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In this article, first we give dimension formulas of the space S3(Γ) of
Siegel cusp forms of weight 3 of degree 2 belonging to discrete subgroups
Γ of parahoric type, including Hecke type groups Γ0(p), paramodular groups
K(p), Klingen type groups Γ

′
0(p) and the Iwahori subgroup B(p) of any prime

level. As for weight k ≥ 4, the dimension formulas for Siegel modular forms
of degree two are explicitly known for many discrete subgroups and there are
two well known methods to calculate these: the Riemann-Roch-Hirzebruch
theorem for k ≥ 4 and the Selberg trace formula for k ≥ 5. Both methods
does not work for weight k = 3 in general and there are no general ways to
calculate the dimension for k ≤ 3. Before our present work, the dimensions
of S3(Γ) were calculated only for finitely many (conjugacy classes of) discrete
subgroups by rather complicated technical numerical calculation depending
heavily on each discrete group Γ (cf. e.g. Poor and Yuen [23].) In this paper,
we use holomorphic Lefschetz formula (a group invariant version of Riemann-
Roch-Hirzebruch). The obstruction of the cohomology in this formula does
not vanish in general, but by showing that it vanishes for the above discrete
groups, we obtain our dimension formula. As for paramodular groups and
Hecke type groups, our formula coincides with those conjectured in [17] and
[7].

Secondly, we give a geometric meaning of the dimensions of weight 3. We
shall show that the dimensions of cusp forms of weight 3 is related with the
geometry of principally polarized super-singular abelian surfaces in several
ways. It was known that certain arithmetic invariants of the locus of super-
singular abelian surfaces in the moduli of principally polarized abelian sur-
faces over algebraically closed field of characteristic p are related with some
class numbers of the compact real form of the split symplectic group Sp(2,R)
of size four(due to Katsura, Oort and partly myself). These class numbers
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are nothing but the dimension of certain automorphic forms of weight 0 of the
compact twist. In general, automorphic forms of the compact twist should
correspond with Siegel modular forms by Langlands conjecture. A precise
conjecture of this type on bijective correspondence of automorphic forms has
been formulated in [14] and [13]. We have not proved this conjecture it-
self, but by our dimension formula, we can show at least certain dimensional
equalities between these forms belonging to compact or non-compact real
forms of the symplectic group. This leads to the above interpretation.

Historically the above results on dimensions and geometric interpretation
are a part of the conjectures by the author in [17] first announced in Confer-
ence on L functions at Kyushu University. The author would like to thank
Professo Takayuki Oda for asking him the possibility to use Riemann-Roch
theorem at this talk. He also thanks Professor Ryuji Tsushima for giving
him a kind guidance to cohomological methods with which the author was
not familiar before.

1 Definition of Siegel Modular Forms

We denote by Hn the Siegel upper half space of degree n.

Hn = {Z = X + iY ∈ Mn(C); tZ = Z, Y > 0}.

The symplectic group

Sp(n,R) = {g ∈ M2n(R); gJ tg = J}

acts on Hn is the usual way, where J =

(
0 1n

−1n 0

)
. The weight of Siegel

modular forms is given by an irreducible rational represenstation (ρ, V ) over
C of GLn(C). We take a discrete subgroup Γ ⊂ Sp(n,R) with vol(Γ\Hn) <
∞. A Siegel modular form of Γ of weight ρ is defined to be a V -valued
holomorphic function F of Hn such that

(F |ρ[γ])(Z) := ρ(CZ +D)−1F (γZ) = F (Z)

for all γ =

(
A B
C D

)
∈ Γ, with the standard regularity condition at each

cusp when n = 1. When ρ = detk, we say F is of weight k.
When n = 2, we write ρk,j = detk Symj, where Symj is the j-th sym-

metric tensor representation of GL(2) on Cj+1. We denote by Mk,j(Γ) the
space of Siegel modular forms of weight ρk,j belonging to Γ. A function
F ∈ Mk,j(Γ) is called a cusp form if it vanishes on the boundaries of the
Satake compactification and the space of such forms are denoted by Sk,j(Γ).
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2 Dimension Formulas

2.1 Some general remarks

First we give some general remarks on dimension formulas. For any degree
n, if k is big enough, there are some theoretical way to calculate dimensions,
though it is often too complicated to execute calculation. Two possible ways
to calculate dimensions are
(1) Riemann-Roch-Hirzebruch and Lefschetz fixed point theorem. Here we
need the assumption that k ≥ n+ 2 for the vanishing of the obstructions of
cohomology in general.
(2) The Selberg trace formula. Here we need the assumption that k > 2n for
the convergence of the kernel function of Godement.
By the method (2) and as an application of special values of zeta functions
of prehomogeneous vector spaces, we can give an explicit conjectural dimen-
sion formula for Sk(Γ(N)) of any weight k > 2n for the congruence sub-
groups Γ(N) with N ≥ 3 of any degree (Joint work with H. Saito, cf. [19].)
This matches the known result for n ≤ 3 by Morita, Christian, Yamazaki,
Tsushima. The condition k > 2n comes from the condition that the Selberg
trace formula is valid, but actually if this conjecture is true for k > 2n, then
it is automatically true for k > n+ 1 by (1).

Now if the weight is very small, i.e. if k < n/2, all the Siegel modular
forms are so called singular modular forms and there are no cusp forms. There
exists no general way to calculate the dimensions of Sk(Γ) for n/2+1 ≤ k ≤
n + 1. Now we assume that n = 2. For k ≤ 3, there exists no general way
to calculate dimensions. In this article we treat the case n = 2 and k = 3
for relatively big discrete subgroups Γ of Sp(2,R). The proof is related with
some new vanishing theorem for M1,j(Γ) for j > 0, which was first obtained
for j = 0 in the joint work [20] with Skoruppa. This depends on a choice of
Γ, and we cannot expect that it vanishes for general Γ.

2.2 Parahoric subgroups

We consider discrete subgroups Γ of parahoric type here. These groups are
defined as follow. Let N be any natural number. We put

B(N) = Sp(2,Z) ∩


Z NZ Z Z
Z Z Z Z
NZ NZ Z Z
NZ NZ NZ Z


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and

ρN =


0 0 0 −1
0 0 −1 0
0 N 0 0
N 0 0 0

 ,

We also put

K(N) = Sp(2,Q) ∩


Z NZ Z Z
Z Z Z N−1Z
Z NZ Z Z
NZ NZ NZ Z



Γ0(N) = Sp(2,Z) ∩


Z Z Z Z
Z Z Z Z
NZ NZ Z Z
NZ NZ Z Z



Γ
′

0(N) = Sp(2,Z) ∩


Z NZ Z Z
Z Z Z Z
Z NZ Z Z
NZ NZ NZ Z



Γ
′′

0(N) = Sp(2,Q) ∩


Z Z Z Z
Z Z Z N−1Z
NZ NZ Z Z
NZ NZ Z Z

 = ρ−1
N Γ

′

0(N)ρN

The group K(N) is called paramodular group of level N .
WhenN = p is a prime, a discrete group Γ such that B(p) ⊂ Γ ⊂ Sp(2,Q)

is either Sp(2,Z), ρpSp(2,Z)ρ−1
p , K(p), Γ0(p), Γ

′
0(p) or Γ

′′
0(p) by virtue of the

well-known Bruhat-Tits theory. The p-adic completion of Γ is a so-called
parahoric subgroup in Sp(2,Qp). Here we call such Γ a discrete subgroup of
parahoric type.

2.3 Dimension formulas of weight 3

In this section we assume that p is any prime. The dimension formulas for
dimSk(Γ) where Γ is any discrete subgroup of parahoric type of prime level
p were known for k ≥ 5 (cf. [7], [14], [9]), all obtained by the Selberg trace
formula. We give new results for k = 3 in this section and results for k = 4
in the next section. Outline of the proofs of these theorems will be given in
the last section. We note that, by Freitag [4] p.155 Hilfssatz 2.1, 2.5 and Satz
2.6, cusp forms of weight 3 of Γ correspond bijectively with sections of the
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canonical divisor of any smooth compactification Γ\H2 of Γ\H2. Although
we do not use this fact at all in our proof, we can deduce several results on
Siegel modular varieties from this fact and our new dimension formulas. For
example, by Freitag loc. cit., Siegel modular varieties Γ\H2 are not rational
for any Γ such that dimS3(Γ) > 0, so we can give many such examples of Γ
from below.

Theorem 2.1 For paramodular groups K(p),
we have dimS3(K(2)) = dimS3(K(3)) = 0, and for p ≥ 5 we have

dimS3(K(p)) =

−1 +
1

2880
(p2 − 1) +

1

64
(p+ 1)

(
1−

(
−1

p

))
+

5

192
(p− 1)

(
1 +

(
−1

p

))
+

1

72
(p+ 1)

(
1−

(
−3

p

))
+

1

36
(p− 1)

(
1 +

(
−3

p

))

+


2/5 if p ≡ 2, 3 mod 5
1/5 if p = 5
0 otherwise

+
1

8

(
1−

(
2

p

))
+

{
1/6 if p ≡ 5 mod 12
0 otherwise

Numerical examples.

p 2 3 5 7 11 13 17 19 23 29 31 37
dim 0 0 0 0 0 1 1 1 1 2 2 4
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Theorem 2.2 For Hecke type groups Γ0(p), we have S3(Γ0(2)) = S3(Γ0(3)) =
0, and for p ≥ 5 we have

dimS3(Γ0(p)) =

(p+ 1)(p2 + 1)

2880
− 7

576
(p+ 1)2 +

55

288
(p+ 1)

+
1

36
(p− 23)

(
1 +

(
−3

p

))
+

1

96
(2p− 25)

(
1 +

(
−1

p

))

− 1

12

(
1 +

(
−1

p

))(
1 +

(
−3

p

))
+


−1/2 if p ≡ 1 mod 8
−1/4 if p ≡ 3, 5 mod 8
0 of p ≡ 7 mod 8

+


−4/5 if p ≡ 1 mod 5
0 if p ≡ 2, 3, 4 mod 5
−1/5 if p = 5.

p 2 3 5 7 11 13 17 19 23 29 31 37
dim 0 0 0 0 0 0 1 1 2 4 4 9
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Theorem 2.3 For the Iwahori subgroups for B(p), we have dimS3(B(2)) =
dimS3(B(3)) = 0, and for p ≥ 5, we have

dimS3(B(p)) =

(p+ 1)2(p2 + 1)

2880
− 13

288
(p+ 1)2 +

1

3
(p+ 1)

+
5p− 37

48

(
1 +

(
−1

p

))
+

3p− 29

6

(
1 +

(
−3

p

))

−1

6

(
1 +

(
−1

3

))(
1 +

(
−3

p

))

+

{
−1 if p ≡ 1 mod 8
0 otherwise

+


−8/5 if p ≡ 1 mod 5
1/5 if p = 5
0 otherwise

p 2 3 5 7 11 13 17 19 23 29 31 37
dim 0 0 0 0 2 9 25 42 88 237 312 649

Theorem 2.4 For the Klingen type discrete subgroups Γ
′
0(p), we have dimS3(Γ

′
0(2)) =

dimS3(Γ
′
0(3)) = 0, and for p ≥ 5, we have

dimS3(Γ
′

0(p)) =

(p+ 1)(p2 + 1)

2880
− 1

96
(p+ 1)2 +

43

288
(p+ 1)

+
p− 11

32

(
1 +

(
−1

4

))
+

p− 13

18

(
1 +

(
−3

p

))

+

{
−1/2 if p ≡ 1 mod 8
0 otherwise

+


−4/5 if p ≡ 1 mod 5
1/5 if p = 5
0 otherwise
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p 2 3 5 7 11 13 17 19 23 29 31 37
dim 0 0 0 0 0 1 1 2 2 5 6 13

We define

dimSnew
k (B(p)) =

dimSk(B(p))− dimSk(Γ0(p))

−2 dimSk(Γ
′

0(p)) + 2 dimSk(Sp(2,Z))
+dimSk(K(p))

Then it is known that dimSnew
3 (B(p)) is the dimension of the space of

F ∈ S3(B(p)) whose corresponding local representation at p is the Stein-
berg representation.

Theorem 2.5 We have dimSnew
3 (B(2)) = dimSnew

3 (B(3)) = 0 and for
p ≥ 5, we have

dimSnew
3 (B(p)) =

1 +
1

2880
(p− 1)(p3 − 1)− 7

576
(p− 1)2

− 1

32
(p− 1)

(
1−

(
−1

p

))
− 1

24
(p− 1)

(
1−

(
−3

p

))
− 1

12

(
1−

(
−1

p

))(
1−

(
−3

p

))
−1

9

(
1−

(
−3

p

))2

−


1/5 if p = 5
2/5 if p ≡ 2, 3 mod 5
4/5 if p ≡ 4 mod 5
0 otherwise

−
{

1/2 if p ≡ 7 mod 8
0 otherwise

−
{

1/6 if p ≡ 11 mod 12
0 otherwise

Numerical examples.

p 2 3 5 7 11 13 17 19 23 29 31
dim 0 0 0 0 2 8 23 38 83 225 298

8



2.4 Dimension formulas of weight 4

By combining the method (1) and (2) in Section 2, we can easily see that

Theorem 2.6 The dimension formulas of Sk(Γ) in [7], [14], [9] are valid
also for k = 4.

The more precise proof will be explained in the last section. For the
readers’ convenience, we write explicit results for k = 4 below. We obtain
the first one from [7] and the second one from [14] by putting k = 4 in the
formula there.

For Γ0(p), we have dimS4(Γ0(2)) = 0, dimS4(Γ0(3)) = dimS4(Γ0(5)) = 1
and for any prime p > 5, we have

dimS4(Γ0(p)) =
1

576
(p2 + 1)(p+ 1) +

7

192
(p+ 1)2 − 11

288
(p+ 12)

+
1

36
(p− 1)

(
−3

p

)
+

2p− 41

96

(
−1

p

)
− 1

12

(
3

p

)

+
1

8
×


4 if p ≡ 1 mod 8
2 if p ≡ 3, 5 mod 8
0 if p ≡ 7 mod 8

+
1

12
×


4 if p ≡ 1 mod 12
2 if p ≡ 3, 5 mod 12
0 if p ≡ 7 mod 12,

where
(

−d
p

)
is the Legendre symbol.

For K(p), we have S4(K(2)) = S4(K(3)) = 0 and for any prime p ≥ 5 we
have

dimS4(K(p)) =
1

576
(p2 + 1) +

p− 2

8
+

1

96
(p− 12)

(
−1

p

)
+

p

36

(
−3

p

)
+
1

8

(
2

p

)
+

1

12

(
3

p

)
We have dimS4(Γ

′
0(2)) = dimS4(Γ

′
0(3)) = 0. For any prime p ≥ 5, we

have

dimS4(Γ
′

0(p)) =
1

576
(p2 + 1)(p+ 1)− 5

288
(p+ 1)2 +

23

288
(p+ 1)

+
1

96
(7p− 41)

(
1 +

(
−1

p

))
+

1

36
(3p− 7)

(
1 +

(
−3

p

))
+
1

2
×

{
1 if p ≡ 1 mod 8
0 otherwise

+
1

3
×

{
1 if p ≡ 1 mod 12
0 otherwise
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We have dimS4(B(2)) = 0 and dimS4(B(3)) = 1. For p ≥ 5, we have

dimS4(B(p))

=
1

576
(p+ 1)2(p2 + 1) +

11

288
(p+ 1)2 − 1

3
(p+ 1) + 1

+
3

16
(p− 5)

(
1 +

(
−1

p

))
+

2

9
(p− 1)

(
1 +

(
−3

p

))
−1

6

(
1 +

(
−1

p

))(
1 +

(
−3

p

))
+

{
1 if p ≡ 1 mod 8
0 otherwise

+
2

3
×

{
1 if p ≡ 1 mod 12
0 otherwise

We also have dimSnew
4 (B(2)) = dimSnew

4 (B(3)) = 0. For p ≥ 5, we have

dimSnew
4 (B(p)) =

1

576
(p− 1)(p3 − 1) +

7

192
(p− 1)2 − 1

32
(p− 1)

(
1−

(
−1

p

))
− 1

18
(p− 1)

(
1−

(
−3

18

))
− 1

12

(
1−

(
−1

p

))(
1−

(
−3

p

))
+
1

2
×

{
1 if p ≡ 7 mod 8
0 otherwise

+
1

3
×

{
1 if p ≡ 11 mod 12
0 otherwise

Numerical examples of dimensions of weight 4 is given below.

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43
S4(K(p)) 0 0 0 1 1 2 2 3 3 4 6 8 7 9
S4(Γ0(p)) 0 1 1 3 7 11 20 27 41 75 90 143 185 211

S4(Γ
′
0(p)) 0 0 0 1 1 5 7 10 14 34 43 79 101 118

S4(B(p)) 0 1 2 9 33 70 176 269 545 1350 1753 3506 5220 6297
Snew
4 (B(p)) 0 0 1 5 25 51 144 225 479 1211 1583 3213 4840 5859

3 Geometric Meanings of the Dimensions

An abelian surface A over an algebraically closed field k of characteristic p is
said to be super-singular if A is isogenous to E2 where E is a super-singular
elliptic curve over k. We denote by A2,1 the moduli space of principally
polarized abelian surfaces.
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Theorem 3.1 The number of irreducible components of the locus S of prin-
cipally polarized super-singular abelian surfaces in the moduli space A2,1 is
equal to

dimS3(K(p)) + 1.

Theorem 3.2 The arithmetic genus of the locus S is equal to dimSnew
3 (B(p)).

Remark. Each irreducible component of S is birational to P1 but has
many singularities. The generalized arithmetic genus of a singular reducible
curve was defined by J. P. Serre [24].

We obtain these theorems by applying the relation between arithmetic of
quaternion hermitian lattices and geometry, due to Katsura-Oort and partly
myself, and relation of dimension of Siegel modular forms and ”class num-
bers” of quaternion hermitian lattices obtained in [8]. In next section, we
explain this.

4 Arithmetic of Quaternion Hermitian Groups

Let D be the definite quaternion algebra over Q ramified exactly at p and ∞
and O a maximal order of D. We put

G = {g ∈ M2(D); gtg = n(g)12, n(g) > 0}.

Let GA be the adelization of G. The local factor at a place v ≤ ∞ is defined
by

Gv = {g ∈ M2(Dv) : g
tg = n(g)12, n(g) ∈ Q×

v }.
Here we understand that Q∞ = R and in that case we have n(g) > 0 au-
tomatically since D∞ is definite. In particular, G∞/center is a compact
group isomorphic to {g ∈ M2(H); gtg = 12}/{±12} where H is the Hamilton
quaternion algebra. For any prime q ̸= p, we have Gq

∼= GSp(2,Qq) = {g ∈
M4(Qq); gJ

tg = n(g)J}. We put Uq = GSp(2,Zq) = GSp(2,Qq) ∩M4(Zq)
×.

To define automorphic forms, we take a subgroup U = G∞Up

∏
q ̸=p Uq of GA,

where we define a open compact group Up of Gp later. The open subgroup
U ⊂ GA plays the role of a ”discrete subgroup”. We take a representation
ρ : GA → G∞ → G∞/center → GL(V ). An automorphic form with re-
spect to U of weight ρ is defined as a V -valued function of GA such that
f(uga) = ρ(u)f(g) for any u ∈ U , g ∈ GA and a ∈ G, where G is diagonally
embedded in GA as usual. We denote the space of these functions by Mρ(U).
When ρ is the trivial representation, we write Mρ(U) = M0(U). In this case,
the above definition implies that dimM0(U) = #(U\GA/G), which is called
the class number of U .
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Now by changing the coordinate a little, we take another group G∗
p iso-

morphic to Gp, and under this identification we take Up as a subgroup Up,0,
Up,1 or Up,2 of G∗

p as follows.

Gp
∼= G∗

p =

{
g ∈ M2(Dp); g

(
0 1
1 0

)
tg =

(
0 1
1 0

)}
Up,1 = G∗

p ∩M2(Op)
×

Up,2 = G∗
p ∩

(
Op π−1Op

πOp Op

)×

Up,0 = Up,1 ∩ Up,2.

The group Up,0 is the minimal parahoric subgroup of G∗
p. We denote by Ui

(i = 0, 1, 2) the corresponding open sugroup U of GA defined as before by
taking Up = Up,i. Then we have the following theorems.

Theorem 4.1 (Ib.-Katsura-Oort[10]) The number of principal polariza-
tions on E2 is the class number of U1.

Theorem 4.2 (Katsura-Oort [11]) The number of irreducible components
of supersingular locus S in A2,1 is the class number of U2.

The following conjecture was suggested in late 1980’s in the discussion
with Professor Ekedahl.

Conjecture 4.3 The arithmetic genus of S is

dimM0(U0)− dimM0(U1)− dimM0(U2) + 1.

In this occasion, we would like to add several more remarks on known
results about the arithmetic of quaternions and geometry.

(1) The configuration of S is described by inclusions of double cosets of
U0gG, U1hG, U2kG.

(2) For each class U2giGA (1 ≤ i ≤ H), consider the finite groups Γi =
G∩g−1

i Ugi. Each Γi is the automorphism group of the ”Moret-Bailey” family
(over the irreducible component of S). We can determine all Γi by a kind of
new mass formula. (cf. [15]).

(3) The curves C of genus 2 with J(C) ∼= E2 have models defined over
Fp2 . Each number of curves C of genus 3 such that J(C) ∼= E2 defined over
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Fp or defined over Fp2 is counted. (cf. [12]).

(4) For p ≥ 3, there exists a genus 3 curve C such that #(C(Fp2)) attains
Weil’s maximum. (cf. [16]). It is an open problem if we can take the above
C as a hyper-elliptic curve, as far as the author knows.

Now, by the general philosoply of Langlands, or Ihara’s old conjecture
in [22], the relation of automorphic forms of GA should be related with au-
tomorphic forms of Sp(2,QA). But here the concrete description of corre-
sponging discrete groups or new forms were not clear. The author gave more
concrete conjectures of this type correspondence in early 1980’s, aiming to
generalize classical theorems of Eichler betwee SL(2) and SU(2). We shortly
review them now. We denote by ρf1,f2 the finite dimensional representation
of Sp(2) = {g ∈ M2(H); gtg = 12} corresponding to the Young diagram
parameter f1 ≥ f2 ≥ 0 with f1 ≡ f2 mod 2.

Conjecture 4.4 ([14]) For any even non-negative integer j and any integer
k ≥ 3, there should exist an isomorphism

Mnew
ρk+j−3,k−3

(U2) ∼= Snew
k,j (K(p))

which preserves L functions.

Conjecture 4.5 ([13]) There should exist an isomorphism

Mnew
ρk+j−3,k−3

(U0) ∼= Snew
k,j (B(p)).

Here we do not explain the meaning of new forms in detail in general case
(see the above quoted references.) But when k = 3 and j = 0, then we define
Mnew

0 (U) is space of automorphic forms orthogonal to the constant functions
and Snew

3 (K(p)) = S3(K(p)) (i.e. there are no old forms in this case).

5 Outline of the Proofs

We use the Riemann-Roch-Hirzebruch theorem and the holomorphic Lef-
schetz theorem. For a discrete subgroup Γ in question, we take a torsion
free normal subgroup Γ

′
of Γ with finite index. We denote by X the Sa-

take compactification of Γ
′\H2 and X̃ a smooth toroidal compactification of

X. We put D = X̃ − X. Then D is a divisor with simple normal cross-
ing. Let L be a holomorphic line bundle which is a natural prolongation of
Γ

′\H2 × C where Γ
′
acts on H2 × C by (Z, u) → (MZ, det(CZ +D)u). Let
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Ω be a sheaf of holomorphic 1 forms on X̃. We have L3 = Ω3 ⊗ [D] and
Ω3 = L3 ⊗ [D]−1. We put G = Γ/Γ

′
and for any right G-module M , we put

MG = {m ∈ M ;m = mg}. We have H0(X̃,Ω3) = S3(Γ
′
) and hence we have

H0(X̃,Ω3)G = S3(Γ).

So we must calculate H0(X̃,Ω3)G. For any holomorphic vector bundle V on

X̃, we put

χ(X̃, V ) =
3∑

i=0

(−1)i dimH i(X̃, V ).

This is called the Euler-Poincare characteristic of V . The formula to give this
number is called the Riemann-Roch-Hirzebruch theorem. The G-invariant
version of this theorem is given by the holomorphic Lefschetz theorem. This
is a formula to calculate

χG(X̃, V ) =
3∑

i=0

(−1)i dimH i(X̃, V )G.

We have dimH i(X̃,Ω3 × Lk−3)G = dimSk(Γ). To calculate dimH0(X̃, V )
for V = Ω3 ⊗ Lk−3, we must do two things.
(1) Calculation of this altenating sum χG(X̃, V ).

(2) Calculation of dimH i(X̃, V )G for i ≠ 0.
There are done roughly as follows. We know already the formula for (1) for
big k by Selberg trace formula, and we can use this value also for smaller k as
we shall see later. As for (2), we shall show that H1(X̃,Ω3)G = H2(X̃,Ω3) =

0 for our discrete subgroups in question. It is also easy to see H3(X̃,Ω3)G ∼=
C. So as a whole we have dimS3(Γ) = χG(X̃,Ω3) + 1.

We shall see these more in detail. First we explain the calculation (1).
We review the holomorphic Lefschetz theorem (cf. [2]). This is given by the
following formula.

3∑
i=0

(−1)p dimHp(X̃, V )G =
1

|G|
∑
g∈G

τ(g)

τ(g) =
∑
α

τ(g,Xg
α)

τ(g,Xg
α) =

{
ch(V |Xg

α) ·
∏

g U θ(N g
α(θ)) · T (Xg

α)

det(1− g|(N g
α)∗)

}
[Xg

α]

Here, for g ∈ G, Xg ⊂ X denotes the fixed point set of g. Let Xg
α be an

irreducible component of Xg. We denote by N g
α the normal bundle of Xg

α

14



and by (N g
α)

∗ the dual bundle. We write

V |Xg
α =

∑
i

ai ⊗ χi ai ∈ K(Xg
α), χi ∈ R(G),

where K(Xg
α) is the Grothendieck group of ventor bundles and R(G) is the

representation ring over C. We denote by ch(∗) the Chern character of ∗
and ch(V |Xg

α)(g) =
∑

i χi(g)ch(ai). Now g acts also on the normal bundle
N g

α. Since g is of finite order, the eigenvalues of g of this action are roots of
unity and we denote them by eiθ. We decompose N g

α into eigenspaces and
write the corresponding bundle by N g

α(θ). We decompose the total Chern
class formally as follows.

c(N g
α(θ)) = 1 + c1(N

g
α(θ)) + · · ·+ cn(N

g
α(θ))

=
∏
β

(1 + xβ).

Then we define

U θ(N g
α(θ)) =

∏
β

(
1− e−xβ−iθ

1− e−iθ

)−1

.

We denote by T (Xg
α) the Todd class of Xg

α and by [Xg
α] the fundamental

class in H2d(X
g
α,Z) where d = dimXg

α.
When V is a line bundle as in our case, then there is no decomposition

of the representation and we have just a character of g. If we take L⊗k, then
the action is the k-th power of the action on L. So if we put L|Xg

α = a⊗ χ,
then we have L⊗k|Xg

α = a⊗χk
i where a is a line bundle on Xg

α. So in this case
we have ch(L⊗k|Xg

α) = ch(a)kχk(g). Since g is of finite order, χ(g) are roots
of unity. In the holomorphic Lefschetz formula for V = Lk − D, the only
part which depends on k is the term ch(V |Xg

α)(g). By the usual Rieman-
Roch-Hirzebruch theorem, this part is expressed with the product of χk(g)
and polynomials of k with coefficients which are independent of k. So we can
conclude that

Lemma 5.1 There exists a certain natural number M such that for each
fixed k mod M , χG(X̃,Ω ⊗ Lk−3) is a polynomial of k with constant coeffi-
cients.

Corollary 5.2 If we have a formula for Sk(Γ) for all k >> 4, then the same
formula gives the G-invariant Euler-Poincare characteristic for any k ≥ 3.

In other words, for any weight k, the holomorphic Lefschetz formula gives
us a formula of the ”G-invariant Euler-Poincaré characteristics” χG(X̃,Ω ⊗

15



Lk−3) as polynomials of k for each k mod M for some big M . On the other

hand, it is known that χG(X̃,Ω ⊗ Lk−3) = dimSk(Γ) for any k ≥ 4. (cf.
Tsushima [27]). For discrete groups Γ of parahoric type, dimSk(Γ) has been
calculated by Selberg trace formula in [7], [14], [9] (except for the case Γ =
B(3) or Γ

′
0(3), the case excluded in [9] by complication of calculation. But

we can show S3(B(3)) = S
′
3(Γ0(3)) = 0 by other ad hoc argument.) So the

first calculation is done.
Next we explain (2) for V = Ω3. By Serre duality, we have

H i(X̃,Ω3)G ∼= H3−i(X̃,O)G.

By this, we have
H3(X̃,Ω3)G ∼= H0(X̃,O)G = C.

By Dolbeault-Hodge theorem, we have

H3−i(X̃,O)G ∼= H0(X̃,Ω3−i)G.

The left hand side is (H0,3−i)G and the right hand side (H3−i,0)G is the
complex conjugation. Hence we have

H1(X̃,Ω3)G ∼= H0(X̃,Ω2)G ⊂ H0(X̃,Ω2(logD)) ∼= Adet ·Sym2(Γ)

H2(X̃,Ω)G ∼= H0(X̃,Ω1)G ⊂ H0(X̃,Ω(logD)) ∼= ASym2(Γ)

The author was informed of the fact H0(X̃,Ω1) = 0 first by Takayuki
Oda. He explained the author that we can show this by standard theorems
on cohomology and rather folklore. Here we can give an alternative proof
using the following theorem by Freitag.

Theorem 5.3 (Freitag [3]) For any congruence group Γ of Sp(2,Z), we
have ASym2(Γ) = 0.

Freitag’s proof uses various modular embeddings of Hilbert modular forms
and induce a contradiction. Anyway, we have H2(X̃,Ω3) = 0.

We will explain that Adet ·Sym(2)(Γ) = 0 for our Γ in the next section. If
we admit this, we can conclude as follows.

Theorem 5.4 For a discrete group Γ = K(N), Γ0(N), Γ
′
0(N), Γ

′′
0(N), B(p),

where N is any squarefree natural number and p is any prime, we have

dimS3(Γ) = χG(X̃,Ω3) + 1.

As we explained, we get explicit value of χG(X̃,Ω3) by putting k = 3 in
the general formula for big k in [7], [14], [9]. So we have dimension formulas
of weight 3.
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6 Vanishing of Weight One

Here we sketch the proof of the following theorem.

Theorem 6.1 For any j, we have AdetSymj
(Γ) = 0 for Sp(2,Z), K(N),

Γ0(N), Γ
′
0(N), B(p), as far as N is a squarefree natural number and p is a

prime.

For Γ = Γ0(N) and j = 0, this theorem is already in the joint work with
Skoruppa(cf. [20]) (though there was an error for the vanishing of Jacobi
forms and the condition that N is (at least) squarefree should be added.
Actually Lemma claim holds for a little more general N . ) The results for
j > 0 or other groups are new. We do not know in general if S1,j(B(N)) = 0
for natural numbers N which are not primes.

Proof is essentially based on the following result on Jacobi forms.

Theorem 6.2 ([20]) We have J1,m(Γ
(1)
0 (N)) = 0 if N is squarefree and m

is coprime to N .

Note that in [20] contains an error. There it was claimed that this holds
for any N , but we need some conditions on N including all squarefree cases.
Here Γ

(1)
0 (N) is the usual subgroup of SL2(Z). In particular, if N = 1 i.e.

for Γ0(1) = SL2(Z), we have J1,m = 0 always. This was known already in
Skoruppa [25].

So we review Jacobi forms here shortly. Let Γ1 be a finite index subgroup
of SL2(Z). A holomorphic function f(τ, z) of H1 × C is said to be a Jacobi
form of weight k of indexm belonging to ΓJ

1 = Γ·Z2 if it satisfies the following
conditions (1) (2) (3).
(1) We have

f

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)kem

(
cz2

cτ + d

)
f(τ, z)

for any

(
a b
c d

)
∈ Γ1, where we write em(x) = e2πimx.

(2) We have
f(τ, z + λτ + µ) = em(−τλ2 − 2λz)f(τ, z)

for any λ, µ ∈ Z.

(3) For any M =

(
a b
c d

)
∈ SL2(R), we put

f |k,mM = (cτ + d)−kem
(
− cz2

cτ + d

)
f

(
aτ + b

cτ + d
,

z

cτ + d

)
.
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Then for any M ∈ SL2(Z), we have the following Fourier expansion.

(f |k,jM)(τ, z) =
∑
n,r∈Z

c(n, r)e(nτ)e(rz)

where c(n, r) = 0 unless 4nm− r2 ≥ 0.
The space of such Jacobi forms are denoted by Jk,m(Γ0(N)J).
Now put

P1 =


Q 0 Q Q
Q Q Q Q
Q 0 Q Q
0 0 0 Q

 ∩ Sp(2,Q).

Let Γ be a subgroup of Sp(2,Q) such that Γ ∩ P1 contains all
1 0 0 µ
λ 1 µ κ
0 0 1 −λ
0 0 0 1


with λ, µ, κ ∈ Z and 

a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1


with

(
a b
c d

)
∈ Γ1. For any F ∈ Sk,j(Γ), we write the Fourier-Jacobi expan-

sion as

F (Z) =
∞∑

m=1

fm(τ, z)e
m(ω)

for Z =

(
τ z
z ω

)
∈ H2. Here fm(τ, z) is a Cj+1-valued function on H1 × C.

We denote by ϕm(τ, z) is the last component of fm(τ, z). We can show that
ϕm(τ, z) is a Jacobi form of weight k of index m belonging to ΓJ

1 in the usual
sense. This can been seen by the relation

fm

(
aτ + d

cτ + d
,

z

cτ + d

)
= (cτ + d)kem(

cz2

cτ + d
)ρj

(
cτ + d cz

0 1

)
fm(τ, z)

fm(τ, z + λτ + µ) = em(−λ2τ − 2λz)

(
1 −λ
0 1

)
fm(τ, z)

and Koecher principle of F . In general, the other comonents are not Jacobi
forms, but obtained by derivatives of Jacobi forms (cf. [21]).
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So, for Γ = Γ0(N) or B(N), the last component ϕm(τ, z) of the m-th

Fourier Jacobi coefficients belongs to Jk,m(Γ
(1)
0 (N)J). For Γ = Γ

′
0(N), we

have ϕm ∈ Jk,m(SL2(Z))J . When Γ = K(N), since κ ∈ N−1Z, ϕm is not
zero only when N |m. So if we renumber the coefficients as ϕm/N , then ϕm ∈
Jk,Nm(SL2(Z)J).

The following lemma is obtained easily by seeing the automorphic prop-
erty of Siegel modular forms.

Lemma 6.3 Let Γ be one of the above discrete groups. If the last component
of F ∈ Sk,j(Γ) is identically zero, then F itself is identically zero.

Since we have J1,m(SL2(Z)J) = 0 for any m, this lemma implies imme-
diately that S1,j(Γ

′
0(N)) = S1.j(K(N)) = S1,j(Sp(2,Z)) = 0 for any j ≥ 0.

Since Γ
′
0(N) and Γ

′′
0(N) are conjugate, we also have S1,j(Γ

′′
0(N)) = 0. As for

the claim that S1,j(Γ0(N)) = 0 for any natural number N and S1,j(B(p)) = 0
for any prime p with j ≥ 0, we need more argument similar to those as in
[20]. We omit the details of the proof here.

Correction: In the paper [9], there are following typos.
p.44 l.2; ”[−1,−k + 1,−k + 2, k − 1, k − 2; 6]” should read
[−1,−k + 1,−k + 2, 1, k − 1, k − 2; 6].
p.44 l.10; In the right hand side of t(β̂5, k)+t(β̂6, k), ”(−4/9)(1+(−1/p))[1,−1, 0; 3]”
should read (−4/9)(1 + (−3/p))[1,−1, 0; 3].
p.47 l.21; In the right hand side of T6, ”[−k + 1,−k + 2; 2]” should read
[−k + 2,−k + 1; 2].
p.49 l.1; In the right hand side of H3(U

′
1(p)), ”(p − 1)(1 − (−1/p))/26/32”

should read (p− 1)(1− (−1/p))/24/3.
p. 75; In (5.17), ”= m(γ;Sp(2,Z)/Γ′

0(p))” should readm(γ;Sp(2,Z)/Γ′
0(p)) =

p + 2 + (−1/p). Similarly, in (5.18), ”= m(γ;Sp(2,Z)/Γ′
0(p))” should read

m(γ;Sp(2,Z)/Γ′
0(p)) = p+ 2 + (−3/p).
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