2

W (


a$2

a$2

1
1

)|a|s−3/2 d×a

= ZN (s, η−1W )

+ (−1)W (1)|$|3−2s(
∫

v(a)=−2

d×a)

+ (q − 1)
∫

F×

χv(t)>−2(a)W (


a$2

a$2

1
1

)|a|s−3/2 d×a

= ZN (s, η−1W ) + (−1)W (1)(1− q−1)|$|3−2s

+ (q − 1)
∫

F×

χv(t)>−2(a$−2)W (


a

a
1

1

)|a$−2|s−3/2 d×a
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= ZN (s, η−1W ) + (−1)W (1)(1− q−1)|$|3−2s

+ (q − 1)|$|3−2s

∫
F×

χv(t)>0(a)W (


a

a
1

1

)|a|s−3/2 d×a

= ZN (s, η−1W ) + (−1)W (1)(1− q−1)|$|3−2s

+ (q − 1)|$|3−2s(Z(s,W )−
∫

v(a)=0

W (1) d×a)

= ZN (s, η−1W ) + (−1)W (1)(1− q−1)|$|3−2s

+ (q − 1)|$|3−2s(Z(s,W )− (1− q−1)W (1))

= ZN (s, η−1W ) + Z(s,W )(q − 1)|$|3−2s

+ (−1)W (1)(1− q−1)|$|3−2s − (q − 1)(1− q−1)W (1)|$|3−2s

= ZN (s, η−1W ) + Z(s,W )(q − 1)|$|3−2s

+ (−(1− q−1)− (q − 1)(1− q−1))W (1)|$|3−2s

= ZN (s, η−1W ) + Z(s,W )(q − 1)|$|3−2s

− (q − 1)W (1)|$|3−2s

= ZN (s, η−1W ) + (q − 1)|$|3−2s(Z(s,W )−W (1)).

This completes the proof.

Next, we present the functional equation satified by the auxiliary zeta inte-
gral. This requires the introduction of a new concept, namely an operator on
meromorphic functions on the complex plane having to do with functional equa-
tions. Let π be a generic, irreducible, admissible representation of GSp(4, F )
with trivial central character, and let V = W(π, ψc1,c2). If n is a non-negative
integer, then we define the operator un[·] on the vector space of meromorphic
functions on C by the formula

un

[
f(s)

]
= qn/2(q−s)nγ(1− s, π)f(1− s).

A computation shows that

un

[
un

[
f(s)

]]
= f(s)

for any meromorphic function on the complex plane. Moreover, if W is in V ,
then

un

[
Z(s,W )

]
= Z(s, π(un)W ).

This is a translation of the functional equation for zeta integrals.

Proposition 2.3. Let π be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). Let n be a
non-negative integer such that n ≥ 2 and let W ∈ V (n). Then

(q−s)2ZN (s, π(η−1)W )− q−1un

[
ZN (s, π(η−1)π(un)W )

]
= (q − 1)q−2((q−s)2 − q−1)Z(s,W )

− (q − 1)q−2
(
un

[
(π(un)W )(1)

]
(q−s)2 −W (1)q−1

)
.
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Proof. The identity

η−1un =


$

$
$

$

un−2η
−1

implies that π(η−1un) = π(un−2η
−1). Therefore,

Z(s, π(η−1un)W ) = Z(s, π(un−2η
−1)W ).

We will compute both sides of this equation using Lemma 2.2. First of all,

Z(s, π(η−1un)W ) = ZN (s, π(η−1un)W )

+ (q − 1)q−3(q−s)−2(Z(s, π(un)W )− (π(un)W )(1)).

And using Lemma 2.2,

Z(s, π(un−2η
−1)W )

= Z(s, π(


1

1
$n−2

$n−2

u0η
−1)W )

= Z(s, π(


$−(n−2)

$−(n−2)

1
1

u0η
−1)W )

= |$−(n−2)|1/2−sZ(s, π(u0η
−1)W )

= |$|(n−2)(s−1/2)Z(s, π(u0η
−1)W )

= |$|(n−2)(s−1/2)γ(1− s)Z(1− s, π(η−1)W )

= |$|(n−2)(s−1/2)γ(1− s)
(
ZN (1− s, π(η−1)W )

+(q − 1)q−3(q−(1−s))−2(Z(1− s,W )−W (1))
)

= (q−s)−2q−1q−nsqn/2γ(1− s)
(
ZN (1− s, π(η−1)W )

+(q − 1)q−1q−2s(Z(1− s,W )−W (1))
)

= (q−s)−2q−1q−nsqn/2γ(1− s)ZN (1− s, π(η−1)W )
+(q − 1)q−2q−nsqn/2γ(1− s)Z(1− s,W )
−(q − 1)q−2q−nsqn/2γ(1− s)W (1)

= (q−s)−2q−1un

[
ZN (s, π(η−1)W )

]
+(q − 1)q−2un

[
Z(s,W )

]
−(q − 1)q−2un

[
W (1)

]
= (q−s)−2q−1un

[
ZN (s, π(η−1)W )

]
+(q − 1)q−2(Z(s, π(un)W )− un

[
W (1)

]
).

Equating and multiplying by (q−s)2 now produces an equation. If π(un)W is
substituted in this equation for W then the result follows.
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More work is required to exploit the functional equation involving the aux-
iliary zeta integral ZN (s, π(η−1)W ). Our next goal will be to prove that the
factor

un

[
ZN (s, π(η−1)π(un)W )

]
from the functional equation is actually ZN (s, π(η−1)W ) under the assumption
that δ1W = 0 and δ1π(un)W = 0. Here, δ1 is the level lowering operator men-
tioned in the previous section. This will make for a simpler functional equation,
and will be applicable at the minimal paramodular level Nπ; we will also apply
it to some vectors at level Nπ + 1. In what follows we use a certain operator R
introduced in Sect. 7.3 of [RS]. Let (π, V ) be an irreducible, admissible repre-
sentation of GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2).
Let W be in V . Then we set

RW = q

∫
o

π(


1

λ$n−1 1
1

−λ$n−1 1

)W dλ.

As always, we use the Haar measure on F that assigns o measure one. The next
lemma relates the auxiliary zeta integral to the zeta integral of δ1W and RW .
This lemma will be the basis for proving that the above factor is ZN (s, π(η−1)W )
under the mentioned conditions, though more work about zeta integrals involv-
ing RW will also be required.

Lemma 2.4. Let (π, V ) be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). Let n be a
non-nonegative integer with n ≥ 2, and let W ∈ V (n). then

Z(s, δ1W ) = q3ZN (s, π(η−1)W ) + ZN (s,RW ),

Proof. Recall from Lemma 3.3.7 of [RS] that δ1W = W1 +W2 with

W1 = q3
∫
o

∫
o

∫
o

π(


1 λ µ κ$1−n

1 µ
1 −λ

1

 η−1)dλ dµ dκ,

W2 = q2
∫
o

∫
o

π(


1

λ$n−1 1
µ$n−1 1

µ$n−1 −λ$n−1 1

)dλ dµ.

By Lemma 4.1.1 of [RS],

Z(s, δ1W ) = ZN (s, δ1W ) = ZN (s,W1) + ZN (s,W2).

By the Whittaker transformation property,

ZN (s,W1) =
∫

F×

W1(


a

a
1

1

)|a|s−3/2 d×a
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= q3
∫

F×

∫
o

W (


a

a
1

1




1 λ
1

1 −λ
1

 η−1)|a|s−3/2 dλ d×a

= q3
∫

F×

∫
o

ψ(c1λ)W (


a

a
1

1

 η−1)|a|s−3/2 dλ d×a

= q3
∫

F×

W (


a

a
1

1

 η−1)|a|s−3/2 d×a

= q3 ZN (s, π(η−1)W ).

This is the first term on the right side of the asserted equality. The matrix
identity

1
λ$n−1 1
µ$n−1 1

µ$n−1 −λ$n−1 1

 =


1 −xµ$−1 xλ$−1 x$−n

1 xλ$−1

1 xµ$−1

1



×


1

λ$n−1 1
µ$n−1 1

µ$n−1 −λ$n−1 1



×


1 −x$−n

1− xλµ$n−2 xλ2$n−2

−xµ2$n−2 1 + xλµ$n−2

1


shows that

W (


a

a
1

1




1
λ$n−1 1
µ$n−1 1

µ$n−1 −λ$n−1 1

)

= ψ(−c1xµ$−1)W (


a

a
1

1




1
λ$n−1 1
µ$n−1 1

µ$n−1 −λ$n−1 1

)

for all x ∈ o. Therefore, if µ is a unit, the above is zero. Hence

ZN (s,W2) =
∫

F×

W2(


a

a
1

1

)|a|s−3/2 d×a

= q2
∫

F×

∫
p

∫
o

W (


a

a
1

1
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×


1

λ$n−1 1
µ$n−1 1

µ$n−1 −λ$n−1 1

)|a|s−3/2 dλ dµ d×a

= q

∫
F×

∫
o

W (


a

a
1

1




1
λ$n−1 1

1
−λ$n−1 1

)|a|s−3/2 dλ d×a

= ZN (s,RW ).

This proves the lemma.

Next, we relate ZN (s,RW ) to Z(s,RW ).

Lemma 2.5. Let (π, V ) be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). Let n be a
non-nonegative integer with n ≥ 2, and let W ∈ V (n). Then

Z(s,RW ) = q−1ZN (s,RW ) + (1− q−1)Z(s,W ).

Proof. We have

Z(s,RW )

= q

∫
F×

∫
F

∫
o

W (


a

a
x 1

1




1
µ$n−1 1

1
−µ$n−1 1

)|a|s−3/2 dµ dx d×a.

Let

A = q

∫
F×

∫
v(x)≥1

∫
o

. . . dµ dx d×a, B = q

∫
F×

∫
v(x)<1

∫
o

. . . dµ dx d×a.

We compute

A = q

∫
F×

∫
v(x)≥1

∫
o

W (


a

a
x 1

1



×


1

µ$n−1 1
1

−µ$n−1 1

)|a|s−3/2 dµ dx d×a

= q

∫
F×

∫
v(x)≥1

∫
o

W (


a

a
1

1




1
µ$n−1 1

1
−µ$n−1 1



×


1

1
$n−1xµ x 1
$2n−2xµ2 $n−1xµ 1

)|a|s−3/2 dµ dx d×a
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= q

∫
F×

∫
v(x)≥1

∫
o

W (


a

a
1

1



×


1

µ$n−1 1
1

−µ$n−1 1

)|a|s−3/2 dµ dx d×a

= q · q−1

∫
F×

∫
o

W (


a

a
1

1



×


1

µ$n−1 1
1

−µ$n−1 1

)|a|s−3/2 dµ d×a

= q−1ZN (s,RW ).

This is the first term on the right side of the asserted equality. Next we compute

B = q

∫
F×

∫
v(x)<1

∫
o

W (


a

a
x 1

1



×


1

µ$n−1 1
1

−µ$n−1 1

)|a|s−3/2 dµ dx d×a

= q

∫
F×

∫
v(x)<1

∫
o

W (


a

a
1

1




1
1 x−1

1
1



×


1

−x−1

−x
1




1
1

−1
1




1
1 x−1

1
1



×


1

µ$n−1 1
1

−µ$n−1 1

)|a|s−3/2 dµ dx d×a

= q

∫
F×

∫
v(x)<1

∫
o

W (


1

1 ax−1

1
1



a

a
1

1



×


1

−x−1

−x
1

 s2


1
µ$n−1 1

1
−µ$n−1 1

)|a|s−3/2 dµ dx d×a
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= q

∫
F×

∫
v(x)<1

∫
o

ψ(c2ax−1)W (


a

−ax−1

−x
1

 s2

×


1

µ$n−1 1
1

−µ$n−1 1

)|a|s−3/2 dµ dx d×a

= q

∫
F×

∫
v(x)<1

∫
o

ψ(c2ax−1)W (


a

a
1

1




1
$−v(x)

$v(x)

1

 s2

×


1

µ$n−1 1
1

−µ$n−1 1

)|a|s−3/2 dµ dx d×a.

Let y ∈ $−1o, a ∈ F×, v(x) < 1 and µ ∈ o. Then

ψ(c2y)W (


a

a
1

1




1
$−v(x)

$v(x)

1

 s2

×


1

µ$n−1 1
1

−µ$n−1 1

)

= W (


a

a
1

1




1
$−v(x)

$v(x)

1

 s2


1
µ$n−1 1

1
−µ$n−1 1



×


1

1
−a−1$n−1+2v(x)yµ −a−1$2v(x)y 1
−a−1$2n−2+2v(x)yµ2 −a−1$n−1+2v(x)yµ 1

)

If 2v(x) ≥ v(a) + 2, then the rightmost matrix is in K(pn), implying that the
above is zero. Similarly,

ψ(c1y)W (


a

a
1

1




1
$−v(x)

$v(x)

1

 s2

×


1

µ$n−1 1
1

−µ$n−1 1

)
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= W (


a

a
1

1




1
$−v(x)

$v(x)

1

 s2


1
µ$n−1 1

1
−µ$n−1 1



×


1 y$−v(x)

1 −2$n−1−v(x)µy y$−v(x)

1
1

).

If −1 ≥ v(x) then the rightmost matrix is in K(pn), implying that the above is
zero. Therefore,

B = q

∫
F×

∫
v(x)<1

2v(x)<v(a)+2
−1<v(x)

∫
o

ψ(c2ax−1)W (


a

a
1

1




1
$−v(x)

$v(x)

1



× s2


1

µ$n−1 1
1

−µ$n−1 1

)|a|s−3/2 dµ dx d×a

= q

∫
−2<v(a)

∫
v(x)=0

∫
o

ψ(c2ax−1)W (


a

a
1

1



× s2


1

µ$n−1 1
1

−µ$n−1 1

)|a|s−3/2 dµ dx d×a

=
∫

−2<v(a)

( ∫
o×

ψ(c2ax−1) dx
)
(π(s2)RW )(


a

a
1

1

)|a|s−3/2 d×a.

Now ∫
o×

ψ(c2ax−1) dx =

 0 if v(a) < 1,
−q−1 if v(a) = −1,
1− q−1 if v(a) > −1.

Hence,

B = −q−1

∫
v(a)=−1

(π(s2)RW )(


a

a
1

1

)|a|s−3/2 d×a

+ (1− q−1)
∫

v(a)≥0

(π(s2)RW )(


a

a
1

1

)|a|s−3/2 d×a.
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By Corollary 7.3.3 and Proposition 7.3.2 of [RS] the first term is zero and the
second term is (1− q−1)ZN (s, π(s2)RW ) = (1− q−1)Z(s,W ). Thus,

B = (1− q−1)Z(s,W ).

Hence,

Z(s,RW ) = A+B = q−1ZN (s,RW ) + (1− q−1)Z(s,W ).

This completes the proof.

Lemma 2.6. Let (π, V ) be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). Let n be a
non-nonegative integer with n ≥ 2, and let W ∈ V (n). Then

un

[
ZN (s,RW )

]
= ZN (s,Rπ(un)W ) = ZN (s, π(un)RW ).

Proof. We have by Lemma 2.5 and the basic properties of un

[
·
]

from above,

un

[
ZN (s,RW )

]
= un

[
qZ(s,RW )− (1− q−1)qZ(s,W )

]
= qun

[
Z(s,RW )

]
− (1− q−1)qun

[
Z(s,W )

]
= qZ(s, π(un)RW )− (1− q−1)qZ(s, π(un)W )
= qZ(s,Rπ(un)W )− (1− q−1)qZ(s, π(un)W )
= ZN (s,Rπ(un)W )
= ZN (s, π(un)RW ).

This completes the proof.

Lemma 2.7. Let (π, V ) be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). Let n be a
non-nonegative integer with n ≥ 2, and let W ∈ V (n). Then

un

[
ZN (s, π(η−1)π(un)W )

]
= ZN (s, π(η−1)W )

+ q−3
(
un

[
Z(s, δ1π(un)W )

]
− Z(s, δ1W )

)
.

Proof. By Lemma 2.4,

Z(s, δ1W ) = q3ZN (s, π(η−1)W ) + ZN (s,RW )

for W ∈ V (n). Replacing W with π(un)W , we obtain

ZN (s, π(η−1)π(un)W ) = q−3Z(s, δ1π(un)W )− q−3ZN (s,Rπ(un)W ).

Applying un

[
·
]

to both sides and using Lemmas 2.6 and 2.4, we get

un[ZN (s, π(η−1)π(un)W )]

= q−3un

[
Z(s, δ1π(un)W )

]
− q−3un

[
ZN (s,Rπ(un)W )

]
= q−3un

[
Z(s, δ1π(un)W )

]
− q−3ZN (s,RW )

= q−3un

[
Z(s, δ1π(un)W )

]
− q−3(Z(s, δ1W )− q3ZN (s, π(η−1)W ))

= q−3un

[
Z(s, δ1π(un)W )

]
− q−3Z(s, δ1W ) + ZN (s, π(η−1)W ).

This completes the proof.
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To end this section we finally deduce the formula relating the second row of
m(W ) to the first row under the assumption that δ1W = 0 and δ1π(un)W = 0.

Proposition 2.8. Let (π, V ) be a generic, irreducible, admissible representation
of GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). Let n be
a non-nonegative integer with n ≥ 2, and let W ∈ V (n). Assume δ1W = 0 and
δ1π(un)W = 0. Then

un[ZN (s, π(η−1)π(un)W )] = ZN (s, π(η−1)W ),

and consequently,

ZN (s, π(η−1)W ) = (q − 1)q−2Z(s,W )

− (q − 1)q−2un

[
(π(un)W )(1)

]
(q−s)2 −W (1)q−1

(q−s)2 − q−1
.

Proof. This is immediate from Lemma 2.7 and Proposition 2.3.

3 The Alternative Proof

In this final section we will give the alternative proof of the theorem stated in
the introduction. In fact, we will prove more: besides proving the claims of
the theorem we will also determine m(Wπ) completely. In the preceding two
sections supercuspidality was only assumed in Proposition 1.2, which asserted
that m(W ) has only finitely many non-zero entries if W is paramodular and π
is supercuspidal. We will use this below. We will also use three other properties
of supercuspidal representations. Let (π, V ) be a supercuspidal, generic, irre-
ducible, admissible representation of GSp(4, F ) with trivial central character.
First, we will often use, without comment, that Z(s,W ) is a polynomial in q−s

for a paramodular vector W in V . This follows from Proposition 4.1.4 of [RS]
since L(s, π) = 1. Second, we will use that the γ-factor and the ε-factor of π
are the same: γ(s, π) = ε(s, π). This follows because L(s, π) = 1. We can and
will write

γ(s, π) = ε(s, π) = cq−Ks (2)

for some integer K and complex number c by Proposition 2.6.6 of [RS]. Note
that, as explained in the introduction to [RS], if one has the appropriate main
results of [RS], then there is a formula for ε(s, π) in terms of the invariants of
a newform, but since we are giving an alternative proof we can not use this.
Third, we will use that Nπ ≥ 2. This is true because if Nπ ≤ 1, then π admits
a non-zero vector fixed by the Iwahori subgroup, and is thus contained in a
representation induced from the Borel subgroup. We begin with a lemma that
will be applied at the minimal paramodular level Nπ and at level Nπ + 1.

Lemma 3.1. Let (π, V ) be a supercupsidal, generic, irreducible, admissible rep-
resentation of GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2).
Let n be a non-negative integer with n ≥ 2. Assume that W ∈ V (n) satisfies
the following conditions:

δ1W = 0, δ1π(un)W = 0, W (1) = 0.

Then (π(un)W )(1) = 0. If V (n) contains no non-zero degenerate vectors, then
W = 0.
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Proof. By Proposition 2.8 and W (1) = 0, we have

ZN (s, π(η−1)W ) = (q − 1)q−2Z(s,W )− (q − 1)q−2un

[
(π(un)W )(1)

]
(q−s)2

(q−s)2 − q−1
.

Therefore, by the definition of un

[
·
]
,

ZN (s, π(η−1)W )− (q − 1)q−2Z(s,W )

= −(q − 1)q−2 · q
n/2(q−s)n+2γ(s, π)−1(π(un)W )(1)

(q−s)2 − q−1

= −(q − 1)q−2 · c
−1qn/2(π(un)W )(1)(q−s)n−K+2

(q−s)2 − q−1
,

Since the left hand side of this equation is a polynomial in q−s by Proposition 2.1
and Proposition 1.2, so is the right hand side. Therefore, as the denominator on
the right hand side has roots ±q−1/2, we must have (π(un)W )(1) = 0. Hence,

ZN (s, π(η−1)W ) = (q − 1)q−2Z(s,W ).

This implies that for k ≥ 0,

W (


$k+1

$k

1
$−1

) = (q − 1)q−2W (


$k

$k

1
1

),

or

W (


$2·1+k

$1+k

$1

1

) = (q − 1)q−2W (


$k

$k

1
1

).

In terms of the matrix

m(W ) =


r0
r1
r2
...

 ,
this means r1 = (q − 1)q−2r0, or equivalently,

r0 + q2r1 − qr0 = 0.

Since δ1W = 0, we have by Corollary 1.5

J(m(W )) =


r0 + q2r1
q2r2
q2r3

...

 ∈M(n).

Therefore, 
r0 + q2r1
q2r2
q2r3

...

− q


r0
r1
r2
...

 =


0

q2r2 − qr1
q2r3 − qr2

...
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is also contained in M(n). Hence we produced a degenerate vector at level n.
Since, by assumption, V (n) has no non-zero degenerate vectors, it follows that

qr1 = q2r2,

qr2 = q2r3,

qr3 = q2r4,

...

Since π is supercuspidal we have rk = 0 for sufficiently large k. This implies
0 = r1 = r2 = r3 = . . . . As r1 = (q−1)q−2r0, we get r0 = 0. Since W 7→ m(W )
is an isomorphism, we conclude W = 0.

The next theorem proves that there is uniqueness at the minimal paramodu-
lar level; this proves part of the theorem from the introduction. The remaining
assertion of the theorem from the introduction will be proven in the final theo-
rem below.

Theorem 3.2. Let (π, V ) be a supercupsidal, generic, irreducible, admissi-
ble representation of GSp(4, F ) with trivial central character, and let V =
W(π, ψc1,c2). We have:

1. dimV (Nπ) = 1.

2. Write ε(s, π) = cq−Ks as in (2). Then Nπ ≥ K and Nπ ≡ K (2).

3. V (Nπ) is spanned by an element W with matrix m(W ) equal to
1 0 q−2 0 · · · 0 q−(Nπ−K) 0 0 0 · · ·

−q−2 0 −q−6 0 · · · 0 −q−(Nπ−K+2) 0 0 0 · · ·
0 0 0 0 · · · 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

 .

4. Let π(uNπ
)W = επW . Then επ = cq−K/2.

Proof. We shall write n for Nπ. As we mentioned above, since π is supercuspidal
we have n ≥ 2. Suppose that dimV (n) > 1. Let W1,W2 ∈ V (n) be linearly
independent. There exist a, b ∈ C such that W = aW1 + bW2 is not zero and
W (1) = 0. Since we are at the minimal level, δ1W = δ1π(un)W = 0. By
the η Principle, Theorem 4.3.7 of [RS], the space V (n) contains no non-zero
degenerate vectors. From Lemma 3.1 we conclude W = 0, a contradiction. This
proves dimV (n) = 1.

Next, let W ∈ V (n) be non-zero. Write

m(W ) =


r0
r1
r2
...


with

r0 = (a0, a1, a2, . . . ),
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r1 = (b0, b1, b2, . . . ).

By definition,

Z(s,W ) =
∞∑

k=0

(1− q−1)akq
3k/2(q−s)k,

ZN (s, π(η−1)W ) =
∞∑

k=0

(1− q−1)bkq3k/2(q−s)k.

Also, let π(un)W = επW . Similarly as in the proof of Lemma 3.1 we conclude
from Proposition 2.8 that

ZN (s, π(η−1)W )− (q − 1)q−2Z(s,W )

= −(q − 1)q−2W (1) · c
−1qn/2επ(q−s)n−K+2 − q−1

(q−s)2 − q−1
. (3)

As in the proof of Lemma 3.1, this is a polynomial in q−s. It follows that
n ≥ K. Since ±q−1/2 are the roots of the denominator, ±q−1/2 are roots of the
numerator. A computation shows that this implies that

ε = cq−K/2, n ≡ K (2).

Hence (3) translates into the equality

∞∑
k=0

(1− q−1)(bk − (q − 1)q−2ak)q3k/2(q−s)k

= −(q − 1)q−2a0

(n−K)/2∑
k=0

qk(q−s)2k. (4)

Now since dimV (n) = 1, there exists a ∈ C such that J(m(W )) = am(W ).
That is,

J(m(W )) =


r0 + q2r1
q2r2
q2r3

...

 = a


r0
r1
r2
...

 .
Solving, we find that

rk = q−2kak−1(a− 1)r0, k ≥ 1.

Again, rk = 0 for sufficiently large k. Also, r0 6= 0 since W must be nondegen-
erate by the η Principle. Therefore, a = 0 or a = 1. Assume a = 1; we will
obtain a contraction. Since a = 1,

m(W ) =


r0
0
0
...

 .
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In particular, r1 = 0. Therefore, from (4) we get

−(q − 1)q−2Z(s,W ) =
∞∑

k=0

−(1− q−1)(q − 1)q−2akq
3k/2(q−s)k

= −(q − 1)q−2a0

(n−K)/2∑
k=0

qk(q−s)2k.

Since Z(s,W ) 6= 0, we have a0 6= 0. Comparing constant terms, we get

−(1− q−1)(q − 1)q−2a0 = −(q − 1)q−2a0,

1− q−1 = 1,

a contradiction. Therefore, a = 0. Since a = 0, we have

m(W ) =


r0

−q−2r0
0
...

 ,
i.e.,

bk = −q−2ak, k ≥ 0.

Therefore, we get from (4) that

∞∑
k=0

q3k/2ak(q−s)k = a0

(n−K)/2∑
k=0

qk(q−s)2k.

We obtain a0 6= 0. Dividing if necessary, we may assume that a0 = 1. Therefore,

ai =
{

0 if i is odd or i > n−K,
q−i if i is even and 0 ≤ i ≤ n−K.

The remaining claims of the theorem follow.

Lemma 3.3. Let (π, V ) be a supercupsidal, generic, irreducible, admissible rep-
resentation of GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2).
Then dimV (Nπ + 1) ≤ 3.

Proof. For convenience, write n = Nπ. By Theorem 3.2 we have dimV (n) = 1.
Choosing any isomorphism V (n) ∼= C, we can consider δ1 : V (n + 1) → V (n)
as a linear form on V (n+ 1). We consider further the linear forms δ1 ◦ π(un+1)
and ϕ : W 7→W (1) on V (n+ 1). Let W ∈ V (n+ 1) and assume that

W ∈ ker(δ1) ∩ ker(δ1 ◦ π(un+1)) ∩ ker(ϕ).

In other words, W is an element such that δ1W = 0 and δ1π(un+1)W = 0
and W (1) = 0. Lemma 3.1 implies that W = 0; note that V (n + 1) contains
no degenerate vectors by the η Principle from [RS]. This shows that ker(δ1) ∩
ker(δ1 ◦ π(un+1)) ∩ ker(ϕ) = 0. On the other hand,

dim(ker(δ1) ∩ ker(δ1 ◦ π(un+1)) ∩ ker(ϕ)) ≥ dim(V (n+ 1))− 3,

since with every linear form the dimension can go down by at most one. The
assertion follows.
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Theorem 3.4. Let (π, V ) be a supercupsidal, generic, irreducible, admissi-
ble representation of GSp(4, F ) with trivial central character, and let V =
W(π, ψc1,c2). The newform in Theorem 3.2 iii) is given by

m(W ) =


1 0 · · ·

−q−2 0 · · ·
0 0 · · ·
...

...

 .
Proof. Again for convenience we let n = Nπ. Let W0 be the vector in Theorem
3.2. By this theorem, we have

m(W0) =

 s0
−q−2s0

0

 , s0 = (1, 0, q−2, 0, q−4, . . . , q−(n−K), 0, 0, . . .)

(all the matrices in this proof will have zeros in the fourth row and beyond,
hence we shall only write the first three rows). By Proposition 1.3 we have

m(θ′W0) =

 qs0
(1− q−1)s0
−q−2s0

 (5)

and

m(θW0) = q

 0
Left(s0)

Left(−q−2s0)

 +

 Right(s0)
Right(−q−2s0)

0

 . (6)

Define W1 := q−2δ1θ
′θW0 − qθW0 ∈ V (n+ 1). By Lemma 1.5 we have

q−2m(δ1θ′W )− qm(W ) = J(m(W )) + q−2m(ηδ1W )

for any paramodular vector W . Applying this with W = θW0 we get

m(W1) = J(m(θW0)) + q−2m(ηδ1θW0).

Since dim(V (n)) = 1, we have δ1θW0 = αW0 for some α ∈ C (which might be
zero). Hence

m(W1) = J(m(θW0)) + αq−2m(ηW0)

= J(q

 0
Left(s0)

Left(−q−2s0)

) + αq−2m(ηW0)

=

 q3Left(s0)
−qLeft(s0)

0

 + αq−2

 0
s0

−q−2s0

 . (7)

Let us now assume that W0 does not have the asserted form; we shall derive a
contradiction. Thus we assume that n > K, or equivalently, that Left(s0) 6= 0.
Under this assumption we have W1 6= 0. In fact, it is easy to see that the
matrices given in (5), (6) and (7) are linearly independent. By Lemma 3.3 we
get dim(V (n+ 1)) = 3 and

V (n+ 1) = 〈θ′W0, θW0, W1〉. (8)
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Now consider the vector W2 := qθW0−W1. The first row of m(W2) is given by

qRight(s0)− q3Left(s0) = (0, . . . , 0, q−(n−K)+1, 0, . . .),

where the non-zero entry is at position n−K + 1 (the first entry is at position
0). Therefore

Z(s,W2) = const. · (q−s)n−K+1.

By the functional equation we have

Z(s, π(un+1)W ) = q−(n+1)sq(n+1)/2γ(1− s, π)Z(1− s,W )

for any W ∈ V (n+ 1). Applied to W = W2 we get

Z(s, π(un+1)W2) = q−(n+1)sq(n+1)/2γ(1− s, π)Z(1− s,W2)

= const. · q−(n+1)sγ(1− s, π)(q−(1−s))n−K+1

= const. · q−(n+1)sγ(1− s, π)(qs)n−K+1

= const. · q−(n+1)sεπq
−K/2(q−s)−Kqs(n−K+1)

= const.

For the fourth equality we used the fourth assertion of Theorem 3.2. Therefore,
π(un+1)W2 ∈ V (n+ 1) is a vector with constant zeta polynomial. On the other
hand, by (8), there exist x, y, z ∈ C such that π(un+1)W2 = xθ′W0+yθW0+zW1.
Then

Z(s, π(un+1)W2) = xZ(s, θ′W0)︸ ︷︷ ︸
even

+y Z(s, θW0)︸ ︷︷ ︸
odd

+z Z(s,W1)︸ ︷︷ ︸
odd

.

The “even” and “odd” refer to the powers of q−s occuring in these zeta poly-
nomials. Since, by (5), (6) and (7), the function Z(s, θW0) has higher degree in
q−s than the other two zeta functions, it follows that y = 0. Then it follows that
z = 0 since the result must be constant and Z(s,W1) has only odd degrees. It
follows that W2 = xθ′W0. But this is impossible since the first row of m(θ′W0)
has more than one non-zero entry by our assumption.

It is evident that the claims of the theorem from the introduction follow
from Theorem 3.2 and Theorem 3.4.
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