An alternative proof of a theorem about local newforms for $\operatorname{GSp}(4)$

Brooks Roberts *
Ralf Schmidt ${ }^{\dagger}$

The work [RS] presents a theory of local new- and oldforms for representations of $\operatorname{GSp}(4, F)$ with trivial central character for F a non-archimedean field of characteristic zero. This theory considers vectors fixed by the paramodular groups $\mathrm{K}\left(\mathfrak{p}^{n}\right)$ as defined in [RS]. Let (π, V) be an irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character. One of the main theorems of [RS] asserts that if V contains a non-zero vector fixed by some paramodular group $\mathrm{K}\left(\mathfrak{p}^{n}\right)$, i.e., π is paramodular, and N_{π} is the smallest such n, then the space $V\left(N_{\pi}\right)$ of $\mathrm{K}\left(\mathfrak{p}^{N_{\pi}}\right)$ fixed vectors in V is one-dimensional. If π is paramodular, then any non-zero element $V\left(N_{\pi}\right)$ is called a newform. Other theorems of [RS] describe the information carried by newforms. In particular, it is proven in [RS] that if π is generic, then π is paramodular, and there exists a newform whose zeta integral is the L-factor $L(s, \pi)$. In this work we will give an alternative proof of the following theorem. See the introduction of $[\mathrm{RS}]$ for an extensive summary of the contents and proofs of [RS].

Theorem. ([RS]) Let π be a supercuspidal, generic, irreducible, admissible representation of $\mathrm{GSp}(4, F)$ with trivial central character and Whittaker model $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Assume that $V(n)$ is non-zero for some non-negative integer n, and let N_{π} be the smallest n such that $V(n)$ is non-zero. Then $V\left(N_{\pi}\right)$ is one-dimensional, and there exists W_{π} in $V\left(N_{\pi}\right)$ such that

$$
Z\left(s, W_{\pi}\right)=L(s, \pi)=1 .
$$

In what follows we will use the definitions and notation of [RS]. In particular, let \mathfrak{o} be the ring of integers of F, let \mathfrak{p} be the maximal ideal of \mathfrak{o}, let q be the number of elements of $\mathfrak{o} / \mathfrak{p}$, fix a generator ϖ of \mathfrak{p}, and let ψ be a non-trivial character of F with conductor \mathfrak{o}.

1 A Useful Realization

Our alternative proof of the above theorem is based on an alternative realization of paramodular vectors. This realization depends on the η Principle proven in [RS]. Let π be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character. We will work in the Whittaker model $\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$ of π. The η Principle asserts that if W is a non-zero vector in $V(n)$ for some

[^0]non-negative integer n and W is degenerate, i.e., $Z(s, W)=0$, then $n \geq 2$ and there exists W_{1} in $V(n-2)$ such that $W=\eta W_{1}$. Here, η is the level raising operator that increases the level by 2 and is given by the action of the group element with the same name:
\[

\eta=\left[$$
\begin{array}{cccc}
\varpi^{-1} & & & \\
& 1 & & \\
& & 1 & \\
& & & \varpi
\end{array}
$$\right]
\]

Since it is given by the action of a single group element, the level raising operator η is obviously injective. Besides vectors of the form $\eta W=\pi(\eta) W$, in what follows we will often encounter vectors of the form $\pi\left(\eta^{-1}\right) W$. The reader should note that $\pi\left(\eta^{-1}\right) W$ may not be paramodular even if W is paramodular. Indeed, the η Principle asserts that if W is paramodular and non-zero, then $\pi\left(\eta^{-1}\right) W$ is paramodular if and only if the level of W is at least 2 and W is degenerate. To obtain another model for paramodular vectors using the η Principle, let

$$
\Delta_{i j}=\left[\begin{array}{cccc}
\varpi^{2 i+j} & & & \\
& \varpi^{i+j} & & \\
& & \varpi^{i} & \\
& & & 1
\end{array}\right]
$$

for integers i and j. For n a non-negative integer, W in $V(n)$ and $0 \leq i, j<\infty$ define

$$
m(W)_{i j}=W\left(\Delta_{i j}\right)
$$

and let $m(W)$ be the matrix

$$
m(W)=\left(m(W)_{i j}\right)_{0 \leq i, j<\infty}
$$

The connection between $m(W)$ and η is provided by the observation that

$$
\begin{equation*}
W\left(\Delta_{i j}\right)=\left(\pi\left(\eta^{-i}\right) W\right)\left(\Delta_{0 j}\right) \tag{1}
\end{equation*}
$$

for all i and j with $0 \leq i, j<\infty$ and $W \in V(n)$. Thus, the i-th row of $m(W)$ is obtained by evaluating the vector $\pi\left(\eta^{-i}\right) W$ at the points $\Delta_{0 j}$ for $0 \leq j<\infty$. We denote by $M(n)$ the \mathbb{C} vector space of all $m(W)$ for $W \in V(n)$. Using the η Principle, we can prove that $M(n)$ is a model of $V(n)$.

Proposition 1.1. Let π be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. For each non-negative integer n the map

$$
V(n) \xrightarrow{\sim} M(n) .
$$

that sends W to $m(W)$ is an isomorphism of vector spaces.
Proof. Let $W \in V(n)$ be non-zero. Thanks to the η Principle, Theorem 4.3.7 of [RS], we can write $W=\eta^{i} W_{1}$ for some non-negative integer i and $W_{1} \in V(n-2 i)$ with $Z\left(s, W_{1}\right) \neq 0$. We will prove that the i-th row of $m(W)$ is non-zero. By (1), the i-th row of $m(W)$ is

$$
W_{1}\left(\Delta_{0 j}\right), \quad 0 \leq j<\infty
$$

By Sect. 4.1 of $[R S]$ we have

$$
Z\left(s, W_{1}\right)=\left(1-q^{-1}\right) \sum_{j=0}^{\infty} q^{3 j / 2} W_{1}\left(\Delta_{0 j}\right)\left(q^{-s}\right)^{j} .
$$

Since $Z\left(s, W_{1}\right) \neq 0$ we have $W_{1}\left(\Delta_{0 j}\right) \neq 0$ for some non-negative j, so that the i-th row of $m(W)$ is non-zero.

If π is a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$ is the Whittaker model of π, n is a non-negative integer, and $W \in V(n)$, then the matrix $m(W)$ may have infinitely many non-zero entries. However, as the next proposition shows, if π is supercuspidal, then $m(W)$ has only finitely many non-zero entries.

Proposition 1.2. Let π be a supercuspidal, generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$, and let $n \geq 0$ be a non-negative integer. If $W \in V(n)$, then $m(W)$ has finitely many non-zero entries.

Proof. We use the observations and notation from the proof of Proposition 2.6.4 of [RS] which involve P_{3}-theory. By that proof, keeping in mind that $V_{2}=V_{Z^{J}}$ because π is supercuspidal, there exists a surjective linear map

$$
V \rightarrow \mathrm{c}-\operatorname{Ind}_{U_{3}}^{P_{3}} \Theta
$$

such that if W maps to f, then $W(q)=f(i(q))$ for q in the Klingen parabolic subgroup Q of $\operatorname{GSp}(4, F)$ and $i: Q \rightarrow P_{3}$ the surjective homomorphism from Lemma 2.5.1 of [RS]. Let $W \in V$ and let W map to f. Then

$$
W\left(\Delta_{i j}\right)=f\left(\left[\begin{array}{lll}
\varpi^{i+j} & & \\
& \varpi^{i} & \\
& & 1
\end{array}\right]\right)
$$

for any integers i and j. Since f is left invariant under a compact, open subgroup of P_{3} and is compactly supported modulo the subgroup U_{3}, the above quantity is non-zero for only finitely many i and j.

In the remainder of this section we translate some of the operators that act on paramodular vectors to the new model $M(n)$. These operators include the level raising operators η, θ and θ^{\prime}. However, we will also need to describe a formula involving a certain level lowering operator in terms of the new model.

To give the formulas we need some notation. Let $M_{\infty \times \infty}(\mathbb{C})$ be the set of all matrices $\left(m_{i j}\right)_{0 \leq i, j<\infty}$ with $m_{i j} \in \mathbb{C}$. The space $M(n)$ is contained in $M_{\infty \times \infty}(\mathbb{C})$. It will be convenient to write the elements A of $M_{\infty \times \infty}(\mathbb{C})$ as a column of rows,

$$
A=\left[\begin{array}{c}
r_{0} \\
r_{1} \\
r_{2} \\
\vdots
\end{array}\right] .
$$

We define two shift operations Left and Right on row vectors,

$$
\operatorname{Left}\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

$$
\operatorname{Right}\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(0, a_{0}, a_{1}, \ldots\right)
$$

Using this notation we can describe the level raising operators θ, θ^{\prime} and η in the alternative model.

Proposition 1.3. Let π be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. For each non-negative integer n define

$$
\theta, \theta^{\prime}, \eta: M_{\infty \times \infty}(\mathbb{C}) \rightarrow M_{\infty \times \infty}(\mathbb{C})
$$

by

$$
\theta\left(\left[\begin{array}{c}
r_{0} \\
r_{1} \\
r_{2} \\
\vdots
\end{array}\right]\right)=q\left[\begin{array}{c}
0 \\
\operatorname{Left}\left(r_{0}\right) \\
\operatorname{Left}\left(r_{1}\right) \\
\vdots
\end{array}\right]+\left[\begin{array}{c}
\operatorname{Right}\left(r_{0}\right) \\
\operatorname{Right}\left(r_{1}\right) \\
\operatorname{Right}\left(r_{2}\right) \\
\vdots
\end{array}\right], \quad \theta^{\prime}\left(\left[\begin{array}{c}
r_{0} \\
r_{1} \\
r_{2} \\
\vdots
\end{array}\right]\right)=q\left[\begin{array}{c}
r_{0} \\
r_{1} \\
r_{2} \\
\vdots
\end{array}\right]+\left[\begin{array}{c}
0 \\
r_{0} \\
r_{1} \\
\vdots
\end{array}\right] .
$$

and

$$
\eta\left(\left[\begin{array}{c}
r_{0} \\
r_{1} \\
r_{2} \\
\vdots
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
r_{0} \\
r_{1} \\
\vdots
\end{array}\right]
$$

The diagrams

and

commute
Proof. This follows by direct computations using the explicit formulas from Sect. 3.2 of [RS].

The work $[\mathrm{RS}]$ also introduced a certain level lowering operator δ_{1} that reduces the level by 1 , and we will need a formula involving δ_{1} in the setting of the alternative model. Let (π, V) be an irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character. Let n be an integer with $n \geq 1$. Then $\delta_{1}: V(n) \rightarrow V(n-1)$ is the natural trace operator, defined by the formula

$$
\delta_{1} v=\sum_{g \in \mathrm{~K}\left(\mathfrak{p}^{n-1}\right) /\left(\mathrm{K}\left(\mathfrak{p}^{n-1}\right) \cap \mathrm{K}\left(\mathfrak{p}^{n}\right)\right)} \pi(g) v .
$$

We first present and prove the relevant formula in an abstract form.

Proposition 1.4. Let (π, V) be an irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Let n be an integer with $n \geq 2$. If $v \in V(n)$, then

$$
\begin{aligned}
\eta \delta_{1} v=\delta_{1} \theta^{\prime} v-q^{2} v-q^{3} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & \lambda & \mu & \kappa \varpi^{-n} \\
& 1 & & \mu \\
& & 1 & -\lambda \\
& & & 1
\end{array}\right] \eta^{-1}\right) \theta^{\prime} v d \lambda d \mu d \kappa \\
+q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & -\lambda \varpi^{-1} \\
& & & 1
\end{array}\right]\right) v d \lambda d \mu
\end{aligned}
$$

Proof. We have by (3.3.7) of [RS]

$$
\begin{gathered}
\eta \delta_{1} v=q^{3} \pi(\eta) \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & & \\
\lambda \varpi^{n-1} & 1 & 1 & \\
\mu \varpi^{n-1} \mu & & 1 \\
\kappa \varpi^{n-1} & \mu \varpi^{n-1} & -\lambda \varpi^{n-1} & 1
\end{array}\right]\right) v d \lambda d \mu d \kappa \\
+q^{2} \pi(\eta) \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & \lambda & \mu & \\
& 1 & & \mu \\
& & 1 & -\lambda \\
& & 1
\end{array}\right] \eta^{-1}\right) v d \lambda d \mu
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& \eta \delta_{1} v=q^{3} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
\kappa \varpi^{n+1} & \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\right) \pi(\eta) v d \lambda d \mu d \kappa \\
& +q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} & \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & \begin{array}{c}
-\lambda \varpi^{-1} \\
\\
\end{array} \\
& & 1
\end{array}\right]\right) v d \lambda d \mu \\
& =q^{3} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{o} \times} \pi\left(\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
\kappa \varpi^{n+1} & \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\right) \pi(\eta) v d \lambda d \mu d \kappa \\
& +q^{3} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{p}} \pi\left(\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
\kappa \varpi^{n+1} & \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\right) \pi(\eta) v d \lambda d \mu d \kappa \\
& \left.+q^{2} \int_{0} \int_{0}\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} & \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & \begin{array}{c}
-\lambda \varpi^{-1} \\
\\
\end{array} \\
& & 1
\end{array}\right]\right) v d \lambda d \mu
\end{aligned}
$$

Applying the identity (2.8) from $[\mathrm{RS}]$ we have:

$$
\begin{aligned}
& \eta \delta_{1} v=q^{3} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{o} \times} \pi\left(\left[\begin{array}{ccccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & & & \kappa^{-1} \varpi^{-(n+1)} \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right. \\
& \times\left[\begin{array}{cccc}
-\kappa^{-1} \varpi^{-(n+1)} & & & \\
& 1 & & \\
& & 1 & \\
& & & -\kappa \varpi^{n+1}
\end{array}\right]\left[\begin{array}{rlll}
& & & 1 \\
& 1 & & \\
& & 1 & \\
-1 & & &
\end{array}\right] \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \kappa^{-1} \varpi^{-(n+1)} \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right) \pi(\eta) v d \lambda d \mu d \kappa \\
& +q^{2} \int_{0} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\right) \pi(\eta) v d \lambda d \mu \\
& \left.+q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}}\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} & \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & \begin{array}{c}
-\lambda \varpi^{-1} \\
\\
\end{array} \\
& & 1
\end{array}\right]\right) v d \lambda d \mu \\
& =q^{3} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{o} \times} \pi\left(\left[\begin{array}{ccccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & & & \kappa \varpi^{-(n+1)} \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right) v d \lambda d \mu d \kappa \\
& +q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\right) \pi(\eta) v d \lambda d \mu \\
& \left.+q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}}\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} & \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & -\lambda \varpi^{-1} \\
& & & 1
\end{array}\right]\right) v d \lambda d \mu \\
& =q^{3} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{ccccc}
1 & & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & & & \kappa \varpi^{-(n+1)} \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right) v d \lambda d \mu d \kappa \\
& -q^{3} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{p}} \pi\left(\left[\begin{array}{ccccc}
1 & & & & \\
\lambda \varpi^{n} & 1 & & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & & & \kappa \varpi^{-(n+1)} \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right) v d \lambda d \mu d \kappa \\
& +q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\right) \pi(\eta) v d \lambda d \mu d \kappa
\end{aligned}
$$

$$
\begin{aligned}
& \left.+q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}}\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} & \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & -\lambda \varpi^{-1} \\
& & & 1
\end{array}\right]\right) v d \lambda d \mu \\
& \left.=q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{ccccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\right)\left(\sum_{x \in \mathfrak{o}}\left[\begin{array}{cccc}
1 & & & x \varpi^{-(n+1)} \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right) v\right) d \lambda d \mu \\
& -q^{2} v \\
& +q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\right) \pi(\eta) v d \lambda d \mu d \kappa \\
& \left.+q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}}\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} & \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & -\lambda \varpi^{-1} \\
& & & 1
\end{array}\right]\right) v d \lambda d \mu \\
& =q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\right)\left(\theta^{\prime} v-\eta v\right) d \lambda d \mu \\
& -q^{2} v \\
& +q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\right) \pi(\eta) v d \lambda d \mu d \kappa \\
& \left.+q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}}\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} & \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & -\lambda \varpi^{-1} \\
& & & 1
\end{array}\right]\right) v d \lambda d \mu \\
& =q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n} & 1 & & \\
\mu \varpi^{n} & & 1 & \\
& \mu \varpi^{n} & -\lambda \varpi^{n} & 1
\end{array}\right]\right) \theta^{\prime} v d \lambda d \mu \\
& -q^{2} v \\
& \left.+q^{2} \int_{0} \int_{0}\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} & \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & -\lambda \varpi^{-1} \\
& & & 1
\end{array}\right]\right) v d \lambda d \mu \\
& =\delta_{1} \theta^{\prime} v-q^{2} v-q^{3} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & \lambda & \mu & \kappa \varpi^{-n} \\
& 1 & & \mu \\
& & 1 & -\lambda \\
& & & 1
\end{array}\right] \eta^{-1}\right) \theta^{\prime} v d \lambda d \mu d \kappa
\end{aligned}
$$

$$
\left.+q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}}\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} & \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & -\lambda \varpi^{-1} \\
& & & 1
\end{array}\right]\right) v d \lambda d \mu
$$

The last equality follows from (3.23) of [RS].
The next corollary translates the last proposition to the setting of the alternative model for $V(n)$. In contrast to the previous proposition, the alternative model requires that the representation is generic.

Corollary 1.5. Let (π, V) be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Define

$$
J: M_{\infty \times \infty}(\mathbb{C}) \rightarrow M_{\infty \times \infty}(\mathbb{C})
$$

by

$$
J(A)=\left[\begin{array}{c}
r_{0}+q^{2} r_{1} \\
q^{2} r_{2} \\
q^{2} r_{3} \\
\vdots
\end{array}\right] \quad \text { for } \quad A=\left[\begin{array}{c}
r_{0} \\
r_{1} \\
r_{2} \\
\vdots
\end{array}\right] .
$$

Let n be a non-negative integer with $n \geq 2$. We have for $W \in V(n)$,

$$
m\left(\eta \delta_{1} W\right)=m\left(\delta_{1} \theta^{\prime} W\right)-q^{3} m(W)-q^{2} J(m(W))
$$

If $A \in m\left(\operatorname{ker} \delta_{1}\right)$, then $J(A) \in M(n)$. The diagram

$$
\begin{array}{rlr}
\operatorname{ker}\left(\delta_{1}\right) & \sim m\left(\operatorname{ker} \delta_{1}\right) \\
q^{-2} \delta_{1} \theta^{\prime}-q \cdot \mathrm{Id} \downarrow & & \downarrow{ }^{\prime} \\
V(n) & \longrightarrow & \sim M(n) .
\end{array}
$$

commutes.
Proof. We apply the m operator to the formula

$$
\begin{aligned}
& \eta \delta_{1} W=\delta_{1} \theta^{\prime} W-q^{2} W-q^{3} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & \lambda & \mu & \kappa \varpi^{-n} \\
& 1 & & \mu \\
& & 1 & -\lambda \\
& & & 1
\end{array}\right] \eta^{-1}\right) \theta^{\prime} W d \lambda d \mu d \kappa \\
& +q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} & \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & -\lambda \varpi^{-1} \\
& & & 1
\end{array}\right]\right) W d \lambda d \mu
\end{aligned}
$$

from Proposition 1.4 by evaluating both sides of this formula at the element $\Delta_{i j}$ for $0 \leq i, j<\infty$. We have

$$
-q^{3} \int_{0} \int_{0} \int_{\mathfrak{o}}\left(\theta^{\prime} W\right)\left(\left[\begin{array}{cccc}
\varpi^{2 i+j} & & & \\
& \varpi^{i+j} & & \\
& & \varpi^{i} & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & \lambda & \mu & \kappa \varpi^{-n} \\
& 1 & & \mu \\
& & 1 & -\lambda \\
& & 1
\end{array}\right] \eta^{-1}\right) d \lambda d \mu d \kappa
$$

$$
\begin{aligned}
& =-q^{3} \int_{\mathfrak{o}}\left(\theta^{\prime} W\right)\left(\left[\begin{array}{cccc}
\varpi^{2 i+j} & & & \\
& \varpi^{i+j} & & \\
& & \varpi^{i} & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & \lambda & & \\
& 1 & & \\
& & 1 & -\lambda \\
& & & 1
\end{array}\right] \eta^{-1}\right) d \lambda \\
& =-q^{3} \int_{\mathfrak{o}} \psi\left(c_{1} \lambda \varpi^{i}\right)\left(\theta^{\prime} W\right)\left(\left[\begin{array}{llll}
\varpi^{2 i+j} & & \\
& \varpi^{i+j} & & \\
& & \varpi^{i} & \\
& & & 1
\end{array}\right] \eta^{-1}\right) d \lambda \\
& =-q^{3}\left(\theta^{\prime} W\right)\left(\left[\begin{array}{llll}
\varpi^{2 i+j+1} & & & \\
& \varpi^{i+j} & & \\
& & \varpi^{i} & \\
& & & \varpi^{-1}
\end{array}\right]\right) \\
& =-q^{3}\left(\theta^{\prime} W\right)\left(\left[\begin{array}{llll}
\varpi^{2 i+j+2} & & \\
& \varpi^{i+j+1} & & \\
& & \varpi^{i+1} & \\
& & & 1
\end{array}\right]\right) .
\end{aligned}
$$

By Lemma 3.2.2 of [RS], this equals

$$
\begin{aligned}
& -q^{3} W\left(\left[\begin{array}{cccc}
\varpi^{2 i+j+1} & & & \\
& \varpi^{i+j+1} & & \\
& & \varpi^{i+1} & \\
& & & \varpi
\end{array}\right]\right) \\
& -q^{4} W\left(\left[\begin{array}{llll}
\varpi^{2 i+j+2} & & \\
& \varpi^{i+j+1} & & \\
& & \varpi^{i+1} & \\
& & & 1
\end{array}\right]\right) \\
& =-q^{3} W\left(\left[\begin{array}{llll}
\varpi^{2 i+j} & & & \\
& \varpi^{i+j} & & \\
& & \varpi^{i} & \\
& & & 1
\end{array}\right]\right)-q^{4} W\left(\left[\begin{array}{lll}
\varpi^{2 i+j+2} & & \\
& \varpi^{i+j+1} & \\
& & \varpi^{i+1} \\
& & \\
& & \\
& &
\end{array}\right]\right. \\
& =-q^{3} m(W)_{i j}-q^{4} m(W)_{i+1, j} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& q^{2} \int_{0} \int_{0} W\left(\left[\begin{array}{llll}
\varpi^{2 i+j} & & & \\
& \varpi^{i+j} & & \\
& & \varpi^{i} & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & \mu \varpi^{-1} & \\
& 1 & & \mu \varpi^{-1} \\
& & 1 & -\lambda \varpi^{-1} \\
& & & 1
\end{array}\right]\right) d \lambda d \mu \\
& =q^{2} \int_{0} W\left(\left[\begin{array}{llll}
\varpi^{2 i+j} & & & \\
& \varpi^{i+j} & & \\
& & \varpi^{i} & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & \lambda \varpi^{-1} & & \\
& 1 & & \\
& & 1 & -\lambda \varpi^{-1} \\
& & & 1
\end{array}\right]\right) d \lambda \\
& =q^{2} \int_{\mathfrak{o}} \psi\left(c_{1} \varpi^{i-1} \lambda\right) W\left(\left[\begin{array}{llll}
\varpi^{2 i+j} & & & \\
& \varpi^{i+j} & & \\
& & \varpi^{i} & \\
& & & 1
\end{array}\right]\right) d \lambda \\
& = \begin{cases}0 & \text { if } i=0, \\
q^{2} m(W)_{i j} & \text { if } i>0 .\end{cases}
\end{aligned}
$$

The claims of the lemma follow from these computations.
The main application of the previous corollary will be at the minimal level N_{π}. At the minimal level, because the kernel of δ_{1} must be all of $V\left(N_{\pi}\right)$, the map J is actually an endomorphism of $V\left(N_{\pi}\right)$.

Corollary 1.6. Let (π, V) be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Then the endomorphism

$$
J: V\left(N_{\pi}\right) \rightarrow V\left(N_{\pi}\right)
$$

is given by

$$
J(A)=\left[\begin{array}{c}
r_{0}+q^{2} r_{1} \\
q^{2} r_{2} \\
q^{2} r_{3} \\
\vdots
\end{array}\right] \quad \text { for } \quad A=\left[\begin{array}{c}
r_{0} \\
r_{1} \\
r_{2} \\
\vdots
\end{array}\right]
$$

is an endomorphism of $V\left(N_{\pi}\right)$.

2 Analysis of the Second Row

In this section we expose some properties of the second row of the matrix $m(W)$ associated to a paramodular vector in a generic representation. We will use these properties, in combination with the results involving the level lowering operator δ_{1} from the previous section, to give the alternative proof of the theorem from the introduction.

To analyze the second row of $m(W)$ is it useful to use zeta integrals. Let π be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Let W be a paramodular vector in V. As explained in the previous section, the second row of $m(W)$ is

$$
m(W)_{1 j}=W\left(\Delta_{1 j}\right)=\left(\pi\left(\eta^{-1}\right) W\right)\left(\Delta_{0 j}\right), \quad 0 \leq j<\infty
$$

The next proposition shows that these numbers are encapsulated in a certain auxiliary zeta integral.

Proposition 2.1. Let π be a generic, irreducible, admissible representation of GSp $(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. For W in V define

$$
Z_{N}(s, W)=\int_{F^{\times}} W\left(\left[\begin{array}{cccc}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)|a|^{s-3 / 2} d^{\times} a
$$

If n is a non-negative integer and $W \in V(n)$, then

$$
Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)=\left(1-q^{-1}\right) \sum_{j=0}^{\infty} q^{3 j / 2} m(W)_{1 j}\left(q^{-s}\right)^{j}
$$

Proof. Let $W \in V(n)$. We claim that

$$
W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right] \eta^{-1}\right)=0
$$

for $v(a)<0$. To see this, let $a \in F^{\times}$and $y \in \mathfrak{o}$. Then

$$
\begin{aligned}
W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right] \eta^{-1}\right) & =W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right] \eta^{-1}\left[\begin{array}{llll}
1 & & & \\
& 1 & y & \\
& & 1 & \\
& & & 1
\end{array}\right]\right) \\
& =\psi\left(c_{2} a y\right) W\left(\left[\begin{array}{llll}
a & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right] \eta^{-1}\right) .
\end{aligned}
$$

Since ψ is non-trivial on \mathfrak{p}^{-1} our claim follows. The remainder of the proposition follows by a computation.

Given this proposition, our next goal will be to analyze the auxiliary zeta integral $Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)$ for a paramodular vector W. We will show that this zeta integral satisfies a certain functional equation. This will be the basis for further analysis of the second row of $m(W)$. We begin by relating $Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)$ to the full zeta integral $Z\left(s, \pi\left(\eta^{-1}\right) W\right)$: recall that the standard zeta integral also involves an integration over F.

Lemma 2.2. Let π be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Let n be a non-negative integer and $W \in V(n)$. Then

$$
Z\left(s, \pi\left(\eta^{-1}\right) W\right)=Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)+(q-1) q^{-3}\left(q^{-s}\right)^{-2} \cdot(Z(s, W)-W(1))
$$

Proof. We compute:

$$
\begin{aligned}
& Z\left(s, \eta^{-1} W\right) \\
& =\int_{F^{\times} \times} \int_{F} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& x & 1 & \\
& & & 1
\end{array}\right] \eta^{-1}\right)|a|^{s-3 / 2} d x d^{\times} a \\
& =\int_{F^{\times}} \int_{v(x) \geq 0} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& x & 1 & \\
& & & 1
\end{array}\right] \eta^{-1}\right)|a|^{s-3 / 2} d x d^{\times} a \\
& +\int_{F^{\times}} \int_{v(x)<0} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& x & 1 & \\
& & & 1
\end{array}\right] \eta^{-1}\right)|a|^{s-3 / 2} d x d^{\times} a
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{F^{\times}} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right] \eta^{-1}\right)|a|^{s-3 / 2} d^{\times} a \\
& +\int_{F^{\times}} \int_{v(x)<0} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& 1 & x^{-1} & \\
& & 1 & \\
& & & 1
\end{array}\right]\right. \\
& \times\left[\begin{array}{llll}
1 & & & \\
& -x^{-1} & & \\
& & -x & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& & 1 & \\
& -1 & & \\
& & & 1
\end{array}\right] \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \\
& 1 & x^{-1} & \\
& & 1 & \\
& & & 1
\end{array}\right] \eta^{-1}\right)|a|^{s-3 / 2} d x d^{\times} a \\
& =Z_{N}\left(s, \eta^{-1} W\right) \\
& +\int_{F^{\times}} \int_{v(x)<0} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& 1 & x^{-1} & \\
& & 1 & \\
& & & 1
\end{array}\right]\right. \\
& \left.\times\left[\begin{array}{llll}
1 & & & \\
& -x^{-1} & & \\
& & -x & \\
& & & 1
\end{array}\right] \eta^{-1}\right)|a|^{s-3 / 2} d x d^{\times} a \\
& =Z_{N}\left(s, \eta^{-1} W\right) \\
& +\int_{F^{\times}} \int_{v(x)<0} W\left(\left[\begin{array}{cccc}
1 & & & \\
& 1 & a x^{-1} & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right. \\
& \left.\times\left[\begin{array}{llll}
1 & & & \\
& x^{-1} & & \\
& & x & \\
& & & 1
\end{array}\right] \eta^{-1}\right)|a|^{s-3 / 2} d x d^{\times} a \\
& =Z_{N}\left(s, \eta^{-1} W\right) \\
& +\int_{F \times} \int_{v(x)<0} \psi\left(c_{2} a x^{-1}\right) W\left(\left[\begin{array}{llll}
a & & & \\
& a x^{-1} & & \\
& & x & \\
& & & 1
\end{array}\right] \eta^{-1}\right)|a|^{s-3 / 2} d x d^{\times} a \\
& =Z_{N}\left(s, \eta^{-1} W\right) \\
& +\int_{F^{\times}} \int_{v(x)<0} \psi\left(c_{2} a x^{-1}\right) W\left(\left[\begin{array}{llll}
a \varpi & & & \\
& a x^{-1} & & \\
& & x & \\
& & & \varpi^{-1}
\end{array}\right]\right)|a|^{s-3 / 2} d x d^{\times} a .
\end{aligned}
$$

Now $v(a \varpi)<v\left(a x^{-1}\right) \Longleftrightarrow v(x)<-1$. Hence, by Lemma 4.1.2 of [RS],

$$
\begin{aligned}
& Z\left(s, \eta^{-1} W\right)=Z_{N}\left(s, \eta^{-1} W\right) \\
& +\int_{F^{\times}} \int_{v(x)=-1} \psi\left(c_{2} a x^{-1}\right) W\left(\left[\begin{array}{llll}
a \varpi & & & \\
& a x^{-1} & & \\
& & x & \\
& & & \varpi^{-1}
\end{array}\right]\right)|a|^{s-3 / 2} d x d^{\times} a \\
& =Z_{N}\left(s, \eta^{-1} W\right) \\
& +\int_{F^{\times}} \int_{v(x)=-1} \psi\left(c_{2} a x^{-1}\right) W\left(\left[\begin{array}{llll}
a \varpi & & & \\
& a \varpi & & \\
& & \varpi^{-1} & \\
& & & \varpi^{-1}
\end{array}\right]\right)|a|^{s-3 / 2} d x d^{\times} a \\
& =Z_{N}\left(s, \eta^{-1} W\right) \\
& +\int_{F^{\times}}\left(\int_{v(x)=-1} \psi\left(c_{2} a x^{-1}\right) d x\right) W\left(\left[\begin{array}{llll}
a \varpi^{2} & & & \\
& a \varpi^{2} & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)|a|^{s-3 / 2} d^{\times} a .
\end{aligned}
$$

It is easily computed that

$$
\int_{v(x)=-1} \psi\left(c_{2} a x^{-1}\right) d x= \begin{cases}0 & \text { if } v(a)<-2 \\ -1 & \text { if } v(a)=-2 \\ q-1 & \text { if } v(a)>-2\end{cases}
$$

Hence

$$
\begin{aligned}
& Z\left(s, \eta^{-1} W\right)=Z_{N}\left(s, \eta^{-1} W\right) \\
& +(-1) \int_{v(a)=-2} W\left(\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)\left|\varpi^{-2}\right|^{s-3 / 2} d^{\times} a \\
& +(q-1) \int_{v(a)>-2} W\left(\left[\begin{array}{llll}
a \varpi^{2} & & & \\
& a \varpi^{2} & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)|a|^{s-3 / 2} d^{\times} a \\
& =Z_{N}\left(s, \eta^{-1} W\right) \\
& +(-1) W(1)|\varpi|^{3-2 s}\left(\int_{v(a)=-2} d^{\times} a\right) \\
& +(q-1) \int_{F^{\times}} \chi_{v(t)>-2}(a) W\left(\left[\begin{array}{llll}
a \varpi^{2} & & & \\
& a \varpi^{2} & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)|a|^{s-3 / 2} d^{\times} a \\
& =Z_{N}\left(s, \eta^{-1} W\right)+(-1) W(1)\left(1-q^{-1}\right)|\varpi|^{3-2 s} \\
& +(q-1) \int_{F^{\times}} \chi_{v(t)>-2}\left(a \varpi^{-2}\right) W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)\left|a \varpi^{-2}\right|^{s-3 / 2} d^{\times} a
\end{aligned}
$$

$$
\begin{aligned}
& =Z_{N}\left(s, \eta^{-1} W\right)+(-1) W(1)\left(1-q^{-1}\right)|\varpi|^{3-2 s} \\
& +(q-1)|\varpi|^{3-2 s} \int_{F^{\times}} \chi_{v(t)>0}(a) W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)|a|^{s-3 / 2} d^{\times} a \\
& =Z_{N}\left(s, \eta^{-1} W\right)+(-1) W(1)\left(1-q^{-1}\right)|\varpi|^{3-2 s} \\
& +(q-1)|\varpi|^{3-2 s}\left(Z(s, W)-\int_{v(a)=0} W(1) d^{\times} a\right) \\
& =Z_{N}\left(s, \eta^{-1} W\right)+(-1) W(1)\left(1-q^{-1}\right)|\varpi|^{3-2 s} \\
& +(q-1)|\varpi|^{3-2 s}\left(Z(s, W)-\left(1-q^{-1}\right) W(1)\right) \\
& =Z_{N}\left(s, \eta^{-1} W\right)+Z(s, W)(q-1)|\varpi|^{3-2 s} \\
& +(-1) W(1)\left(1-q^{-1}\right)|\varpi|^{3-2 s}-(q-1)\left(1-q^{-1}\right) W(1)|\varpi|^{3-2 s} \\
& =Z_{N}\left(s, \eta^{-1} W\right)+Z(s, W)(q-1)|\varpi|^{3-2 s} \\
& +\left(-\left(1-q^{-1}\right)-(q-1)\left(1-q^{-1}\right)\right) W(1)|\varpi|^{3-2 s} \\
& =Z_{N}\left(s, \eta^{-1} W\right)+Z(s, W)(q-1)|\varpi|^{3-2 s} \\
& -(q-1) W(1)|\varpi|^{3-2 s} \\
& =Z_{N}\left(s, \eta^{-1} W\right)+(q-1)|\varpi|^{3-2 s}(Z(s, W)-W(1)) \text {. }
\end{aligned}
$$

This completes the proof.
Next, we present the functional equation satified by the auxiliary zeta integral. This requires the introduction of a new concept, namely an operator on meromorphic functions on the complex plane having to do with functional equations. Let π be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. If n is a non-negative integer, then we define the operator $u_{n}[\cdot]$ on the vector space of meromorphic functions on \mathbb{C} by the formula

$$
u_{n}[f(s)]=q^{n / 2}\left(q^{-s}\right)^{n} \gamma(1-s, \pi) f(1-s) .
$$

A computation shows that

$$
u_{n}\left[u_{n}[f(s)]\right]=f(s)
$$

for any meromorphic function on the complex plane. Moreover, if W is in V, then

$$
u_{n}[Z(s, W)]=Z\left(s, \pi\left(u_{n}\right) W\right)
$$

This is a translation of the functional equation for zeta integrals.
Proposition 2.3. Let π be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Let n be a non-negative integer such that $n \geq 2$ and let $W \in V(n)$. Then

$$
\begin{aligned}
& \left(q^{-s}\right)^{2} Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)-q^{-1} u_{n}\left[Z_{N}\left(s, \pi\left(\eta^{-1}\right) \pi\left(u_{n}\right) W\right)\right] \\
& =(q-1) q^{-2}\left(\left(q^{-s}\right)^{2}-q^{-1}\right) Z(s, W) \\
& \quad \quad-(q-1) q^{-2}\left(u_{n}\left[\left(\pi\left(u_{n}\right) W\right)(1)\right]\left(q^{-s}\right)^{2}-W(1) q^{-1}\right) .
\end{aligned}
$$

Proof. The identity

$$
\eta^{-1} u_{n}=\left[\begin{array}{cccc}
\varpi & & & \\
& \varpi & & \\
& & \varpi & \\
& & & \varpi
\end{array}\right] u_{n-2} \eta^{-1}
$$

implies that $\pi\left(\eta^{-1} u_{n}\right)=\pi\left(u_{n-2} \eta^{-1}\right)$. Therefore,

$$
Z\left(s, \pi\left(\eta^{-1} u_{n}\right) W\right)=Z\left(s, \pi\left(u_{n-2} \eta^{-1}\right) W\right)
$$

We will compute both sides of this equation using Lemma 2.2. First of all,

$$
\begin{aligned}
Z\left(s, \pi\left(\eta^{-1} u_{n}\right) W\right) & =Z_{N}\left(s, \pi\left(\eta^{-1} u_{n}\right) W\right) \\
& +(q-1) q^{-3}\left(q^{-s}\right)^{-2}\left(Z\left(s, \pi\left(u_{n}\right) W\right)-\left(\pi\left(u_{n}\right) W\right)(1)\right)
\end{aligned}
$$

And using Lemma 2.2,

$$
\begin{aligned}
& Z\left(s, \pi\left(u_{n-2} \eta^{-1}\right) W\right) \\
& =Z\left(s, \pi\left(\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \varpi^{n-2} & \\
& & & \varpi^{n-2}
\end{array}\right] u_{0} \eta^{-1}\right) W\right) \\
& =Z\left(s, \pi\left(\left[\begin{array}{llll}
\varpi^{-(n-2)} & & & \\
& \varpi^{-(n-2)} & & \\
& & 1 & \\
& & & 1
\end{array}\right] u_{0} \eta^{-1}\right) W\right) \\
& =\left|\varpi^{-(n-2)}\right|^{1 / 2-s} Z\left(s, \pi\left(u_{0} \eta^{-1}\right) W\right) \\
& =|\varpi|^{(n-2)(s-1 / 2)} Z\left(s, \pi\left(u_{0} \eta^{-1}\right) W\right) \\
& =|\varpi|^{(n-2)(s-1 / 2)} \gamma(1-s) Z\left(1-s, \pi\left(\eta^{-1}\right) W\right) \\
& =|\varpi|^{(n-2)(s-1 / 2)} \gamma(1-s)\left(Z_{N}\left(1-s, \pi\left(\eta^{-1}\right) W\right)\right. \\
& \left.+(q-1) q^{-3}\left(q^{-(1-s)}\right)^{-2}(Z(1-s, W)-W(1))\right) \\
& =\left(q^{-s}\right)^{-2} q^{-1} q^{-n s} q^{n / 2} \gamma(1-s)\left(Z_{N}\left(1-s, \pi\left(\eta^{-1}\right) W\right)\right. \\
& \left.+(q-1) q^{-1} q^{-2 s}(Z(1-s, W)-W(1))\right) \\
& =\left(q^{-s}\right)^{-2} q^{-1} q^{-n s} q^{n / 2} \gamma(1-s) Z_{N}\left(1-s, \pi\left(\eta^{-1}\right) W\right) \\
& +(q-1) q^{-2} q^{-n s} q^{n / 2} \gamma(1-s) Z(1-s, W) \\
& -(q-1) q^{-2} q^{-n s} q^{n / 2} \gamma(1-s) W(1) \\
& =\left(q^{-s}\right)^{-2} q^{-1} u_{n}\left[Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)\right] \\
& +(q-1) q^{-2} u_{n}[Z(s, W)] \\
& -(q-1) q^{-2} u_{n}[W(1)] \\
& =\left(q^{-s}\right)^{-2} q^{-1} u_{n}\left[Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)\right] \\
& +(q-1) q^{-2}\left(Z\left(s, \pi\left(u_{n}\right) W\right)-u_{n}[W(1)]\right) .
\end{aligned}
$$

Equating and multiplying by $\left(q^{-s}\right)^{2}$ now produces an equation. If $\pi\left(u_{n}\right) W$ is substituted in this equation for W then the result follows.

More work is required to exploit the functional equation involving the auxiliary zeta integral $Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)$. Our next goal will be to prove that the factor

$$
u_{n}\left[Z_{N}\left(s, \pi\left(\eta^{-1}\right) \pi\left(u_{n}\right) W\right)\right]
$$

from the functional equation is actually $Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)$ under the assumption that $\delta_{1} W=0$ and $\delta_{1} \pi\left(u_{n}\right) W=0$. Here, δ_{1} is the level lowering operator mentioned in the previous section. This will make for a simpler functional equation, and will be applicable at the minimal paramodular level N_{π}; we will also apply it to some vectors at level $N_{\pi}+1$. In what follows we use a certain operator R introduced in Sect. 7.3 of [RS]. Let (π, V) be an irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Let W be in V. Then we set

$$
R W=q \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & -\lambda \varpi^{n-1} & 1
\end{array}\right]\right) W d \lambda
$$

As always, we use the Haar measure on F that assigns \mathfrak{o} measure one. The next lemma relates the auxiliary zeta integral to the zeta integral of $\delta_{1} W$ and $R W$. This lemma will be the basis for proving that the above factor is $Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)$ under the mentioned conditions, though more work about zeta integrals involving $R W$ will also be required.

Lemma 2.4. Let (π, V) be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Let n be a non-nonegative integer with $n \geq 2$, and let $W \in V(n)$. then

$$
Z\left(s, \delta_{1} W\right)=q^{3} Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)+Z_{N}(s, R W)
$$

Proof. Recall from Lemma 3.3.7 of $[\mathrm{RS}]$ that $\delta_{1} W=W_{1}+W_{2}$ with

$$
\begin{aligned}
& W_{1}=q^{3} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \int_{\mathfrak{O}} \pi\left(\left[\begin{array}{cccc}
1 & \lambda & \mu & \kappa \varpi^{1-n} \\
& 1 & & \mu \\
& & 1 & -\lambda \\
& & 1
\end{array}\right] \eta^{-1}\right) d \lambda d \mu d \kappa, \\
& W_{2}=q^{2} \int_{\mathfrak{o}} \int_{\mathfrak{o}} \pi\left(\left[\begin{array}{cccc}
1 & & \\
\lambda \varpi^{n-1} & 1 & & \\
\mu \varpi^{n-1} & & 1 & \\
& \mu \varpi^{n-1} & -\lambda \varpi^{n-1} & 1
\end{array}\right]\right) d \lambda d \mu .
\end{aligned}
$$

By Lemma 4.1.1 of [RS],

$$
Z\left(s, \delta_{1} W\right)=Z_{N}\left(s, \delta_{1} W\right)=Z_{N}\left(s, W_{1}\right)+Z_{N}\left(s, W_{2}\right)
$$

By the Whittaker transformation property,

$$
Z_{N}\left(s, W_{1}\right)=\int_{F^{\times}} W_{1}\left(\left[\begin{array}{cccc}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)|a|^{s-3 / 2} d^{\times} a
$$

$$
\begin{aligned}
& =q^{3} \int_{F^{\times}} \int_{0} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & \lambda & & \\
& 1 & & \\
& & 1 & -\lambda \\
& & & 1
\end{array}\right] \eta^{-1}\right)|a|^{s-3 / 2} d \lambda d^{\times} a \\
& =q^{3} \int_{F^{\times}} \int_{0} \psi\left(c_{1} \lambda\right) W\left(\left[\begin{array}{llll}
a & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right] \eta^{-1}\right)|a|^{s-3 / 2} d \lambda d^{\times} a \\
& =q^{3} \int_{F^{\times}} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right] \eta^{-1}\right)|a|^{s-3 / 2} d^{\times} a \\
& =q^{3} Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right) .
\end{aligned}
$$

This is the first term on the right side of the asserted equality. The matrix identity

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n-1} & 1 & & \\
\mu \varpi^{n-1} & & 1 & \\
& \mu \varpi^{n-1} & -\lambda \varpi^{n-1} & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & -x \mu \varpi^{-1} & x \lambda \varpi^{-1} & x \varpi^{-n} \\
& 1 & & x \lambda \varpi^{-1} \\
& & 1 & x \mu \varpi^{-1} \\
& & & 1
\end{array}\right]} \\
& \times\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n-1} & 1 & & \\
\mu \varpi^{n-1} & & 1 & \\
& \mu \varpi^{n-1} & -\lambda \varpi^{n-1} & 1
\end{array}\right] \\
& \times\left[\begin{array}{cccc}
1 & & & -x \varpi^{-n} \\
& 1-x \lambda \mu \varpi^{n-2} & x \lambda^{2} \varpi^{n-2} & \\
& -x \mu^{2} \varpi^{n-2} & 1+x \lambda \mu \varpi^{n-2} & 1
\end{array}\right]
\end{aligned}
$$

shows that

$$
\begin{aligned}
& W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & & & \\
\lambda \varpi^{n-1} & 1 & & \\
\mu \varpi^{n-1} & & 1 & \\
& \mu \varpi^{n-1} & -\lambda \varpi^{n-1} & 1
\end{array}\right]\right) \\
& =\psi\left(-c_{1} x \mu \varpi^{-1}\right) W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & & & \\
\lambda \varpi^{n-1} & 1 & & \\
\mu \varpi^{n-1} & & 1 & \\
& \mu \varpi^{n-1} & -\lambda \varpi^{n-1} & 1
\end{array}\right]\right)
\end{aligned}
$$

for all $x \in \mathfrak{o}$. Therefore, if μ is a unit, the above is zero. Hence

$$
\begin{aligned}
& Z_{N}\left(s, W_{2}\right)=\int_{F^{\times}} W_{2}\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)|a|^{s-3 / 2} d^{\times} a \\
& =q^{2} \int_{F^{\times}} \int_{\mathfrak{p}} \int_{\mathfrak{O}} W\left(\left[\begin{array}{lll}
a & & \\
& a & \\
& & 1
\end{array}\right.\right. \\
& \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad \times\left[\begin{array}{ccccc}
1 & & & \\
\lambda \varpi^{n-1} & 1 & & \\
\mu \varpi^{n-1} & & 1 & \\
& & \mu \varpi^{n-1} & -\lambda \varpi^{n-1} & 1
\end{array}\right]\right)|a|^{s-3 / 2} d \lambda d \mu d^{\times} a \\
& =q \int_{F^{\times}} \int_{0} W\left(\left[\begin{array}{ccccc}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & & \\
\lambda \varpi^{n-1} & 1 & & \\
& & & -\lambda \varpi^{n-1} \\
& 1
\end{array}\right]\right)|a|^{s-3 / 2} d \lambda d^{\times} a \\
&
\end{aligned}
$$

This proves the lemma.
Next, we relate $Z_{N}(s, R W)$ to $Z(s, R W)$.
Lemma 2.5. Let (π, V) be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Let n be a non-nonegative integer with $n \geq 2$, and let $W \in V(n)$. Then

$$
Z(s, R W)=q^{-1} Z_{N}(s, R W)+\left(1-q^{-1}\right) Z(s, W)
$$

Proof. We have

$$
\begin{aligned}
& Z(s, R W) \\
& =q \int_{F^{\times}} \int_{F} \int_{0} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& x & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & & -\mu \varpi^{n-1}
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d x d^{\times} a .
\end{aligned}
$$

Let

$$
A=q \int_{F \times} \int_{v(x) \geq 1} \int_{\mathfrak{o}} \ldots d \mu d x d^{\times} a, \quad B=q \int_{F \times} \int_{v(x)<1} \int_{\mathfrak{o}} \ldots d \mu d x d^{\times} a .
$$

We compute

$$
\begin{aligned}
& A=q \int_{F^{\times}} \int_{v(x) \geq 1} \int_{0} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& x & 1 & \\
& & & 1
\end{array}\right]\right. \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & -\mu \varpi^{n-1} & 1
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d x d^{\times} a \\
& =q \int_{F^{\times}} \int_{v(x) \geq 1} \int_{0} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & & -\mu \varpi^{n-1} & 1
\end{array}\right]\right. \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
\varpi^{n-1} x \mu & x & 1 & \\
\varpi^{2 n-2} x \mu^{2} & \varpi^{n-1} x \mu & & 1
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d x d^{\times} a
\end{aligned}
$$

$$
\begin{aligned}
& =q \int_{F^{\times}} \int_{v(x) \geq 1} \int_{\mathfrak{o}} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right. \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & -\mu \varpi^{n-1} & 1
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d x d^{\times} a \\
& =q \cdot q^{-1} \int_{F \times} \int_{\mathfrak{o}} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right. \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & -\mu \varpi^{n-1} & 1
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d^{\times} a \\
& =q^{-1} Z_{N}(s, R W) .
\end{aligned}
$$

This is the first term on the right side of the asserted equality. Next we compute

$$
\begin{aligned}
& B=q \int_{F^{\times}} \int_{v(x)<1} \int_{\mathfrak{o}} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& x & 1 & \\
& & & 1
\end{array}\right]\right. \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & -\mu \varpi^{n-1} & 1
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d x d^{\times} a \\
& =q \int_{F^{\times}} \int_{v(x)<1} \int_{\mathfrak{o}} W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& 1 & x^{-1} & \\
& & 1 & \\
& & & 1
\end{array}\right]\right. \\
& \times\left[\begin{array}{llll}
1 & & & \\
& -x^{-1} & & \\
& & -x & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& & 1 & \\
& -1 & & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & \\
& 1 & x^{-1} & \\
& & 1 & \\
& & & 1
\end{array}\right] \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & -\mu \varpi^{n-1} & 1
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d x d^{\times} a \\
& =q \int_{F^{\times}} \int_{v(x)<1} \int_{0} W\left(\left[\begin{array}{cccc}
1 & & & \\
& 1 & a x^{-1} & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right. \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \\
& -x^{-1} & & \\
& & -x & \\
& & & 1
\end{array}\right] s_{2}\left[\begin{array}{cccc}
1 & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & -\mu \varpi^{n-1} & 1
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d x d^{\times} a
\end{aligned}
$$

$$
\begin{aligned}
& =q \int_{F^{\times}} \int_{v(x)<1} \int_{0} \psi\left(c_{2} a x^{-1}\right) W\left(\left[\begin{array}{llll}
a & & & \\
& -a x^{-1} & & \\
& & -x & \\
& & & 1
\end{array}\right] s_{2}\right. \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & & \varpi^{n-1}
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d x d^{\times} a \\
& =q \int_{F^{\times}} \int_{v(x)<1} \int_{0} \psi\left(c_{2} a x^{-1}\right) W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & \\
& \varpi^{-v(x)} & & \\
& & \varpi^{v(x)} & \\
& & & 1
\end{array}\right] s_{2}\right. \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & & -\mu \varpi^{n-1} \\
& 1
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d x d^{\times} a .
\end{aligned}
$$

Let $y \in \varpi^{-1} \mathfrak{o}, a \in F^{\times}, v(x)<1$ and $\mu \in \mathfrak{o}$. Then

$$
\begin{aligned}
& \psi\left(c_{2} y\right) W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& \varpi^{-v(x)} & & \\
& & \varpi^{v(x)} & \\
& & & 1
\end{array}\right] s_{2}\right. \\
& \left.\times\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & -\mu \varpi^{n-1} & 1
\end{array}\right]\right) \\
& =W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& \varpi^{-v(x)} & & \\
& & \varpi^{v(x)} & \\
& & & 1
\end{array}\right] s_{2}\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & & -\mu \varpi^{n-1}
\end{array}\right]\right. \\
& \left.\times\left[\begin{array}{cccc}
1 & & \\
& 1 & \\
-a^{-1} \varpi^{n-1+2 v(x)} y \mu & -a^{-1} \varpi^{2 v(x)} y & 1 & \\
-a^{-1} \varpi^{2 n-2+2 v(x)} y \mu^{2} & -a^{-1} \varpi^{n-1+2 v(x)} y \mu & & 1
\end{array}\right]\right)
\end{aligned}
$$

If $2 v(x) \geq v(a)+2$, then the rightmost matrix is in $\mathrm{K}\left(\mathfrak{p}^{n}\right)$, implying that the above is zero. Similarly,

$$
\begin{aligned}
\psi\left(c_{1} y\right) W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & & & \\
& \varpi^{-v(x)} & & \\
& & \varpi^{v(x)} & \\
& \times\left[\begin{array}{cccc}
1 & & & 1
\end{array}\right] s_{2} \\
\mu \varpi^{n-1} & 1 & & \\
& & -\mu \varpi^{n-1} & 1
\end{array}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & & & \\
& \varpi^{-v(x)} & & \\
& & \varpi^{v(x)} & \\
& & & 1
\end{array}\right] s_{2}\left[\begin{array}{cccc}
1 & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & -\mu \varpi^{n-1} & 1
\end{array}\right]\right. \\
& \left.\times\left[\begin{array}{cccc}
1 & & y \varpi^{-v(x)} \\
& 1 & \begin{array}{c}
-2 \varpi^{n-1-v(x)} \mu y \\
\\
\end{array} & \\
& & & y \varpi^{-v(x)} \\
& &
\end{array}\right]\right) \text {. }
\end{aligned}
$$

If $-1 \geq v(x)$ then the rightmost matrix is in $\mathrm{K}\left(\mathfrak{p}^{n}\right)$, implying that the above is zero. Therefore,

$$
\begin{aligned}
& B=q \int_{\substack{F \times}} \int_{\substack{v(x)<1 \\
v(x)<v(a)+2 \\
-1<v(x)}} \int_{\mathfrak{o}} \psi\left(c_{2} a x^{-1}\right) W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & \\
& \varpi^{-v(x)} & & \\
& & \varpi^{v(x)} & \\
& & \\
& & &
\end{array}\right]\right. \\
& \left.\times s_{2}\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & -\mu \varpi^{n-1} & 1
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d x d^{\times} a \\
& =q \int_{-2<v(a)} \int_{v(x)=0} \int_{\mathfrak{o}} \psi\left(c_{2} a x^{-1}\right) W\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right. \\
& \left.\times s_{2}\left[\begin{array}{cccc}
1 & & & \\
\mu \varpi^{n-1} & 1 & & \\
& & 1 & \\
& & -\mu \varpi^{n-1} & 1
\end{array}\right]\right)|a|^{s-3 / 2} d \mu d x d^{\times} a \\
& =\int_{-2<v(a)}\left(\int_{\mathfrak{o}^{\times}} \psi\left(c_{2} a x^{-1}\right) d x\right)\left(\pi\left(s_{2}\right) R W\right)\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)|a|^{s-3 / 2} d^{\times} a .
\end{aligned}
$$

Now

$$
\int_{\mathfrak{o}^{\times}} \psi\left(c_{2} a x^{-1}\right) d x= \begin{cases}0 & \text { if } v(a)<1 \\ -q^{-1} & \text { if } v(a)=-1 \\ 1-q^{-1} & \text { if } v(a)>-1\end{cases}
$$

Hence,

$$
\begin{aligned}
& B=-q^{-1} \int_{v(a)=-1}\left(\pi\left(s_{2}\right) R W\right)\left(\left[\begin{array}{llll}
a & & & \\
& a & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)|a|^{s-3 / 2} d^{\times} a \\
&+\left(1-q^{-1}\right) \int_{v(a) \geq 0}\left(\pi\left(s_{2}\right) R W\right)\left(\left[\begin{array}{lll}
a & & \\
& a & \\
& & 1 \\
& & \\
& & 1
\end{array}\right]\right)|a|^{s-3 / 2} d^{\times} a
\end{aligned}
$$

By Corollary 7.3.3 and Proposition 7.3.2 of [RS] the first term is zero and the second term is $\left(1-q^{-1}\right) Z_{N}\left(s, \pi\left(s_{2}\right) R W\right)=\left(1-q^{-1}\right) Z(s, W)$. Thus,

$$
B=\left(1-q^{-1}\right) Z(s, W)
$$

Hence,

$$
Z(s, R W)=A+B=q^{-1} Z_{N}(s, R W)+\left(1-q^{-1}\right) Z(s, W)
$$

This completes the proof.
Lemma 2.6. Let (π, V) be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Let n be a non-nonegative integer with $n \geq 2$, and let $W \in V(n)$. Then

$$
u_{n}\left[Z_{N}(s, R W)\right]=Z_{N}\left(s, R \pi\left(u_{n}\right) W\right)=Z_{N}\left(s, \pi\left(u_{n}\right) R W\right)
$$

Proof. We have by Lemma 2.5 and the basic properties of $u_{n}[\cdot]$ from above,

$$
\begin{aligned}
u_{n}\left[Z_{N}(s, R W)\right] & =u_{n}\left[q Z(s, R W)-\left(1-q^{-1}\right) q Z(s, W)\right] \\
& =q u_{n}[Z(s, R W)]-\left(1-q^{-1}\right) q u_{n}[Z(s, W)] \\
& =q Z\left(s, \pi\left(u_{n}\right) R W\right)-\left(1-q^{-1}\right) q Z\left(s, \pi\left(u_{n}\right) W\right) \\
& =q Z\left(s, R \pi\left(u_{n}\right) W\right)-\left(1-q^{-1}\right) q Z\left(s, \pi\left(u_{n}\right) W\right) \\
& =Z_{N}\left(s, R \pi\left(u_{n}\right) W\right) \\
& =Z_{N}\left(s, \pi\left(u_{n}\right) R W\right) .
\end{aligned}
$$

This completes the proof.
Lemma 2.7. Let (π, V) be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Let n be a non-nonegative integer with $n \geq 2$, and let $W \in V(n)$. Then

$$
\begin{aligned}
u_{n}\left[Z_{N}\left(s, \pi\left(\eta^{-1}\right) \pi\left(u_{n}\right) W\right)\right]=Z_{N} & \left(s, \pi\left(\eta^{-1}\right) W\right) \\
& +q^{-3}\left(u_{n}\left[Z\left(s, \delta_{1} \pi\left(u_{n}\right) W\right)\right]-Z\left(s, \delta_{1} W\right)\right)
\end{aligned}
$$

Proof. By Lemma 2.4,

$$
Z\left(s, \delta_{1} W\right)=q^{3} Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)+Z_{N}(s, R W)
$$

for $W \in V(n)$. Replacing W with $\pi\left(u_{n}\right) W$, we obtain

$$
Z_{N}\left(s, \pi\left(\eta^{-1}\right) \pi\left(u_{n}\right) W\right)=q^{-3} Z\left(s, \delta_{1} \pi\left(u_{n}\right) W\right)-q^{-3} Z_{N}\left(s, R \pi\left(u_{n}\right) W\right) .
$$

Applying $u_{n}[\cdot]$ to both sides and using Lemmas 2.6 and 2.4, we get

$$
\begin{aligned}
u_{n} & {\left[Z_{N}\left(s, \pi\left(\eta^{-1}\right) \pi\left(u_{n}\right) W\right)\right] } \\
& =q^{-3} u_{n}\left[Z\left(s, \delta_{1} \pi\left(u_{n}\right) W\right)\right]-q^{-3} u_{n}\left[Z_{N}\left(s, R \pi\left(u_{n}\right) W\right)\right] \\
& =q^{-3} u_{n}\left[Z\left(s, \delta_{1} \pi\left(u_{n}\right) W\right)\right]-q^{-3} Z_{N}(s, R W) \\
& =q^{-3} u_{n}\left[Z\left(s, \delta_{1} \pi\left(u_{n}\right) W\right)\right]-q^{-3}\left(Z\left(s, \delta_{1} W\right)-q^{3} Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)\right) \\
& =q^{-3} u_{n}\left[Z\left(s, \delta_{1} \pi\left(u_{n}\right) W\right)\right]-q^{-3} Z\left(s, \delta_{1} W\right)+Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right) .
\end{aligned}
$$

This completes the proof.

To end this section we finally deduce the formula relating the second row of $m(W)$ to the first row under the assumption that $\delta_{1} W=0$ and $\delta_{1} \pi\left(u_{n}\right) W=0$.

Proposition 2.8. Let (π, V) be a generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Let n be a non-nonegative integer with $n \geq 2$, and let $W \in V(n)$. Assume $\delta_{1} W=0$ and $\delta_{1} \pi\left(u_{n}\right) W=0$. Then

$$
u_{n}\left[Z_{N}\left(s, \pi\left(\eta^{-1}\right) \pi\left(u_{n}\right) W\right)\right]=Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)
$$

and consequently,

$$
\begin{aligned}
Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)=(q-1) & q^{-2} Z(s, W) \\
& -(q-1) q^{-2} \frac{u_{n}\left[\left(\pi\left(u_{n}\right) W\right)(1)\right]\left(q^{-s}\right)^{2}-W(1) q^{-1}}{\left(q^{-s}\right)^{2}-q^{-1}}
\end{aligned}
$$

Proof. This is immediate from Lemma 2.7 and Proposition 2.3.

3 The Alternative Proof

In this final section we will give the alternative proof of the theorem stated in the introduction. In fact, we will prove more: besides proving the claims of the theorem we will also determine $m\left(W_{\pi}\right)$ completely. In the preceding two sections supercuspidality was only assumed in Proposition 1.2, which asserted that $m(W)$ has only finitely many non-zero entries if W is paramodular and π is supercuspidal. We will use this below. We will also use three other properties of supercuspidal representations. Let (π, V) be a supercuspidal, generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character. First, we will often use, without comment, that $Z(s, W)$ is a polynomial in q^{-s} for a paramodular vector W in V. This follows from Proposition 4.1.4 of [RS] since $L(s, \pi)=1$. Second, we will use that the γ-factor and the ε-factor of π are the same: $\gamma(s, \pi)=\varepsilon(s, \pi)$. This follows because $L(s, \pi)=1$. We can and will write

$$
\begin{equation*}
\gamma(s, \pi)=\varepsilon(s, \pi)=c q^{-K s} \tag{2}
\end{equation*}
$$

for some integer K and complex number c by Proposition 2.6.6 of [RS]. Note that, as explained in the introduction to $[\mathrm{RS}]$, if one has the appropriate main results of [RS], then there is a formula for $\varepsilon(s, \pi)$ in terms of the invariants of a newform, but since we are giving an alternative proof we can not use this. Third, we will use that $N_{\pi} \geq 2$. This is true because if $N_{\pi} \leq 1$, then π admits a non-zero vector fixed by the Iwahori subgroup, and is thus contained in a representation induced from the Borel subgroup. We begin with a lemma that will be applied at the minimal paramodular level N_{π} and at level $N_{\pi}+1$.

Lemma 3.1. Let (π, V) be a supercupsidal, generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Let n be a non-negative integer with $n \geq 2$. Assume that $W \in V(n)$ satisfies the following conditions:

$$
\delta_{1} W=0, \quad \delta_{1} \pi\left(u_{n}\right) W=0, \quad W(1)=0
$$

Then $\left(\pi\left(u_{n}\right) W\right)(1)=0$. If $V(n)$ contains no non-zero degenerate vectors, then $W=0$.

Proof. By Proposition 2.8 and $W(1)=0$, we have

$$
Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)=(q-1) q^{-2} Z(s, W)-(q-1) q^{-2} \frac{u_{n}\left[\left(\pi\left(u_{n}\right) W\right)(1)\right]\left(q^{-s}\right)^{2}}{\left(q^{-s}\right)^{2}-q^{-1}}
$$

Therefore, by the definition of $u_{n}[\cdot]$,

$$
\begin{aligned}
Z_{N}(s, & \left.\pi\left(\eta^{-1}\right) W\right)-(q-1) q^{-2} Z(s, W) \\
& =-(q-1) q^{-2} \cdot \frac{q^{n / 2}\left(q^{-s}\right)^{n+2} \gamma(s, \pi)^{-1}\left(\pi\left(u_{n}\right) W\right)(1)}{\left(q^{-s}\right)^{2}-q^{-1}} \\
& =-(q-1) q^{-2} \cdot \frac{c^{-1} q^{n / 2}\left(\pi\left(u_{n}\right) W\right)(1)\left(q^{-s}\right)^{n-K+2}}{\left(q^{-s}\right)^{2}-q^{-1}},
\end{aligned}
$$

Since the left hand side of this equation is a polynomial in q^{-s} by Proposition 2.1 and Proposition 1.2, so is the right hand side. Therefore, as the denominator on the right hand side has roots $\pm q^{-1 / 2}$, we must have $\left(\pi\left(u_{n}\right) W\right)(1)=0$. Hence,

$$
Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)=(q-1) q^{-2} Z(s, W) .
$$

This implies that for $k \geq 0$,

$$
W\left(\left[\begin{array}{cccc}
\varpi^{k+1} & & & \\
& \varpi^{k} & & \\
& & 1 & \\
& & & \varpi^{-1}
\end{array}\right]\right)=(q-1) q^{-2} W\left(\left[\begin{array}{cccc}
\varpi^{k} & & & \\
& \varpi^{k} & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)
$$

or

$$
W\left(\left[\begin{array}{cccc}
\varpi^{2 \cdot 1+k} & & & \\
& \varpi^{1+k} & & \\
& & \varpi^{1} & \\
& & & 1
\end{array}\right]\right)=(q-1) q^{-2} W\left(\left[\begin{array}{cccc}
\varpi^{k} & & & \\
& \varpi^{k} & & \\
& & 1 & \\
& & & 1
\end{array}\right]\right)
$$

In terms of the matrix

$$
m(W)=\left[\begin{array}{c}
r_{0} \\
r_{1} \\
r_{2} \\
\vdots
\end{array}\right]
$$

this means $r_{1}=(q-1) q^{-2} r_{0}$, or equivalently,

$$
r_{0}+q^{2} r_{1}-q r_{0}=0
$$

Since $\delta_{1} W=0$, we have by Corollary 1.5

$$
J(m(W))=\left[\begin{array}{c}
r_{0}+q^{2} r_{1} \\
q^{2} r_{2} \\
q^{2} r_{3} \\
\vdots
\end{array}\right] \in M(n)
$$

Therefore,

$$
\left[\begin{array}{c}
r_{0}+q^{2} r_{1} \\
q^{2} r_{2} \\
q^{2} r_{3} \\
\vdots
\end{array}\right]-q\left[\begin{array}{c}
r_{0} \\
r_{1} \\
r_{2} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
0 \\
q^{2} r_{2}-q r_{1} \\
q^{2} r_{3}-q r_{2} \\
\vdots
\end{array}\right]
$$

is also contained in $M(n)$. Hence we produced a degenerate vector at level n. Since, by assumption, $V(n)$ has no non-zero degenerate vectors, it follows that

$$
\begin{aligned}
q r_{1} & =q^{2} r_{2}, \\
q r_{2} & =q^{2} r_{3}, \\
q r_{3} & =q^{2} r_{4}, \\
& \vdots
\end{aligned}
$$

Since π is supercuspidal we have $r_{k}=0$ for sufficiently large k. This implies $0=r_{1}=r_{2}=r_{3}=\ldots$ As $r_{1}=(q-1) q^{-2} r_{0}$, we get $r_{0}=0$. Since $W \mapsto m(W)$ is an isomorphism, we conclude $W=0$.

The next theorem proves that there is uniqueness at the minimal paramodular level; this proves part of the theorem from the introduction. The remaining assertion of the theorem from the introduction will be proven in the final theorem below.

Theorem 3.2. Let (π, V) be a supercupsidal, generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=$ $\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. We have:

1. $\operatorname{dim} V\left(N_{\pi}\right)=1$.
2. Write $\varepsilon(s, \pi)=c q^{-K s}$ as in (2). Then $N_{\pi} \geq K$ and $N_{\pi} \equiv K$ (2).
3. $V\left(N_{\pi}\right)$ is spanned by an element W with matrix $m(W)$ equal to

$$
\left[\begin{array}{ccccccccccc}
1 & 0 & q^{-2} & 0 & \cdots & 0 & q^{-\left(N_{\pi}-K\right)} & 0 & 0 & 0 & \cdots \\
-q^{-2} & 0 & -q^{-6} & 0 & \cdots & 0 & -q^{-\left(N_{\pi}-K+2\right)} & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots
\end{array}\right] .
$$

4. Let $\pi\left(u_{N_{\pi}}\right) W=\varepsilon_{\pi} W$. Then $\varepsilon_{\pi}=c q^{-K / 2}$.

Proof. We shall write n for N_{π}. As we mentioned above, since π is supercuspidal we have $n \geq 2$. Suppose that $\operatorname{dim} V(n)>1$. Let $W_{1}, W_{2} \in V(n)$ be linearly independent. There exist $a, b \in \mathbb{C}$ such that $W=a W_{1}+b W_{2}$ is not zero and $W(1)=0$. Since we are at the minimal level, $\delta_{1} W=\delta_{1} \pi\left(u_{n}\right) W=0$. By the η Principle, Theorem 4.3 .7 of $[\mathrm{RS}]$, the space $V(n)$ contains no non-zero degenerate vectors. From Lemma 3.1 we conclude $W=0$, a contradiction. This proves $\operatorname{dim} V(n)=1$.

Next, let $W \in V(n)$ be non-zero. Write

$$
m(W)=\left[\begin{array}{c}
r_{0} \\
r_{1} \\
r_{2} \\
\vdots
\end{array}\right]
$$

with

$$
r_{0}=\left(a_{0}, a_{1}, a_{2}, \ldots\right),
$$

$$
r_{1}=\left(b_{0}, b_{1}, b_{2}, \ldots\right)
$$

By definition,

$$
\begin{aligned}
Z(s, W) & =\sum_{k=0}^{\infty}\left(1-q^{-1}\right) a_{k} q^{3 k / 2}\left(q^{-s}\right)^{k} \\
Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right) & =\sum_{k=0}^{\infty}\left(1-q^{-1}\right) b_{k} q^{3 k / 2}\left(q^{-s}\right)^{k} .
\end{aligned}
$$

Also, let $\pi\left(u_{n}\right) W=\varepsilon_{\pi} W$. Similarly as in the proof of Lemma 3.1 we conclude from Proposition 2.8 that

$$
\begin{align*}
& Z_{N}\left(s, \pi\left(\eta^{-1}\right) W\right)-(q-1) q^{-2} Z(s, W) \\
& \quad=-(q-1) q^{-2} W(1) \cdot \frac{c^{-1} q^{n / 2} \varepsilon_{\pi}\left(q^{-s}\right)^{n-K+2}-q^{-1}}{\left(q^{-s}\right)^{2}-q^{-1}} . \tag{3}
\end{align*}
$$

As in the proof of Lemma 3.1, this is a polynomial in q^{-s}. It follows that $n \geq K$. Since $\pm q^{-1 / 2}$ are the roots of the denominator, $\pm q^{-1 / 2}$ are roots of the numerator. A computation shows that this implies that

$$
\varepsilon=c q^{-K / 2}, \quad n \equiv K(2)
$$

Hence (3) translates into the equality

$$
\begin{gather*}
\sum_{k=0}^{\infty}\left(1-q^{-1}\right)\left(b_{k}-(q-1) q^{-2} a_{k}\right) q^{3 k / 2}\left(q^{-s}\right)^{k} \\
=-(q-1) q^{-2} a_{0} \sum_{k=0}^{(n-K) / 2} q^{k}\left(q^{-s}\right)^{2 k} \tag{4}
\end{gather*}
$$

Now since $\operatorname{dim} V(n)=1$, there exists $a \in \mathbb{C}$ such that $J(m(W))=a m(W)$. That is,

$$
J(m(W))=\left[\begin{array}{c}
r_{0}+q^{2} r_{1} \\
q^{2} r_{2} \\
q^{2} r_{3} \\
\vdots
\end{array}\right]=a\left[\begin{array}{c}
r_{0} \\
r_{1} \\
r_{2} \\
\vdots
\end{array}\right]
$$

Solving, we find that

$$
r_{k}=q^{-2 k} a^{k-1}(a-1) r_{0}, \quad k \geq 1 .
$$

Again, $r_{k}=0$ for sufficiently large k. Also, $r_{0} \neq 0$ since W must be nondegenerate by the η Principle. Therefore, $a=0$ or $a=1$. Assume $a=1$; we will obtain a contraction. Since $a=1$,

$$
m(W)=\left[\begin{array}{c}
r_{0} \\
0 \\
0 \\
\vdots
\end{array}\right]
$$

In particular, $r_{1}=0$. Therefore, from (4) we get

$$
\begin{aligned}
-(q-1) q^{-2} Z(s, W) & =\sum_{k=0}^{\infty}-\left(1-q^{-1}\right)(q-1) q^{-2} a_{k} q^{3 k / 2}\left(q^{-s}\right)^{k} \\
& =-(q-1) q^{-2} a_{0} \sum_{k=0}^{(n-K) / 2} q^{k}\left(q^{-s}\right)^{2 k}
\end{aligned}
$$

Since $Z(s, W) \neq 0$, we have $a_{0} \neq 0$. Comparing constant terms, we get

$$
\begin{aligned}
-\left(1-q^{-1}\right)(q-1) q^{-2} a_{0} & =-(q-1) q^{-2} a_{0} \\
1-q^{-1} & =1
\end{aligned}
$$

a contradiction. Therefore, $a=0$. Since $a=0$, we have

$$
m(W)=\left[\begin{array}{c}
r_{0} \\
-q^{-2} r_{0} \\
0 \\
\vdots
\end{array}\right]
$$

i.e.,

$$
b_{k}=-q^{-2} a_{k}, \quad k \geq 0
$$

Therefore, we get from (4) that

$$
\sum_{k=0}^{\infty} q^{3 k / 2} a_{k}\left(q^{-s}\right)^{k}=a_{0} \sum_{k=0}^{(n-K) / 2} q^{k}\left(q^{-s}\right)^{2 k}
$$

We obtain $a_{0} \neq 0$. Dividing if necessary, we may assume that $a_{0}=1$. Therefore,

$$
a_{i}= \begin{cases}0 & \text { if } i \text { is odd or } i>n-K \\ q^{-i} & \text { if } i \text { is even and } 0 \leq i \leq n-K\end{cases}
$$

The remaining claims of the theorem follow.
Lemma 3.3. Let (π, V) be a supercupsidal, generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. Then $\operatorname{dim} V\left(N_{\pi}+1\right) \leq 3$.

Proof. For convenience, write $n=N_{\pi}$. By Theorem 3.2 we have $\operatorname{dim} V(n)=1$. Choosing any isomorphism $V(n) \cong \mathbb{C}$, we can consider $\delta_{1}: V(n+1) \rightarrow V(n)$ as a linear form on $V(n+1)$. We consider further the linear forms $\delta_{1} \circ \pi\left(u_{n+1}\right)$ and $\varphi: W \mapsto W(1)$ on $V(n+1)$. Let $W \in V(n+1)$ and assume that

$$
W \in \operatorname{ker}\left(\delta_{1}\right) \cap \operatorname{ker}\left(\delta_{1} \circ \pi\left(u_{n+1}\right)\right) \cap \operatorname{ker}(\varphi)
$$

In other words, W is an element such that $\delta_{1} W=0$ and $\delta_{1} \pi\left(u_{n+1}\right) W=0$ and $W(1)=0$. Lemma 3.1 implies that $W=0$; note that $V(n+1)$ contains no degenerate vectors by the η Principle from [RS]. This shows that $\operatorname{ker}\left(\delta_{1}\right) \cap$ $\operatorname{ker}\left(\delta_{1} \circ \pi\left(u_{n+1}\right)\right) \cap \operatorname{ker}(\varphi)=0$. On the other hand,

$$
\operatorname{dim}\left(\operatorname{ker}\left(\delta_{1}\right) \cap \operatorname{ker}\left(\delta_{1} \circ \pi\left(u_{n+1}\right)\right) \cap \operatorname{ker}(\varphi)\right) \geq \operatorname{dim}(V(n+1))-3
$$

since with every linear form the dimension can go down by at most one. The assertion follows.

Theorem 3.4. Let (π, V) be a supercupsidal, generic, irreducible, admissible representation of $\operatorname{GSp}(4, F)$ with trivial central character, and let $V=$ $\mathcal{W}\left(\pi, \psi_{c_{1}, c_{2}}\right)$. The newform in Theorem 3.2 iii) is given by

$$
m(W)=\left[\begin{array}{ccc}
1 & 0 & \cdots \\
-q^{-2} & 0 & \cdots \\
0 & 0 & \cdots \\
\vdots & \vdots &
\end{array}\right]
$$

Proof. Again for convenience we let $n=N_{\pi}$. Let W_{0} be the vector in Theorem 3.2. By this theorem, we have

$$
m\left(W_{0}\right)=\left[\begin{array}{c}
s_{0} \\
-q^{-2} s_{0} \\
0
\end{array}\right], \quad s_{0}=\left(1,0, q^{-2}, 0, q^{-4}, \ldots, q^{-(n-K)}, 0,0, \ldots\right)
$$

(all the matrices in this proof will have zeros in the fourth row and beyond, hence we shall only write the first three rows). By Proposition 1.3 we have

$$
m\left(\theta^{\prime} W_{0}\right)=\left[\begin{array}{c}
q s_{0} \tag{5}\\
\left(1-q^{-1}\right) s_{0} \\
-q^{-2} s_{0}
\end{array}\right]
$$

and

$$
m\left(\theta W_{0}\right)=q\left[\begin{array}{c}
0 \tag{6}\\
\operatorname{Left}\left(s_{0}\right) \\
\operatorname{Left}\left(-q^{-2} s_{0}\right)
\end{array}\right]+\left[\begin{array}{c}
\operatorname{Right}\left(s_{0}\right) \\
\operatorname{Right}\left(-q^{-2} s_{0}\right) \\
0
\end{array}\right]
$$

Define $W_{1}:=q^{-2} \delta_{1} \theta^{\prime} \theta W_{0}-q \theta W_{0} \in V(n+1)$. By Lemma 1.5 we have

$$
q^{-2} m\left(\delta_{1} \theta^{\prime} W\right)-q m(W)=J(m(W))+q^{-2} m\left(\eta \delta_{1} W\right)
$$

for any paramodular vector W. Applying this with $W=\theta W_{0}$ we get

$$
m\left(W_{1}\right)=J\left(m\left(\theta W_{0}\right)\right)+q^{-2} m\left(\eta \delta_{1} \theta W_{0}\right) .
$$

Since $\operatorname{dim}(V(n))=1$, we have $\delta_{1} \theta W_{0}=\alpha W_{0}$ for some $\alpha \in \mathbb{C}$ (which might be zero). Hence

$$
\begin{align*}
m\left(W_{1}\right) & =J\left(m\left(\theta W_{0}\right)\right)+\alpha q^{-2} m\left(\eta W_{0}\right) \\
& =J\left(q\left[\begin{array}{c}
0 \\
\operatorname{Left}\left(s_{0}\right) \\
\operatorname{Left}\left(-q^{-2} s_{0}\right)
\end{array}\right]\right)+\alpha q^{-2} m\left(\eta W_{0}\right) \\
& =\left[\begin{array}{c}
q^{3} \operatorname{Left}\left(s_{0}\right) \\
-q \operatorname{Left}\left(s_{0}\right) \\
0
\end{array}\right]+\alpha q^{-2}\left[\begin{array}{c}
0 \\
s_{0} \\
-q^{-2} s_{0}
\end{array}\right] . \tag{7}
\end{align*}
$$

Let us now assume that W_{0} does not have the asserted form; we shall derive a contradiction. Thus we assume that $n>K$, or equivalently, that $\operatorname{Left}\left(s_{0}\right) \neq 0$. Under this assumption we have $W_{1} \neq 0$. In fact, it is easy to see that the matrices given in (5), (6) and (7) are linearly independent. By Lemma 3.3 we get $\operatorname{dim}(V(n+1))=3$ and

$$
\begin{equation*}
V(n+1)=\left\langle\theta^{\prime} W_{0}, \theta W_{0}, W_{1}\right\rangle . \tag{8}
\end{equation*}
$$

Now consider the vector $W_{2}:=q \theta W_{0}-W_{1}$. The first row of $m\left(W_{2}\right)$ is given by

$$
q \operatorname{Right}\left(s_{0}\right)-q^{3} \operatorname{Left}\left(s_{0}\right)=\left(0, \ldots, 0, q^{-(n-K)+1}, 0, \ldots\right),
$$

where the non-zero entry is at position $n-K+1$ (the first entry is at position 0). Therefore

$$
Z\left(s, W_{2}\right)=\text { const. } \cdot\left(q^{-s}\right)^{n-K+1}
$$

By the functional equation we have

$$
Z\left(s, \pi\left(u_{n+1}\right) W\right)=q^{-(n+1) s} q^{(n+1) / 2} \gamma(1-s, \pi) Z(1-s, W)
$$

for any $W \in V(n+1)$. Applied to $W=W_{2}$ we get

$$
\begin{aligned}
Z\left(s, \pi\left(u_{n+1}\right) W_{2}\right) & =q^{-(n+1) s} q^{(n+1) / 2} \gamma(1-s, \pi) Z\left(1-s, W_{2}\right) \\
& =\text { const. } \cdot q^{-(n+1) s} \gamma(1-s, \pi)\left(q^{-(1-s)}\right)^{n-K+1} \\
& =\text { const. } \cdot q^{-(n+1) s} \gamma(1-s, \pi)\left(q^{s}\right)^{n-K+1} \\
& =\text { const. } \cdot q^{-(n+1) s} \varepsilon_{\pi} q^{-K / 2}\left(q^{-s}\right)^{-K} q^{s(n-K+1)} \\
& =\text { const. }
\end{aligned}
$$

For the fourth equality we used the fourth assertion of Theorem 3.2. Therefore, $\pi\left(u_{n+1}\right) W_{2} \in V(n+1)$ is a vector with constant zeta polynomial. On the other hand, by (8), there exist $x, y, z \in \mathbb{C}$ such that $\pi\left(u_{n+1}\right) W_{2}=x \theta^{\prime} W_{0}+y \theta W_{0}+z W_{1}$. Then

$$
Z\left(s, \pi\left(u_{n+1}\right) W_{2}\right)=x \underbrace{Z\left(s, \theta^{\prime} W_{0}\right)}_{\text {even }}+y \underbrace{Z\left(s, \theta W_{0}\right)}_{\text {odd }}+z \underbrace{Z\left(s, W_{1}\right)}_{\text {odd }} .
$$

The "even" and "odd" refer to the powers of q^{-s} occuring in these zeta polynomials. Since, by (5), (6) and (7), the function $Z\left(s, \theta W_{0}\right)$ has higher degree in q^{-s} than the other two zeta functions, it follows that $y=0$. Then it follows that $z=0$ since the result must be constant and $Z\left(s, W_{1}\right)$ has only odd degrees. It follows that $W_{2}=x \theta^{\prime} W_{0}$. But this is impossible since the first row of $m\left(\theta^{\prime} W_{0}\right)$ has more than one non-zero entry by our assumption.

It is evident that the claims of the theorem from the introduction follow from Theorem 3.2 and Theorem 3.4.

References

[RS] Roberts, B., Schmidt, R.: Local Newforms for GSp(4). Preprint, 305 pp. (2006)

[^0]: *Research supported by NSF grant \#0454809
 ${ }^{\dagger}$ Research supported by NSF grant \#0400837

