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Abstract

For irreducible admissible representations of the group of symplectic
similitudes GSp(4, F') of genus two over a p-adic number field F,
we obtain the parahoric restriction with respect to an arbitrary
parahoric subgroup &?. That means we determine the action of
the Levi quotient &2/ 227" on the invariants under the pro-unipotent
radical 22 in terms of explicit character values. Especially, we get
the parahoric restriction of local endoscopic L-packets in terms of
lifting data.

The inner cohomology of the Siegel modular variety of genus two
with an arbitrary ¢-adic local system admits an endoscopic and a
Saito-Kurokawa part under spectral decomposition. For principal
congruence subgroups of squarefree level N they define simultaneous
representations of the absolute Galois group I'g and the Hecke action
of GSp(4,Z/NZ). We decompose them into irreducible constituents
and give explicit character values. As an application, we prove the
conjectures of Bergstrom, Faber and van der Geer on level two.

Zusammenfassung

Fiir die Gruppe GSp(4, F) symplektischer Ahnlichkeitstransforma-
tionen iiber einem p-adischen Zahlkérper F' bestimmen wir die
Parahori-Restriktion beliebiger irreduzibler zulassiger Darstellun-
gen zu beliebigen Parahori-Gruppen. Das bedeutet, wir berechnen
die Operation des Levi-Quotienten &2/ 2% auf den Invarianten
unter dem pro-unipotenten Radikal &% und dessen Zerlegung in
irreduzible Charaktere. Insbesondere erhalten wir auch die Parahori-
Restriktion der lokalen endoskopischen L-Pakete von Tiefe Null fiir
gegebene Liftungsdaten.

Die Spektralzerlegung der inneren Kohomologie der Siegelschen
Modulvarietdt vom Geschlecht zwei mit beliebigem lokalen Koef-
fizientensystem enthélt einen schwach endoskopischen und einen
Saito-Kurokawa Anteil. Fiir Hauptkongruenzgruppen quadratfreier
Stufe N zerlegen wir sie als simultane /-adische Darstellungen der
absoluten Galoisgruppe I'g und der Gruppe GSp(4,Z/NZ) unter
der Operation der Heckealgebra. In Stufe zwei liefert das einen
Beweis fiir die Vermutungen von Bergstrom, Faber und van der
Geer.
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1. Introduction

The cohomology of Siegel modular varieties encodes a wealth of information as a
Hecke and Galois module. At least since Deligne used the case of genus one as
a keystone in his proof of the Ramanujan conjecture [Del68], they have been a
central focus of research. In this thesis we study the inner cohomology of Siegel
modular threefolds for sufficiently large congruence subgroups, including all principal
congruence subgroups of squarefree level.

We follow the notation of Weissauer [Wei09a]. The Siegel modular threefold is a
Shimura variety

S(C) = GIQ\(X x G(Ay))

attached to a Shimura Datum (G, X, h) for the group of symplectic similitudes
G = GSp(4) of genus two. Fix a local system V, on S(C) attached to an algebraic
representation of highest weight \. For a finite set S of non-archimedean places and
parahoric subgroups &, C GSp(4,Q,), v € S, with pro-unipotent radical &2 let
K C GSp(4, Af) be the open congruence subgroup

K =]]Gsp4z,) [[ 2

véS ves

We describe the weak endoscopic and the Saito-Kurokawa part of the inner cohomology
H?(S(C),V\)E as an f-adic representation of Gal(Q : Q) x [],.¢ %,/ 2.

vES

Our approach is based on the Matsushima-Murakami formula, which expresses the
inner cohomology in terms of cuspidal automorphic representations. Important
results on the classification of automorphic representations of GSp(4) have been
obtained by Piatetski-Shapiro [PS83b]|, Schwermer [Sch95|, Soudry [Sou88|, Taylor
[Tay93|, Tsushima |Tsu83|, Weissauer [Wei88|, and others.

An alternative approach rests on a geometric description of Siegel modular threefolds.
For example, the Shimura variety Sk (C) attached to the modified principal congruence
subgroup of level N € N>,

A

K =K'(N)={r € GSp(4,Z); x = diag(1,1,*,%) mod N}.

is isomorphic to the moduli space As x of principally polarized complex abelian
surfaces with a level- N-structure. This approach dates back to Riemann and has
been continued by Faltings and Chai [FC90|, Lee and Weintraub [LW85|, van Geemen
and Nygaard [vGNO95|, van der Geer [vdG82|, and also many others.



By counting rational points of hyperelliptic curves over finite fields and using the
Lefschetz trace formula, Bergstrom, Faber and van der Geer [FvdG04|, [BFvdGO0§|
obtained a conjectural description of the compactly supported cohomology. This
gave rise to explicit conjectural formulas about the /-adic representations of

GSp(4,Z/NZ) x Gal(Q : Q)

on the motivic inner cohomology for level N = 1,2. By recent work of Weissauer
[Wei09b|, Tehrani [Teh12| and Petersen |[Pet15], these conjectures have been shown
for level N = 1. As an application of our results, we prove the conjectures on level
N = 2 in Section 5.5.

We also determine the Hodge numbers h!(p 9 — dim H!(p ’q)(A2,27V)\) of the inner

cohomology. For sufficiently regular local systems, it only remains to calculate h!@’l)
by Faltings’ result [Fal83] and Tsushima’s formula [Tsu83|. We obtain

hPD = B 4 500 + ) (A — A — 2),
see Cor. 5.23. For the analogous result with irregular A, see Cor. 5.24.

The main tool we employ in the local description of invariants is the parahoric
restriction functor. Let F'/Q, be a non-archimedean local number field with integers
o and finite residue field o/p of order ¢q. Let G be a quasi-split connected reductive
group defined over F' with F-rational points G = G(F’). Parahoric groups are group
schemes over o, whose o-rational points define subgroups &2 of G. They admit a
Levi decomposition

0> Pt P2 52 -0

with respect to the pro-unipotent radical 22 and a reductive Levi quotient &2 defined
over the residue field o/p. Restricting an admissible representation (7, V') of G to &
and taking invariants under &% gives rise to a finite-dimensional representation of
the Levi quotient Z2:

ro(n): P2 — Aut(VZ).

This defines the parahoric restriction functor r5 from admissible representations
of GG to those of &, where the definition on morphisms is the obvious one. The
construction is completely analogous to Jacquet’s functor of parabolic restriction.
We give a survey of the most important results in Section 2.4.

For the general linear group G = GL(n) the parahoric restriction of some representa-
tions has been studied by Bushnell and Kutzko [BK93| and by Vignéras [Vig96]. We
briefly discuss the cases n = 1,2 at the end of Section 2.4.

For the group G = GSp(4, F') of symplectic similitudes of genus two, Moy [Moy88| has
determined the parahoric restriction for certain cuspidal irreducible representations.
Sally and Tadic [ST94] have classified the non-cuspidal irreducible representations and



these have been studied extensively by Roberts and Schmidt [RS07]. For odd residue
characteristic, Breeding-Allison [BA15] has determined the parahoric restriction with
respect to the hyperspecial parahoric for parabolically induced representations. In
Chapter 3 of this thesis, we complete this work and determine the character values of
r () explicitly for arbitrary parahoric subgroups & of GSp(4, F') and irreducible
admissible representations in arbitrary residue characteristic. To this end, we make
use of the classification of irreducible representations of finite group GSp(4,¢q) by
Enomoto [Eno72| and Shinoda [Shi82|. A fortiori, we obtain a new proof of the
classification of parahori-spherical vectors, see Cor. 3.8.

The non-generic cuspidal irreducible representations all occur in the anisotropic
theta-lift and we also obtain their parahoric restriction as a special case of our
results on the endoscopic lift. For generic depth-zero cuspidal irreducible admissible
representations, the classification of Moy and Prasad [MP96, 6.8] and the work of
deBacker and Reeder [DR09| implies that their parahoric restriction can only be
non-zero for hyperspecial maximal parahorics, see Lemma 2.18.

Up to isomorphism, the only proper elliptic endoscopic datum for GSp(4, F') is
attached to the group M = GL(2,F) x GL(2, F)/ GL(1, F') with respect to the
antidiagonal embedding of GL(1, F). The endoscopic character lift attached to M is
a homomorphism r between the Grothendieck groups of admissible representations
of M and GSp(4, F'). For every irreducible representation o of M, we determine in
Chapter 4 the parahoric restriction of its lift (o). If o is unitary generic irreducible,
the lift r(o) has one or two constituents, forming an endoscopic L-packet. We
determine the parahoric restriction for each individual constituent [Wei09a| in terms
of 0.

For example, hyperspecial parahoric subgroups £, C M and % C G satisfy
dimr ., or(0) = (¢ + 1) dimr 4, (0)

for arbitrary virtual representations ¢ in the Grothendieck group of admissible
representations of M. This implies that the matching condition of standard endoscopy
is satisfied for the indicator functions f* = (¢® + 1) char i and f¢ = char it To
give another example, we can verify that an irreducible admissible representatlon o is
of depth-zero if and only if (o) has a depth-zero constituent. This is in compliance
with the expected depth-preservation under the local Langlands correspondence

|ABPS].



Notation

The set of nonnegative integers is Ny = {0,1,...} and the positive integers are
N.g ={1,2,...}. The symbols Z, Q, R and C have their usual meaning. Algebraic
groups are denoted by boldface letters (G, ... ), the corresponding groups of rational
points over a fixed field F' in italics (G = G(F'),...). The finite field of order ¢ is F,.
For the group of F,-rational points of an algebraic group G defined over F, we write
G(q) instead of G(F,). We will always assume that the prime number ¢ € Ny is
distinct from bad primes and any Frobenius primes.

The n x n identity matrix is [,,. Diagonal and antidiagonal matrices are
ai ai
diag(ay,...,an) = and antidiag(ay,...,a,) =
ap, ap,

so the first entry of an antidiagonal matrix is in the upper right corner. The matrix
with a single entry 1 in the ¢-th row and j-th column and 0 elsewhere is denoted by
E;;. Zeros in a matrix are usually omitted.

The disjoint union of sets is denoted by LJ. The characteristic function of a subset
AC B is

1 z€A,

BBchharA(x):{O ¢ A
x :

For a finite cyclic group (Cy,, -) (multiplicative notation) of order m each divisor n of
m gives rise to a unique subgroup C,,[n] C C,, of index d = m/n. This defines the
projection Ny : Cp, — Cpu[n], z — 2% and the injection iq : Cpu[n] — Cp, z +— .
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2. Preliminaries

2.1. Algebraic groups

An affine group scheme G of finite type over a ring o defines a functor from the
category of o-algebras to the category of groups. To an o-algebra R with canonical
morphism o — R the functor associates the group G(R) of R-rational points of
G Xgpec(o) Spec(R). A morphism of o-algebras R — S gives rise to a unique morphism
G(R) — G(95). It is a common abuse of notation to denote this functor by G again.

For an o-algebra R the algebra R[e] = R[X]|/X? is equipped with a natural ring
homomorphism e : Rle] — R that sends X to zero. The Lie algebra g(R) of G(R)
is the kernel of G(e). This gives rise to the Lie functor Lie : G(R) — g(R). Every
r € G(R) defines a conjugation endomorphism C, : y — xyz~! on G(R), which
gives rise to an automorphism Ad(z) = Lie(C,) of the Lie algebra g(R), the adjoint
representation. For details, see [Wat79).

The symplectic group. Fix an integer g > 0. The connected split reductive group
scheme G = GSp(2g) of symplectic similitudes of genus g assigns to any Z-algebra A
the group

{(z,v) € Mat(2g x 29, A) X G, (A) |zJa' =vJ}  for J = <—1g Ig) :
The similitude character is sim : (x,v) — v. The Lie algebra of GSp(2g) is
as5p(29) : K — {(X,v) € Mat(2g x 29, K) X G,(K) | XJ + JX' =vJ}.

The symplectic group Sp(2g) is the kernel of sim : GSp(2g) — G,,. Its Lie algebra
sp(2g) fits into a split exact sequence

0 — s5p(29) — gsp(29) — G, — 0.

The splitting is given by G, — gsp(2g), v — diag(0,...,0,v,...,v).



2.1.1. The root system

We review the root system of the split connected reductive group G = GSp(2g). The
torus T of diagonal matrices

t = diag(tl, e ,tg,t[)/tl, R ,to/tg)

with t; € G,, for i € 0,...,¢ is a split maximal torus, so the rank of GSp(2g) is
rk(G) = g + 1. The Lie algebra of T is the subalgebra t C g = gsp(2g) of diagonal
matrices. Let e; : T — G,, be the elementary character e;(t) = t;. The character
group A : X*(T) = {t = [[_,t}*, \i € Z} is abelian and we use additive notation:

A+ XN)(t) = AN (t)  for \, N € X*(T).

The character A = >°7 | A\ie; will be denoted by (Ag,...,A,). The elementary
cocharacters are the homomorphisms f; : G,, =+ T with j = 0,...,g such that
e; o f; is the identity for ¢« = j and zero for ¢ # j. They generate the cocharacter
group X.(T) = BJ_, Zf;. The canonical isomorphism Hom(G,,, G,,) = Z defines a
bilinear form X*(T) x X,(T) — Z. This bilinear pairing identifies V* = R @ X*(T)
with the dual vector space of V =R ® X, (T).

The torus T acts on g via the adjoint representation and this gives rise to the
decomposition g = P, v (r) 9 into A-eigenspaces

gr = {X € g| Ad)X = A\(H)X Vt € T}.

The non-zero characters A € X*(T) with gy # 0 form the root system ®(G).
Explicitly, these roots are

i(ei—ej), 1§Z<]§g>
+ (e; + €; — eg), I1<i<y<y,
+ (2¢; — €g) 1<i<yg.

By lexicographic ordering we fix positive roots of GSp(2g)
PT(G)={e;—ej,e;+ej—eg|1<i<j<glU{2—eo|li=1,...,9}
The simple roots are
A=AG)={as=¢€e;—ein|i=1,....,9— 1} U{a, = 2¢, — ep},
where « is the long root. They generate ®* and give rise to the Dynkin diagram

Cy: O—O0—0O----0—0=%=0-

(071 (6] (6%} Qg2 Oy %



For each root o € ® there is a coroot a¥ € X,(T): Let G, be the centralizer of
the connected component of ker(«), generated by T and Uy,. Then there is a
homomorphism z, : SL(2) — G, such that z,((!'§)) C U,. The coroot is the
cocharacter a¥ = x, o7, where i : G, < SL(2) is an embedding into the standard
torus of SL(2), such that (a, ") = 2. The set of coroots is denoted ¥ and we get a
bijection ® — ®¥, o — a. The coroots of GSp(2g) are

:l:(ei_ej)v::t(fi_fj)7 1§Z<]§g>
+(e; +e;—eo) =£(f; + f3), I<i<y<y,
:l:(2€i—€0)v ::l:f“ 1 §2§g

The Weyl group Wg = Ng(T)/T of G is the finite quotient of the normalizer N (T)
by the standard split torus T C G. The action of Ws on T by conjugation gives
rise to a natural action on the character group W < Aut(X*(T)) that preserves .
The reflections s, for a € ®} at the hyperplanes a~'(0) C V*

S V=V - (z,a")a.

generate the Weyl group W as a group of automorphisms of X*(T). It permutes the
e; and changes their signs, so it is isomorphic to the semidirect product ¥, x {£1}9.

A character A € X*(T) is dominant with respect to ®*(G) if (A, a") > 0 for every
positive root a € ®*(G), that means Ay > --- > A\; > 0. Every Weyl-orbit of a
character contains a dominant one. There is a unique dominant root 8 = 2e; — eq
such that every other root is of the form g — 3 cqv for non-negative integers
Co > 0.

aEA

For the symplectic group G = Sp(2g), the diagonal matrices

t =diag(ty, ... tg, b7, ... 1)
form a maximal split torus of rank g. The root system is similar to GSp(2g), just
drop the character ey. For the general linear group G = GL(g) a split maximal torus
is given by the diagonal matrices ¢ = diag(ty, ..., t,) with characters e;(t) = t; for

i =1,...,g and the roots are o;; = e; — e; for 7 # j.

The root datum of G is the quadruple ¥(G) = (X*(T), ®, X.(T),®"). The dual
root datum is UY(G) = (X.(T), ®V, X*(T), ®).

For every split connected reductive group G over a local number field F' with Weil
group Wr we fix a connected reductive complex group G together with an L-action
pe of the absolute Galois group 'y = Gal(F/F) on G and a T'p-bijection ng from
the dual root datum ¥V(Q) to the root datum ¥(G). The L-datum is the triple
(G, pa;nc). The L-group is the semidirect product LG = G x Wy such that pa splits
the exact sequence 1 — G — LG — Wp — 1.



2.1.2. Parabolic subgroups

For each root « the corresponding eigenspace g, is one-dimensional and corresponds
to a unique one-dimensional root subgroup U, C G such that g, is the Lie algebra
of U,. The standard Borel subgroup is the subgroup B of G generated by T and U,
for all the positive roots a € ®*(G). The standard parabolic subgroups of G are
the algebraic subgroups containing the standard Borel. For each subset I C A of
the simple roots the standard parabolic subgroup P = P; is generated by T and
U, for a € (—=I) U®T. The Levi subgroup M; of P; is generated by T and U, for
a € [ U—1. The unipotent radical Uy is generated by the U, with o € ®T\ (I).
This yields the Levi decomposition P; = M; x Uj.

The simple roots of the reductive group M; are given by I. The standard Borel of
G = GSp(2g9) is

B:P@:{(a i >EGSp(Zg)\I/EGm,aeMat(gxg) Withal-j:0Vz'>j}.

0 v(ah)™t
For a fixed subset I C A let A\I =: {ay,,- .., Qm, | m; < mj+1} be the set of simple
roots not contained in I. For j =1,...,k let n; = m; —m;_; (with mg = 0). Then

the Levi subgroup M; is the image of the embedding

GL(ny1) x - -+ x GL(ng) x GSp(29 — 2my) — Py,
(Ay, ..., Ap, M) — blockdiag(Ay, ..., Ay, M,sim(M)(AY) ™, ... sim(M)(AL) ™).

2.2. Bruhat-Tits theory

Fix a non-archimedean local number field F' with Z-valuation v and finite residue
field o/p. For an split unramified connected reductive group G over o fix a split
maximal torus T and let G and T be their groups of F-rational points.

2.2.1. The affine root system

A split maximal torus 7' = T(F) in G gives rise to a reduced root system ®. An
apartment is an affine space A over V=R ® X,(T), which we identify with V' by
the choice of an origin 0. The affine roots of G are affine linear maps

v: A= R, x— alr—0)+m,

whose vector part v(i)) = « is a root of G and whose constant part an integer
m € Z. They form the affine root system &,y = {¢y = a+m|a € ®(G),m € Z}.
For irreducible ®(G), we fix a set of simple affine roots by

Aaf:{w:Oé—FO’OéEA}U{wo:—ﬁ—i‘l},



where ( is the unique dominant root. A reducible ® admits a unique decomposition
into finitely many irreducible subsystems ® = | | ; ®;. For each ®; its simple affine
roots A, ; are constructed as above and the set of simple affine roots of ® is
A =1 ; Darj. The affine Weyl group Wy is generated by the reflections s, at the
hyperplanes ¢~1(0) attached to the simple affine roots 1) € A,. The simple affine
roots form the vertices of the affine Coxeter diagram, where two vertices v; = a; +m;
and ¥, = a; + m; are joined by 4 (a;, ;)* /({y, a;) {aj, ;) edges. Decorating the
affine Coxeter diagram with arrows pointing from the long to the short roots produces
the affine Dynkin diagram.

Each choice of a Chevalley basis determines such an origin 0 and defines for each
root « a fixed isomorphism

Xa : (F,+) = Un(F)

to the corresponding root subgroup U, [Tit79, §1.1]. This defines a filtration of the
root subgroups via Uy = x4 (p™) C U, for the affine roots ¢ = a + m.

A point  in the apartment A is special® if every root « is proportional to the vector
part of an affine root ¢ with ¢ (z) = 0 [Tit79, §1.9|. Since the root system is reduced,
this is equivalent to the condition

W(xr) €Z Y € Dy (2.1)

A vertex 1 of an irreducible affine Dynkin diagram is special if and only if there is a
special point x with ¢/'(z) = 0 for every other vertex v’ # 1 [Tit79, §1.9].

Example 2.1. For G = GSp(2g) (g > 2) we fix the simple affine roots v; = a; + 0
fori=1,...,9 and Yy = =B + 1 for the dominant root 3. The isomorphisms X,
for the simple roots a; are Xo,(v) = Iog +TE; i1 — v Eyriv1 g0 fori=1,...,g—1
and Xa,(v) = Iyg + 1By, The vertices 1y and v, are special. The affine Dynkin
diagram is of type €,:

hs hs

O—>0—"-C O0——0=4=0
Yo U1 Yy Yyo Yy Yy

For G = GL(g) with g > 2 the affine Dynkin diagram of type .7, is a cycle of g
vertices, which are all hyperspecial [Tit79, 1.14].

Since G is split, special is equivalent to hyperspecial [Tit79, §1.10.2].



2.2.2. Parahoric subgroups

Fix a standard closed alcove C = {z € A|¢(x) > 0V € Ay}. Attached to a proper
subset © C A,¢ of simple affine roots is the facet

F=cn ()¢ 0

PeB

Fix a point € F such that i(z) > 0 for v € A,\©. Conversely, a point z € C
determines © = {1 € &, | 1(x) = 0} uniquely and the corresponding facet F is the
smallest facet that contains z. For each simple root o we have

0 <a(r) < Bx) =1—1h(z) <1,
especially —a(z) +1 > 0.

Definition 2.2. The standard parahoric subgroup at x is the group &, = Pr
generated by

T(o)={t € T(F)|A(t) €0V X*(T)}

and Uy for every affine root ¢ with ¢(z) > 0. A standard parahoric subgroup is
(hyper-)special if A,¢\© contains a single (hyper-)special vertex, or (equivalently)
if x is (hyper-)special. The standard Iwahori subgroup is the parahoric subgroup
attached to the facet F = C.

A parahoric subgroup only depends on the facet, but its filtration subgroups &, ,
depend on z, so the notation &, is more appropriate.

Levi decomposition. Attached to every parahoric &, is a smooth affine group
scheme G, over o with generic fiber G,(F') = G such that the group of o-rational
points is &, = G,(0) C G. The Levi decomposition of &, is the canonical exact
sequence

1= PF— P, — Py — 1,

where 22} is the pro-unipotent radical?> and 22, is isomorphic to the Levi quotient
of the special fiber G,(0/p). The parahoric is special if and only if the special fiber
G.(0/p) is reductive itself |Tit79, §3.8].

Example 2.3. The pro-unipotent radical of the standard hyperspecial mazimal para-
horic #, = GSp(2g,0) C GSp(2g, F) is the principle congruence subgroup

P ={X €GSp(29,0)| X =, modp} with P./P}=GSp(29,F,).

2For facets F; D Fa, we have Z7, C Px,, but ,92;1 ) @}2 for their pro-unipotent radicals.
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Remark 2.4. Let P = M x U be a parabolic subgroup of G. Both G and M contain
the standard split torus and therefore the standard apartment A of G is also an
apartment of M. Let &2, be a parahoric subgroup of GG associated to a point x € A,
then

M, = MNP, (2.2)

is the parahoric subgroup of M associated to z with pro-unipotent radical .Z, =
M N 2} [MP96, p.107]. If x € A is special for G, then x is also special for M (clear
by condition (2.1)). Hence, for special &, in G the subgroup .#, is special in M.

Lemma 2.5. For G = GSp(2g) and © C Ay let ©' = {¢); € Ays |1y—; € O}. Then
the standard parahoric subgroup &, attached to © is G-conjugate to the parahoric
subgroup P, attached to ©'. Especially, all the hyperspecial parahoric subgroups of
G are pairwise G-conjugate.

Proof. The Atkin-Lehner element u; = antidiag(1,...,1,w,...,w) € G gives rise to
an element of the affine Weyl group that maps e; to eg — eg41-; for 1 <7 < g and
fixes eg. Therefore, it interchanges the root a; with the root ay_; for 1 <¢<g—1
and o, with —3. The adjoint action of u; on the affine roots maps v; to 1,_; for
0 < i < g and flips the affine Dynkin diagram [Tit79, §1.1]. Hence, &, and #,, are
G-conjugate. Compare |Tit79, §2.5]. ]

The Moy-Prasad filtration. For each parahoric subgroup &, C G Moy and
Prasad [MP94, §2| have constructed an exhaustive filtration of open-compact normal
subgroups &, , C &, for real r > 0. The group &, , is generated by

T,={teT(F)|At)el+p"Vre X*(T)}
for n > r and the root subgroups U, for the affine roots ¢)(x) > r. The subgroup
Pyrt = Uyay Poys is normal in &, .. Especially, the pro-unipotent radical of
Py = Pyois P = Ppo+. For r;s > 0 the commutator [P, ., &, 5] is contained

in Z, .15, so the quotient &, , /7, .+ is abelian for r > 0.

Let P = M x U be a standard parabolic subgroup of G with opposite parabolic
P~ =M x U~. For every x € A and r > 0 the filtration subgroup &,, C &,
admits the Iwahori decomposition [MP96, 4.2]

Prw = (Por NU )N Por N M) (P NU). (2.3)

For every x there is r > 0 such that the pro-unipotent radical is &} = Z,,.
Therefore &2;F admits Iwahori decomposition, too.
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2.3. Representations

Fix a totally real global number field F' with integers o and adele ring A = A, x Ay.
Let G be a connected reductive linear group scheme defined over 0. For every place
v we equip G(F,) with the inherited topology of F,. For non-archimedean v, we fix
the Haar measure dx such that the volume of a hyperspecial group G(o,) is one.
For archimedean places, the Haar measure on G(F,) can be chosen canonically such
that the product measure on the adelic group G(A) is the Tamagawa measure.

For locally compact topological groups H, the modulus character Ay : H — Ry is
defined by Ay (g) = [;; f(zg)dz/ [}, f(x) dx for every f e Co(H).

2.3.1. Real Lie groups

We fix an archimedean place v of F' and write R instead of F,,. Let G be the Lie group
of R-valued points G(R) with Lie algebra g(R). The invariants under the Cartan
involution form the maximal compact subgroup K with corresponding Lie algebra
t C g. Fix a Cartan subalgebra t C £. Let g = C ® g denote the complexification.

Admissible representations. A representation (7, H;) of G is a homomorphism
7 : G — Aut(H,) to the group of automorphisms on a complex Hilbert space H,
such that the map (z,v) — 7(x)v is continuous. It is unitary if 7(x) is unitary for
every x € G. A vector v € H, is smooth if for every X in the Lie algebra g the limit

Xv = Pm(ﬂ(exp tX)v—v)/t

—0

exists for real ¢ > 0. The space V> of smooth vectors is dense in V' and is a g-module
via X — (v Xwv) for X € g. The space of K-finite vectors

Vk ={v €V ; dimspan7(K)v < oo}

is dense in V*>°. By Peter-Weyl’s theorem, Vi decomposes as a direct sum
Vi = @ n,T

of finite-dimensional irreducible representations 7 of K with multiplicity n, < oco.

For smooth 7 the representations 7 with n, > 0 are the K-types. When n, < oo for
every K-type of 7, the representation (m, V') is admissible. The category Rep(G)
has isomorphism classes of admissible representations as objects and intertwining
operators as morphisms.

Since Vi is preserved under the action of g, it is a (g, K)-module. Representations
of G are infinitesimally equivalent if their (g, K')-modules are isomorphic.

12



The induced representation. Let P C G be a parabolic subgroup and let (o, H,)
be an admissible representation of P such that ¢ is unitary on the compact subgroup
K N P.3 The vector space of continuous functions f : G — H, with

f(px) = A}a/z(p)U(p)f(:E) forpe Pand vz € G

is a pre-Hilbert space (H,)o with respect to the scalar product

i fo) = /K (R), falk)), Ak for fuo fo € (oo

For x,y € G and f € (H,)p define (7(y)f)(x) = f(zy), then 7(y) extends to a
bounded operator on the completion H, of (H)y. The induced representation from
o is the G-representation is Ind$ (o, H,) = (, H,). If o is unitary, then Ind$ (o, H,)
is also unitary.

The infinitesimal character. Fix an admissible irreducible representation (m, V')
of G. On its K-finite vectors every z in the center Z(g®) of the universal enveloping
algebra of g© acts by multiplication with a complex scalar x(z) € C, x(2)idy = 7(2).
This is the infinitesimal character x : Z(g) — C of (m, V).

Every infinitesimal character is of the form y, = A o v, where \ is a character of the
universal enveloping algebra U(t%) and ~ is the Harish-Chandra homomorphism

v Z(g) = UL
from the center of U(g®) to the Weyl invariants in U (t*) [Kna86, §VIIL.6].

The discrete series. An irreducible continuous representation 7 of a semisimple
group G on a complex Hilbert space V' is (in the) discrete series if it is equivalent to
a direct summand of the regular representation of G on L*(G, C) defined by right
multiplication.

For semisimple G, the irreducible representations in the discrete series have been
classified by Harish-Chandra [Kna86, Thms. 9.20, 12.21].

Proposition 2.6 (Harish-Chandra). Let G be a linear connected semisimple Lie
group and K a maximal closed subgroup with the same rank as G. Fiz a Cartan
subalgebra t C € C g. For every nonsingular character X\ : it — R, such that X\ 4+ 0+
is analytically integral, there is a discrete series representation wy of G such that

i) ™ has infinitesimal character xy,

it) 7y has a minimal K -type To with highest weight A = )\—I—(SA; —20f (the Blattner
parameter ), where (5A§ and 0 are the half-sums of positive roots of G and K,
respectively,

3Representations of compact groups are always unitarizable [Wal88, 1.4.8].
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iii) every other K-type has highest weight N' = A + ZaeAj No With Ny € Z>o.

Here AT is the set of roots a of G with (\,«) > 0 The half sum of (compact) roots
in AY is O+ (or g, respectively). Two such representations are infinitesimally
equivalent if and only if their Harish-Chandra parameters A are conjugate under the
compact Weyl group Wy . Up to infinitesimal equivalence, these are all the discrete
series representations of G.

If the rank of K is smaller than the rank of G, there are no discrete series represen-
tations.

The symplectic group. For the semisimple Lie group G = Sp(2g)
b

a

K=KR)=GN0O(29) = {a:: (_ab ) € Glaa" +bb' = I, abt:bat},
which is isomorphic to the unitary group U(g) via k : x — a++/—1b € U(g). The Lie

algebra of K is the space of invariants under the Cartan involution on Lie algebras
g—g X——X

t= {(_ab 2) € Mat(2g x 2¢,R) |a = —d', b:bt} Cg.

Together with the —1-eigenspace of the Cartan involution

p:{(z _b) € Mat(2g x 2¢,R) |a = d', b:bt}gg.

a

we obtain the decompositions g = £ @ p and g¢ = £© @ p®. Fix the compact torus
T = k= H{diag(ty,...,t,));t; € C, |t;| = 1}. The Cartan subalgebra t C €C is given by
the set of s = Y°9_, s;b; for 5; € R and b = —/—1Ej g4 ; + vV—1Egy;;. The group
of complex linear characters of t€ is generated by ¢; : t€ — C, s — s;. The compact
roots are the roots £(e; —€;), i < j of (8 t). Together with the non-compact roots
+(e;+¢€;), 1 <1i,j < g, they form the root system? of (g, t).

The Weyl group of K is generated by the reflection s, at the compact roots a € ®(K).
It permutes the generators e;, so Wy is isomorphic to ¥,. The Weyl group of
G = Sp(2g) is the semidirect product ¥, x {£1}9.

The half sum of the positive roots of Sp(2g) in AT for Ay > Ay > -+ >0 is Oat =
g9

(g+1—2)e;.
=1

).

4This is not quite the same as the root system of Section 2.1.1. We write €; instead of e; in order
to emphasize this distinction.

g9
>-(g — i+ 1)¢; and the half sum of positive compact roots is dx = 3

=1 2

For g = 2 this means d,+ = 21 + &3 = (2,1) and 0 = (6, — €2)/2 = (5, —

N[
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Example 2.7 (SL(2,R)). Let v(x) = |z| be the valuation and sgn(z) = x/|z| the
sign character for x € R*. For G = SL(2,R) fix g = sl(2,R), K = SO(2,R) and the
standard Borel B of upper triangular matrices. Its roots +2e; for ey are non-compact.
The discrete series representations D (k) = wy for A € Z\{0} and k = |A\| + 1 and
+ =sgn(A) are the infinite dimensional subrepresentations of the normalized Borel
induced representation

md§ o = {f: G = R| f(bx) = 6 (b)o(b) f()}

where a(b) = sgn*v*=1(a) and the modulus character is 5g(b) = |a®| for b= (* *1).
The Harish-Chandra parameter is A(—/—1)e; and the minimal K-type SO(2,R) —
C*, (% %) — (a+ib)** has Blattner parameter £k(—/—1)e;.

The same construction for k = 1 gives the unitary limit of discrete series D*(1).

Example 2.8 (GL(2,R)). We denote by D, (k) for k € Nx; the essentially discrete
series representation of GL(2,R) with central character w : R* — C* such that
w(—=1) = (=1)* and whose restriction to SL(2,R) is DT (k) ® D~ (k). This is the
unique nfinite-dimensional constituent of py X ps for smooth complex characters
p1, ptg of R with w = pyjig and pypy ' = sgn®v*=1. When the central character is
trivial, we also write D(k).

Example 2.9 (Sp(4,R)). Discrete series representations my of G = Sp(4,R) are
attached to Harish-Chandra-parameters (A1, \o) € Z* with 0 # A\ # £y # 0.

For A\y > Xy > 0, the representation m(y, x,) 1S non-generic and holomorphic with
Blattner parameter A = X+ (1,2). For 0 > A\ > Xy the representation 7y is
non-generic and antiholomorphic with Blattner parameter A = X\ + (=2, —1).

For Ay > 0 > Xy or Ay > 0 > A\, the discrete series mwy s large and therefore
generic, but not (anti-)holomorphic. The Blattner parameter is A = X+ (1,0) or
A =X+ (0,-1), respectively.

Example 2.10 (GSp(4,R)). Fiz integers \y > Ay > 0 and a character w : R* — C*
with w(—1) = (=1)MT2 2T Up to infinitesimal equivalence, there are two essentially
discrete series representations of GSp(4, R) with infinitesimal character x\ and central
character w. One of them is the non-generic representations Wi{w whose restriction
to Sp(4,R) decomposes into the holomorphic and anti-holomorphic discrete series
T e) DT(—xs,—r1)- The other one is the generic non-holomorphic representation W}\A{w
whose restriction to Sp(4,R) decomposes into the non-holomorphic discrete series

(A1, ~A2) D T(x2,—A1) -
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2.3.2. p-adic groups

The group G = G(F,) of F,-valued points of G for a non-archimedean place v is
a locally profinite topological group. A (complex linear) representation (m, V') of
G is a homomorphism 7 : G — Aut(V) to the automorphism group of a vector
space V over C. For a subgroup K C G the vector space VX of K-invariants is
the space of v € V with m(k)v = v for every k € K. The representation (m, V) is
smooth if V.= J, V¥ for the compact open subgroups K C G. The representation
is admissible if it is smooth and V¥ is finite-dimensional for every compact open
subgroup K C G. Every irreducible smooth representation of G is admissible.

An admissible irreducible representation of G is called parahori-spherical (or &,-
spherical) if it admits non-zero invariants under a parahoric subgroup &, C G. For
hyperspecial &, we say spherical.

The Hecke algebra. Let H = (C2°(G), *) be the Hecke algebra with the convolution
product. Every admissible representation (7, V') of G defines a representation of the
Hecke algebra H(G) via

w(flv = Lf(x)w(m)v dz, felx(@), vel.

Every such f is biinvariant with respect to some open compact subset Ky C G, so
7(f)v is contained in the finite-dimensional subspace V57, The character of 7 is the
conjugation-invariant distribution

Xr: CF(G) — C, [ tr(m(f), VES).

Two representations have the same character if and only if they are isomorphic up to
semisimplification.

An intertwining operator f : (mwy, V1) — (w2, Vo) between admissible representations
is a linear map f : V3 — V5 such that f o m(x) = my(x) o f for every x € G. The
category of isomorphism classes of admissible representations of G will be denoted
Rep(G). Its morphisms are the intertwining operators.

Induced representation. Let (0, H,) be a smooth representation of a closed
subgroup M C (. Denote by H, be the vector space of functions f : G — H, such
that

f(mzk) = A}\f(m)a(m)f(x) Vme M, xe€ G, ke Ky

for an open subgroup Ky C GG depending on f. The representation Ind%(a, H,) =
(m, Hy) of G is defined by

(m(y) f)(z) = f(zy) Vr,y € G.

This is the induced representation of o. The subspace of those f whose support is
compact modulo M is the compactly induced representation c-Ind$ (o, H,). If M\G
is compact, induction preserves admissibility.
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2.3.3. Parabolic induction and restriction

Let 0 — k be a nonarchimedean local or a finite field over o and let G = G(k). For
a parabolic subgroup P = M x U of G fix an admissible representation ¢ of M. An
admissible unitary representation o of M gives rise to a representation ¢’ of P by
inflation. Then

i% 0 = Indg(0")

is the parabolically induced representation from o. By the Iwasawa decomposition
P\G is compact, so parabolic induction preserves admissibility.

Fix an admissible representation (7, V') of G. The normalized restriction to a parabolic
subgroup P is the representation

P — Aut(V), p A;lm - m(p).
The Levi quotient M = P/U preserves the space of U-coinvariants
Vo =V/{r(w)v—v|ueUwveV).
The parabolical restriction or Jacquet module of o is the admissible M-representation
v (m, V) = (A7 1, W)

The parabolic induction functor iIng v - Rep(M) — Rep(G) is right adjoint to

%, : Rep(G) — Rep(M). Both functors are exact and transitive. After semisim-

plification, they do not depend on P, only on M and G. The normalization ensures
that unitarity is preserved.

An irreducible admissible representation = € Rep(G) is cuspidal if r ,(7) = 0 for
every proper parabolic subgroup P C G.

Tadic notation. If P; = M;x Uy is a standard parabolic subgroup of G = GSp(2g¢, k),
the Levi quotient is of block diagonal form and admits a natural decomposition

M; = GL(nq, k) X -+« X GL(n,, k) x GSp(2g — 2|n|, k)

for |n| = 3" n; < g. For 0; € Rep(GL(n;, k)) and p € Rep(GSp(2g — 2|n|, k))
Tadic [Tad91] has introduced the notation

O1L X o+ X Oy X p= i]GDLMI(Jl X -No,Xp) € Rep(G). (2.4)
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2.3.4. Automorphic representations

Fix a totally real number field F' with adéle ring A. Let w : Z(F)\Z(A) — C* be a
unitary character of the center Z of G.

A square-integrable automorphic form with central character w is a smooth function
¢ : G(F)\G(A) — C such that ¢(zz) = ¢(x)w(z) for every z € Z(A) and such that
|¢|? is integrable over (Z(A)G(F))\G(A). As usual, we identify two such ¢ if their
difference is non-zero only on a subset of measure zero. The completion of the vector
space of these ¢ with respect to the L2-norm is the Hilbert space

LA(G(F)\G(A),w).
Right-multiplication defines a unitary representation R of G(A) on L?(G(F)\G(A),w)
(R(g)d)(x) = o(xg) for g,z € G(A).

An automorphic representation of G(A) is an irreducible smooth representation
that is isomorphic to a subquotient of L?(G(F)\G(A),w). A Hecke character is an
automorphic representation of GL(1, A).

The discrete spectrum L3(G(F)\G(A),w) is the largest subspace L*(G(F)\G(A),w)
that completely decomposes as a Hilbert direct sum. It orthogonal complement is
the continuous spectrum.

An automorphic form ¢ is cuspidal if

/ ¢(nz)dn =0
N(F)\N(A)

for the unipotent radical N of every proper parabolic subgroup of G and (almost)
every x € G(A). The cuspidal spectrum LE(G(F)\G(A),w) consists of cuspidal ¢
and it is a closed subspace of the discrete spectrum. An automorphic representation
is cuspidal if it occurs in the cuspidal spectrum.

By the tensor product theorem [Gel75, §4.C|, every automorphic representation 7 of
G(A) is isomorphic to a restricted tensor product

Il
=@
v

of irreducible representations 7, of G(F,) for the non-archimedean places v < oo
and (g, K)-modules 7, for the real places v|oc.

Two automorphic representations are weakly equivalent if their local factors are iso-
morphic at almost every place. This defines an equivalence relation. An automorphic
representation is cuspidal associated to a parabolic or CAP if it cuspidal and weakly
equivalent to a constituent of a representation globally parabolically induced from
an automorphic representation.

18



2.4. The parahoric restriction functor

Let G be the group of F-rational points of a split connected reductive linear algebraic
group over a non-archimedean local number field F. Fix a split maximal torus T’
and a basis of simple roots A generating a standard Borel subgroup B.

Let &2, C (G be a parahoric subgroup with Levi decomposition
1= P = Py — Py — 1.

For an admissible (complex linear) representation 7 : G — Aut(V), the action
of &, preserves the subspace V7 ¢ of P -invariants in V. This defines a unique
representation (7| g, , V7% ) of P, ) P+ = Py

An intertwining operator V; — V5 between admissible representations (m, V1) and
=+ g+
(72, Va) of G preserves &2 -invariants and defines a canonical operator V;”* — V7= .

Definition 2.11. The parahoric restriction functor for &, is the exact functor

+

(1, V) = (7], V),

r» : Rep(G) — Rep(Z,), p g

This is the parahoric analogoue of Jacquet’s functor of parabolic restriction. Parahoric
restriction has been studied by Morris [Mor93|, Moy [Moy88|, Vignéras [Vig01] and
others.

2.4.1. Basic properties

For parahoric subgroups &2, C &, C G, parahoric restriction is transitive with
respect to Jacquet’s parabolic restriction functor [Vig03, 4.1.3]

~ P
I‘(@y = I‘%O e, . (25)
Here we take &7, as the Levi quotient of the parabolic subgroup &2,/ Z C 2,/ 2.

The depth of an irreducible admissible representation m of GG is the smallest real
number r > 0 such that 7 admits non-zero invariants under @j .. for some parahoric
subgroup &, C (. Especially, 7 has depth zero if and only if it admits non-zero
parahoric restriction with respect to some parahoric subgroup.

Lemma 2.12. Twisting an admissible representation p of GSp(2g, F') by a tamely
ramified or unramified character p of F* commutes with parahoric restriction in the
following sense:

ro, ((posim) ® p) = (posim) @rg, (p), for [ =rex(p). (2.6)
For G = GL(g, F) the analogous formula holds with respect to the determinant.
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Proof. The restriction of the similitude character (or the determinant, respectively) to
P factors over P — 14 p C ker u, so the subspace of &2 -invariants is preserved
under twisting. O]

The corresponding statement for wildly ramified p is not true.

2.4.2. Results of Moy and Prasad

Moy and Prasad [MP96, 3.4] have defined a minimal K-type of depth zero to be a
pair (£,, o) of a parahoric subgroup &2, C GG and a non-zero cuspidal irreducible
admissible representation o of the finite reductive group &2, inflated® to &,. A depth
zero minimal K-type (Z,,0) is contained in an irreducible admissible representation
(m, V) of G, if ¢ is a subquotient of the parahoric restriction r4_ (7, V). Associativity
of minimal K-types is defined as in [MP96|.

Lemma 2.13 ([MP96, 6.2]). Suppose (o, Z,) is a minimal K-type occuring in an
irreducible admissible representation (mw,V). A minimal K-type (2, p) occurs in
(m, V') if and only if it is associate to (P, 0).

Now let P = M x U C GG be a standard parabolic subgroup of G with 7" C M. Let
o be an admissible irreducible representation of M and 7 an irreducible subquotient
of its parabolic induction ig u(o).

Corollary 2.14. Let x € A be a point in the standard apartment of G. If o has
non-zero parahoric restriction with respect to M, = M N &2, then © has non-zero
parahoric restriction with respect to &,.

Proof. By (2.3), the pro-unipotent radical &2} admits Iwahori decomposition. The
statement is then implied by a theorem of Jacquet, see [Cas95, 3.3.6]. O

For special x we have the equivalence r 4, (0) # 0 < rgp, (7) # 0 by Thm. 2.19, but
that does not hold for arbitrary x. However, the representations ¢ and 7 have the
same depth [MP96, 5.2(1)].

SFor the inflation of o to &, we write o again.
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2.4.3. Cuspidal irreducible smooth representations of depth zero

For a maximal parahoric subgroup &2, of GG and a cuspidal irreducible representation
o of &, let 7 be an irreducible representation of the normalizer N (&) whose
restriction to &2, contains the inflation of o as a constituent.

Theorem 2.15 (Classification). The compactly induced representation C—Indg(%)(ﬂ
is irreducible, cuspidal, admissible, of depth zero, and contains the minimal K -type
(P, 0). Every cuspidal admissible irreducible G-representation of depth zero is of
this form for some minimal depth zero K-type (£, 0) with mazimal parahoric 2.

Proof. This has been shown by Moy and Prasad [MP96, 6.6, 6.8] and independently
by Morris [Mor96]. O

Fix a non-trivial additive character ¢ : (F,+) — C* whose restriction to o factors
over a non-trivial additive character of the residue field ¢ : o/p — C*.

Proposition 2.16. A depth zero supercuspidal irreducible admissible representation
T c—Indg(yz)(T) 0f~G s -generic if and only if &, is a hyperspecial mazrimal

parahoric and o is a Y-generic representation of P, ] P.t.

Proof. This is a result of deBacker and Reeder [DR09, 6.1.1, 6.1.2]. O

Corollary 2.17. For a depth zero cuspidal irreducible admissible G-representation
T = C—Ind%(g,x)(T) with maximal parahoric &2, the parahoric restriction rz,, ()
for g € G is isomorphic to the restriction of T to P,/ . For another parahoric
P, C G whose normalizer is not G-conjugate to N(Z,) the parahoric restriction
rp, () is zero.

Proof. Since P, = ¢#,9~' we can assume g = 1 without loss of generality. By
Mackey decomposition, the restriction of 7 to &, is a direct sum of N(Z2,)-conjugates
of o, which are all cuspidal. Since & is a normal subgroup of N(Z2,), the space
of 777 -invariants in V is preserved under the m-action of N(Z2,) and this defines
an admissible representation (p, V7% ) of N(2,). Vignéras has shown that p is
isomorphic to 7 [Vig01, Cor.5.3]. Therefore r 4, (7) is isomorphic to the restriction

of T to Z,.

If rp,(m) # 0 for a parahoric &, then there is a minimal K-type (£, x) contained
in 7 with &2, C &2,. But &, must be a maximal parahoric [MP96, 6.8] and therefore
coincide with &7,. Then the normalizer of &, is G-conjugate to N (<) [YuOl,
3.3(ii)). O
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2.4.4. Hyperspecial parahoric restriction

Fix a hyperspecial parahoric subgroup .# of G and let G be the the associated
reductive group scheme with G(F) = G and G(o) = 7.

Lemma 2.18. Let m = C-Ind%(%) (1) be a depth zero cuspidal irreducible admissible
representation of G, where T is an extension to N (&) of an irreducible cuspidal
admissible representation o of K | & . The hyperspecial parahoric restriction v (1)
15 1rreductble and isomorphic to o.

Proof. The normalizer of the hyperspecial parahoric is N(.#) = Z# , where Z is
the center of GG, so 7 is uniquely determined by ¢ and a choice of a central character.
By Cor. 2.17 the parahoric restriction r (7) of 7 is isomorphic to the restriction
T|#. Since Z commutes with .#", the restriction 7|, is irreducible and contains the
irreducible constituent o by Frobenius reciprocity. O]

Compare Vignéras |Vig96, 3.14a)| for G = GL(g).

Let P = M x N be a standard parabolic subgroup scheme of G attached to £ with
corresponding group P = M x U of F-rational points. Then J#); = M(0) naturally
defines a hyperspecial parahoric subgroup of M.

Theorem 2.19. Let o be an admissible representation of M. Then the hyperspecial
parahoric restriction commutes with parabolic induction:

G ~ .
IS M © Totar(0) 2 g 015 11 (0). (27)

For G = GL(g), GSp(2g) this implies

I')[/(O'l X X Jm) = rGL(nl,o)(Ul) X X rGL(nm,o)(Um)7

1“;{(01 X X Oy X p) = rGL(m,o)(Ul) X X I‘GL(nm,o)(Um) X I‘Gsp(2g—\n|,a)(f7)

for admissible representations o; of GL(n;, F') with i = 1,...,m and representations
p of GSp(2g — |n|, F') using the Tadic notation.

Proof. Hyperspecial parahoric subgroups admit Iwasawa decomposition [Tit79, 3.3.2],
so one can apply Thm.3.1.1 in Casselman’s notes [Cas95|. O

For GL(g, F') an explicit proof has been given by Vignéras [Vigd6, 3.14b)|, the
argument for the general case is completely analogous. Compare [MR].
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p €Irr(G) ry,(p) of GL(2,F;) rg,(p) of Fy x Fy

X A X A ARA+ AR
U Ve Fi- Lar(ag) =y
- Sta B Starz,g) pp

Table 2.1.: Hyperspecial parahoric restriction and Iwahori restriction for non-cuspidal
representations of G = GL(2, F).

2.4.5. Examples

Example 2.20. For G = GL(1) the irreducible admissible representations are the
smooth characters p : F* — C*. The hyperspecial maximal parahoric subgroup of
F* is 0 with pro-unipotent radical 1+ p. The hyperspecial restriction rox(u) of u
with (1 +p) C ker p (tamely ramified) is the character i of Fyy = 0* /(1 + p) over
which p factors by the homomorphism theorem. If (14 p) € ker pu (wildly ramified),
then rox (@) is zero.

Example 2.21. For G = GL(2, F), the two conjugacy classes of parahoric subgroups
are represented by the standard hyperspecial parahoric subgroup #g = GL(2,0) and
the standard Iwahori B = A& N (o). The non-cuspidal irreducible representations
p of G are

1. the principal series pn X A,
2. the twists of the Steinberg representation uSt,
3. the one-dimensional representations p1 = p o det,

for smooth characters o and \ of F*. The hyperspecial parahoric restriction and the
Twahori restriction of p are given by Table 2.1.

Proof. The hyperspecial parahoric restriction for parabolically induced representa-
tions p x A is given by Thm. 2.19. Since parahoric restriction is exact, it preserves
the exactness of the sequence

) ‘71/2 1/2

0 — pulgrer — (| w) x (|- V*p) — pStarer — 0.

Since Rep(GL(2,F,)) is a semisimple category, this implies
ros (|- [71200) X Tox (| - 121) = v (0 laLem) + T (1 SteLer))-

For at most tamely ramified ;1 we have det(£5") = 1+p C [, so r 4, (uodet) = frodet.’
For the Iwahori restriction use (2.5) and apply the Jacquet functor to r . (p). O

6 Alternatively, we can use 0 < dimr_, ( lgre,r)) < 1 and dim i Star,(2,q) > 1 and employ
Cor. 2.14.
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2.5. (-adic Galois representations

Let F/Q be a global number field with a fixed non-archimedean place v. Fix a prime
{. An /-adic representation of the absolute Galois group I'r is a continuous morphism
from I'r to the automorphism group of a finite dimensional vector field over the
algebraic closure Q. Such a representation is always defined over a finite extension

of @g.

For a non-archimedean place v let F, be the corresponding local field with residue
field F,. The arithmetic Frobenius is Frob, : F, — F,, z + 29. A fixed element in
the preimage of Frob, under the canonical map I'r, — I'r, is denoted Frob, again.
Its image under the embedding I'p, < I'p is also denoted Frob,.

The Tate twist. The absolute Galois group I'r acts on the group pgm of £™-th of
roots of unity. Any v € I'p raises them to a power ¢ — (° for a = a(y) € (Z/{"Z)*.
This defines a homomorphism I'r — (Z/¢™Z)*. Varying m defines the (-adic
cyclotomic character x, : I'r — Z; over the projective limit lgr_nm(Z/EmZ)X =7,
For every integer k, the k-th Tate tuist of an f-adic representation V of ['p is the
twisted representation

V(k) =V ®z, xi.

When ¢ is coprime to ¢, the image of the arithmetic Frobenius is x,(Frob,) = g¢.

24



3. Parahoric Restriction for GSp(4)

Let G = GSp(4) be the group of symplectic similitudes of genus two. Fix a nonar-
chimedean local number field F' with finite residue field o/p = F, of order ¢. The
valuation character v = |-| of F* is normalized such that |&| = ¢~! for a uniformizing
element w € p. In this chapter we determine the parahoric restriction for irreducible
admissible representations and arbitrary parahoric subgroups of G = G(F).

The standard torus T in G is the group of diagonal matrices t = diag(ty, ta, to/t1, to/t2).
Its character group X*(T) = Z? is generated by e; : t — t; for i = 0,1,2 and the
simple roots are a; = €1 — €5 and ay = 2e5 — €y. The reflections s1, so at ay, as
generate the Weyl group N(T)/T, explicitly given by representatives modulo T

1 1 ) . 1 . 1
_ 1 _ _ _
Iy = 1 s So2 = 1 ) 5182 = —1 ) 528182 = -1 s
1 -1 1 -1
1 1 1 1
_ (1 _ 1 _ 1 _ 1
S1 = 1], S281 = 1], S18281 = | 1 , S1828182 = | 1 .
1 -1 1 -1

The Weyl group is isomorphic to the dihedral group of eight elements. We fix the
standard Borel, Siegel and Klingen parabolic subgroups

B:(*:*)mG, P:(**II)QG, Q:(*:*)mG
and write B = Mp x Ug, P = Mp x Up, Q = Mg x Ug for their F-rational points.

A non-trivial additive character ¢ : F' — C* gives rise to a generic character of the
unipotent radical Up of the standard Borel subgroup of GSp(4, F') via ¢y : Up —
C, u = (auis + bugy) for a,b € C*. An admissible representation p of GSp(4, F) is
generic if it admits a non-trivial Up-intertwining operator (p|y,, V) — (¢, C). This
does not depend on the choice of ¥ or a,b. Therefore we fix a = b =1 and assume
that ) has conductor one, so the restriction to o factors over a non-trivial additive
character ¢ of o/p.

We briefly review the classification of standard parahoric subgroups of GG, compare
[Sch05a], [Moy88]. For T' = T(F), fix the simple affine roots 1y = —(2e; — €y) +
1,91 = e; — ey and Y9 = 2e5 — ¢p in the apartment of 7. The affine Dynkin diagram
is of type %3:

hs hs
O—=—>=0==0 -
Yo (O (5
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Let N(T') be the normalizer of the standard torus 7' = T(F) in G. The affine Weyl
group W, = N(T')/T (o) is generated by the root reflections s; at 1; for i = 0,1,2. A
further non-trivial symmetry of the standard apartment is given by the Atkin-Lehner
element uq:

= ! ! 1 !
S0 = —w ! 3 51 = 1 ) S9 = 1 ) Uy = o )
1 1 -1 w

The closed standard alcove C is the set of points where ¢;(z) > 0 for i = 0,1,2. To
each facet in C there is attached a standard parahoric subgroup. Explicitly, the seven
standard parahoric subgroups of GSp(4, F') with pro-unipotent radicals are

1. the standard Iwahori subgroup %, attached to C

0 0 0 0 1+0p 0 0 0
B—sm o )n|P 0, gr_gn|l P LlTtPp o o

p p o p p p I+p p

p p oo p p 0 1+p

2. the standard Siegel parahoric &, attached to the facet ¢;*(0) NC,

0o 0 0 o0 I+p p 0 0
P =sim(0™) N 0 000 ., Pt =2nN pooltp o °

pp oo p p L+p p

p p oo p p p L+p

3. the standard Klingen parahoric 2, attached to the facet 15 '(0) N C,

0 0o 0 o0 1+p 0 0 0
2 —sm o )n|P 0| gt_gn| P liPp o b

ppop p p I+p p

p o o o p p 0 1+p

4. the standard hyperspecial parahoric subgroup J# = GSp(4, 0), attached to the
facet ¥ (0) Ny 1 (0)NC,

0o 0 0 0 I+p p p p
H = sim(0™) N 000w , AT =N pooltep P
o0 0 0 p p 1I+p p
00 0 o0 p p p 1+p

5. the standard paramodular subgroup ¢, with facet 1 '(0) Ny ' (0) N C,

oo plto I+p o 0 0

PR PR I I 0 . _ P l+p o p
R I TP R I O R R
p o 0 p p o 1+p
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6. the parahoric u;*2u, attached to the facet ¥, *(0) NC,
7. the hyperspecial parahoric u; '.# u; attached to the facet ¥, (0) N ;1 (0) N C.

The simple affine roots ¥y and 1, are conjugate under the Atkin Lehner element
u; by Lemma 2.5. This non-trivial automorphism preserves %4, 2 and ¢. The
standard maximal parahorics are the conjugates of %", # and ut o .

3.1. Main result

The parahoric restriction functor factors over semisimplification, because admissible
representations of finite groups form a semisimple category. Therefore it is sufficient
to determine parahoric restriction of ¢rreducible admissible representations p of G.

The non-cuspidal irreducible admissible representations of G' have been classified by
Sally and Tadic [ST94]. We use the notation of Roberts and Schmidt [RS07].

The cuspidal irreducible admissible representations of G with depth zero have been
classified by Moy and Prasad [MP96, 6.8, see Thm.2.15. For positive depth, the
parahoric restriction is zero by definition.

3.1.1. Hyperspecial parahoric restriction

In this section, we determine the parahoric restriction of the irreducible admissi-
ble representations (p, V') of GSp(4, F)) with respect to the standard hyperspecial
parahoric subgroup 2 C G.

Lemma 3.1. Let 7 be a cuspidal irreducible admissible representation of G. If
™ is isomorphic to c-Ind$ , T where T is an irreducible extension of some cuspidal
irreducible representation o of # | to the normalizer Z ¥ of X , thenr 4 (7) = 0.
Otherwise r 4 (m) = 0.

Proof. This is a special case of Lemma 2.18. m

Theorem 3.2. The hyperspecial parahoric restriction 4 (p) of non-cuspidal admis-
sible irreducible representations p of GSp,(F') with depth-zero induction data is given
by Table 3.1. For induction data of depth > 0, the hyperspecial parahoric restriction
of p is zero.

The proof is in Section 3.2.
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type  (p,V) € Irr(GSp(4, F))  ro¢(p)|spay (even q) r(p) (odd q) central char. dimension
I p1 X i X x1(k1, ko) Xi(ur, p2, 1) pipei? (g +1)%(¢* +1)
Ma  p Stxp X10(k1) Xa(p1, i) U qlg+1)(2+1)
b lxp Xo (k1) X3 (a1, 1) U (g 1)+ 1)
MMa  pg » pSt x11 (k1) Xz2(p1, 1t) mp? glg+1)(¢* +1)
by xpl X7 (k1) xa (11, i) e (g+1)(¢*+1)
IVa 1 Stasp, F) 04 A ) I, ¢
Vb L(v* v~ 'puSt) 01@0  O1(n) ® Os() Ty ¢+’ +q
IVe L(v3/2St,v73/2 ) 01 ®0;s 01(n)® SA ) 2 e+ +q
IVd  ulgspu,r to Oo(12) i 1
Va 5([€us vEu] s v 1) 03 @05 ba(p) ® 05(11) 7 g+ 5q(g® +1)
8([Ee, vEr]  v=20) - (70 7 2+ 1)

Vb L2, Sty p) 61 01(12) Ty salg+1)?
L(v %€, t,v=Y/2) - (/) 7 A +1)

Ve o LM%, Stvm 26, p) 01 01 (1) [y 3q(g+1)?
L(v'/2& St,v=1 2 ) - 72(fido) I q(¢* +1)

Vd  L(v€y, & x v 2p) o @0 Oo(1r) ® 0s(p) B2 14 5q(¢? +1)
L(v&, & xv=12p) - (1) i’ ¢ +1

Via  7(S,v~"?p) 01&0,  b1(n)® mi ) 2 gt +5q(g+1)°
Vib  7(T,v='2p) 02 03 (1) 2 2q(q* +1)
Ve  L(vY/2St :L\MS 03 04(71) 2 1q(g®>+1)
VId L(v,1px xv=12p) 0o ® 01 Oo(n) & 01 (1) w2 14 5q(g+1)?
VII g < I x3(k1, 1) X3(A, p1) px - Al ¢t -1
Villa  7(8,10) xs(l') xs(A) Alpx alg—1)(¢* +1)
VIIb - 7(T, 1) Xo (1) xl ) Alpx (a—1)(¢° +1)
Xa  §(v&,v /1) x13(l') Xs(A) Alpx alg—1)(¢* +1)
o\mr v /2) - 75(X) Ao - Algx 7*(¢* = 1)

Xb  L(vE, v /M) Yoll!) xr(A) Mer (@-D(@+1)
L(vey,v=1/21) - AN o Al -1

X IT x p x2(1) Xo(A, 1) i >_H§x (¢*—1)
XTa ST, =12 ) x12(1") Xe6(wa, [1) m? o oqlg—1)(¢*+1)
XIb  L('/°I,v71?p) xs(1") X5 (wa, i) 2 (-1 +1)

Table 3.1.: Hyperspecial parahoric restriction for non-cuspidal irreducible admissible representations of GSp(4, F).
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Notation 3.3 (Table 3.1). Let p, 1, o : F* — C* be tamely ramified or unramified
characters which restrict to characters p, (i, 2 of (o/p)*.

Let IT be a cuspidal irreducible admissible representation of GL(2, F') of depth zero
with hyperspecial restriction w5 attached to a character A of ]F‘;2 in the notation of
Table A.1. The non-trivial unramified quadratic character of F'* is &,. For odd ¢ let
& be either one of the two tamely ramified quadratic characters which reduce to the
non-trivial quadratic character Ao over the residue field F.

The irreducible representations of GSp(4, ¢) for odd ¢ have been classified by Shinoda
[Shi82], see Section A.3.

For even ¢ there is an isomorphism GSp(4,q) = Sp(4,¢) x F;* and the irreducible
representations of Sp(4,q) have been classified by Enomoto [Eno72], see Section
A.4. Fix a generator 6 of the character group of IFqXQ. Denote its restrictions to

Folg — 1] =F; and to F5[q+ 1] by 4 and 7, respectively. Let k, ki, ks € Z/(q — 1)Z
be such that 4% = ;. Let [ € Z/(¢? — 1)Z be such that A = ¢' and let I’ be the

image of [ under the canonical projection Z/(¢* — 1)Z — Z/(q + 1)Z so that the
restriction of A to F)5[q + 1] is "

If A%t! =1, then A factors over a character wy of IFqXQ [¢+1] so that A = wpoN,_;. For
even ¢ there is a unique preimage [” of [ under the canonical injection Z/(q + 1)Z —
Z/(¢*> — 1)Z with wy = n'". If AT' = Ag is the quadratic character, let A\’ be the

character of F5[2(q — 1)] with A = X o Ngi1)2.

3.1.2. Parahoric restriction at non-maximal parahorics

Every non-maximal parahoric subgroup of G is conjugate to either the Iwahori
subgroup %, the standard Klingen parahoric 2, or the standard Siegel parahoric &.
Corollary 2.17 implies that for cuspidal irreducible admissible representations of G,
the parahoric restriction at non-maximal parahoric subgroups is zero.

Theorem 3.4. For non-cuspidal irreducible admissible representations (p,V') of
GSp(4, F) with depth-zero inducing data, the parahoric restriction with respect to the
standard non-maximal parahoric subgroups B, & and 2 is given by Table 3.2.

Proof. According to (2.5) it is sufficient to determine the parabolic restriction of the
hyperspecial parahoric restriction r_ (p). This is given by Tables A.4 and A.7. [

In Table 3.2, u, w1, po are smooth characters of F* and € is either the unramified
or a tamely ramified quadratic character of F'*. We denote by II a cuspidal irre-
ducible admissible representation of GL(2, F') with hyperspecial parahoric restriction

IGL(2,0) (H) =IT.
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type  (p,V) € Irr(GSp(4, F)) rz(p) € Rep((F))?) ro(p) € Rep(Fy x GSp(2,q)) ro(p) € Rep(GL(2,q) x Fy)

I p1 X pg X \:\\MM“ .@M“ NL + \:\\MM“ @/H\“ .NL mﬁmu\“ .@/M\fm_ + mrmmumﬁm_ Q?.MH\J@M“NM + QT\MM“ leuag

Ma  p1Stxp Alpin, pix, i Bljir, i, il i1 St R i+ iy St K iy
+( x ) mf;:ﬂ ,

ITb il xp Alpn, s (1] Blui, p, fi] pr 1N+ T fipy
+( x i) R i

IMa  pq xSt MXIRKG+n RIKan  piRaSt+ 1K x i Clit, 1,11

th@mimHL N +an RSt
b g xpl i KR+ xfm:?:u I Ral+ 1R 3 Clur, 1, 1)
HRG R+ 1RKG "Rag +0 Kol

IVa  uStasp) IR1Xp 1 X 7St St X 1z

IVb  L(v?, v 'uSt) 3(1IN1K ) 1Rl +2(1 XK aSt) StXp+2(1Xp)

IVe L(v3/2St,v=3/%p) 3(IX1KXp) 21X 1) +1X St 2(St¥ )+ 1K

H/\Q .QU_.OM@TC H_NH_M_.@ Hgm”_. me

Va 5(€, ve], v=12p) EREN+ERERE ER (€ % i) €St M i+ &St RN

Vb L(v'/2eSt,v=12p) ERERp+ERNEREH X (E % p) EStMp+1REn

Ve L€ St, v 2¢p) ERERp+ENEREH X (E % p) 1N+ EStREn

Vd L(v€, & xv=t2p) ERERp+ENER N R (€% p) 1K+ 1N

Via  7(S,v=2u) 3(1X1K ) 1R 1+ 2(1 X7 St) 2(StXp) + 1X

Vb 7(T,v="2p) I1X1Ka 15 7St 1X 5

Vie  L(vY?St,v=2pu) D 1M1 St X 1

VId Ly, 1px xv=12p) 31X 1K p) 21X a1) + 1 X St StM¥a+2(1X )

VII oy x 11 0 I RT 4+ Raw 0

VIIa 7(S,II) 0 IR7 0

VIIIb  7(T,1I) 0 IR7 0

IXa  &(v€, v '/21) 0 (X7 0

IXb  L(v& v~ Y/210) 0 EXT 0

X I % 0 0 TR+ (7)* Rawrp

Xla  o(vY2I,0=12p) 0 0 =

XIb  L(vY2,v=12p) 0 0 X

Table 3.2.: Parahoric restriction of non-cuspidal irreducible admissible representations with respect to non-maximal parahoric

subgroups of GSp(4, F') .
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3.1.3. Paramodular restriction

For the standard paramodular subgroup ¢ we identify ¢/ _#% with

(GL(2,9)*)° = {(x,y) € GL(2,q) x GL(2,q)| detx = dety}.

via
-1
T11 * w "T1.2 *
* Y11 * Y1,2 X131 X1,.2 Y11 Y12
/9 b b H b b , b b
w1 X T22 * X211 X272 Y21 Y22
* Y2,1 * Y2,2

where x;;, y;; is the image of z;;, y;; under the canonical map o — o/p. The
parahoric restriction functor with respect to _# is the paramodular restriction r »
from admissible representations of G to those of (GL(2,¢)?)". The irreducible
representations of (GL(2,¢)?)° have been classified in Lemma A.6.

Lemma 3.5. Let p be an irreducible admissible representation of GSp(4, F'). For
every irreducible constituent o of r s (p) the opposite o™ is also a constituent.

Proof. The Atkin Lehner involution u; preserves ¢ and maps o to o*. O

Proposition 3.6. Let © be a cuspidal irreducible admissible representation of G.
The paramodular restriction r 4 (m) is non-zero if and only if 7w is isomorphic to a
compactly induced representation C-Ind%(f)(T) where T is an irreducible extension of
some cuspidal irreducible representation o of ¢/ #+. In that case m is non-generic.

Ifo =0 thenr y(m) 2 o0. Ifc 20, thenr 4(m) 20D o*.

Proof. This is clear by Frobenius reciprocity, 3.35 and Corollary 2.17. The Atkin-
Lehner involution preserves 7. If m was generic, then it would be induced from the
normalizer of a hyperspecial parahoric subgroup [DR09, §6.1.2]. O]
The main result in this section is:

Theorem 3.7. For non-cuspidal irreducible admissible representations p of GSp(4, F')
with depth-zero induction data, the paramodular restriction v ;(p) is given by Table
3.3. For induction data of depth > 0, the paramodular restriction is zero.

The proof is given in Section 3.3.
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type  p € Irr(GSp(4, I)) r s (p) € Rep((GL(2,¢)*)°) dimr 4(p)

I fir X piz X pt Al x i, 1< fio] + [l x fig, 1 x ] 2(q+1)?
ITa 1 St X [l x 7,1 X fiq] (g+1)°
I 1 xp u[1><u1,1><u] (¢+1)?
[Mla  pg X pSt [l x g, St]+ p[St, 1 x 1] 2q(g+1)
b oy xpl Al x fi, 1]+,LL[11><,u] 2(¢+1)
IVa NStGSp(4,F) [St St] q2
IVb  L(v% v~ tuSt) B[ St, St] 4+ m[1, St] + [ St, 1] ¢ +2q
IVe  L(v*?%St,v732y) a1, 1] + [ 1, St] + a[St, 1] 2+ 1
IVd Ml(;sp(4 F) [ ] 1
Va  6([&u, vE] v 2p) fi[1, St] + [ St, 1] 2
O([&s, v&] v 2p) Al x Ao, 1 X Aole (q+1)%/2
Vb L(v'2€,St,v12p) a1, 1] + a[ St, St] P +1
L2, St, v ) Al x Ao, 1 X Aolx (g +1)%/2
Ve L('2¢, St v=12¢, 1) a1, 1] + p[St, St] ¢ +1
L('2€,St, v=12¢, 1) Al x Ao, 1 x A= (g +1)%/2
Vd L(vé,, & x v 12p) Al 1, St] + pnfSt, 1] 2q
L(vé&, & xv=12p) A1 % Ao, 1 x A]e (g +1)2/2
Via  7(S,v72p) i St, St] + u[St, 1] + [ 1, St] 7>+ 2q
Vib (T, v='2y) fi[ St, St] ¢
Vie  L(v'?St,v=12p) a1, 1] 1
VId Ly, 1px x v~ 12p) fl1, 1]+ [ St, 1] + a[ 1, St] 29+ 1
VII -y x 11 (1 fi, 7]+ 7,1 x ] 2(¢® = 1)
VIIla 7(S,1I) (1,7 +[7 1] 2(¢-1)
VIIIb  7(7,1I) [St, 7r] 7, St]  2(¢g—1)
Xa (v, v~ Y20) [St, 7] + [T, St]  2(¢ — 1)q
§(v&, v=1/20) (7,1 X Aol + [1 X Ao, T -1
IXb  L(v&,v~Y2I) (1,7 +[7, 1]  2(qg—1)
L(vé&, v=121) [7,1 % Aolx + [1 X Ao, T -1
X I % p 0 0
Xla  §(vY2I0, 07 2p) 0 0
XIb  L(v'Y210, 07 12y) 0 0

Table 3.3.: Paramodular restriction for non-cuspidal irreducible admissible represen-
tations of GSp(4, F'). The index is determined by &(w) = +1.
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type p € Irr(GSp(4, F)) dimp” dimp/ dimp? dimp? dimp”

I p1 X pg Xf
IMa  uiStxp
IIb ,u11>4u

IIla  py > pSt

by xpl

IVa  (1Stgsp(a, )

IVb  L(v?, v 1uSt)

IVe  L(v3/2St,v=3/2y)

IVd  pulgspa,r)

Va o 6([&e, v&] v Pp)
Vb L(v'/2¢, St,v=1/2p)
Ve L(v'/2¢, St,v=12¢,1)
vd L(v&u, §u x Vﬁl/zﬂ)
Via 7(S,v™2p)

Vib  7(T,v1/?

Vie L

VId Ly, 1px x v~ 1/2p)

_ O OO0 HF OO0 HFOOO O O =
—_——_ 0O O O = O = KFEF OO NO = N
N O = N O FHFFENO NN WR
N R O H R FHKMH2H BN RO W NN
W H W NN NDND — WWRF B R

Table 3.4.: Dimensions of parahori-spherical vectors in non-cuspidal representations
of GSp(4, F') for unramified characters py, pa, p, § of F*.

3.1.4. Parahori-spherical representations

As a corollary, we obtain the dimensions of parahori-spherical vectors.

Corollary 3.8. An irreducible admissible representation p of GSp(4, F') is parahori-
spherical if and only if it is a subquotient of 1 X pe X g for unramified characters
11, fo, po of F*. The dimension of invariants under the standard parahoric subgroups
are given in Table 3.4.

Proof. The dimension of spherical vectors is the multiplicity of the trivial representa-
tion in the parahoric restriction of p. For non-cuspidal p, this is given by the tables
above. If p is cuspidal, the parahoric restriction is either zero or a sum of cuspidal
representations by Cor.2.17 and Mackey’s theorem, so parahoric restriction with
respect to the Iwahori subgroup Z gives zero by transitivity (2.5). A fortiori, there
are no non-zero parahori-spherical vectors. O

Remark 3.9. The non-cuspidal case has already been determined by Roberts and
Schmidt [RS07, Table A.15].
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3.2. The proof for hyperspecial parahoric restriction

We now prove the result on hyperspecial parahoric restriction of non-cuspidal irre-
ducible admissible representations of GSp(4, F).

Proof of Thm. 3.2. Irreducible representations p of type I, I1a, IIb, IIIa, I1Ib, VII and
X are parabolically induced, so the result is clear by Thm. 2.19 and Examples 2.20
and 2.21. In the other cases, p is a non-trivial subquotient of a parabolically induced
representation k. If r (k) = 0, then r(p) = 0 by exactness of the parahoric
restriction functor, otherwise r(p) # 0 by Cor.2.14. Furthermore, r»(p) is a
non-zero subquotient of the parabolically induced r (k). It remains to determine
the correct constituents of r (k) case by case.

We only discuss the case of odd ¢. For even ¢ one can determine the restriction of
rv(p) to Sp(4, q) by the analogous arguments, see [R6s12, Thm. 2.33|. The central
character of r (p) is the restriction w, of the central character w, of p.

For p = pulgspu,r) of type IVd, the hyperspecial parahoric restriction is at most
one-dimensional, so it must be /t Lggp,q) = 0o(ft) (for at most tamely ramified p1) or
zero (for wildly ramified p). By [RS07, (2.9)] and Table A.5

r (L, v 1 Stasperm)) + T (1 Laspar)) = lareg X 2= x3(1, 1)

decomposes as x3(1, 1) = (0o + 61 + 03). For type IVb we have

r o (L, v 1 Staspa,m)) = A(0r + 0s).

By the same argument we determine the parahoric restriction for type IVa and I'Vc
as constituents of x1(1, 1) =1 % i 1gsp(a,q) and xa(1, ft) = 1 X 1 Stasp(a,q)-

The representation p = L(vY/2¢St,v=Y2u) of type Vb is a constituent of both
V12€ Starie,r ¥ v 2 and v/2€ 1y, ) x v1/2Eu by [RS07, (2.10)]. Therefore the
hyperspecial parahoric restriction r_ (p) must be a constituent of both E Starn,g X 1
and E Star(2,g) x{ﬁ. By Table A.2, the only common constituent is 6, (1) for unramified
¢ and 7»(p) for tamely ramified £. By exactness and [RS07, (2.10)], types Va, Vc and
Vd are clear.

The representation p = 7(T,v~'/2y) of type VIb is a constituent of 1 x p Star(z,g)
and v'/? 1graq x v~ Y2u by [RS07, (2.11)]. By exactness the hyperspecial parahoric
restriction r_ (p) must be a constituent of both y»(1, 1) = (6, + 03 + 05) and of
x3(1, 1) = (6 +01+03). Therefore r_»(p) can only be 03(1z) or 01 (1) or 61 (1) +03(1).
By (2.6) we can assume that p is unitary, then Thm. 4.29 and [Wei09a, Thm. 4.5]
imply dimr_, (7(T, v="?p)) = q(¢® +1)/2. This implies v (7(T,v~?u)) = 11 63. By
exactness the restrictions of type Vla, VIc and VId are clear.
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The representation p = 7(7T,1I) of type VIIIb is the non-generic constituent of 1 x IT
for an irreducible cuspidal admissible representation IT of GL(2, F') whose non-zero
parahoric restriction rap 0 (II) = 7 is the cuspidal irreducible representation of
GL(2, q) attached to a character A of }F;Q. Its hyperspecial parahoric restriction is one
of the two irreducible constituents of r» (1 X II) = 1 x 7 = X3(A, 1) = x7(A) + xs(A).
By a suitable character twist we can assume that II is unitary. Then 7(7,1I) =
Wp_(II) is the anisotropic theta-lift of (I, II) by [Wei09a, 4.5]. The dimension of the
hyperspecial parahoric restriction of 7(7,1I) is (¢> + 1)(q¢ — 1), so it must be x7(A).
The rest is clear.

For p of type [Xa or IXb, this is the statement of Thms. 3.18 and 3.21.

Let p = 6(v'/?I1,v="21) be an irreducible representation of type XIa where II
is a cuspidal irreducible admissible representation of GL(2, F) with trivial central
character. By (2.6) we can assume without loss of generality that 4 = 1. The
hyperspecial restriction of p must be one of the two irreducible subquotients of

r,;g(yl/2H, V’l/Qu) =7 x1=Xs(wroNy1,1) = xs(wa, 1) + xe(wa, 1).

By [RS07, Table A.12], p has paramodular level > 3 and therefore does not admit
non-zero invariants under the subgroup

N

N

Il
©“ oo o
T ow
o o T o
owT oo

By character theory, x5(wa, 1) admits non-zero invariants under the image of .Z in
H | H T, s0r(p) cannot be y5(wa, 1). The rest is clear. O

3.2.1. Type IX

For non-cuspidal irreducible admissible representations (p, V') of type IXa and IXb
we need to determine the hyperspecial parahoric restriction r 4 (p) for £ = GSp(4, 0)
by hand. We consider two operators T" and H, which preserve a subspace Wy, and
compare their eigenvectors in ;.

Recall the setting: Fix a non-trivial additive character ¢ : (F,+) — C* whose
restriction to o factors over a non-trivial additive character {bv of o/p, fix a non-trivial
tamely ramified or unramified quadratic character £ of F”* and a depth zero cuspidal
irreducible admissible representation (I, Vi) of GL(2, F') with central character wy
and complex multiplication 1T = II. The hyperspecial parahoric restriction of 11 is a
cuspidal and irreducible representation T = rqp2,0)(II) of GL(2,¢) by Lemma 2.18.
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This defines an irreducible representation v€é X v~/2II of the Levi subgroup of the
Klingen parabolic ). The normalized Klingen induced representation (p, V') :=
v€ x v~1/2T1 has an explicit model as the space of smooth functions

V= {F:GSp(A, F) = Viss £lpg) = 8 * () (e B "I (p)fg) ¥p € Qf . (3.)
where GSp(4, F') acts by right multiplication. It decomposes into an exact sequence
0 — 0(vé, v Y21 — ve x v V21 — L(vé, v Y2I) — 0 (3.2)

with two irreducible constituents.

As a . -module, V" is naturally isomorphic to the representation (p, 17) = '{ X T
of GSp(4,F,) = ¢ /¢ by right-multiplication on the function space

V={F:H)H" > Vs flpg) = €RF(0)f(9) ¥ € Q(E,) |

This natural isomorphism is given by the restriction V#" 3 f ]?: fle to A .
Each f extends to a unique f by Iwasawa decomposition G = Q% .

The representation (p, V') admits two irreducible constituents by Tables A.2 and A.5.
For each subquotient of p, the hyperspecial parahoric restriction is one of the two
constituents of (p, V) = ¢ x 7 by Cor.2.14 and we have to determine the correct one.

We will use the following two vector subspaces of V* "

Wi ={f€eV; flgu) = ¥(usn)f(g)Vu € B*} and
Wy = {f € V; flgu) = d(wz + us) f(g)Vu € BT}

Let 0 # vy € Vz be a fixed vector with 7 (1¢) vy = (c)vo for all ¢ € [F,. Since 7 is
cuspidal, vy exists and is unique up to multiples.

For w =1 and w = s18957 let f,, € V be defined by

fw(x) _ {%Z)(lm)(l/f X 1/71/277‘)(]))"00 if r = pwu € QUL@JF,

0 else.

Likewise, let fwn € V' be given by

Y1 4 ugy) (WE R v 271) (plvg  if 2 = psisasiu € Q51595 B,
fom(@) = 0 else

The choice of vy ensures that f,, and fw, do not depend on the decomposition of x.

Lemma 3.10. W1 = (Cfl @D (Cf313251 and W2 = CfWh
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Proof. 1t is clear by construction that fi, fs,s,s, € W1 and fwn € Wsy. The three
functions are non-trivial because fi(1) = fs 5,5, (S15251) = fwn(s15251) = v is
non-zero. By (3.14) there is the disjoint double coset decomposition

GSp(4,F) = |_|Qw§é’+ w €{1, s1, 8182, 515251} (3.3)

w

and therefore supp(f1) Nsupp(fs,s,s,) = 0, so f1 and [, s,s, are linearly independent.
The subspace W, is the space of Whittaker vectors in the . -representation E X T
on V', so Ws is one-dimensional. It remains to be shown that W, is two-dimensional.
Indeed, an arbitrary f € Wj is uniquely determined by its values on 1, s15251, S1, $152
because of (3.3). For every f € W) and arbitrary ¢ € o we have

%<1f>f<z'>—f((111;)z') —f<(>> — U(Of (),

and this implies f(1), f(s15251) € Cug, by definition of vy. Furthermore,
R0 ) =1 (s (10))) = slen) ana
T(1) f(s1s2) = f (8182 <1 1 1)> = f(s152),

so f(s1) and f(s1s9) are invariant under 7 (!%). But 7 is cuspidal, so f(s1) =
f(s152) = 0. Now Wy = Cf; & Cfy,s,s, is clear by definition of W. O

Lemma 3.11. The J -intertwining operator

T:V=V, (THg) = Z Fs1sos1ug) Vg e X,
ue2t /+

is well-defined and stabilizes the subspaces Wy and Ws.

Proof. It has to be shown that Tfe V for every ]?E V. Let g€ X | AT =2GSp4,q)

be arbitrary. By construction, T'f(ug) = T f(g) for any u in the unipotent radical
2% /" of the finite Klingen parabolic 2/t = Q(q). For every m in the Levi
quotient 2/2% = Fx x GSp(2,F,), we have

Tf(mg) = (€K %)(318251m(315251)~_1)Tf(9)

= E(mu)TET) (mzm) Tf(g)
= (ERT)(M)Tf(g),

SO Tfe V. Since T is & -intertwining, it preserves W, and Woa. O
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Lemma 3.12. i) For A := 2% diag(w, 1,@w™,1)27" the Hecke operator
H:V — V2, fr—vol(2) 'p(chary)f.

acts on f € V<7 by

wa cw ! b
Hf = Zp< Lobe )f. (3.4)
a,beo/p —aw~' 1
ceo/p?

ii) The Hecke operator H stabilises the subspace Wy C V2T,

Proof. 1) The double-coset A is the disjoint union

A= || (wcf 55‘} b)Q*.

a,beo/p —aw 11
c€o/p?

Since p(charg+ ) f = vol(21)f for every f € V2", we have (3.4).

ii) For u € #* there is u € 27 such that u = (I; + ugy Fay)u. Since 27 is a normal
subgroup of #7, we have uA = Au and that implies p(u)o H = Hop(u). For f € W
this means p(u)H (f) = ¢(u2a)H(f), so Hf € Wj. O

Type IX for unramified ¢. For the unramified quadratic character &(z) = (—1)"F @)
of F*, we will now determine the action of the endomorphisms 7" : W; — W,
and H : W; — Wj explicitly on the generators fi, fs,s,s,- The intersection of
the subrepresentation Vs = &(v€, v='/2I1) of (p, V) with the subspace W, must be
preserved by both H and T

Since T is J -intertwining on (p, V'), one of the eigenvalues of 7' : W; — W) must
coincide with the eigenvalue of T": Wy — W5. The corresponding eigenvectors must
belong to the generic constituent of (p, V). If this eigenvector f, € Wi is also an
eigenvector of H and the other T' eigenvector f, € W; is not an eigenvector of H,
then r_(5(v€, v~ /2I1)) must contain the space of Whittaker vectors W, and thus be
generic.

Lemma 3.13. For any cuspidal admissible representation (m,V,) € Rep(GL(2,q))

S (M ) = - ), (3.5)

a,b,celFy
c#0
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Proof. Fix (a b) # (0,0). Since (_“b _“2) is nilpotent, there is A € GL(2, ¢q) such

b2 ab
that (4° _a‘z ) =A"1(34) A and this implies:
1—ab/c —a?/c\ _ 1 1 I
Zﬁ( 20 Hab/C)_W(A )ZF:W L) (A = (A7) = —n(L).
c€Fy c'€lfg

=0 (7 is cuspidal)
with 1/c = ¢ for ¢ # 0. The sum over a,b € F, and ¢ € F is then clear. O
Lemma 3.14. The action of T on Wy and Wy is given by
Tfl :f3132517 Tf818251 :q3f1 + (q - q2)f8182517 TfWh ZQfWh (36>

Proof. For f € W, we have
Y. fmssu) = > [f(sis951) = ¢ f(s15251),

ue D+ | X+ e+ X+

since f is right invariant under 2% by definition of W;. Further,

o= 5 1((F)) - 2 ()

a,b,celFy a,b,cely

a=b=0 or c#0
—1/¢c —a/c 1 —b/c 1 —a/c —1/c =b/c
1)+ Z f (( l—ab/c_b _b2/c>815281< 1 —li/c ))
a,b,ceFy a’/c —a l4ab/c afc 1
c#0
~ —ab/c —b%/c

=f+ 3w (e ) feses)

a,b,cely

c#0

= f(1) + (¢ — ¢*)f(s15251) by Lemma 3.13.

Since supp T f C Q LI Qs15951 B, the image T'f € W, is uniquely determined by the
values on 1 and s;s9s1. For W5 we have supp fwn C Qs15251. %", hence

—-1/c —a/c 1 —132/0 1 —a/c —1/c —b/c
T fwn(s15251) Z fwh (( 1-ab/e ,bc —b%/e ) 518251 ( ! _?/C ))
1

a,b,c€F, a?/c —a 1+4ab/c a/c
c#0
o ~ —ab/c —b%/c
Z Y(—a/c)T (<1a2/bc/ 1+bab//c>> fwn(s18251)
a,b,c€Fy
c#0
= Z Y(—d) Z T ((1;72/2/0 115/215(:)) Jwn(s15251)
a b €F, cEF)
(36) ~ ~ ~ ~
=00(0) Y F (L) fanl(sisos) + Y G(—d) (=T (L)) fwn(s15251)
c€Fy a' b’ eFy

(a",b")#(0,0)
= (¢ — 1) fwn(s15251) + fwn(s15251) = ¢fwn(s15251).
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In the third line the substitution @' := a/c and V' := b/c was made. O

Lemma 3.15. The Hecke operator H : W1 — W1 is given by

Hfl = _Qfl + (C] - q_l)f813251 and Hf515251 = _q3f315251‘ (37)

Proof. We begin by calculating H f(1) for f € W;. The modulus character of the
standard Klingen parabolic Q is dg(p) = |p11|*|pa2pas — p2apaz| 2. Therefore

A = Y f(mf b >= > o (w‘f = )S(w)V(w)f(l)

a,beo/p —aw~ 11 a,b€o/p —aw~ 11
c€o/p? ceofp?
= Y g (=g (D) = —qf(1).
a,beo/p
ceofp?

In order to calculate H f(s1s951), recall supp(f) € Q27 LI Qs1s25127. By Table 3.5
we have H fi(s18251) = (¢ — ¢~ vy and H f,, s, (515251) = —¢>vp. Functions in W,
are uniquely determined by their values on 1 and s1$9s1, so (3.7) follows. ]

The representation
rp(Ex 1) = 1px @7

of A/ #* has two irreducible constituents. The generic one is x, = x13(l2) X wz
for even ¢ and x, = xs(A) for odd ¢ and the non-generic one is x, = xo(l2) K ws for
even ¢ and x,, = x7(A) for odd ¢.!

Lemma 3.14 implies that 7" : W7 — W; admits the eigenvector f, := qf1 — fs1s05,
with eigenvalue —¢? and the eigenvector f, := ¢*f1 + fs 5,5, With eigenvalue ¢. But
the Whittaker vector fywy, has eigenvalue ¢ and belongs to the generic representation
Xg, 50 Schur’s Lemma implies:

Corollary 3.16. The vector f, generates the constituent x,, while f, generates x,.

Corollary 3.17. The T-eigenvector f, € Wy is an H-eigenvector with H -eigenvalue
—q, but the T-eigenvector f, € Wy is not an H-eigenvector.

Proof. Lemma 3.15 implies H f, = —qf, and Hf, = —¢*fo + (¢* — 1) fa. O

Theorem 3.18. If ¢ : F* — C* is the non-trivial unramified quadratic character of
F* and 11 is a depth zero cuspidal irreducible admissible representation of GL(2, F')
with EI1 = 11, then the hyperspecial parahoric restriction for type IX is

v (O(vE, v 20) = and  re (L, v ) = v,

IThe character A of F(IXQ is the one that determines 7 by Thm. A.1 with I like in Not. 3.3.
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wa cw ! b w1t
Hf(s15251) = Z / (513251< ! bgff )) = Z / <_w . _’)Z;fl b

—aw~ ! 1

—aw~ ' 1 a,b€o mod p

a,bco mod p
c€o mod p?

c€o mod p?

—w/c —ajc w ! —bjc 1b/ .
—ab/e bw~! —b%/c —wb/c
= Z f( < tat/ _bcw—l v/ ) ( w?/c wa/c 1 wb/c) )
a?/c —aw™! 1+ab/c R wa/c 1

a,bep mod p .
cep—p? mod p? ~ ~~ -~ ~~
€Q €2+

—wl/c —aj/c w ! —bjc 1b/ .
—ab/c bw™l —b%/c —wb/c
+ Z f( ( ta/ —ew ! / > ( w?/c wa/c 1 wb/c) >
a?/c —aw™! 1+ab/c R wa/c 1 P

a,bco mod p

2 \ ~
c€o—p mod p E«é ot
w1 law ! cw 2 bw?!
+ Z f < 1 - ) 515251 ( 1 bw{l )
a,bep mod p N 1 , —aw ' 1 P
c€p?  mod p? €Q ETOJF+

o1
+ Z f <w 2 ,bfw_i b> by Lemma 3.32

a,beo mod p N —aw~ 1 1 y

(a,b)#(0,0) mod (p,p) ~~

c€p mod p? . ¢supp(f)
= Y mw Prb(we )T (L) £(1)

a,bep mod p
cep—p? mod p?
_ _ — 1—ab/c —b%/c
+ Y —wm Pt (—me 1/zn)( o 1+ab//c> £(1)
a,bco mod p

c€o—p mod p?

+ Y | e ) f(sises)

a,bep mod p
cep® mod p?

Sorm+ Y a e (e e r)

a,bép mod p a,béo mod p
ce€p—p? mod p? c€o—p mod p?
2
+ ) ¢ (—q)f(s15251)
a,bep mod p

cep?  mod p2
=(g—Df(1) +qlg—a*)g (=g ) f(1) = @ f(s15251) (Lemma 3.13)
=(q—q ")f(1) — ¢ f(s15251).

Table 3.5.: The calculation of H f(s1s2s1) in the proof of Lemma 3.15.
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Proof. By definition, §(v€,v~1/21)) is a subrepresentation of ¢ x /211, defined on
a vector subspace V5 C V,,. The subspace W; N vV " is one-dimensional, because W,
contains T-eigenvectors with two different eigenvalues. The operators T" and H both
stabilize W, N V3% " so this space must contain a common eigenvector of T" and H.
We have already seen that f;, is not an H-eigenvector, so W, N Vs = Cf,. Therefore
fa € V&7 and Cor. 3.16 implies that , is a constituent of r 4 (§(v¢, v~/?11))). Then
the parahoric restriction of L(v¢,v~/?II) can only be zero or x,. It cannot be zero
because of Cor. 2.14. |

Type IX for tamely ramified quadratic character. Let ¢ be an odd prime
power and fix a tamely ramified quadratic character £ = & of F* such that the
restriction to 0* factors over the nontrivial quadratic character Ao of 0*/(1+p) = F .
In this section, we determine the hyperspecial parahoric restriction of the irreducible
admissible constituents of the Klingen induced representation (p, V) = v¢ x v~ /211
The Gauft sum

6= M@= ¥?) (38)

z€Fy z€F,
has square &2 = ghg(—1) = (—1)@Y/2¢, but & depends on the choice of .

The argument is analogous to the unramified case. For any cuspidal irreducible
representation 7 of GL(2, q), a tedious calculation with the model of Prop. A.2 yields

> e=heF (e ) = —6 -7 (h), (3.9)
a,b,ceFy
c#0

~ —ab/c —b%/c ~
Y e(-YF <1a2/bc/ Hbab//c) — (>~ 1)& -7 (L) (3.10)
a,b,c€lFy
c#0
Lemma 3.19. For f, = ¢*fi — & fy 5,6, and fr = qfi + & fy,s,6, in Wi we have

Tf,=-6"fa, THh=q" fo Tfwn =6 fwn.

Sketch of proof. For every f € Wi and fw, € W we have

T(1) = ¢*f(s1s251), Tf(s18251) = E(=1)f(1) + (¢ = )& - f(s15251),

TfWh(515231> =-6- fWh<315251)
by a standard calculation using (3.9) and (3.10). O

Lemma 3.20. The Hecke operator H acts on Wy via
Hfo = q(w) fa Hfy=&@)((; — ) fo+a*fr).
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Proof. A standard calculation as in Lemma 3.15 yields H f(1) = £{(w)qf(1) and

Hf(s18251) = £E(w)(1 — ¢ *)&f(1) + E(w) g’ f(s15251).

By the same argument as in Thm. 3.18 we obtain

Theorem 3.21. For a tamely ramified quadratic character & of F* and a depth zero
cuspidal irreducible admissible representation I1 of GL(2, F') with complex multiplica-
tion 11 = 11, the hyperspecial parahoric restriction is

rr (8(v!/2, v PI)) = 1(N), vy (L(W'2€, v PI)) = m(X),

with a character X' of F5[2(¢ — 1)] such that the cuspidal irreducible representation
T = rane,0) (1) is generated by the character A = X o Nigy1)/s.

3.3. The proof for paramodular restriction

We now prove the result on paramodular restriction of non-cuspidal irreducible
admissible representations of GSp(4, F).

Proof of Thm. 3.7. The strategy is similar to the hyperspecial case by combining
Lemma 3.22, Lemma 3.5 and Cor. 2.14. If a parabolically induced representation x
of G has non-zero paramodular restriction, then for every irreducible constituent p
of k the paramodular restriction r ,(p) is a non-zero (not necessarily irreducible)
subquotient of r (k). For each case we have to determine the correct constituent(s)
of the representations r ,(x) given by Lemmas 3.22 and 3.23. We can assume without
loss of generality that the inducing data are of depth zero [MP96, 5.2(1)].

The irreducible admissible representations p of type I, IIIa, IIIb and VII are Klingen
induced and the statement is implied by Lemma 3.22. For representations of type
[Ta, IIb, X, XIa and XIb there is Lemma 3.23.

The irreducible admissible representation p = u Stgspa,r) of type IVa is the irreducible
subrepresentation of v? x v x v=%2y. By Table 3.2, the paramodular restriction
of p is irreducible and either f[1, St] or u[St, St]. By Lemma 3.5 it must be
f[ St, St]. By [RS07, (2.9)], IVa and IVDb are the constituents of the Klingen induced
representation v x vu St, so case IVb is also clear by Lemma 3.22. Lemma 3.23
gives the paramodular restriction for representations of type IVc and IVd. The proof
for type VI is analogous [RS07, (2.11)].

We begin with p of type Ve with an unramified quadratic character &, of F*. By
Thm. 3.30, the paramodular restriction r »(p) has a generic subquotient, which
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must be [ St, St]. Since the Klingen parahoric restriction of type Ve contains two
constituents, there must be another irreducible constituent of i[1 x 1,1 x 1] in r 4(p).
By the symmetry argument of Lemma 3.5, this can only be z[ 1, 1]. For type Vc with
tamely ramified quadratic character &, the paramodular restriction is the generic
constituent of [1 x Ao, 1 x Ag] if and only if {(w) = —1 (and the non-generic one
otherwise) by Thm. 3.30. The paramodular restriction for types Va,Vb and Vd is
then clear by Lemma 3.23 and |[RS07, (2.10)].

Representations of type VIII are irreducible subquotients of 1 x II. Without loss of

generality let IT be of depth zero. Their paramodular restriction is either [z, 1]4[1, 7]
or [7, St] 4+ [St, 7] by Lemma 3.22 and Lemma 3.5. Corollary 4.15 implies that the
character value of r 4 (7(S,II) — 7(T,II)) = r 4 or(IL,II) on the conjugacy class
Eq(afB, af?) stably conjugate to (diag(af, a?7), diag(af?, o)) is given by
—2(=A(a) = A(a”))(=A(B) = A(B)) = 2(=A(aB) — A¥(ap)) + 2(=A(ap?) — AY(aB?))

for o, 8 € ]F‘:2 with «, 8, a8, ap? ¢ Fy. The correct choice is therefore given by
r ;(7(T,1I)) =[x, St] + [St, 7] and r ,(7(S,1I)) = [, 1] + [1,7].

For representations of type IX, there is Thm. 3.25 in Subsection 3.3.2. O

3.3.1. Klingen and Siegel induced representations

As an analogue of Thm.2.19, the following theorem describes the paramodular
restriction of Klingen parabolically induced representations of GSp(4, F').

Lemma 3.22. For admissible representations (o, V,) of GL(2, F') and (i, V,) of F*,
the paramodular restriction of the Klingen induced representation j X o is

ry(uxo) =[x 1,550 1] (3.11)

for the hyperspecial parahoric restrictions fi = rox (i) and & = rgr(2,0)(0).
The proof is similar to that of Thm.2.19.

Proof. An explicit model of r s (i x o) is given by the right-action of ¢ on

V={f:G=V,V,|flpgk) =64 (p)(uRo)(p)f(g9) Vp€ Qg€ G ke F}.

By (3.13), any f € Vs uniquely determined by its restriction to ¢ and s; ¢, so
the #-representation V' is isomorphic to the direct sum

{fly: 2o V@Vo|f eV {flay is1.7 2 V,@V,|feV)
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We claim that the first summand factors over ¢/ #+ = (GL(2,¢)*)°. Indeed, every
element of it is right invariant under #* and factors over a unique function

f: 7177 = VPVt with  flag) = (ilgn) @7 (8 &) f(9)
for every g € 7/ 77 = (GL(2,¢)*)" and every
(L NQ) I 7= (") x (:1)" € (GL(2,9)*)".
By definition, the action of (GL(2,¢)?)° on the space of these f is the induced
representation [z x 1,0].
For the second summand the argument is analogous after conjugation with sy, it
yields the representation [, iz x 1]. O

Lemma 3.23. Let i and pu; be a smooth characters of F* and let o be an irreducible
admissible representation of GL(2, F). The paramodular restriction of the Siegel
induced representation o X [ 1S

rf(UN,ll)g/j[lXﬁl,lxm] fora:MIStnu’l]-?
and it is v y(0 % p) =0 for cuspidal o.

Proof. An explicit model V of r 7 (1St » p) is given by right-multiplication with
elements of _# on the space of smooth functions f : G — V,,, & with

f(pgk) = 577 (p)p(sim(p)) (1 St) (35 522) £ (9)
forpe P,ge Gand k € #*. By the decomposition G = P_# of Prop. 3.31 every

such f is uniquely determined by its restriction to _#. Therefore Vis isomorphic to
the vector space of # 7 invariant functions

f . / — VMl St
which satisfy for every g € # and every p € PN _# the condition

f(pg) =p(sim(p)) - (11 St) (51 b2 ) f(9)-
Especially, f(g) is invariant under every p € PN _#* with the property
(P2 p2a) = (11) mod p and sim(p) € 1+ p,

so f(g) must be contained in the parahoric restriction of u; St with respect to the
standard Iwahori subgroup? of GL(2, F)). The above condition is equivalent to

f(pg) =p(sim(p)) - g1 (p11) pa (p22) f(9)-

forge 7/ #tandpe PN _Z/PnN _#*. By construction of the isomorphism to
(GL(2,¢)?)", this is the induced representation fi[1 x ji1,1 X fi1].

The proof for the other cases is analogous. O

2That means f(g) is in the Jacquet module 7 X 7 of the hyperspecial parahoric restriction
rGL(2,0) (11 St) = 11 StaL(2,q)-
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3.3.2. Type IX

Let & = &,,& be an unramified or tamely ramified non-trivial quadratic character of
F* and TI be a depth zero irreducible cuspidal admissible representation of GL(2, F')
with hyperspecial parahoric restriction 7. We determine the paramodular restriction
of the irreducible constituents in the representation (p, V) = & x II with 1T = 11
using the explicit model (3.1). The argument is analogous to the hyperspecial case
in the previous section with minor modifications, so the proof will only be sketched.

For every _# *-invariant f € V with support in Q) _# , we denote by f its restriction to
¥ . By the proof of Lemmma 3.22, these f generate the representation V= [§ x 1, 7.
We consider the ¢ -intertwining operator

T:V =V, Tf(g) = Z f(soug) Zfsou
ue( JfNU2) f+/ 7+ c€o/p

w1

1 ¢
for u(c) = ( L ) and sp = diag(w ™1, 1,w,1)s15281 € 7.
1

The space W; C V2" C V7" is the same as in the hyperspecial case and it is
generated by the functions

Y (ugg) (V€ R =210 (p)vy  for & = pwu € QuAB™
fuw(z) = 0
else.

for w € {1, s15251}. Both have support in )_¢, so the space ¥, belongs to V. The
space

Wo={f eV|flzu) = f(2)(—unw ' +un)Vu e BYCV CV/"

is (GL(2, q)?)%-conjugate to the one-dimensional space of standard Whittaker vectors
in in the paramodular restriction V. It is generated by

I/f X Z/H(—w_lu31 + UQ4)U0 T =qu € Q%+,
fWh =
0 else,

by the same argument as in the hyperspecial case.

Lemma 3.24. For unramified & = &, eigenvectors of T in Wy are given by

fa:q2f1+f818281 Tho=(-1)fa
fb:qgfl_fﬂszsl beZQ'fb-
and for tamely ramified & = & by
fe = L £E(-1)8 fo 00, Tfe =+&(-w)6Tf.

The operator T acts on Wy by T fwn = —1 - fwn for unramified £ = &, and T fyw, =
& - fwn for tamely ramified & = &,.
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Proof. For fe W1 we have

770 = 3 Fowte) = Fsr+ 3 R T ) (et )

cEo/p ce(0/p)* < — N ~ _
€Q erf
=fls0)+ > |—c'Pe(=cf()
c€(o/p)*
= f(w)qgf(518281) + {(()q - 1)f(1) 2 z Zn
and
T]?(315281) =q (@ )Tf(SO Z f sou(c)so)
cEo/p
1 -
e LA ) (w0111)> - (=) ).
cco/ . -~ ~ -~ -
' €qQ erf

The action of T on W is therefore given by

(q_l)fl £:€u7

0 eog, 0 T =0¢@

Tfl = q72£(_w)f818281 + {
The calculation for T fywy(1) is analogous to T'f(1). O

Therefore the eigenvectors f, and f¢_x) belong to generic constituents of V.

The Hecke operator H is the same as in the hyperspecial case. For unramified £ we
have Hf1 = —qfi + (¢ + ¢Y) fsys0s, and H fo, 65, = —@° f5,5,5,; the other eigenvector
is fo = ¢f1 + [feyss, With eigenvalue —¢q. For tamely ramified £ it is given by

Hfy = ¢§(w)fi + (@) (1 — q72)6f518281 and H fs 55, = €(w>q3f818281§ the other
eigenvector is ¢3f) — & f,, 4,5, With eigenvalue &(w)q.

Theorem 3.25. Fiz an at most tamely ramified quadratic character & = &,,& of F*
and a depth zero irreducible cuspidal admissible representation I1 of GL(2, F') with
I =11

The paramodular restriction of the subrepresentation d(vE, v /2I1) of type IXa is

-1/2 _ [St’%] + [%’ St] ng = fua
(O, L) = {[1 X Aoy le + ol X Ao]s if € = & and £(w) =
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The paramodular restriction of the quotient L(v&,v=/?I1) of type IXb is

[17%]+[%7 1] if§:§u7

“1/277)
(LS v = {[1 X Ao, Tl + [T, 1 X Xolx if § =& and §(w) = £1.

Proof. For the subrepresentations of V= [E x 1, 7] the argument is completely
analogous to the hyperspecial case. The rest is implied by Lemma 3.5. O]

3.3.3. Type V

We determine the paramodular restriction for non-cuspidal irreducible admissible
representations of type Vc and Vd. By definition, these are the irreducible constituents
of the Siegel induced representation (p, V) = v/2¢ 1 X v~'/2y, which is given by right
multiplication on the function space

V={f:G—C|f(pg) =/ (0)("/* 1 Rv")(p) f(9)¥p € P}.

The modulus character of the Siegel parabolic is dp(p) = |det (bt b2 ) |2 - | sim(p)

By the double coset decomposition (3.13), every f € V is uniquely determined by its
restriction to ¢ . The vector subspaces

I

Wi ={f € V| f(gu) = f(g9)t(us1) Vu € B},
Wo = {f € V| flgu) = f(9)¥(~w ug + ua4) Yu € B},

are contained in the space of ¢ *-invariants in V. For € G and w € {552, 52} let

folz) = {5}9/2@)(’/1/25 1 x V_l/gﬂ)(p)¢(u31w_l) x = pwu € PwA,
o else,

and let

fwn(x) = 5113/2(1?)(”1/251 v 2 ) () (—usiw ! + ugg) @ = psyu € Psy BT
Wh 0 else.

This definition does not depend on the choice of double coset decomposition of x.

Lemma 3.26. W, = Cf, s, ® Cf,, and Wy = C fywy,.

Proof. Eq.(3.13) implies the disjoint double coset decomposition

G= |_|ng@+ w € {1, 59, S0, S052}, (3.12)
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so any f in W and W, is uniquely determined by its values on w € {1, sq, So, SoS2}-
For every ¢ € o, the element Iy + cEyy € GSp(4, F) is in &7 and in the unipotent
radical of P. For every f € W; we have

f(l)w(C) = f(Ll + CE24) = f(1>7
f(s0)¥(c) = f(so(ls + cEas)) = f((Is + cEa4)s0) = f(50),

so f(1) = f(so) = 0. Therefore W, is at most two-dimensional. Since the supports of
fsoso and fs, are disjoint, the are linearly independent and generate ;. The space
Wy is (GL(2, q)?)%-conjugate to the one-dimensional space of Whittaker vectors in
a1 x £,1x E] and it is generated by fwn. O

Lemma 3.27. The 7 -intertwining operator T : VsV

SIUEIED S R S (A P

ue(PN 7)) gt/ 7+ a,beo/p

for g € 7 preserves Wi and Ws.

Proof. That T : V — V is well-defined is shown in the same way in Lemma 3.11. It
is _#-intertwining and therefore preserves Wy and Wj. O

Lemma 3.28. For unramified £ = &, with E: 1, T is given on Wy and Wy by

Tf82 = _(q - 1)f82 - qf80827 Tf8082 = _f527 TfWh = fWha

with eigenvalue equations

T(fa) = fa Jo = Jso — A sos0>
T(fb):_bea fb:f32+fsosz~

For tamely ramified £ = & we have

Tf52 = qg(_l)ﬁfsosza TfSOSQ = ijsoa TfWh = ®2fWh7

with eigenvalue equations T(fy) = +&%f1 for fi = fo, + G fo s

49



Proof. For f € W, the value of T f(s2) is the following sum over a,b € o/p.

ri = X ()

a,b€o/p

—p—1 w ! 1
=Zf<( - ) e
a#0 —a 1

)
= &lab)p(—a™) f(s2) + Y E(=aT)b(—a™") f(s0s2)

a#0 a#0
b#0 b=0
_ ) (g =1)f(s2) = f(s082) & =&
& f(s082) £=¢&.

The terms for a = 0 vanish because f(1) = f(sg) = 0.

-1
T'f(s0s2) :Zf (wb - -1 1)
a,b -

a

(YL )

a

b

_ ((—1)(—aq L s P! 1)\2 _ —NCIf(52) § = &u,
=D E(=1)(=a7") f(s2)vo )+zb:£(( 1)) f(1) {qg(_l)w(&) f—4,

a#0
b

The calculation for fwy is analogous. The eigenvalue equations are clear. O]

Lemma 3.29. The Hecke operator H : V. — V from Lemma 3.12 is given for
f e V2 by the finite sum (3.4). It preserves Wy with

_(q4 - q3)f5()82 5 - gu;

d H sps2 — 3 5082 °
B¢ — ) s E=C0 I oS

HfSQ = g(w)quSQ + {

and satisfies the eigenvalue equations Hf, = —q¢* - f, for unramified € = &, and
Hf ¢(w) =&(@)@* - [-¢(w) for tamely ramified § = & with the T-eigenvectors from
Lemma 3.28.

Proof. That H preserves W; and that (3.4) holds is shown the same way as in
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Lemma 3.12. For every f € W; we have

wa cw ! b wb cw ! —a
Hf(s2) = f(32< bt >): > f(( oo )S2)

a,b€o/p —aw~ ' 1 a,b€o/p —bw! 1
c€o/p? cCo/p?

= 3 (PPE) (et (7 1)) f(s5) = E()a f (s2)
a,beo/p
c€o/p?

and H f(sps2) is given by Table 3.6. This determines H f uniquely. The eigenvalue
equations are clear. O

Theorem 3.30. Let & and p be at most tamely ramified characters of F*, where £
18 non-trivial quadratic. For unramified & = &,, the paramodular restriction of the
irreducible admissible representation pey, = L(vY/2€ St v=Y2¢p) of type Ve admits a
generic subquotient. For tamely ramified & = & the parahoric restriction of psu, S
Al x Ao, 1 X Ao|x for {(w) = £1.

Proof. The representation pg,p is the unique subrepresentation of the Siegel induced
representation v'/2¢ 1 x v=1/2y [ST94, 3.6]. For unramified ¢, both W, and W, are
contained in the subrepresentation

plx 1, St Cpull x1,1x1]= r/(yl/2§1 12y,

of (GL(2,¢)?)" because the action of the subgroup {(ls, (* %))} C (GL(2,¢)?)° is
non-trivial. This subrepresentation fi[1 x 1, St] has two irreducible constituents and
by Schur’s lemma applied to T" the subspace W; has non-zero intersection with both
of these constituents. Any v € Wi Nr /(psub) must be an eigenvector for both H
and T'. The T-eigenvalue of v coincides with the T-eigenvalue for fywy, if and only if

r 4 (psub) is generic.

For tamely ramified &, the representation r , (1261 x v=1/2p) = [i[1 x X, 1 X Aq]
has one generic constituent [l X Ag,1 X Ao]+ and one non-generic constituent
A1 x Ag, 1 X Ag]— by Lemma A.6. The same argument works here as well. O

3.4. Double-coset decompositions

Let . be the standard hyperspecial and ¢ be the standard paramodular subgroup
of G = GSp(4, F).

Proposition 3.31. There are disjoint double coset decompositions

GSp(4, F)=BX = | | Bu#* =Q / UQs1 7 =P g (3.13)

weWag

for the standard parabolics B, P, () and the Weyl group We.
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52

-1 —bw !

Hios) = 3 f ( )

D R R e

aco/p  ye(o—p)/p?
be(o—p)/p

+ 3 S )@ ) f(sos2)

aco/p yep?/p?

bep/p
+Y 0> (PO () vty
a€o/pyc(o—p2)/p? -1
bep/p
+ Y > ()(=b A f(1) by Lemma 3.33
aco/p yep/p? :ﬁ/

be(o—p)/p

o) Ly @y fs)

be(o—p)/p ge(o—p)/p

J

~~

=—1ifé=1, =& if E=Xg
+q%¢ (@ ) f(s0s2) +4 Y, (P (y ) (s2)
y€(o—p?)/p?
—(¢* = %) - f(s2) — ¢ f(s052) %:: 1,
(¢® = ¢*) - B f(s2) + &(@)® f(s052) €= o
+¢ D W) +d D W) f(s)
y€(o—p)/p ye(p—p?)/p?
:{ (¢" = ) () = *f(s0s2)  €=1
(¢* = )& f(s2) + E(@)q* f(s082) € = o

Table 3.6.: The calculation of H f(sgsy) for the proof of Lemma 3.29.



Proof. Iwasawa decomposition and Bruhat decomposition imply

G=Bx =B(|| #wz")= || BAx wp" = | | Buz*. (3.14)

weWqg weWqg weWg

The last equality follows because w ¢ tw = #+ C %*. It is disjoint because
Iwasawa decomposition is unique up to elements in BN ¢ C A.

The element s, is contained in the paramodular group ¢ and in the Klingen parabolic
Q. Furthermore, s1s98; = diag(w, 1, 1)s0 € Q7,50 G =Q_F UQs; . For
any k € ¢ at least one of the matrix entries k3; and k33 is non-zero, since det(k) € o*.
Then (pk)s1 # 0 or (pk)ss # 0 for p € Q, so s1 & Q Pp2y and the decomposition is
disjoint. For the Siegel parabolic P the proof is analogous. n

In the proof of Lemma 3.15 we need the following matrix decompositions:

Lemma 3.32. Let a,b,c € o be arbitrary. The disjoint decomposition (3.3) of

takes the following explicit form

i) Forc € o—p? and a,b € c- 0 we have « €€ QA with

—wct —cla w ! —c 1 1
o= 1—ab/c bw™t  —b*/c —wb/c 1
N —cw ! w?/c walc 1 wb/c|’
a*/c  —aw!' 14ab/c wa/c 1

i) for c € p? and a,b € p we have o € Q51595 B " with

w L 1 aw™' cw? bw!
1 1 w b
o = 515251
w 1
1 —w ta 1

—b! w ! 1 c(bw)!
B beo ! 1
4= —b o1 wb™! 1
—wb™' 1 (f—a)w’ wb™!  ab™! —c(bw)! 1

23



iv) Finally, ¢ € p and a € 0™ implies o € Qs150. BT with

—a™! w! 1 c(aw)™?
wat! -1 (b—%)w! —wat 1 claw)™ —a7'b
o = a 5189 1
—a 1 wa
wla 1
Proof. This can be checked directly. O]

Lemma 3.33. Fora,b,c € o, the decomposition (3.12) of

-2

w
-1
—aw

T2 —aw ¢ —bw € GSp(4, F)
-1 —bw!

admits the following form:

1. Ify=ab—cco—p*and y='b € o, then a € Psy B+ with

y ! bylot w2 1
—ay'w  —cy! —aw! by lw 1 b2yt
“= —c aww | 2| —y 1o 1 —by!
Yy 'w Y w
—bw! 1 1

2. Ify=ab—cepandb € o, then « € PA™ with

bl w2 1
o — —b'w ch™2 —aw ! 1 1
o —c —bw blw 1
—bw! b~lw yb2 1

3. Ify=ab—ce€p? andb € p, then a € Psys, BT with

w1 1 —yw 2 bw!
we | @ 1 g 1 bw !
w aw | 072 1
1 1

4. There are no a,b,c € 0 with o € PsoA™+.

Proof. The first three cases can be checked directly. These are all the a,b,c € 0. [
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Proposition 3.34. The group GSp(4, F') admits the following disjoint double coset
decompositions with respect to the maximal parahorics

GSp(4, F)= || AN (=), (3.15)
n1<n2<ng—n2

GSp(4, F) = || 7N (@) 7u fu) (=) s (3.16)

n1<np—n1
nz<np—ngz

for cocharacters N = ng fo + ni fi + na fo with integer coefficients.
Here \Y(w) = diag(w™, @™, w0 "™ w" ") and u; is the Atkin-Lehner element.

Proof. Associating to w in the normalizer of the standard torus the double coset
PBwA turnishes a bijection between the affine Weyl group W and the double coset
decomposition A\G /% |[BT72, 7.3.4]. For every parahoric & generated by % and
reflections s; with @ € I, this gives a bijection from Z;\G/ < to WI\W/ WI, where
/VIV/I is generated by the s; [Moy88, p.258]. For the hyperspecial parahoric ", such
representatives are \Y(w) for the cocharacters A\Y with (a;, \Y) > 0 for the simple
affine roots ay, v, cp. [Tit79, 3.3.3]. For the paramodular group ¢, representatives
are \Y(w) and w3 A\Y(w) where (a;, \Y) > 0 for ap, as. O

Corollary 3.35. The normalizer of % is No( X ') = ZJ and the normalizer of ¢
is Na(JF)=2 7 JwnZ f.
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4. Depth-Zero Endoscopy for GSp(4)

Fix a local non-archimedean number field F' with finite residue field F, = op/pp of
order ¢, unramified closure F'**, absolute Galois group I'r = Gal(F'/F), and Weil
group Wr. Let v(x) = |z| for € F be the valuation character normalized such
that v(w) = ¢! for a fixed uniformizer @ € p. Fix a non-trivial additive character
Y F' — C* whose restriction to op comes from a non-trivial character of op/pp.

4.1. Local Endoscopy

The endoscopic datum. Let G be a quasisplit connected reductive group over F
with center Z(G). An L-group datum (G, pg, 7¢;) defines a Langlands dual group £G.
A (standard) endoscopic datum attached to G as given by Langlands and Shelstad
[LS87, p. 224| is a quadruple (H,H, s, &), composed of

1. a quasisplit reductive group H over F' with L-datum (ﬂ, PH,TH ),

2. a split extension H of H by W which gives rise to an exact sequence

1%}AI—>7—[—>WF—>1,

such that the splitting py : Wr — Aut(I:I) coincides with py,
3. a semisimple element s € G,
4. an L-homomorphism ¢ : H — £G such that

a) & defines an isomorphism from H to the connected component of the
centralizer Cent(s, G),

£ = a® & where a is a trivial 1-cocycle of Wr in Z(G) and

b) Int(s) =
= a(w)&(h) for h € H with image w € Wp.

(a®&)(h)

The trivial endoscopic datum is (G,%G, 1, id). There is a natural definition of
equivalence between endoscopic data [L.S87, §1.2].

An endoscopic datum is elliptic if the connected component of §(Z (I:I)F) is contained
in Z(G). That means £(H) is not contained in a proper parabolic subgroup of *G.
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Point correspondences. Fix a quasisplit connected reductive group G and an
elliptic endoscopic datum (H,H,s,{). As usual, G and H denote the groups of
F-rational points. Borel pairs' (Bg,Tg) of G and (By, Tx) of H define tori T € H
and Tg C G in the L-groups. If {(Tg) = T and s € Tg, there is a naturally
defined isomorphism

’LbITH—>Tg.

This ¢ is an admissible embedding if it is defined over F' [LS87, (1.3)]. For every
maximal torus Ty € H over F' there is a maximal torus Tg C G over F with
an admissible embedding ¢ : Ty — T [KS99, Lemma 3.3.B]. This gives rise to

a I'-invariant canonical map Ap/c from semisimple conjugacy classes of H(F) to
semisimple conjugacy classes of G(F) [KS99, Lemma 3.3A].

A semisimple § € H(F) is strongly regular if its centralizer Cent(d, H(F)) is a torus.
It is strongly G-regular if the image of its conjugacy class under Ay, consists of

strongly regular elements in G(F). A semisimple strongly G-regular vy € H(F)

is an image of v¢ € G(F) if v¢ € Apje(Int(H(F))(vr)), i.e.if 7¢ is a semisimple

strongly regular element in the image of the H(F')-conjugacy class of v under Ag/q.

Orbital integrals. Strongly regular semisimple §," € H(F') are stably conjugate
§ ~ & if they are conjugate in H(F). The stable conjugacy class of § is a disjoint
union of finitely many H(F)-conjugacy classes. The orbital integral of a compactly
supported smooth function f € C2°(G) at an element 6 € G is the integral over the

G-conjugacy class of § € G

0s(f) = / f(g™159) A\ dg, (4.1)
Cent(6,G)\G

where Cent (9, G) is the centralizer of 0 in G. The stable orbital integral SOs(f) is
the integral over the stable conjugacy class of §. It coincides with the sum

SOs(f) = _Os(f) (4.2)
8/~

over representatives ¢’ of the G-conjugacy classes stably conjugate to .

Matching. The Langlands-Shelstad-transfer factor A(yg,vs) € C for strongly
G-regular semisimple vy € H and strongly regular semisimple 74 € G depends only
on the conjugacy class of 75 and the stable conjugacy classes of vy [LS87, §1.4, §3.7].
It is zero whenever vy is not an image of 4.

Definition 4.1. A pair of functions f € C®(G) and f¥ € C%(H) satisfies the

matching condition for standard endoscopy if

SO (") =Y A, 76)Osa (f) (4.3)

G

' A Borel pair is a choice of a Borel subgroup Bg of G with maximal torus T in Bg.
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for every strongly G-regular semisimple vy € H. The sums runs over representatives
Vo € G for conjugacy classes of strongly regular semisimple elements in G and only
finitely many terms are non-zero. Such a pair (f, f) is called a transfer f — f.

The Fundamental Lemma for Standard Endoscopy [Ngo10] asserts that for every
[ € C=(QG) there is a (non-unique) fM € C°(M) such that f — fM is a transfer.

A distribution a : C*°(H) — C is invariant if a(f) = a(f") for every h € H where
f(z) = f(hah™t). It is stably invariant if it factors over stable equivalence, that
means over the orbital integrals Os(f) for all regular semisimple 6 € M. This permits
the definition of the endoscopic lift of a stably invariant distribution o : C°(H) — C
as the distribution

a%: 0°(G) — C, a®(f) = a(f™)

for every transfer f — ff. Thus, every stably invariant distribution a can be lifted
to an invariant distribution a“ on G.

4.1.1. Local Endoscopy for GSp(4)

Let G = GSp(4) be group of symplectic similitudes in genus two with respect to
the symplectic element (70[2 102) Its dual is G = GSp(4,C) and the L-group is
LG =~ G x Wp. Endoscopy for G has been studied by Hales [Hal89, Hal97] and
Weissauer [Wei09a|. Up to equivalence, there is only one proper elliptic endoscopic
datum (M, M, s,&). The endoscopic group is

M = GSO(2,2) = (GL(2) x GL(2))/A GL(1),
where the quotient is formed with respect to the antidiagonal embedding
A GL(1) = GL(2) x GL(2), tw (th,t '15).
The L-group is “M = M x Wy for
M = (GL(2,C)?)° = {(z,2') € GL(2,C) x GL(2,C))| det z = det 2'}. (4.4)

The embedding ¢ is defined on the dual groups as

¢: M — GSp(4,C) (z,y) — yu Yz (4.5)
Y21 Y22

into the connected component of the centralizer of s = diag(1, —1,1, —1). The affine
Dynkin diagram of M = M(F') is composed of two disjoint copies of the affine Dynkin
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diagram of GL(2, ). There are seven classes of maximal tori T¢; in GSp(4, F); four
of them admit an admissible embedding from a torus Tyy C€ M [Wei09a, 4.4.2]. The

embedding A/ of semisimple conjugacy classes in G(F') is given on representatives
in the split diagonal tori by [Wei09a, Lemma 8.1]

(diag(tb t,1)7 diag<t27 t,2)) = dlag<t,1tl2a t/2t17 loty, tQtll) (46)

The transfer factors for GSp(4, F)) are only unique up to a scalar. We use the
normalization of [Wei09a, p.212].

Representations of M. By inflation, the irreducible admissible representations o of
M are in one to one correspondence with pairs (o1, 09) of irreducible representations
of GL(2, F) with equal central character w,, = w,,. Indeed, o1 K oo(tly,t 1 1;) = id
for every t € F*}, so the representation oy X oy of GL(2, F') x GL(2, F) factors over
a unique representation o of M. Every irreducible admissible representations o of M
defines a unique pair (o7, 03) of representations of GL(2, F') such that o pulls back
to o1 W o5 under the natural projection

GL(2, F) x GL(2, F) — M.

We will write (01, 09) for 0. An irreducible admissible representation o of M is
generic, cuspidal, or discrete series if and only if both oy and o9 are generic, cuspidal,
or discrete series, respectively. For each irreducible admissible representation o of
M, the character x, pulls back to an invariant distribution of GL(2, F') x GL(2, F)
and is therefore stably invariant.

The local endoscopic character lift for GSp(4). Let o be an irreducible admis-
sible representation of M. Then its character y, is a stably invariant distribution on
M, so there is a well defined lift to an invariant distribution x¢ on G. This lift is a
finite linear combination

of characters of irreducible admissible representations 7 of G with integer coefficients
n(o,m) € Z [Wei09a, Cor.4.5]. The endoscopic character lift gives rise to a homo-
morphism of Grothendieck groups of finitely generated admissible representations

r: Ry(M) — Rz(G) (4.7)

such that x¢ = Xr(o)-

Proposition 4.2 ([Wei09a, §4.11|). For irreducible admissible representations o of
M with central character w,, the endoscopic lift r(o) satisfies

1. T'(O'l,O'Q) = 7”(0'2,0'1),
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2. r(uoy, pog) = (posim) @ r(oy, 02) for smooth characters ju of F*,

3. each constituent m of r(c) has central character w, = w,.

Lemma 4.3 (|[Wei09a, Lemma 4.23]). Let o be an admissible representation of M
such that o9 = py X po for a pair of smooth characters iy, po of F* with central
character pjo = wy,. Then the endoscopic lift is the semisimplified Siegel induced
representation

r(o) = ptor . (4.8)

Lemma 4.4. For every essentially discrete series irreducible admissible representation
o of M, the endoscopic lift has two irreducible constituents

r(o) =m4(0) —m_(0). (4.9)

Proof. After a character twist we can assume o to be unitary. By [Wei09a, Thm. 4.5]
7+(0) = 04 (0) is the generic irreducible isotropic theta lift [PSS81], [GT11, §8.2] and
7m_(0) = 0_(0) is the nongeneric irreducible anisotropic theta lift [GT11, §8.1]. O

Every generic irreducible admissible representations of M, which is not in the essential
discrete series, is parabolically induced and the endoscopic character lift is given by
4.3. The endoscopic lift of a non-generic admissible representation o of M can be
determined by linear combinations of generic representations o [Wei09a, §4.11].

The local endoscopic L-packets. For every irreducible representation o of M, the
local endoscopic packet attached to o is the finite set of irreducible representations of
G that occur in r(o) = ) _n(o, 7)m with nonzero multiplicity n(o, 7) [Wei09a, Def.
4.5]. For preunitary generic o this is called the local endoscopic L-packet. The packet
attached to preunitary non-generic o is the Arthur-packet.

Lemma 4.5. Let o be a unitary generic irreducible admissible representation of
M. If o is in the discrete series, the L-packet attached to o has exactly two unitary
constituents w1 (o). If o is not in the discrete series, then the endoscopic lift r(o) is
irreducible, and the local L-packet has exactly one unitary constituent m, (o). The
non-cuspidal constituents are explicitly given by Table 4.1.

Proof. The discrete series case is [Wei09a, Thm. 4.5], so we assume o is not in the
discrete series. Without loss of generality let oo = py X po be parabolically induced
from a pair of smooth characters py, o of F*. Then r(o) is the Siegel induced
representation oy % p1 by [Wei09a, Lemma 4.23]. Either o5 is in the tempered
principal series (with unitary p;) or it is in the unitary complementary series. For
both cases irreducibility is shown in [Wei09a, p. 156]. The conditions for unitarity of
7+(0) = r(o) apply, cp. |[RS07, Table A.2]. O

Notation 4.6 (Table 4.1). Let &, p, pt1, ..., a be smooth characters of F'* with
€2 = 1. Let II; and II, be two non-isomorphic cuspidal irreducible representations of

GL(2, F). The central characters are wp, = wrr, = fiflo = f3jts = p>.
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o1 o9 (o) type 7_(0) type
Euw- St p- St 0(ErY2 - St x pup1/?) Va cuspidal

pe St op- St (S, vV Via  7(T,v=*?u) VIb
I, oSt S(pm w2 10 x pr~/?) Xla  cuspidal

H1 H1 T(S, H1> VIlIa T(T, Hl) VIIIb
I, I, cuspidal cuspidal

T R T eV Ve T T T I —

e St pa Xy ppy - Staner) X [Ma  —

1 pn X po gyt Tl X s X —

Table 4.1.: Constituents of the local endoscopic L-packet attached to generic unitary
irreducible o.

4.2. Main result on parahoric restriction of endoscopic lifts

Parahoric restriction with respect to a parahoric subgroup &, C G is an exact functor
between categories of admissible representations, so it defines a homomorphism
between Grothendieck groups of finitely generated admissible representations

v 1 Ry(G) — Ry(P.) P1). (4.10)

In this section, we will determine the parahoric restriction of the endoscopic lift (o)
for every irreducible admissible representation o of M. We will also determine the
parahoric restriction of the local endoscopic L-packets attached to unitary generic
irreducible admissible 0. By (2.5), it is sufficient to study maximal parahoric
subgroups.

4.2.1. Hyperspecial parahoric restriction

Let r» : Rep(GSp(4, F)) — Rep(GSp(4,q)) be the parahoric restriction functor
with respect to the standard hyperspecial parahoric subgroup % = 5 = GSp(4, 0r)
with Levi quotient £ = GSp(4, q).

Theorem 4.7. Fix a unitary generic irreducible representation o of M and let
7wy = w1 (0) be an irreducible constituent of the attached local endoscopic L-packet.
If o has depth zero, then r(my) is given by Table 4.2. If o has depth > 0, then

I‘,)g/(ﬂ') =0.

Proof. The non-cuspidal 7 are explicitly given by Table 4.1; for r_(7) see Thm. 3.2.
If 7 is cuspidal, then r 4 (7) is either zero or cuspidal irreducible by Lemma 2.18.
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o 7 (74 )|sp(a,q) (even q) ry(my) (odd q) dimension
(1 X p2, pi3 X pa) X1kt — ks, ke —k3)  Xa(fn/ s, ie/fis, 1) (¢ +1)*(¢° +1)
(k1 X pig, o - St) xi0(k — k1) xa(i/fin, i) (@ +q)(@® +1)
(1 X p2, pa - Th) x2(l1) Xo (A1, pin) ¢t -1
(b~ St,p- St) 01 + 04 01(1) +05() "+ qlq +1)%/2
(b - St, py - St 05 + 64 04(f1) +05(1)  q* +alg® +1)/2
(1 St, p&, - St) — 73(/1) ¢+ ¢
(- St,p-10p) x12(17) xo(ways i) (¢*+1)(¢* —q)
(I, 1) x3(lh) xs(A1)  (¢*+1)(¢* —q)
1Ty, 1) x4k, k) Xs5(A1,wag/n,) (@ +1)(g—1)?
o T (7-)|sp(a,g) (even q) ry(m—) (odd q) dimension
(b~ St,pu- St) 02 03(f1) q(q* +1)/2
(- Sty &, - St) 05 O2(f1) (g —1)*/2
(p - St, p&t - St) — 0 0
(- St,p-1Ih) 0 0 0
(T1y, 1) Xo(lh) x7(A1) (P +1)(g-1)
(I, Il 0 0 0

Table 4.2.: Hyperspecial parahoric restriction r (71) of 7i(0) in the endoscopic
L-packet for depth zero preunitary generic irreducible admissible o.

If # = 60_(0) is non-generic and cuspidal, we must have o; 2 9. By Thm. 4.29, the
hyperspecial parahoric restriction of 7 is zero unless o = (u St, u&, St) for an at most
tamely ramified character p and the unramified quadratic character &,. For even g,
the only irreducible cuspidal representation of GSp(4, ¢) with dimension q(¢* —1)/2
and central character i is 05 X 2. For odd q it is either 0y(f1) or 6o(Noft) Where
Ao is the non-trivial quadratic character of FX. The character value of r or(c)
on the conjugacy class Ly is given by (4.20), and we have 0_(c) =6, (c) —r(o) in
the Grothendieck group. Hence r (6_(0)) is the twist of the unipotent cuspidal
non-generic representation 5 by the character .

If 7 = 0,.(0) is generic and cuspidal, we must have o = (IIy,Il,) for a pair of
non-isomorphic cuspidal irreducible representations Iy, Iy of GL(2, F') with equal
central character. Thm. 4.29 implies r »(0_(0)) =0, so r»(7) = r or(o). This is
either zero or an irreducible cuspidal representation of GSp(4, ¢). For odd ¢, the only
cuspidal irreducible representations of GSp(4, ¢) are of type X4, X5 and 65. But the
character values of r_ or(c) on the anisotropic semisimple conjugacy classes K and
Ly are given by (4.22) and (4.20) and completely determine r (7). For even ¢ the
proof is analogous. [

Notation 4.8 (Table 4.2 and 4.3). Let pu, p1, fto, f13, ft4 be tamely ramified or unram-
ified characters of F* which restrict to non-zero characters i, (i1, fia, f13, fig of (0/p)*.
Fix two non-isomorphic cuspidal irreducible depth zero representations II; and Il of
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o€ Irr(M) (v or(o))|sp) (even q) r v or(o) (odd q) dimension
(p1 X 2, p3 X fiq) Xi(ky — ks, ke — k) X1(f/fis, 2 /s, i3) - (g +1)%(¢* + 1)
(1 X o, - St) x10(k — k1) xa(i/pn, i) qlg+1)(¢* +1)
(p1 X pg, pu- 1) xe(k — k1) x3(i/p1, ) (g+1)(¢*+1)
(p1 X p2, py - Ip) x2(l1) Xo(A1, 1) (¢ —1)(¢*+1)
(- Sty - St) 014 04— 02 01(1) + 05(1n) — 05() A +1)
(p- St, p€y - St) 03+ 01— 05 04(f1) + 05(i1) — b2(72) ¢*(¢*> +1)
(pu- St,pué - St) — 73(H) ¢(¢* +1)
(b Sty p-I0y) x12(1y) xe(wa, i) qlg —1)(¢* +1)
(TTy, 11y ) x13(11) — xo(1h) Xs(/\1) x7(A1) (g —1)*(¢* +1)
(H17 HQ) X4(k+7 k_ ) X5(A17WA2/ 1) (q - 1)2((12 + 1)
(1 1, - St) 02 + 63 O3(1) + 6a(p) q(¢° +1)
(- 1, p&y - St) 01 + 05 01(7) + 0a(72) q(¢° +1)
(- 1, pé; - St) — 72 (1) q(q*> +1)
(- 1,p-1) 0o + 01 — 03 Oo(p) + 61(12) — Oa(p2) (¢ +1)
(b~ 1,p& - 1) fo + 02 — 05 Oo(1x) + 03(1) — O2(fi) (¢ +1)
(b1, pé- 1) — 71(f) (¢ +1)
(o 1,p-10) xs(1f) xs(wa, ) (g—1)(¢*+1)

Table 4.3.: Hyperspecial parahoric restriction r_ or(o) of the endoscopic lift r(o) of
depth zero irreducible admissible representations o of M.

GL(2, F') with common central character. Their hyperspecial parahoric restriction is
a cuspidal irreducible representation 7y, of GL(2,q) attached to a character A; of
]F‘;2 as in Thm. A.1 with A1|]F; = A2|F;. A character A of ]F‘;2 with A|]qu =1 factors
over a character wy of F)[q + 1] with A(z) = wa(297"). The nontrivial unramified
quadratic character of F'is £,. Either one of the tamely ramified quadratic characters
is denoted &;. Equality of central characters of o1 and o3 is tacitly assumed.

For irreducible representations of the finite group GSp(4, ¢) with odd ¢ we use the
notation of Shinoda [Shi82.

For even ¢ a representation of GSp(4, ¢) is uniquely determined by its central character
and its restriction to Sp(4, ¢). The irreducible representations of Sp(4, ¢) have been
classified by Enomoto [Eno72|. Fix a primitive character 6 : IF;Q — C* and let 4 and

f) be its restriction to Fy and F;[q + 1], respectively. Let k; € Z/(q — 1)Z be such
that 4% = ji;. Let I; € Z/(¢* — 1)Z be such that 6 = A;. Denote by I/ the image of
l; under the canonical projection Z/(¢* — 1)Z — Z(q + 1)Z. 1f Ailpx =1, there is a

unique preimage [’ of I; under the canonical injection Z/(q + 1)Z — Z(¢* — 1)Z so
that wy, = 7. Finally, for Mgz = Aalpx let ky = L1 £ 15).
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Theorem 4.9. Let o be an irreducible admissible representation of M. If o has
depth zero, the hyperspecial parahoric restriction v (r(o)) of the endoscopic lift is
given by Table 4.3. If o has positive depth, then r(r(c)) = 0.

Proof. If o is essentially discrete series, we can assume o to be in the unitary
discrete series after a character twist. Then the result is implied by Thm. 4.7 and
r(o) = w4 (o) — m_(0). If o is parabolically induced, the result is implied by Lemma
4.3 and Thm. 3.2. Lemma 4.3 implies v/2p~ oy 3 v Y2 = r(1uSt, 09) +r(1 1, 05) in
the Grothendieck group, so r or(u1,05) can be determined by linear combinations
using the previous results. O]

Since r(oy1,09) = r(02,01), Table 4.3 determines F o r(o) for every depth zero
irreducible admissible representation o of the endoscopic group.

Corollary 4.10. For every admissible representation o of M, the endoscopic char-
acter lift satisfies the equation

dimr e, (r(0)) = (¢* + 1) dimr_ 4, (0). (4.11)

for hyperspecial parahoric subgroups Fg C G, Hy C M.

4.2.2. Paramodular restriction

For the standard paramodular subgroup ¢ of G = GSp(4, F') we fix the isomorphism
I FT = (CL(2,9)*)° = {(z,2") € GL(2,¢)?| det x = det 2’}

Ty *  w 'z ok
* T2.2 * T2.4 X1,1 X1,3 X22 X24
) ) H ) ) , ) B , (4.12)
w31 * T33 * X31 X33 X42 X44
* ) * Tg4

where x;; is the image of z;; € oy under the projection oy — op/pr. The representa-
tions of (GL(2,¢)?)? have been classified in Lemma A.6. The paramodular restriction
functor is discussed in Subsection 3.1.3.

Theorem 4.11. Let o be a preunitary discrete series generic irreducible admissible
representation of M and let m = wi(o) be an irreducible constituent of the local endo-
scopic L-packet attached to o. If o has depth zero, then the paramodular restriction
r ;(m) is the (GL(2, ¢)*)°-representation given by Table 4.4. If o has positive depth,
then the paramodular restriction v 4 () is zero.

Proof. For the non-cuspidal representations 7, the paramodular restriction is deter-
mined by Table 4.1 and Thm.3.7.
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If 7 is cuspidal and generic, then 7 is compactly induced from an extension of 7 to
the normalizer Zg. % of a hyperspecial parahoric subgroup g [DR09, 6.2.1]. The
paramodular restriction of 7 is then zero by Corollary 2.17.

If 7 is non-generic and cuspidal, then 7 = 6_(0) for o; 2 09 in the discrete series.
The paramodular restriction is either zero or a sum of one or two cuspidal irreducible
representations of (GL(2,¢)?)° by Prop. 3.6. The character values on the anisotropic
conjugacy classes Eg are given by (4.21). We discuss each case separately:

For o = (IIy, I15) of depth zero with II; 2 Il we have 6, (o) = 0, so the character
value of r ,(7) at Eq = Eq(af, aB?) is

tr(r 4 (7); Eq) = — tr(r s or(0); E) "2 tr(r .0 or(0); En(a, 8))

= (Ar(a) + Af(a)) - (A2(8) + A5(B))
+(A2(@) + A3(a)) - (A(B) + AL(B))
= (Aa(apB) + Ai(af)) - (As(ap?) + Ap(a?))
+(Ap(aB) + Aj(af)) - (Aalaf?) + Ad(ap?))

for AyAp = Ay and A A = Ay. Therefore the paramodular restriction of 7 must be
the representation [ma,,7a,] + [7a,, Ta,]- The characters A, and A, are only unique
up to a character twist, but by (A.1) this does not affect r (7).

Consider o = (u- St, pu-1I;) where II; is of depth zero and has trivial central character.
Since 0 (o) = 0, the character value of 1 = 0_(0) at Eq = Eg(af, af?) is

tr(r y om Eg) = — tr(r y or(0); Eg) "2 tr(rss, (0); Eni(a, 8))

— B((@B)™) - (As(a) + Au(a®) + Ay(B) + As(8Y)).

Hence r »() is the irreducible representation fi - [y, , 7 AL —1] with (A})97! = A,. Like
before, my, is only unique up to a twist with an F)-character, but r ,(7) is uniquely
determined.

If o = (u- St, u& - St) for a tamely ramified quadratic character &, then the character
value of r , of,(0) at the conjugacy class Eq(a3, a8?) is zero. Then (4.21) implies

tr(r y om; Bg) = — tr(r 5 or(0); Eq) "= tr(r., (0); Eai(a, 8))

= A((aB)™ ) (Ao(@) + Ao ().
Therefore the paramodular restriction of 7 = 6_(o) is one of the two irreducible
constituents in fi-[my, , ™ A/al] with A such that Aj?~" = A is the nontrivial quadratic
character of F,. The correct choice depends on & (wr) and is identified by the
character value of r #(7) at ((*9),("¥)) € (GL(2,¢)*)° by (4.31) and (A.2).

Finally, for o = (u - St, &, - St) we have r , of_(0) = 0 because the character value
of r (04(0) —r(0)) at Eq is zero. O
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o€ Irr(M) r yomy (o) dimension
(f11 X paz, pi3 X fg) /71_1‘[/71 X I3, fin X jia]  2(g +1)?
- [ X I, X )
(b1 X o, pu - St) il o< i < @i (g 1)?
([L . St, JU St) [ StGL(g q) ] [StGL (2,9)s 1] q2 + 2q
[StGL (2.0) Star(z,))
(b - St, p&y - St) TERR ¥ StGL q)] [+ [Stareg, 1] 2q
(b - St, u&; - St) fi- [1 X Ao, 1 x AJe (g+1)%/2
(1 X po, pr - ) 0 0
(g Sty p-11h) 0 0
(H17 ) [77—1\17 1] + [17 7TA1] 2(61 - 1)
11y, I1,) 0 0
o€ Irr(M) r yor_(0) dimension
(o~ St, - St) [ - [Star(z,g)s Stane,g) 7
(p - St, &y - St) 0 0
(1 Sty - 1) Byl (- 172
(1~ Stopa-T1) Byl (@17
(I, ) [Sterea ] + [Tay, Sterea]  20(g— 1)
(I, I15) [Taas Ta,) + [T, ma,] 2(g — 1)

Table 4.4.: Paramodular restriction of 7, (¢) and 7_(0) in the endoscopic L-packet

attached to preunitary generic depth zero irreducible admissible repre-
sentations o of M. The index is determined by the parity of & (w) = £1.
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o€ Irr(M) r yor(o) dimension

(1 X g, p3 X 1) [ X s, % ga) 2(g 4 1)2
i [ X fla, i X fis)
(41 X iz, 1+ St) 171_1 [ > iy x i) (g4 1)?
(1 X pig, - 1) i X g x Al (g +1)?
(p1 X pag, i - ) 0 0
(p- St,p- St) fi-[1, Starg) + £ [Stereg), 1] 2q
(- St, p&y - St) - [ 1, Stargg) + 1 [Stareg), 1 2q
( - St ,u& ) ﬁ [1 X )\0, 1 x )\O]i — ,LNL [’NA/ ’/TA/—l]i 2(]
(- Styp-1h) —fi [y, M;l] (¢ —1)?
(11, 11y) [Ta,, 1 — St]+[1 — St,ma,] 2(q—1)?
(H ) _[ﬂ-Aa? TrAb] - [7TAb77TAa] —2((] - 1)2
(- 1, p- St) [+ [Starzg)s Stareg] + - [1, 1] ¢°+1
(- 1, p&, - St) - [Stare,g)s StGL(z ol +1-[1, 1] ¢ +1
(p- 1, pu&; - St) e [1 X Ao, 1 X Aol + fi - [may, AL 1)+ ¢ +1
( 17 - 1) ﬁ : [1, StGL(Q,q)] + ﬁ : [StGL(Q,q)7 1] 2(]
(- 1, pu& - 1) o1, Stane,g)] +l7 [Star2,g), 1] 2q
(- L p&- 1) [l x >\o, 1 X Xole = - [may, ma] 4 2q
(p-1,p-1h) /7 [rag 1] (@ —1)°

Table 4.5.: Paramodular restriction r ; or(c) of the endoscopic lift r(o) in the
Grothendieck group for depth zero irreducible admissible representations
o of M. The index is determined by &;(w) = +1.

Notation 4.12 (Tables 4.4 and 4.5). Irreducible representations o of M are denoted
as before. Irreducible representations of (GL(2,¢)?)° are denoted as in Lemma
A.6. The pair of characters (A4, Ap) is an arbitrary solution of A,A, = A; and
Ay A} = As. For every character A of IF; with A?"1 =1 let A’ be an arbitrary solution
of (A)?=1 = A.

Theorem 4.13. Let o be a generic irreducible admissible representation of M. If o
has depth zero, then the paramodular restriction r s or(c) of the endoscopic lift v(o)
is the virtual (GL(2, q)?)°-representation given by Table 4.5. If o has positive depth,
then the paramodular restriction of the endoscopic lift of o is zero.

Proof. The proof is completely analogous to Thm. 4.9. m

Corollary 4.14. For a generic preunitary irreducible representations o of M let
m = m4(0) be in the local L-packet attached to o. Then o is depth zero or -
spherical if and only if 7 is depth zero or Jg-spherical, respectively.
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m has non-zero hyperspecial parahoric reduction if and only if m admits non-zero
invariants under the modified principle congruence subgroup.

Proof. The representation 7 has depth zero if and only if it admits non-zero parahoric
restriction with respect to at least one maximal parahoric subgroup. Up to conjugacy,
the only parahoric subgroups are the hyperspecial parahoric and the paramodular
subgroup. The statement is implied by Thms. 4.7 and 4.13.

A representation is % -spherical if its hyperspecial parahoric restriction admits a
trivial constituent. This occurs exactly for o = (1 X po, 3 X p4) with unramified
characters p; of F'*, compare Table 4.2.

The space of invariants under the modified principal congruence subgroup 7 in
7 is the subspace of {diag(1, 1, %, %) }-invariants in r_ (7). But for every occuring
representation 7, character theory gives

dim Homgiag(1,1,4,) (7, 1) = Z trr . (m)(diag(1,1,a,a)) > 0.

]

Preservation of depth zero under the endoscopic lift for generic pre-unitary irre-
ducible representations of M is a special case of depth preservation under the local
theta correspondence [Pan02|. It complies with depth preservation under the local
Langlands correspondence [ABPS].

4.3. Matchings

Fix G = GSp(4) and its unique proper elliptic endoscopic group
M = GL(2)?/A GL(1).

Let G, M be the groups of F-rational points with center Z5 and Z;;. In order to
identify the depth zero cuspidal irreducible constituents in the endoscopic character
lift we need certain character formulas on the anisotropic conjugacy classes. To
this end we determine three pairs of matching functions, which determine character
identities by the following Lemma.

Lemma 4.15. Let & C G be an arbitrary parahoric subgroup with pro-unipotent
radical Z*. For a conjugacy class C C P/ PT let chare € CX°(G) be the indicator
function of the preimage C = p~*(C) under the projection p: P — P2/ P*. Then
we have

tr(rz(7); C) = vol(C) 'y, (chare). (4.13)
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Proof. This is clear by unraveling the definitions. O

We show two matchings f — f* between functions with support in the maximal
tori of elliptic case I [Wei09a, 4.4.2| for the unramified quadratic extension L/F.
Together with a third matching, this will provide the necessary character identities
(4.20), (4.21) and (4.22).

4.3.1. Maximal tori of unramified elliptic case I

Let L be the unramified quadratic field extension of F. Fix ¢ € oy such that L is
the splitting field of the irreducible Artin-Schreier polynomial? X2 — X — (. As an
F-vector space, L & F[X]/(X? — X — () is generated by 1 and X. The image of the

regular representation

¢ L = GL(2,F), a+bX — (Z abfb>, (4.14)

is an anisotropic torus of GL(2, F).

Let the anisotropic maximal torus Th; in M be the image of the canonical morphism
(b, Pc) : L x L — GL(2, F) x GL(2, F) - M

Every other M-torus that is isomorphic to T}, is conjugate to Ty, over M.

The non-trivial Galois automorphism of L is a +bX — a+bX =a+b—bX. The
identity (a+0X)(a + bX) = a(a+b)—b*¢ = det ¢¢(a+bX) gives rise to an embedding
(d¢, dc) + (L x L) — (GL(2, F)?)°, where the exponent 0 indicates the subset of
pairs with equal norm or determinant. With the embedding

11 12
6: (GLRFP) — G, (2.y) — ( ) | (4.15)
Y21 Y22

the maximal torus T is the image of (L* x L*)% under ¢ o (¢¢, ¢¢). The alternative
regular representation

—1
¢ L* = GL(2,F), a+bX (bfﬂ bcff b) (4.16)

gives rise to a different torus T}, as the image of (L* x L*)° under ¢ o (¢, ¢¢). The
image of (0} x 07)%is TN g or TN _Z , respectively. The tori T and T}, generate
the two G-conjugacy classes of embeddings of (L* x L*)? [Wei09a, Lemma 6.1].

2This is a small deviation from [Wei09a, §6.2] in order to include even residue characteristic.
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The canonical map (4.6) over L
(L)L) [1(ee=1) [teF*y — (L7 x LX) (¢, 1) — (tt, 11). (4.17)
defines admissible embeddings Ty, — T and Ty — T, [Wei09a, §6.2-3].

The endoscopic matching condition (4.3) for vy, € Ty becomes

SO () = A )05, (f) for 0%, =0, (f) = O () (418)
with ¢ € T and v, € T(, stably related to vy [Wei09a, 6.2.1].

In the following sections, let £y = M(or) and %5 = G(or) be the standard
hyperspecial parahoric subgroups. Fix Haar measures on M, G, Ty, Tg, and T¢,,
such that the volume of J#g, ), and J#; N'T); is one and such that the admissible
embeddings Ty, — T and Ty, — T¢, preserve the measure. These groups are
reductive and therefore unimodular, so there are well-defined quotient measures on

Tg\G, Té\G and TM\M

4.3.2. First matching

Fix o, 5 € IF(;Q = or/pr with o, 8,a8,ap7 ¢ F).

Let Lo = Lo(a3, af?) be the conjugacy class® in G(q) of elements stably conjugate
to diag(afB, aB, a8, aB) € G(¢?) and let Ly = p~*(Lg) be its preimage under the
projection p : g — Hg/ X5

Lemma 4.16. Let f; € C*(G) be the indicator function of Ly. Fix a strongly
reqular semisimple v¢ € G that comes from an admissible embedding of M. The
orbital integral is O,,(f1) = 1 if v¢ is G-conjugate to an element of Ly, and it is

O+, (f1) =0 else.

Proof. If v is conjugate to an element of Ly, we can assume g € Ly, since orbital
integrals are conjugation invariant. The eigenvalues of 75 € % are integers in the
unramified quadratic field extension L, so the centralizer C(7¢) is isomorphic to
(L* x L*)° of unramified elliptic case I. Up to conjugation in #g, we can assume
that v € Tg, so the centralizer is Cq(vg) = Tg-

We now claim that for ¢t € G, we have t'ygt € Ly if and only if t € Zg .
Indeed, t = ky diag(w™, w"2, w0 ™ @™ "2)k, for certain n; € Z and kq, ke € Hg
by Cartan decomposition (3.15). Since Lg is preserved under .#g-conjugacy it is

3For odd ¢, this is Shinoda’s Lo [Shi82|. For even g, it is a twist of Enomoto’s By [Eno72].
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sufficient to look at the case ko = 1. Up to Hg-conjugacy of 7o we can assume
ki 'ygki € Tg for the embedding (4.15), so

a b¢
-1 _ a’ v'¢
kivekr = % o
4 a’+b’

for integers a,b,a’,b’ € op. Since the image of k; 'vgk; in Hg/ % does not admit
eigenvalues in F), we have b,V € op. If t~1yqt € Lo, then t~ 194t must have integer
matrix entries, so n; = ny = ngy/2 implies t € Zg#;. Conversely, it is clear that
t~1yat € Ly for every t € Zg X, because Ly is a conjugacy class of g/ H. .

This implies that the support of ¢ — f1(t7'yat) is ZgHe = TgHg. Now we have

Oy (f1) :/ fit M yet) dt = / charr \r (t) dt = 1.
Te\G Tc\G

If 74 is not G-conjugate to an element of Ly, the orbital integral is clearly zero. [J

Let Epr(a, 8) € M(q) be the image of E(a) x E(8) C GL(2,¢)?, where E(a) denotes
the anisotropic conjugacy class in GL(2, ¢) with eigenvalues a, a? as in Section A.1.
Denote by Ey(a, 3) the preimage of Ej (v, ) under the projection S, — Har/ H#yf

Lemma 4.17. Let fM € C(M) be the indicator function of Ey(c, 8) U Ey(B, ).
Let vy € M be a strongly reqular semisimple element. The stable orbital integral is
SO.,,,(fMYy =1 if yar is M-conjugate to an element of Ey(a, B) U Ep (B, ), else it
is SO, (fM) =0.

Proof. For vy € Ey(a, ), the eigenvalues generate of «y,, generate L, so the
centralizer of v,, conjugate to the torus T),.

For every s € M, we claim that s™'yys € Ep(a, 8) if and only if s € Ty #)r and
that s~'vyys & )y otherwise. By Cartan decomposition

s =kitky mod {(z,27 ') |z € F*}

for t = (diag(w™, w™), diag(w"?, w™)) with n; € Z and kq, ko € Hpy. Let kg = 1
without loss of generality. By replacing vy, with a J£);-conjugate we can assume

ki ks = (3 hs ), (3 e )) € T Ny

b1 a1+b1 b1 a1+b1

for ay, b1, as,bs € 0. Since o, 8 ¢ FX, we have b; € 0 as before.

If s7'yys € Huy, then ny = ny and ng = ny, therefore s € Zy 0y C Ty, It
is clear that the orbit of vy, under the conjugation action with Ty, %}, preserves
Ey(a, B). The orbital integral for vy, € Ep(a, f) is therefore

0 () = |

. S (s yars) ds :/ chary, \ry,.,(s) = 1.
M

Tar\M
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The elements of Fj(a, ) have stable conjugation orbit, so SO.,,(fM) = O.,,,(fM)
is the stable orbital integral. When the stable G-conjugation orbit of v, is disjoint
to Ey(a, ), the stable orbital integral is zero. ]

Lemma 4.18. For semisimple strongly G-reqular vy € Ey and vg € T stably
related by the admissible embedding Ty — T, the transfer factor is A(vg, yamr) = 1.

Proof. Without loss of generality let 7o € T for the T constructed above. Let
(z,2") € (L* x L*)? be the preimage of 75 € Tg under the embedding (4.15). The
character {1,/ attached to the unramified quadratic field extension L/F by class field
theory is the unramified quadratic character. By assumption, the image of xt — T € oy,
under the projection o5, — o1 /pr is a8 — a9 # 0. Since x,2',x — T,2’ — 2/ are
invertible in o7, every factor in the following expression [Wei09a, Cor. 8.1] is trivial:

§u(x —T)8(2' — ) - Jo — T - |2’ — 2]
||

Ay, v6) = =1 (4.19)

O
Proposition 4.19. The pair (fi, f) satisfies the matching condition (4.3).
Proof. For a semisimple strongly G-regular vy, € Ep (o, 8) U Ey(5, ) € G, the
stable orbital integral is SO.,,(fM) =1 by Lemma 4.17. There are two conjugacy
classes in G stably related to 7y, with representatives 7o € Ly N1 and v € 1.

Since 7, is not conjugate to an element of L, only v¢ gives a non-zero orbital integral
O,.(f1) = 1 by Lemma 4.16. This implies

O:G - O’YG(fl) - O'y'G(fl) =1—-0=1.
The transfer factor is A(var,7¢) = 1 by Lemma 4.18, so (4.18) holds.

If 5 is not conjugate to an element of Fy(«, 5) U Ey(f, @), the orbital integrals
are all zero. O

Corollary 4.20. Let o, 5 € ]F;2 with o, B, a3, af? ¢ Fx be arbitrary. The hyperspe-
cial parahoric restriction of the endoscopic lift of any admissible representation o of
M satisfies

tr(r.s 0r(0); Lo(B, aB?)) = tr(r s, (0): Bla, B) + tr(r.n, (0): E(B,a)).  (4.20)

Proof. Lemma 4.15 implies

tr(rzg or(0); Lo(aB, a?)) = vol(Lo(aB, aB?)) ™ Xew) (1) = (@ — 1)(g + 1)*Xe(o) (f1)

and tr(r . (1(0)); Ex(a, 8)) = (¢—1)(¢+1)?xo(fM). By definition of the endoscopic
character lift we have X, (f1) = Xo (/). O
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4.3.3. Second matching

The second matching is the analogue of the first matching with respect to the standard
paramodular subgroup ¢ = P9 C G. Fix ,f € IE‘qXQ with a, 8, a8, a7 ¢ Fx
as before. Let Eq = Eg(af,aB?) C _# be the preimage of E(af) x E(af?) C
(GL(2,¢)*)° under the embedding (4.12) and set

fo € CX(G),  foa=—vol(_#) " charg,(apaps) -
Lemma 4.21. Let vy € G be strongly reqular semisimple. The orbital integral of fo

is O (f2) = =1 if 7 is G-conjugate to an element of Eg, and zero else.

Proof. Without loss of generality, let 7¢, € E¢. Up to conjugation in G, the centralizer
of v¢ is G-conjugate to the torus T¢,, so we can assume vg € T, N Eg.

For t € G we claim that t 'vqt € Eg(af,af?) if and only if t € Z¢_#. Indeed, by
(3.16) t is either t = kytky or t = kjuitks for t = diag(w™, w", w™ ™, w0~ "2))
withn; € Z and ky, ko € _#. Since Eg is preserved under _# -conjugacy, it is sufficient

to assume ko = 1. Since
a w1b¢
_ a’ b'¢
e = wb a+b
v a/+b/

for integers a, b, a’, V' € op does not split under projection to ¢/ #+, we must have
b,V € 0f,s0for t7 1yt € # it is necessary that t € Zg. Conjugation by u; preserves
7, but maps Eg(af, aB?) to Eg(af, af). Therefore t'v,t € Eg(af,af?) if and
only if t = w"k forn € Z and k € ¢ ifand only if t € Z¢ ¢ . Since Zg ¢ =T, 7,
the orbital integral is

O,.(f2) = / fo(t7 5t dt = —Vol(/)_l/ charyy\7r 4 (t) = —vol(T, N _#) 7" = —1.
TING TING

The last equation follows from vol(T5, N _#) = vol(T¢:(o¢)) = vol(Ta N i), since
the admissible embeding preserves the measure.

If 4, is not conjugate to an element of E¢, the orbital integral is zero. O

Let f3f = fM € C>°(M) be the indicator function of Ey/(a, 3) LI Ey (8, «) as before.

Proposition 4.22. The pair (fa, f31) satisfies the matching condition (4.3).

Proof. Fix some semisimple strongly G-regular v,; € Ey;. Up to conjugation in
J we can assume Yy € Ey NTy. Let 7q¢ € LoNTg and v € Eq N T be
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semisimple strongly regular and stably related to vy;. The orbital integral O.,,, ( M) =
SO.,,,(f2") =1 has been determined in Lemma 4.17. The r-orbital integral is

O3, (f2) = O45(f2) = O, (f2) =0—(-1) =1

by Lemma 4.21, since 7o € T is not conjugate to an element in Eg. The transfer
factor A(vg,va) = 1 has been determined in Lemma 4.18, so (4.18) holds.

If ~v5s is not conjugate to an element in ), then the orbital integrals are zero. [

Corollary 4.23. Fiz o, € F(IXQ with o, 8,a8,aB? ¢ Fy. Then the paramodular
restriction x y or(o) of the endoscopic lift of every admissible representation o of M
satisfies

tr(r s or(o); Eq(af, af?)) = —tr(rp, (0); Ex(a, B)) — tr(re, (0); Ex (8, a)).
(4.21)

Proof. Lemma 4.15 implies
tr(r 7 07(0); Ea(aB, aB") = 2 xeio)(—f2) = —(a = 1){a + 1)) (f2)
and by the proof of Corollary 4.20

t0(rr6 (7(0)); Enr(, B)) + (v, (r(0)); Enr(B, ) = (¢ — D(g + 1)°xo(f2")-
The endoscopic character lift gives x,()(f1) = Xo(f11). O

4.3.4. Third matching

Fix 7 € F), —F, with 7@+ = 1. Let Ko(7) be the conjugacy class* of elements
in G which are stably conjugate to diag(r, 79,79, 79") and let Ko(7) = p~ (Ko(7))
be the preimage of Ko(7) under the projection p : #g5 — Ao/ A5

Lemma 4.24. Let f3 € CX(G) be the characteristic function of Ko(t) and let
M e Cx(M) be zero. Then (fs, f) satisfies the matching condition (4.3).

Proof. Every element in Ky(7) has an eigenvalue that generates the unramified field
extension E/F of order four. For every semisimple regular v that comes from an
admissible embedding, the eigenvalues generate at most quadratic field extensions
[Wei09a, 4.4.2]. Therefore, ¢ is not conjugate to an element in the support of f3. [

Corollary 4.25. For every such T and every admissible representation o of M

tr(r s, or(o); Ko(r)) = 0. (4.22)

Proof. This is analogous to Corollary 4.20. O

4For odd g, this is the conjugacy class denoted Ko by Shinoda [Shi82|. For even ¢, it is a twist of
Enomoto’s class By [Eno72].
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4.4. The anisotropic theta lift

For the proof of Thm.4.11, we need to find the paramodular restriction of the
anisotropic theta-lift 0_( Stgr2,m), & Star(e,r)) With tamely ramified quadratic char-
acter &. The only two candidates are [7rA6, 7 Aa—l]i, where Aj is a regular character of
F* such that (Aj)?! is the non-trivial quadratic character. In Prop.4.32 below we
distinguish these representations by their character values on the unipotent conjugacy
classes. Eq. (A.2) implies then that the sign is given by & (w).

At first, we briefly review the anisotropic theta lift [Wei09a, §4.12]. Let D be the
unique quaternion division algebra over the local non-archimedean number field F’
with F-linear conjugation map D — D, d ~— d. This defines the (surjective) reduced
norm and reduced trace homomorphisms

nrdD/F:DX—)FX,d'—)d'a, tI'dD/FD—)F7d|—>d—|—C_Z

The natural bilinear form B(z,y) = 3 trdp,r(2) on D x D is normalized so that
B(z,z) = & = nrdp,p(x). For every symmetric 2 x 2 matrix T = T* over F let
Q(T,-,) be the F-bilinear form Q : D?* x D* — F

Q(T,X,Y) = 3 trdpp((x1,22)T (%)) € F X = (21,22), Y = (y1,92).

The valuation vp of F' defines a valuation vp = vp o nrdp,r on D* and gives
rise to an op-algebra op = {d € D|vp(d) > 0} with two-sided principal ideal
B ={d e D|vp(d) >0} and residue field op/pp = Fp2. Fix Haar-measures dz and
d*t on D and F'* such that vol(Op) = 1 and vol*(Of) = 1. Let dX = dz; dzy be
the corresponding product measure on D x D. Let M. be the inner form of M

M, = GSO(D) = (D* x D*)/AF*

for the antidiagonal embedding A : F* — D* x D*  t — (t,t!). For the coset
(dy,dy) AF* in M. we write (di,d2). The pre-Hilbert space of complex Schwarz-
Bruhat-functions S(D x D x F'*) with scalar product

<(p1, (,02) = / ©®1 (X, t)gOQ (X, t) dX d.t (423)
D2x FX%

for 1, s € S(D x D x F*) is a dense subspace of the Hilbert space L?(D x D x F*).
The complex Weil constant € is independent of ¢ and given by

C;

€= lim — for ¢ = /w(nrdD/F(:c))dx.
P

For fixed t € F*, the Haar measure dYy, = |t|* ¢ dY with normalization

/ V:i(2Q(13, X, Y)) d Xy, dYy, =1

OpxOp DxD
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gives rise to the Fourier transform @(-,t) of p(-,t) € S(D x D) via

PO = [ Y0200 X V) Y, (4.24)
DxD
such that (X, t) = p(—X, t).
Definition 4.26. The action of G = GSp(4, F') on p € S(D x D x F*) by

(" 1)

P(X.1) = B(HQ(T, X, X)) - p(X, 1), (1.25)
( ) = |det(A)]* - p(X A, 1), (4.26)

. (_]2 ) o(X.1) = €B(X.1), (27

T (12 )\Ig) o(X,t) = (X, tA). (4.28)

gives rise to a well-defined unique preunitary representation of GG. Let M, act from
the right on ¢ via

(pmm.(di,d2)) (X, 1) = ‘nrdD/F(d1d2)|2 - (d1 X do, nrdp)p(dids) '), (4.29)

The extension to unique unitary representations 7, 7y, on the closure L?(D x D x F*)
is the Weil Representation of G and M,.. The actions of G and M, commute.

The center of G and M, operates via
(o (s, D)X, 8) = |s]" p(sX,s7%) = m(sLa)p(X,t) Vs € F*.

Fix a unitary irreducible admissible representation o of M in the discrete series. It
gives rise to a unitary irreducible representation ¢ of M, by applying the Jacquet-
Langlands correspondence to o1 and o5. The m-action of G preserves the g-isotypic
quotient S(D? x F* &) |[Wei09a, §4.12.2]. The big Theta-lift is the G-representation
O(6) so that the M, x G-representation on S(D? x F'*, ) is isomorphic to ¢ X O(c).
The maximal semisimple quotient of ©(d) is the anisotropic theta lift 0_(o).

Lemma 4.27. For every unitary irreducible admissible representation o = (o1, 09)
of M in the discrete series, the lift ©(5) of o is non-zero, unitary, irreducible, has
the same central character as o and is not generic. Especially, ©(6) = 6_(0). It is
invariant under the outer automorphism o — o* = (09, 071).

The image of the anisotropic theta-lift 0_ is precisely the set of non-generic tempered
irreducible admissible representations of GSp(4, F'). If o1 = o9, then 0_(o) is the
unique non-generic irreducible subrepresentation of the Klingen induced representation
1 X 01. For oy % oy the lift 0_(0) is cuspidal.

Proof. See Gan and Takeda [GT11, Thm.8.1] and Weissauer [Wei09a, §4.12]. [
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4.4.1. Parahoric restriction for the Weil representation

Fix the additive character ¢ : F' — C* such that it factors over a non-trivial character
of the residue field. Let w be an at most tamely ramified unitary character. Then we
have the following result on the parahoric restriction of the Weil representation.

Proposition 4.28. The subspace of # T -invariants in the Weil representation on
L*(D? x F*,w) is representated by the space of smooth ¢ : D* x F* — C with

1. p(X,t) =0 for every (nrd(xy)t,nrd(z2)t) ¢ op X 0p,
2. (X +Y,t)=p(X,t) for every Y € D? with (nrd(y,)t,nrd(y2)t) € pr X pr,
3. (X, st) = p(X,t) for every s € 1 + pp.

The subspace of # T -invariants in L*(D?* x F*,w) is representated by the smooth
functions ¢ : D* x F* — C that satisfy

1. o(X,t) =0 for every (nrd(z)t,nrd(z2)t) ¢ pr X oF,
2. (X +Y,t) = o(X,t) for every Y € D? with (nrd(y1)t, nrd(y2)t) € p% X pr,
3. o(X, st) = p(X,t) for every s € 1 + pp.

The case for #* is [R6s12, Prop. 3.20]. The valuation there is off by one because a
different ¢ was chosen. The paramodular case is analogous.

4.4.2. Hyperspecial parahoric restriction

Theorem 4.29 (Dimension Formula). Let o be a unitary irreducible admissible
representation of M in the discrete series. Then the dimension of the hyperspecial
parahoric restriction of the anisotropic theta lift 6_(o) is

(> +1)(g—1), if oy = oy is cuspidal of depth zero,
24 1)/2 f o =
dimrp (0_(c)) q(q” + 2/ , %fa N (ke St, pSt), (4.30)
(g —1)*/2, if o = (St pSt),
0 else.

Here £ is the unramified quadratic character of F* and u runs through the unramified
or tamely ramified unitary characters of F*.

Proof. This is the main result of the author’s diploma thesis [R6s12, Thm. 3.41]. O
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4.4.3. Character values on unipotent conjugacy classes

Let F be a non-archimedean local field with odd residue characteristic. Let 0_(c) be
the anisotropic theta lift of o = (u St, £u St), where p is a unitary at most tamely
ramified character and & = & is a tamely ramified quadratic character of F'*. We
will construct an explicit basis and calculate the trace of #_(o) on the unipotent
conjugacy class generated by u = (]2 ITQ) for T = diag(wwtuy, us) with uy, uy € 0.
Under the (generalized) Jacquet-Langlands correspondence [Wei09a, §4.12.3|, o
corresponds to the representation & = (p o nrd, (1) o nrd) of M. Since dimé = 1,
the paramodular restriction r , 0©(4) is isomorphic to the action of ¢/ _#7 on the

G-isotypic subspace® of L2(D? x F*, )"

Lemma 4.30. For o, € o} with {(a ') = &(nrd(wp)) let Nog be the set of
(X,t) € D* x F* with nrd(x3)t = 8 mod 1+ pp and nrd(r1w,' )t = a mod 1+ pp.
Fiz a character A : (°p/pp)* — C* of order 2(q — 1). Then the function

[t2p (M (wpay 'xa) (X, 1) € Nog,

0 else.

Qpa,ﬂ(Xv t) = {

is in L*(D? x F* )7, The subspace Cypqy g is G-isotypic under Ty, .

Proof. The first statement is Prop.4.28. It is clear that the action of D* x D* via
T, preserves the support N, z. For (X,t) € N, and (dy,d2) € D* x D* we have

(Pa,5mr.(d1, d2)) (X, 1)

= o Hrd(dldg) .

= | Hrd(d1d2)|2§0a7ﬁ(d1Xd_27 nrd(dldQ)_lt)
AMwp(da) oy wads)
A(WD.T;lSCQ)

*Pa,p (Xv t)'
It remains to show that the quotient is £ o nrd(dy). Indeed, for dy € 0}, we have®
A<wa—2_1$1_1$2d_2) = NMopry twedy tdy) = AMowpr o) - A(dy ds)

and A(dy'dy) = A(dS") = € onrd(dy). For dy = wp write h = wpzy 'z, € 0}, then
by the analogous argument

Mopds @7 mads) = Ay zewp) = Awp hwp) = A(R) = A(wpay 22)A(hR)
and A(h7'h) = A(RT) = £(nrd(h)) = £(a™'B) = E(nrd(wp)). O

Lemma 4.31. The functions ¢, g for coset representatives o, in (op/pr)™ with
£(af) = Emrd(wp)) form a basis of the G-isotypic subspace of L*(D?* x F* u2)7".

5Tt is sufficient to study the isotypic subspace instead of the quotient, because M, is compact
modulo center, so 7y, on L?(D? x F* ;?) is semisimple.
SWe use xwp = wpT for x € 0}, and the fact that 0} /(1 +pp) 2 F,2 is commutative.
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Sketch of proof. They are linearly independent because their supports are mutually
disjoint. Any é-isotypic ¢ € L*(D? x F*,u?)”" must satisfy the conditions of
Prop.4.28. The restriction of ¢ to N, s is then a constant multiple of ¢, s by the
g-action and Hilbert’s Theorem 90. The condition on «, 5 comes from p(X,t) =
(omar, (s, 27 a0)) (X, 1) = E(nrd(z) ') (X, t) for nonzero x1, 7, € D*. The
values of ¢(0,z9,t) and ¢(z1,0,t) are invariant under 7y, (d,d™') for every d € D>,
and therefore zero. Hence ¢ is a linear combination of the ¢, g. O]

Especially, the dimension of the paramodular restriction of _(c) is (¢ — 1)2/2.

Proposition 4.32. The trace of r y00_(0) at u= (") for T = diag(wu1, us)
with uy,uy € 05 1S

tr(r y 00_(0);u) = (1 + {(—wp urus)q). (4.31)
Proof. The Weil action of u is w(u)p(X,t) = v (tQ(T, X, X))p(X,t) by (4.25). For
(X,t) € N, p this factor is
Y(Q(T, X, X)) = Y(wp'urt nrd (1) + ugt nrd(m)) = (wy uy nrd(wp ) + uy3).

The trace is then calculated with respect to the basis constructed in Lemma 4.31:

tr(r yo0_(0);u) = Z Y(uwwyp anrd(wp) + uzf)

a,B€(or/pr)*
§(ap)=¢(nrd wp)

- Z Y(uywptanrd(wp) Z U(uf)5(E(nrd(wp)af) + 1)

a€(or/pr)™ Be(op /pr)*
= % Z ¢(u1w;1a nrd(wp)) (—1 + &(nrd(wp)aus ) )
a€(op/pr)*
— %(1 + Z Y(nwp'a nrd(w,:;))f(nrd(w,;)am)@) — L(1 + &(wp urus) 62)
ac(op/pr)™

with the GauR sum & = > ¥(a)é(a)= 3. P(B)E(B) and &2 =£(—1)g. O

ac(op/pr)* pe(or/pr)™
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5. Cohomology of Siegel modular threefolds

We employ our results on parahoric restriction in order to describe the weak endo-
scopic (Thm. 5.8) and the Saito-Kurokawa part (Thm.5.4) of the inner cohomology
H?(Sk(C),Vy) as an f-adic representation of the absolute Galois group Gal(Q : Q)
and the Hecke algebra. We then prove the conjectures of Bergstrom, Faber and van
der Geer |[BFvdGOg].

5.1. Preliminaries

Let G = GSp(2g) be the group scheme of symplectic similitudes of genus g > 1 with
real Lie algebra g = Lie(G(R)) and center Z = G,,." Let A =R x A be the ring of
rational adéle. For every prime p, fix the Haar measure on G(Q,) normalized on the
hyperspecial subgroups by vol(G(Z,)) = 1.

The adelic Siegel modular variety. The Siegel modular variety admits a descrip-
tion as a Shimura variety. We recall Milne’s exposition [Mil04, §6]:

Let S = Resc/r Gy, c be the Deligne torus. Fix a symplectic form 1 : R* x R* — R
preserved by G = G(R). A complex structure J preserving ¢ (i.e. ¥(J-,J-) =1)
defines a Hodge structure hy : S(R) — G, a+ib — a+ Jb. Let X' and X~
be the set of J such that ¢(-,J-) is positive or negative definite, respectively.
For X = X* U X~ this defines a map h : X — Homg(S(R),G),J — h;. The
triple (G, X, h) is a Shimura datum in the sense of Pink [Pin92, §3|, cp. Deligne
[Del79, §2.1.1|. For the conjugation action of G on X let K. = Centg(h) C G
be the stabilizer of h, so X is diffeomorphic to G/K’_ .2 For every open compact
Ky € G(Ay), the Shimura variety Sk, attached to (G, X, h) is defined over the reflex
field Q. It is a quasi-projective variety whose complex points are diffeomorphic to
the orbifold
S1,(C) 2 G\(X x G(Ag)/K).

For neat congruence subgroups K; of G(Ay), this orbifold is a smooth analytic
variety. Every compact open K contains a neat compact open subgroup of finite
index [Bor69, 17.4].

!Mutatis mutandis, the following holds for arbitrary Shimura varieties with quasisplit connected
reductive groups G over a totally real global number field F'/Q.

2Under this diffeomorphism, X = GSp™ (29, R)/K’_ corresponds to the Siegel upper half space
of genus g, see (B.3).
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The local system. Let A : G(Q) — Autg(Vy) be an algebraic finite dimensional
irreducible linear representation over a Q-vector space V). For every Q-algebra A
and every compact open subgroup Ky of G(A) this defines a vector bundle

GQN\(VA(A) x G(A)/ KL Ky) — G(Q\(G(A)/ K Ky) = Sk, (C),

with fiber V) (A) = V), ®g A. Here G(Q) acts both on V) (A) via A and on G(A) via
the diagonal embedding. The local system Vx(A) on Sk, (C) attached to A is the
locally constant sheaf of locally constant sections of this vector bundle.

We fix an arbitrary isomorphism C 2 Q, and write V) for Vy(C) or V,(Qy). This
should not lead to confusion as no other Q-algebra will occur.

The L?-cohomology. The L?-cohomology is defined via square-integrable differen-
tial forms [Zuc88, §1.6], [Sap05|. Fix a compact open subgroup K = Ky C G(Ay). A
differential form w on an orbifold® is square-integrable if both w A *w and dw A * dw
are Lebesgue-integrable. Let QZQ) be the sheaf of complex-valued square-integrable
smooth differential forms on Sk (C). It gives rise to a complex of square-integrable
differential forms with cofficients in V,(C) via the global section functor

L3(Sk(C), VA(C)) = H°(Sk(C), Q%) @ VA(C)).

The differential forms in this complex are square-integrable on Sk (C) with respect
to the fiber metric on V5. The L*-cohomology Hp, (Sk(C),Vx(C)) is the cohomology
of this complex. On the pro-variety S(C) = Jim Sk (C) the L?-cohomology is the
direct limit over the compact open subgroups K of G(Ay)

Hi,) (S(C), V) = lim Hy (5k(C), V). (5.1)

The canonical Hermitian complex structure gives rise to a Hodge decomposition,
ie. a bigrading H{, = @pqu((g)’Q), for 0 < p,q < dimc X = g(¢g + 1)/2. This
L*-cohomology of Sk(C) is finite-dimensional [BC83, Thm. A] and by the L?-product
it enjoys Poincaré duality.

The Hecke algebra. For h € G(A) and compact open subgroups Ky, Ky C G(Ay)
with h=1Kyh C K, there is a natural morphism

Th,: Si,(C) = S, (C),  G(Q) (2K, 2, K>) = G(Q) (2o K, 2,hEK)).

On S(C) = lim Sk (C) the morphism T}, is well-defined for every h and defines a
right action of G(Ay). By abuse of notation, the operator H, (7h) acting from the
left on H, (S(C), V) is also denoted Tj,. For every open compact subgroup K, the

L*-cohomology of the orbifold Sk (C) is isomorphic to the subspace of invariants
under T}, for h € K
H(.Q)(S(C)v V/\)K = H(.Q)(SK(C)7 V/\)

3For differential forms on orbifolds, compare Satake [Sat57, §1.5].
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Recall that the Hecke algebra H is the algebra of compactly supported smooth
functions f : G(Ay) — C with the convolution product. It acts on H,(S(C), V))

from the left by fG( A) f(h)T, dh for f € H. The subalgebra Hx C H of K-biinvariant
functions preserves the K-invariant subspace.

The Galois representation. The Baily-Borel-Satake compactification Sk of Sk
is a normal projective variety defined over Q with an embedding j : Sx < Sk. In
general, this compactification is highly singular. For a non-archimedean valuation ¢ of
Q we fix a noncanonical field isomorphism Q; = C. Then the intersection cohomology
of Sk is determined by the Zucker isomorphism?*

H) (Sk(C), WA (C)) = TH®(Sk Xspec(@) Spec(Q); juVa(Qy)).

This defines a canonical action of the absolute Galois group I'g on H, (Sk(C), VA(C)),
which commutes with the action of the Hecke algebra Hx .

The Matsushima-Murakami formula. By a well-known extension of a result of
Borel and Casselman [BC83, Prop. 5.6] there is a Hecke-equivariant isomorphism to
the relative Lie algebra cohomology

Hy (S (C), (€)= @ H* (8, Klo; LA(G(Q\G(A), )™ @ V3) ™. (5.2)

The sum runs over unitary central characters w = wewy, trivial on Z(A)N K. K, and
L*(G(Q)\G(A),w)> denotes the space of smooth automorphic forms with central
character w.

The Hilbert direct sum of the irreducible subrepresentations in L?(G(Q)\G(A), w)
constitutes the discrete spectrum L3(G(Q)\G(A),w). Its orthocomplement is the
continuous spectrum; it does not contribute to the L?-cohomology [BC83, Thm. 4.5|.
The L?-cohomology of Sk (C) is therefore determined by the K-invariant subspace
LA(G(Q)\G(A),w)" of the discrete spectrum. Inside the discrete spectrum is the
cuspidal spectrum L2 (G(Q)\G(A),w), the closed subspace of cuspidal automorphic

cusp

forms. The cuspidal cohomology is the subspace of (5.2) with

H2,,(Sk(C),WA\(C)) = €D H* (9, KL; L2, (GQ\G(A),w) @ V3).  (5.3)

The relative Lie algebra cohomology admits a natural bigrading H" = @p S (p:)

compatible with the bigrading on H,) (S(C), VA(C)) and with the “filtration béte* of

Faltings and Chai [FC90, Thm. 5.5|.

4Tt was conjectured by Zucker and proved by Saper and Stern [SS90] and independently by
Looijenga [Loo88|, compare [Zuc88|.
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The spectral decomposition. The regular representation of G(Ay) on the smooth
discrete spectrum decomposes as a direct sum L3(G(Q)\G(A),w) = @_m(m)m over
isomorphism classes of irreducible admissible representations 7 with finite multiplicity
m(m). Those m with m(m) > 0 are by definition the automorphic representations in
the discrete spectrum. Every irreducible automorphic representation is a restricted
tensor product 7 = @), T, = T ® 7y over irreducible admissible representations m,
of G(Q,) for v < oo and an irreducible (g, K’ )-module 7, see [Gel75, §4.C]. The

spectral decomposition is the Hecke-equivariant isomorphism

Hey(Sk(@©W(C) = @PmmH (g K @ V)l (54)

to the direct sum over isomorphism classes of automorphic representations 7, compare
[Art89, (2.2)]. The (g, K/ )-cohomology H*(g, K. ; mo ® V)) has been determined by
Vogan and Zuckerman [VZ84]. By Wigner’s Lemma, it vanishes unless the central
character and the infinitesimal character of 7o, @ V) (C) are trivial. The Hecke algebra
acts on the Hx-modules Wff . Since the Hecke action commutes with the Galois action,
each 7y is preserved by action of the absolute Galois group I'g and the cohomology
decomposes as a direct sum of 'y X Hx-modules

Hip(S(©A(C) = @ pr, Brf
Tf

where p;, is the associated (-adic Galois representation. The cuspidal cohomology
admits the same decomposition as a sum over cuspidal 7.

The inner cohomology. Let us temporarily drop (Sx(C), Vy(C)) from the notation.
The image of the natural map

H® —s H* (5.5)

from the cohomology with compact support to the cohomology is the inner cohomology
Hp and the kernel is the compactly supported Eisenstein cohomology H ;.. There
are well-known natural Hecke-equivariant morphisms

H\p — HE — Hy — H*. (5.6)

cusp

Borel [Bor81, Cor. 5.5] has shown that the composition Hg,, — H} is an injection.
At least for ¢ = 2 the cuspidal cohomology is actually isomorphic to the inner
cohomology. Weissauer has shown this for the trivial local system [Wei88, 10.4|, but

the proof for arbitrary local systems is analogous.
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5.2. Cohomological automorphic representations for GSp(4)

Let G = GSp(4) be the group of symplectic similitudes of genus two. From now on,
we fix a pair of integers A\ > Ay > 0 with even sum A; + Ag. Let A be the irreducible
algebraic representation of G(Q) with trivial central character and whose restriction
to Sp(4, Q) has highest weight (A1, A2). This choice of A is self-dual and corresponds
to the unitary normalization in the sense of [Wei09a, p.3]. We say A is regular if
A1 > Ao > 0. For regular A the inner cohomology H{(Sx(C),V,) vanishes for i # 3
by a result of Faltings [Fal83].

5.2.1. (g, K/ )-modules with non-zero cohomology

By the spectral decomposition, an automorphic representation m = 7, ® 7y con-
tributes to the L?*-cohomology if and only if H*(g, K!_; 7o, ® V) is non-zero. The
irreducible (g, K. )-modules with non-zero cohomology have been determined by
Vogan and Zuckerman [VZ84]. For the case of GSp(4), compare [SO90, §2|, [Tay93|.

Theorem 5.1 (Vogan-Zuckerman). For irreducible admissible pre-unitary (unitary
up to twist) (g, K )-modules 7, the cohomology H) (g, K! ;7o @ V) with Hodge
type (p,q) is one-dimensional in the following cases and zero otherwise.

1. For every A as above, the holomorphic non-generic discrete series o, = 7T>[\{+(2 1

with trivial central character and infinitesimal character X i (2,1) contributes
with Hodge types (3,0), (0,3).

2. For every X\ as above, the generic non-holomorphic discrete series my, = 7T}\/Ijr(2 1
with trivial central character and infinitesimal character X i (2,1) contributes
with Hodge types (2,1), (1,2).

3. For \y = X\g >0, the (g, K. )-module of the non-tempered Langlands quotient
Too = L(WY?D(2)\; 4 4), Ev71/?) (5.7)

with £ € {1,sgn} contributes with Hodge types (1,1) and (2,2). It is denoted
(§ osim) ® oy 4 by Schmidt [Sch05b] and 7= by Taylor [Tay93].

4. For A\y > Xy =0, the (g, K. )-module of the non-tempered Langlands quotient
Too = Lsgn - v, v ? Dy (A + 3)) (5.8)

with trivial central character contributes with Hodge types (0,2), (2,0), (1,3),
(3,1). This is w5 with ¢ = 0 in Taylor’s notation.

5. For \y = Xy =0, the (g, K. )-modules of the one-dimensional representations
Too = SgNosim and mo, = 1 with trivial central character contribute with Hodge

types (0,0), (1,1), (2,2), (3,3).
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Notation: On R* the valuation character is v(x) = |z| and the sign character is
sgn(z) = z/|z|. The discrete series representations of GL(2,R) and GSp(4,R) are
described in Examples 2.8 and 2.10.

5.2.2. Cohomological discrete spectrum

According to Langland’s principle of functoriality every L-homomorphism “H — LG
should give rise to a correspondence between automorphic representations. For
G = GSp(4) we have the following classification of cohomological automorphic
representations m of G(A) in the discrete spectrum.

1. The Soudry lifts [Sou84| are strongly associated® to the Klingen parabolic
QQ = Lo x Ug. On the L-group side they correspond to the embedding
LLo — FG. Their degree five L-function has a simple pole at s = 2. They are
attached to automorphic representations o of GL(2). Their archimedean factor
is the Langlands quotient (5.8) for Ay = 0. The cuspidal Soudry lifts are the
Soudry-CAPs.5

2. Piatetski-Shapiro’s Saito-Kurokawa lifts [PS83b| are strongly associated” to
the Siegel parabolic P = Lp x Up. On the L-group side they correspond to
the standard embedding *Lp — G. Up to twists, these are the automor-
phic representations which have a pole in the degree four spinor L-function.
Their archimedean factors are the holomorphic discrete series Wf\i(zn and the
Langlands quotients (5.7) for A\; = As. The condition for cuspidality has been
explicitly determined, see Section 5.3.

3. The weak endoscopic lifts are the cuspidal automorphic representations = whose
degree four spinor L-function is a product L(s, oy ,)L(s,02,) at almost every
local place for distinct cuspidal automorphic representation oy, 09 of GL(2)
with equal central character. Their archimedean factors are the discrete series
Moo = 7r§\{+(2’1) and 7, = Wf\’[jr(m). On the L-group side they correspond to the
embedding £ : 'M — LG of (4.5). See Section 5.4.

4. The stable spectrum consists of the cuspidal automorphic representations

which are neither CAP nor weak endoscopic lifts. The archimedean component
is either Wfﬂm) or WKZF(M) in the discrete series. The four-dimensional Galois
representations pr, are irreducible [Wei05].

5There are also Soudry lifts strongly associated to the Borel, but they are not cohomological.

5Not every Soudry lift is cuspidal, compare [Wei88, §8] and [Sou84, Lemma 1.3]. This is a misprint
in [Tay93, p.293].

"Piatetski-Shapiro’s construction yields lifts strongly associated to the Borel, but they are not
cohomological.
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5. The one-dimensional automorphic representations ™ = x o sim factor over the
similitude character with a Hecke character y. They are never cuspidal.

This gives rise to a decomposition® of the L?-cohomology:
H(.Z) = H(.2),Soudry D H(.Q),SK 57 e.ndo 57 Hs.tab SZ Hs.lm (59)

where each summand is the subspace of the spectral decomposition (5.2) generated
by the corresponding automorphic representations in the above list. The inner
cohomology decomposes as the subspace generated by the cuspidal spectrum:

H'. = H!.,Soudry @ H'.,SK D e.ndo > s.tab' (510)

In the remaining part of this chapter we will discuss the Saito-Kurokawa part and
the weak endoscopic part of the L*-cohomology for certain K C GSp(4,Ay). In order
to apply results about parahoric restriction, we consider only those compact open
subgroups K that satisfy

IT Gspi.z,) [ 2FcKcCG@y), (5.11)

v<00,v¢S v<00,VES

for a finite set S of places and parahoric subgroups &2, C GSp(4,Q,) for each v € S.
This includes the principal congruence subgroups of squarefree level.

5.3. Saito-Kurokawa Lift

The classical Saito-Kurokawa Lift has been constructed by Maafl, Andrianov and
Zagier |Zag81] for the full modular group. To an elliptic cuspidal eigenform f for
the full modular group SL(2,7Z) and weight 2k — 2 for even k > 10 it attaches a
scalar-valued genus two Siegel cuspform for the full Siegel modular group Sp(4, Z)
and weight Sym° ® det”, such that its degree four spinor L-function equals

C(s—k+1)((s—k+2)L(f,s),

where ¢ denotes the Riemann Zeta Function and L(f, s) has central value at s = k—1.
Piatetski-Shapiro [PS83b| and Schmidt [Sch05b| have generalized the classical Saito-
Kurokawa-lift from automorphic representations o of PGL(2,A) to automorphic
representations of the twofold covering of SL(2) and from there to automorphic rep-
resentations m of PGSp(4, A). Every automorphic representation strongly associated
to the Siegel parabolic (or the Borel) is a twist of such a lift by a Hecke character
w: QX\A* — C*.

8Since Sk (C) and X are clear from the context, we write Hy instead of Hg(S(C),Vy).
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Let o be a cuspidal automorphic representation of GL(2,A) with trivial central
character. Fix a finite set S of places including oo, such that o, is spherical for v ¢ S.
For a set ¥ C S of places let ox be the irreducible subquotient of the parabolically
induced representation | - }1&/2 X | - |;1/2 of GL(2,A) such that oy, is locally in
the discrete series exactly at the places v € ¥. The non-cuspidal automorphic
representation oy of PGL(2, A) is locally given by

) lerpaoy vEL,
Oy v =
StGL(Q,Qv) NS 2,

where Stqror) is the discrete series representation D(2). We assume that o, is in the
discrete series for every v € 3. Then there is an irreducible admissible representation
m = m(0o,0x) of GSp(4, A) with trivial central character such that at almost every
place v the degree four L-factor is

L(m,,s) = L(oy, s)L(0s4, 5).

For an explicit construction, see Piatetski-Shapiro [PS83b, §4-6|. The lift is local in
the sense that m, = m,(0,, 0%,) only depends on o, and oy,. Every local factor m,
is unitary and non-generic.

The local non-archimedean lift. Fix a non-archimedean place v of Q and let
v = |-|,. The non-cuspidal local factors m, have been determined explicitly by
Schmidt [Sch05b, p. 239, this is reprinted in the third column of Table 5.1. Cuspidal
local factors m, can only occur at v € ¥. But then 7, coincides with the anisotropic
theta-lift 7, (o, St,) = 0_(0y, St,) of Section 4.4 and Table 4.1 by [Sch05b, Prop. 5.8].

The local archimedean lift. The archimedean factors have also been determined
by Schmidt [Sch05b, §4].

If oo ¢ ¥ and 0 is the irreducible principal series representation y x x~! for
a unitary character y of R*, then the lift is the unitary non-generic irreducible
representation 7w (0w, laLier)) = X laner) X X' Its (g, K)-module does not
contribute to cohomology.

If oo ¢ X and o, is the discrete series ? representation D(2k —2), k > 2, of GL(2,R)
with trivial central character, then the lift is the non-tempered Langlands quotient

Too(0oo, Larer)) = L(| - ’i(/)?p@k —2),] - 71/2)

of (5.7), has minimal K-type of weight (kK — 1,1 — k) and contributes to cohomology
with local system V, for A = (k — 3,k — 3) and with Hodge-type (1,1) and (2, 2).

If oo € ¥, then by assumption o, = D(2k — 2), k > 2, is in the discrete series. For
k > 3, the lift 7o (D(2k — 2), St,,) is the holomorphic discrete series representation

9Schmidt [Sch05b] denotes the discrete series of PGL(2, R) with Blattner parameter 2k — 2 by
D(2k — 3) instead of our D(2k — 2).
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O oS0 Ty ry, (my) r g, (1)

even q odd ¢
pxpmt o1 (p- 1) xpt xe(k)  xa(@ ) [Lxplxp
St 1 L(vY/? . St,v=1/2) 03 04(1) (1, 1]
St (T, v=1/?) 6y 03(1) [St, St]
&.-St 1 L2, - St,u1/?) 0 01(1) [1, 1] +[St, St]
St 6_(& - St, St) cusp. 05 62(1) 0
& - St 1 L(V1/2§t - St, 1/71/2) — 7’2(1) [1 X Ao, 1 X )\0]:';
St 0_(& - St, St) cusp. - 0 [7TA6,7TA6—1]i
cuspidal 1 L2 oy, v %) xs(I")  x5(wa,1) 0
St 0_(oy, St) cusp. 0 0 [TAr, Tpr—1]

Table 5.1.: The local Saito-Kurokawa lifts at a non-archimedean place v. For depth
zero o,, the right hand side shows the parahoric restriction of m, at the
standard hyperspecial parahoric %, and the paramodular _¢,. The sign
depends on & (w) = £1.

mfl | j_p with infinitesimal character xj_1s—» and Blattner parameters +(k, k). It
contributes to the cohomology with local system V) for A = (k — 3,k — 3) and with
Hodge types (3,0) and (0,3). For k = 2, the lift 7o ( Starer), StaLer)) is only in
the limit of the discrete series.

The global Saito-Kurokawa lift. Attached to a cuspidal automorphic representa-
tion o of GL(2,A) with trivial central character and a subset ¥ C S of places where
0, is in the discrete series, is the restricted tensor product m = @), m,(0y, 05,) of
the local lifts. It occurs in the discrete spectrum of GSp(4, A) with trivial central
character and multiplicity

m(r) = 31+ (—1)%7¢(0,1/2)). (5.12)

For the ground field Q, an argument analogous to Prop. 5.7 shows that the degree
four Euler factors are

L(m,,s) = L(oy,s)L(0s,4,s) and €(m,,s) = €(0y,5)e(054, 5) (5.13)

at every place v. The global lift 7 is cuspidal if and only if L(o,1/2) =0 or X # (),
compare Schmidt [Sch05b, Thm. 3.1] and Piateski-Shapiro [PS83b, Thm. 2.6]. It is
weakly equivalent to the globally Siegel induced representation | - |X 0 X | - |1g1/ 2,
Piatetski-Shapiro makes the additional assumption L(xo,1/2) # 0 for a certain
quadratic Hecke character x, but for €(o,1/2) = 1 that property is always satisfied
[FH95, Thm. B.1].

Parahoric restriction. Fix a non-archimedean place v of Q with residue field F,.
In order to determine the parahoric restriction of the local Saito-Kurokawa lift, it is
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sufficient to do this for the standard hyperspecial parahoric %, = GSp(4,Z,) and
the standard paramodular group ¢, C GSp(4,Q,) by (2.5).

Theorem 5.2. Let m, = m,(0,,0%,) be a local Saito-Kurokawa lift of a generic
irreducible admissible representation o, of GL(2,Q,) with trivial central character.
Then o, has depth zero if and only if m, has depth zero. In that case, the hyperspecial
parahoric restriction and the paramodular restriction are given by the corresponding
columns of Table 5.1.

Proof. For the non-cuspidal local factors m,, the hyperspecial parahoric restriction
r o, (m,) is given by Table 3.1. If 7, is cuspidal, it is isomorphic to the anisotropic
theta-lift 6_(o,, St) = m,, see Table 4.2. O

For the hyperspecial parahoric restriction at non-archimedean v, we obtain
dimr 4, m,(0y, 1) + dimr 4, m,(0,, St,) = (q2 + 1) dimrgriez,) Ovs (5.14)
where the second summand is zero for v ¢ X.

Notation 5.3 (Table 5.1). The notation is analogous to Section 4.2. For a smooth
character p of Q we write i = ryx u. If 0, is cuspidal irreducible of depth zero,
its hyperspecial parahoric restriction rqr2z,)(0,) is also cuspidal irreducible and
attached to a regular character A of ]F‘qX2 as in Table A.1. Since A%*! =1, there is a
character A" of F, with (A)971 = A. Let wy be the restriction of A’ to Folg+1]. As
usual, &, and & are the unramified and either one of the tamely ramified quadratic
characters. Let A\g and Ay denote the non-trivial quadratic characters of F ; and FZQ,
respectively.

For even ¢ the canonical homomorphism Sp(4,q) — PGSp(4, q) is an isomorphism
and we can use Enomoto’s notation [Eno72| as in Section A4. Let k € Z/(q — 1)Z
and I” € 7Z/(q+1)Z be such that fi = 4* and wy = #"". For F = Q, this means k = 0
and I” =1 or 2.

The cohomology Hg,. We have shown:

Theorem 5.4. Fiz a finite set S of places of Q, including oo € S, and let K C
GSp(4,Ay) be a subgroup of the form (5.11). For A\ = (k — 3,k — 3), k > 3, the
Hecke action of [] P, ] PF on the Saito-Kurokawa part of the cohomology is
the representation

HED(S1(C), V) = DD P H" (9, Kli;waTa ®V2) Q) T, (wurms).
o w b

vES <0

v<00,vES

(5.15)
The first sum runs over cuspidal automorphic representations o of GL(2,A) with
trivial central character, with oo, = D(2k — 2), spherical outside of S and o, of depth
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zero for v € S, v < 0o. The second sum runs over locally tamely ramified unitary
Hecke characters w of A* with ws € {1,sgn}, which are unramified outside of S.
The third sum runs over subsets > C S of places where o, is in the discrete series
such that (—1)#* = ¢(0,1/2).

Example 5.5. Fiz a principal congruence subgroup K of prime level p and let
A= (k—=3,k—3), k> 3. The Saito-Kurokawa cohomology with local coefficients in
V\ defines a representation of GSp(4,Z)/K = GSp(4,Z/pZ), which is non-zero only
in the following cases. For Hodge type (x,%) = (3,0) and (0, 3) it is

Hi5(Sx(©), V) = @

ow

Gty Tyl S, ey, 1/2) = (<1,
{LNL) ‘T, Wp(ap, 1), e(gp’ 1/2) _ _(_1)k—1_ (516)

For Hodge type (x) = (1,1) and (2,2) it is

{(T) . I‘;g/p 7Tp<0pa St)? E(JP7 1/2) = _(_1>k_17 (517)

H;’;((SK(C% VA) - @ w - T, Wp(ap’ 1)7 E(Upv 1/2) = (_1)]671'

o,w

The sum runs over automorphic representations o of GL(2, A) with trivial central
character oo, = D(2k — 2). The second sum runs over Hecke characters w corre-
sponding to characters W of (Z/pZ)*. The hyperspecial parahoric restriction is given
by Table 5.1.

Proof. The four cases correspond to the subsets ¥ = {oo, p}, {oo}, {p},0 of S =
{p,>}. The central archimedean epsilon factor is €(D(2k — 2),1/2) = (=1)*1, so
the automorphy condition €(o, s) = €(oy, s) of the global Saito-Kurokawa lift depends
on the parity of k. O

The non-cuspidal Saito-Kurokawa lifts are those with ¥ = () and L(0,1/2) # 0.
Therefore Hyp C H3p, is always cuspidal and analogous for (0,3). For Hodge types

(1,1) and (2,2), the cuspidal part Hgx N Heysp is given by excluding those o with
€(0p,1/2) = (—=1)* ! and L(c,1/2) # 0 from the above sum.

The Galois representation. Let p, be the (-adic Galois representation attached
to a cohomological representation o of GL(2, A) with 0o, = D(2k — 2),k > 3 in the
discrete series. Then the f-adic Galois representation p, attached to the cohomological
Saito-Kurokawa lift 7 = (0, o) occuring with A\; = Ay =k — 3 is

_ H
PR i _ Moo = Mt (2,1) (5.18)
fm Qu(— M1 — 1) D Qu(—=N\ —2), 7o = W?\i.
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5.4. Weak endoscopic lift

The weak endoscopic lift is the correspondence that belongs to the embedding of
L-groups “M — G for the proper elliptic endoscopic group

M = (GL(2) x GL(2))/ GL(1)

of G = GSp(4, F') in (4.5) under Langlands functoriality. To a cuspidal automorphic
representation o = (o1, 09) of M (A) with o1 2 09 it attaches an endoscopic L-packet
of automorphic representations 7 of GSp(4) with local degree four spinor L-factor

L(m,v,8) = L(014,5)L(024, 5)

at almost every place v. Since we are interested in contributions to the cohomology
with a local coefficient system, we fix integers Ay > Ay > 0.

The local endoscopic L-packets. Let v be alocal place of Q. The local endoscopic
L-packet attached to a unitary generic irreducible admissible representation o,
of M(Q,) contains one or two unitary irreducible admissible representations of
GSp(4, F,). If o, is in the discrete series, the local L-packet is {II(c0,),11_(0,)},
otherwise it is a singleton 11, ().

For non-archimedean places the local endoscopic L-packet is the one in Lemma 4.5.

For the archimedean place v = 0o let w be a unitary character w of R* with w(—1) =
(—1)M*A2+1 To the generic discrete series representation o, = (D, (71), Dy(r2)) with
central character w and weights

T1:/\1+/\2+4, TQZ)\l_)\2+2 (519)

is attached the local endoscopic L-packet {IL, (0w),II_(0w)}. It contains the holo-
morphic non-generic discrete series irreducible representation I1_ (o) = Ti{w and

the non-holomorphic generic irreducible representation I1, (0,,) = 7o described in
Example 2.10. Compare [Wei09a, Cor.4.2|.

If 0 is not in the discrete series, then without loss of generality oo 1 = 11 X 1o is
in the principal or in the complementary series. The archimedean local endoscopic
L-packet contains the single representation IT, (04) = pj *o2 x 11 [Wei09a, Lemma
4.27]. It does not contribute to cohomology.

The global lift. Fix a generic cuspidal automorphic representation o = (o7y, 03) of
M (A) and let S be the finite set of local places v where o, is in the discrete series.
We assume that oo € S. A cuspidal automorphic representation 7 of GSp(4,A) is a
weak endoscopic lift attached to o if it is not CAP and has local degree four spinor
L-factor

L(my, s) = L(01,4,5)L(0g,4, s). (5.20)
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at almost every place v. The cuspidal automorphic representations 7 that occur as
weak endoscopic lifts form the global L-packet attached to o. The global L-packet
contains a cuspidal automorphic representation if and only if o; % 05. A weak
endoscopic lift attached to o is also attached to o* = (09, 07), but this is the only
equivalence between global L-packets by the strong multiplicity one theorem for

GL(2) [Wei09a, Prop. 5.2].

Theorem 5.6 (|[Wei09a, Thm.5.2|). Suppose the generic automorphic cuspidal rep-
resentation o satisfies o1 % 09. A restricted tensor product of irreducible admissible
representations m = ®; T, 18 a weak endoscopic lift of o if and only if there is a
subset ¥ C S of finite even cardinality such that

- o JI(o) v gD
Y (o,) veX.

In that case w is cuspidal automorphic, not CAP, and has multiplicity one.

The automorphic representations in the global L-packet form an equivalence class
under weak equivalence. If o, is in the discrete series at d > 2 places, then the
global L-packet contains 29~! automorphic representations, otherwise there is only
the globally generic automorphic representation 7 (o) = @/ I, (0,).

The local degree four Euler factors. Suppose 0 = (0y,02) is a cuspidal auto-
morphic representation of M (A) with o1 2 0.

Proposition 5.7. For every weak endoscopic lift m of o, the local degree four spinor
factors are

L(o14,8)L(020,8) = L(my,s)  and  €(01,S)e(020,S) = €(my, S) (5.21)

at every nonarchimedean place v.

Proof. Each non-cuspidal factor is given explicitly by Table 4.1 and the local spinor
factors are given by [RS07, Tables A.8 and A.9|. If m, is cuspidal generic, then
both o1, and 0,3, are also cuspidal generic, so L(m,,s) = 1 = L(oy,s)L(02,s).
The corresponding equation of y-factors [PSS81, Thm. 3.1] implies (5.21) by the
local functional equation. If 7, is non-generic cuspidal and if @, has odd residue
characteristic, (5.21) is implied by a result of Danisman [Danll, Cor. 4.5] and the
fact that the local Jacquet-Langlands correspondence preserves L- and e-factors.

It remains to discuss the case of non-generic cuspidal 7, at the place v = 2. Choose
a cuspidal automorphic representations ¢’ of M(A) with ¢} % 0%, unramified at
v = 2, in the discrete series at at least some other non-archimedean place, with

the same archimedean factors o; , = 0; [Wei09a, p.100]. For any weak endo-
scopic lift 7’ of ¢’ with the same archimedean factor, the previous arguments imply
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(5.21). By the local functional equation, the archimedean v-factors must satisfy
V(01,005 8)V(02,00, §) = V(7o §). But then the same functional equation applied to
o and 7 implies (o1 4, $)Y(02.4, 5) = Y(my, ) for v = 2. By the same argument as
in the proof of [Danll1, Cor. 4.5], the local y-factors uniquely determine the L- and
e-factors at v = 2. O

The cohomology. By the above arguments, we have shown:

Theorem 5.8. Fiz a finite set S of places of Q, including co € S, and a compact
open subgroup K C GSp(4,Ay) of the form (5.11). For every Ay > Ay > 0, the Hecke
action of Hv<oo,v€S P,] P on the weak endoscopic part of the cohomology is the
representation

Heao(Sk (C) @EBH (0, Ko ®VA) Q) 1, (). (5.22)

vES, <o

The first sum runs over cuspidal automorphic representations o of M(A), with
archimedean factor oo, = (D(r1), D(r2)) as in (5.19), spherical for non-archimedean
v ¢ S and of depth zero at the non-archimedean v € S. The second sum runs over
subsets 3 C S of finite even cardinality. The parahoric restriction of 11, (o,) and
I1_(o,) at the mazimal standard parahorics is given by Tables 4.2 and 4.4.

Example 5.9. Suppose K C GSp(4,Ay) is a principal congruence subgroup of prime
level p corresponding to the standard hyperspecial parahoric %, of GSp(Q,). The
action of GSp(4, Z) on the weak endoscopic part of the cohomology of Sk (C) with
local coefficients in Vy defines a representation of GSp(4,Z/pZ), which is non-zero
only in the following cases:

HEY(Sk(T), V) =2 HOD(Sk(C), V) = P oy 11-(0,), (5.23)
HE2(Sk(C), V) =2 HLD(SK(C). V) 2 €D 1y Ti(oy). (5.24)

The sums run over cuspidal automorphic representations o of M(A), unramified at
v # p, with archimedean factor o5 = (D(r1),D(ry)) for the weights (5.19). The

hyperspecial parahoric restriction is given by Table 4.2.

The Galois representations. Let 0 = (0, 02) be a cuspidal automorphic repre-
sentation of M (A) with ¢-adic Galois representations p,, and p,, attached to oy and
o9. We assume o, is the discrete series D, (1), D, (r9) with weights 1y > ry, this
distinguishes oy from o3. Then the (semisimplified) ¢-adic Galois representation
attached to a weak endoscopic lift m of ¢ is calculated by the cohomological trace
formula [Wei09a, Cor. 4.2, 4.4]

H

Poy Moo = Ty

Py = (5.25)
! {poz(_)‘2 —1) M= WKV‘

By a result of Ribet these representations are irreducible.
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5.5. Conjectures of Bergstrom, Faber and van der Geer

Bergstrom, Faber and van der Geer [BFvdGO08] made explicit conjectures on the
inner cohomology in level two. We will now prove these conjectures.

At first, we adjust our notation to their situation. =~ The moduli space Ay y of
principally polarized abelian surfaces with a level N-structure is a Deligne-Mumford
stack defined over Spec(Z[1/N]). Its analytification over the category of complex
analytic spaces is isomorphic to the orbifold Hy /T'[N], the quotient of the Siegel upper
half space by the principal congruence subgroup I'|N| C Sp(4, Z). The cohomology
is preserved by Serre’s GAGA theorems. Under strong approximation, Hy/T'[N] is
isomorphic to Sk+(ny(C) for the modified principal congruence subgroup

K'(N) = {z € GSp(4,Z) |z = diag(1,1, %) mod N}. (5.26)
The local system V), is parametrized by integers (I, m) = (A1, A2) with { > m > 0.

The holomorphic part H, !(3’0) (A2 n, Vy) of the inner cohomology is Hecke-isomorphic
to the space of holomorphic Siegel cuspforms of weight Sym'™™ @ det™" for the
principal congruence subgroup I'[N| C Sp(4,7Z).

Let 7y x = #Sk(Lo[N])™™ denote the cardinality of the finite set of normalized elliptic
cuspidal newforms'® of weight & and level N. We write Ty for the cardinality of
the subset with vanishing central L-value.!! In level N = 2, we denote by T,;t the
subspace of forms with Atkin-Lehner eigenvalue +1.

Scholl [Sch90] has constructed a motive for the space of elliptic cuspidal newforms
with weight £ and level N. Since we need only the underlying semisimple ¢-adic
Galois representation of I'p, we write

SCo(N), K™ = B »y
JFESK(To[N])new

where ps is the Galois representation attached to f by Deligne [Del68|. We use
the corresponding notation also for the subspaces Si(I'o[N]) with Atkin-Lehner
eigenvalue 1 and the subspace S}, (I'o[/N]) with vanishing central L-value. We write
L™ = Q(—m) for the m-power of the dual cyclotomic character as in [BFvdGO0§],
and the trivial character L° is dropped from the notation.

5.5.1. Previous results on level one

For level N = 1, Faber and van der Geer [FvdG04, §2|, [vdG11, Cor.10.2] and
Petersen [Pet15] have determined the Eisenstein cohomology of As; explicitly. We

0By definition, newforms are eigenforms of the Hecke algebra.
HFor k=2 mod 4, we have Tn.k = T,k Dy the functional equation. For k =0 mod 4, it can be
verified numerically that T]'V,k = 0 for small values of k£ and N.
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only give the regular case here to simplify the notation. For irregular A, see Petersen
[Pet15, Thm. 2.1].

Theorem 5.10. Let V) be a regular local system with | +m even. The compactly
supported Eisenstein cohomology H i (Az1,VA(Qy)) decomposes as an (-adic Galois
representation for 1 =2 as

L% 1.m odd,

S[Sp(4,Z), m + 2] + T11-mea L’ +
0 I,m even,

fori=3 as
S[Sp(4,Z), 1 + 3] + T1 1 rmial™ ",

and is zero for i =0,1,4,5,6.

By counting points on finite fields [vdG|, Faber and van der Geer obtained conjectural
results on the Euler characteristic of the cohomology with compact support and this
led to precise conjectures about the inner cohomology [FvdG04|. Indeed, the inner
cohomology can be described explicitly as follows.

Theorem 5.11. Fix an arbitrary local system Vy with | + m even. The inner
cohomology H?(As,Vy\) of the moduli space of principally polarized abelian varieties
15 the direct sum of the following contributions. The endoscopic part

7_]_7l+m+4S[Sp(4, Z),l —m + 2] X Lm+1 1=3

H; -
endo(A27 V)\) {O i 7£ 3

is concentrated in Hodge types (2,1) and (1,2). The Saito-Kurokawa part

G s if i =2 and | = m even,

S[Sp(4,Z),l+m +4] ifi=3 andl=m odd,
T{ygl,ngH if i =4 and | = m even,

H!{SK (-A27 V)\) -

0 else.

is concentrated in Hodge types (1,1), (3,0), (0,3) and (2,2), respectively. The
contribution from the Soudry part is

H!i,Soudry(A2? VA) = 0.

The stable spectrum!? decomposes into irreducible four-dimensional Galois represen-
tations

i @ Py =3
e (Ao, V) = { D P
stable( 2 >\) {0 27&37

attached to cuspidal automorphic representations, that are neither CAP nor weak
endoscopic, and which are spherical at every finite place. It occurs with Hodge-type

(3,0), (2,1), (1,2), (3,0).

12This is S[l — m,m + 3] in the notation of [FvdG04] and S[l — m,m + 3] in [BEvdG14].
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This has been shown by Weissauer [Wei09b|, Tehrani [Teh12|, and Petersen [Pet15].
In our notation, the endoscopic part is the special case of (5.22) with S = {oo} and
Y. = () and the Galois representation given by (5.25). The Saito-Kurokawa part is
(5.15) with S = {00}, w =1 and ¥ = ) or {oo} and the Galois representation of
(5.18). The Soudry part contributes to cohomology when m = 0, but there are no
non-zero elliptic cuspforms of odd weight [ + 3 for the full modular group.

5.5.2. Level two

The case of level N = 2 has been studied extensively [vdG82|, [LW85, §8|, |[BEvdGO0§],
[BFvdG14], [CvdGG15|. The Hecke action of GSp(4,Z) on the invariants under the
principal congruence subgroup K(2) = K'(2) C GSp(4,Z) of level two gives rise
to a representation of GSp(4,Z)/K(2) = Sp(4,F,). After semisimplification, the
cohomology of Aj 5 decomposes into ¢-adic representations of Sp(4,Fy) x I'g.

Since Sp(4,Fs) is isomorphic to the symmetric group in six letters, the irreducible
representations of Sp(4, Fy) can be classified by partitions of six. We fix parabolically
induced representations A, B, C, A’, B’, C" as in Section 5.5.5. We write r1 = [+m+4
and ro = —m+ 2 as in (5.19).

For the compactly supported Eisenstein cohomology of Aj o, the Euler characteristic
has been determined as before [BFvdGO08, Thms. 4.2, 4.4] using the BGG-complex of
Faltings and Chai [FC90).

Theorem 5.12 (Bergstrom, Faber, van der Geer). For reqular A\, the Euler character-

istic of the compactly supported Eisenstein cohomology decomposes as a representation
Of Sp(4,IF2) X FQ as

ee,5is(A22,V\) = Ty (A + B') + 72, B' + 747, C' — (110, (A" + B') + 12,4, B' + 14, C') L™ !
+(A+ B)RS[To(1),m + 2] + BRS[To(2),m + 2" + C K S[To(4), m + 2"
—(A+ B)RS[To(1), ]+ 3] — BRS[To(2),1 + 3" — C R S[To(4), 1 + 3]
+3(1+(-1)"™)(A + B).

We can explicitly describe the endoscopic part of the inner cohomology:

Theorem 5.13. Forl > m > 0, the semisimplified endoscopic part H?, ;.
of the inner cohomology decomposes under the action of Sp(4,F2) x I'g as

(AQ 25 V)\)

HEY & HYY =1y, - 52,1 K S[Do(4), ™"
+ (1 s[2] 4 - [1°]) RSP [o(2), ]
+ (1,5 s[19] + 7, - s[2°]) K ST[[o(2), )"
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and

HZ @ D = pmt ((747,01 8[3, 1] + o, - 8[4,12] + 71, - C7) BIS[To(4), 7)™
-+ (72,71 - 8[3,2,1] + Tapy - s[4, 1] 4 T - B’) X S[[y(2), o)™
+ (1, s[4,2) + 7, - s[5,1]) KIST[To(2), ro]™™
+ (15, - s[4,2) + 1.5 - s[5,1]) KS™[T(2), ro]™™

Hru -4 7y B 7y - (A4 B) BSITo(1).r])

with the notation of Section 5.5.5. The other Hodge numbers are zero.

The proof is given in the next subsection.

Remark 5.14. This solves Conjectures 6.4 and 7.1 of Bergstrom, Faber and van der
Geer |[BFvdGO8|. They call the non-holomorphic part with Hodge types (2,1) and
(1,2) the "middle endoscopic part. The holomorphic part with Hodge types (3,0)
and (0, 3) is the “leading part and corresponds to Yoshida lifts.

Corollary 5.15. Forl > m > 0 we have

dim H > (Ag, Vy) — dim HEY (Ay 5, Vy) = 5 - dim S, (To[4]) - dim S,., (To[4]).

endo endo

Proof. The left hand side is given by Thm.5.13. It equals the right hand side by
Atkin-Lehner theory. m

Remark 5.16. This is a special case of (4.11). It approximates Conjecture 7.2 of
[BEvdGO8| for regular [ > m > 0, but the conjecture does not hold literally, because

“trailing terms” do not appear in the cohomology H, éi(?o) o H e(gjo) :
Theorem 5.17. For | =m > 0 the semisimplified Saito-Kurokawa part of the inner
cohomology H?(As2, V) decomposes under the action of Sp(4,F2) x I'g as
H!(,%Ig) (A22,V)) @ H!(g’é) (A22,V)) =
S*[Co(2), r1]Y K s[4, 2] + S™[[o(2), r1]™" K s[23] 4 S[To(1), r1] K A’ | odd,
S[To(4),r1]eY K 5[32] + ST [[0(2), 1] K s[16] + S™[[o(2), 1] M s[5,1] | even

and

HIGY (As,V3) =

et [STDO(@),ra]"™ B 8[32] 4+ 5™ [0 (2), 1] B 8[15] + S~ Lp(2), " B s[5.1] 1 odd,
SH[To(2), r1]"™ K s[4, 2] + S~ [[o(2), r1]"e" K s[23] + S'[To(1),71] X A’ [ even,

and H!%’f() (A2, V) =L ® H!%’I? (A29, V). The other Hodge numbers are zero.
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The proof is given in the next subsection.

Remark 5.18. This solves Conjectures 6.6 and 7.4 of Bergstrom, Faber and van
der Geer [BFvdGO08|. A Saito-Kurokawa lift is cuspidal if and only if it comes from
an automorphic representation (o, 0x) with ¥ = ) or L(o,1/2) = 0; this explains
the S’ components. Replacing S’ by S gives the Saito-Kurokawa part H (2).8K of the
L2-cohomology.

Corollary 5.19. dim H{ & (Azz, Vs) + dim H5 Y (Azp, Va) =5 - dim S, (To[4]).

The proof is analogous to Cor.5.15. This is the closest approximation we can give to
Conjecture 7.2 in [BFvdGO08| for the case [ = m. The conjecture is not literally true
because the Galois representations on both sides are different.

Corollary 5.20. The inner cohomology of Aso with I > m > 0 andl+m =0
mod 2 decomposes as a direct sum

H?(Az2,V2) = H}onao(A2.2, V2) © Hsi(A22, V2) ® H siapie(A2,:2, V2),

where the first two terms are given above and the last term is the stable part that
decomposes into four-dimensional irreducible Galois representations and contributes
equally to Hodge types (3,0), (2,1), (1,2), (0,3).

Proof. This is decomposition (5.10). The Soudry lift does not contribute to the inner
cohomology in level two by the same argument as in level one: For m = 0 we have
even [, so the central character w of a Soudry lift must satisfy w(—1) = 1. But the
Soudry lift preserves central characters and there are no non-zero elliptic modular
forms of odd weight 3 + m whose congruence group contains —1. O

Together with Theorem 5.12 this determines the compactly supported cohomology
with regular weight up to semisimplification.

5.5.3. The proof

We will now prove the above theorems about the endoscopic and the Saito-Kurokawa
part of the inner cohomology in level two. At first, we establish the correspondence
between modular forms and automorphic representation.

It is well-known that every cuspidal automorphic representation o of GL(2, A) with
discrete series archimedean factor o, = D(r) and trivial central character is generated
by a unique elliptic newform of weight r and level I'y(IV), compare e.g. [Gel75]. At
the unramified places p not dividing N the local factor o, is spherical and determined
by the Satake parameters. If p divides N exactly once, o0, is determined by the
Atkin-Lehner eigenvalue. Otherwise it is not known in general how to describe o, in
terms of f. However, for p = 2 the situation simplifies.
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Lemma 5.21. Let o be an irreducible smooth representation of G = GL(2,Q3) of
depth zero, but not Iwahori-spherical. Then o is cuspidal, its hyperspecial parahoric
restriction is cuspidal, and o is uniquely determined by its central character. Its local
FEuler factors are €(0,s) = —1 and L(o,s) =1 for every s € C.

Proof. An Iwahori subgroup of GL(2, Q) is its own pro-unipotent radical, so the
parahoric restriction with respect to an Iwahori subgroup is zero. The hyperspecial
parahoric restriction & = rap2,2,)(0) as a representation of GL(2,F,) is non-zero by
assumption and it is cuspidal by (2.5). By Example 2.21, o itself is cuspidal. By
Lemma 2.18, the hyperspecial parahoric restriction ¢ is irreducible. There is only one
isomorphism class of cuspidal irreducible representations GL(2,Fy). Now Thm. 2.15
implies that ¢ is uniquely determined by the central character w,. It remains to
determine the Euler factors.

Fix an additive character 1 : Q9 — C* qf conductor one. Its restriction to Zs factors
over the non-trivial additive character v : Zy/2Zs — C*. The e-factor of o is given
by §25.2 of [BHO6| (their notation)

(5, ¢)

1
_ 92l(0)(5-3)
€(0,5,¢) =2 2 (A Prr1)1/2

Depth zero implies that n and /(o) are zero. We have 21 = Maty(Zs) and P =
I, + Maty(2Zy) and therefore (A : B) = 16. In the classification of Thm. A.1, the
cuspidal irreducible & corresponds to a non-trivial regular character of I}, denoted
by 6 in §6.4 of [BHO06|. By the first equation in §23.7 of [BHOG|

r(E0) = -2 3 Ra)d(a + %) = —4.

xeFZ

The local L-factor is trivial for every cuspidal representation of GL(2, Q,). n

The analogue of Lemma 5.21 for odd residue characteristic includes principal series
representations induced from tamely ramified characters.

Lemma 5.22. For a cuspidal elliptic newform f of level N and weight r let o be
the automorphic representation of GL(2,A) generated by f. The local factor oy is of
depth zero if and only if it belongs to one of the following:

1. The spherical principal series oo = ju x pu~* for an unramified character u of
Q5 with u® # |- |*t. This occurs if and only if N is odd.

2. the Steinberg representation oo = Star(2,q,). This occurs if and only if N = 2
mod 4 and the Atkin-Lehner eigenvalue at two is e = —1,
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3. the twist o9 = &§, Star(2,0.) of the Steinberg by the unramified quadratic character
€ of Qx. This occurs if and only if f has level N =2 mod 4 and Atkin-Lehner
etgenvalue e = +1,

4. the unique cuspidal representation of GL(2,Qy) with depth zero and trivial
central character. This occurs if and only if N =4 mod 8.

Proof. If oy is Iwahori-spherical, it belongs to one of the first three cases. The level is
given by [Gel75, Prop. 5.21|. Otherwise it belongs to the last case by Lemma 5.21 and
because ['y(4) is conjugate to the principal congruence subgroup I'(2) C SL(2,Z). O

Proof of Theorem 5.13. This is Example 5.9 for p = 2. The central characters of
the automorphic representations ¢ must factor over (Z/27Z)* and are therefore
trivial. The sum runs over pairs of automorphic representations o = (01, 02) of
PGL(2,A) x PGL(2, A) with archimedean part in the discrete series of weight r; and
To.

For a fixed o, only the endoscopic lifts m with generic non-holomorphic archimedean
factor m, = I1, (04 ) contribute to cohomology with Hodge numbers (2, 1) and (1, 2).
At the non-archimedean places v # 2, the local lift 7, is spherical if and only if o, is
spherical.

At v = 2 the local lift must be the generic m, = I1,(0,) by the multiplicity formula
in Thm. 5.6. It is depth zero if and only if o, is depth zero at v = 2 by Cor. 4.14. For
each local factor o;, there are four possible cases by Lemma 5.22 and they occur
with cardinalities 71, 75, T{ri, T4r;, Tespectively. The corresponding local lifts
I1, (0,) are given in Table 4.1 and their hyperspecial parahoric restriction is given in
Table 4.2 in the language of Enomoto’s characters. The translation into irreducible
representation of the symmetric group > is given in Table 5.2. The (-adic Galois
representation is L™ p,, by (5.25).

For Hodge types (3,0), (0,3) the proof is analogous with the local lift =, = II_(0,)
at the place v = 2. This is only possible when o, is in the discrete series at v = 2, so
there are no contributions with level N = 1. O

Proof of Theorem 5.17. This is Example 5.5 for p = 2. The central character w
must factor over (Z/2Z)* and hence be trivial. The argument is analogous to
the endoscopic case. Contributions to Hodge type (3,0) and (0,3) come from
Saito-Kurokawa lifts whose archimedean factor is the holomorphic discrete series
representation 7, = 7 = 7(D(r1), D(2)).

Non-zero contributions to the cohomology can only come from automorphic repre-
sentations o of GL(2,A) which are locally spherical at v # 2 and of depth zero at
v = 2. Their lifts m, are spherical at v # 2,00 and the local factor o, belongs to
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one of the four cases in Lemma 5.22. The local lifts and their parahoric restrictions
are given by Table 5.1. A global lift is automorphic if and only if the e-factor
satisfies €(0,1/2) = (—1)#*. Here the right hand side is (—1)"¢(0,, 1/2) for v = 2,
so automorphy depends on the parity of [. The lifts are all cuspidal, because ¥ is not
empty. Summing over a the possible o gives the contributions with corresponding
multiplicities like in the endoscopic case. The Galois representation is given by (5.18).

Contributions to Hodge types (1,1) and (2,2) come from Saito-Kurokawa lifts whose
archimedean factor is the non-holomorphic Langlands quotient L(v/?D(ry),&v=1/2).
The proof is analogous, but we have to exclude any o with €(0,1/2) = 1 and
L(0,1/2) # 0, because its lift does not contribute to the cuspidal spectrum. O

5.5.4. Hodge numbers

We determine the Hodge numbers h!(p 9 = dim H, !(p ) (Az2, V) of the inner cohomology
attached to a local system of highest weight (I, m).

Corollary 5.23. For reqular local systems with | > m > 2 and even sum |+ m the
non-zero Hodge numbers of the inner cohomology are

RO = p = Ll —m+ 1) (1 +2)(m + 1)(I + m + 3)
_g(z —m+ 1) +m) = (=1)"F(m —2)(1 - 1),

b = p = h®0 L 314 m) (1 - m - 2).

Proof. Tsushima [Tsu83 Thm. 3] has calculated the dimension of H 3.0 (Ag 2, V\).
The Hecke modules HV) (Aso, V) and H (Ass, Vy) are isomorphic [Wei05]
and we obtain hiat)le = hé?é%)le. For regular A there is no contribution from CAP-

representations. Now Cor. 5.15 implies

l+m —m—2
2 2 ’

pPD = p39 4 5dim S, (To[4]) - dim S, (To[4]) = h*” +5 -

Complex conjugation gives h 03) — h(go and h,(l’Q) = h,(2’1). By Falting’s result
[Fal83] the other Hodge numbers are zero. O

Corollary 5.24. For local systems with | = m > 1, the non-zero Hodge numbers of
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Sp(4,F2) 6y 61 6y O3 04 05 xs5(1)  xs(1) xo(1) xi2(1) x13(1)
6 6] [4,2] [2°] [5,1] [3,2,1] [1° [22,1%] 3% [2,1%] [4,1%] [3,1]
dim 1 9 5 5 16 1 9 5 5 10 10

Table 5.2.: Irreducible representations of Sp(4,Fy) = ¥g.

the inner cohomology are

WY = Y = Ll —m+ 1)1+ 2)(m + 1)(I + m + 3)
—2(l—m+1)(l+m)—(-1)"3(m—2)( - 1),

p32) _ ) _ 60 _ {97; + 57, + 157, 1 odd,

! 5Tyr + 17,5 +57,, 1 even,

pOD — 22 5Ty, T 1705 +57 1 odd,
' ' 97,7 + 577 + 157, [ even.

Proof. The non-zero terms come from the Saito-Kurokawa lift and from the stable
part. The argument is analogous. O

5.5.5. The isomorphism GSp(4,Fy) = X

Permuting the six Weierstralt points on a hyperelliptic curve of genus two defines an
action of the symmetric group g on the moduli space of their Jacobians and thus
on Ajyo. It preserves the Weil pairing and thus gives rise to a morphism from ¥g to
the finite symplectic group Sp(4,Fy). This defines an isomorphism of finite groups.

Let us give an alternative. The symmetric group ¢ acts naturally on the vector
space F§ and preserves the inner product (v, w) = Z?:1 v;w;. The isotropic vector
U= diag(l, 1,1,1,1,1) is fixed under action. Since the inner product is symplectic on
the four-dimensional space u' /u, this defines a group homomorphism ¢ — Sp(4, F5),
which is actually an isomorphism.

The irreducible representations of YXg are classified by partitions of six. The dictionary
between Enomoto’s characters [Eno72| and the partitions of six is given in Table
5.2. The finite group GL(2,F;) admits three isomorphism classes of irreducible
representations, the trivial 1, the Steinberg St and the cuspidal representation o.
Parabolic induction via the Klingen parabolic (respectively, the Siegel parabolic) in
Sp(4,F,) gives rise to the following representations:

A = x7(0) = s[6] + s[4, 2] + s[5, 1], A" = x6(0) = s[6] + s[4, 2] + s[27],
B = x11(0) = 5[3,2,1] + s[4, 2] + s[27], B’ = x10(0) = 5[3,2,1] + s[4, 2] + s[5, 1],
C = x3(0,1) = 5[3, 1] + s[2,17], C" = xa(1) = 5[4, 17] + 5[37].

103



104



6. Conclusion

The parahoric restriction of irreducible admissible representations 7 of GSp(4, F') over
a non-archimedean local number field is now completely known. For non-cuspidal 7,
this is given by our results in Chapter 3. The non-generic cuspidal p occur in the
anisotropic theta-lift. Up to possible character twists, their parahoric restriction is
given by the lower halfs of Table 4.2 and Table 4.4. For generic cuspidal p of depth
zero, the parahoric restriction with respect to hyperspecial parahorics is irreducible
cuspidal and it is zero for every other parahoric. This is implied by a result of
deBacker and Reeder [DR09, 6.1.1] and our Lemma 2.18. For positive depth, the
parahoric restriction is zero by definition.

Our description of the endoscopic character lift in depth zero has provided further ev-
idence for the expected depth preservation under the local Langlands correspondence.
The non-cuspidal case is already a result of Moy and Prasad [MP96, 5.2(1)].

The description of the inner cohomology of the Siegel modular threefold with principal
congruence subgroup level two is now complete. In principle, we can also calculate
the Hodge numbers for arbitrary open compact subgroups of GSp(4, Ag,), that
contain a principal congruence subgroup of squarefree level, in terms of automorphic
representations of GL(2). This would depend on an explicit local description of
Soudry lifts and the analogues to Tsushimua’s dimension formulas [Tsu83|. The
Eisenstein cohomology has been described precisely by Harder [Har12] and can be
used to determine the compactly supported cohomology in the analogous fashion to
Petersen’s results [Pet15].

Outlook. In a recent article, Clery, van der Geer and Grushevsky [CvdGG15| have
begun a detailed description of the Sp(4, Fy)-representations on the vector space of
Siegel modular forms invariant under the principal congruence subgroup of level two.
It would be interesting to understand the explicit correspondence with our results.

Bergstrom, Faber and van der Geer have extended their numerical calculations to
genus three [BFvdG14]. If there was a classification of automorphic representations
of GSp(6), the analogous techniques could be employed to prove their conjectures.
To the author’s knowledge, such a classification seems absent.

We have obtained some evidence that the hyperspecial parahoric restriction of a
depth zero generic irreducible admissible representation 7 of GSp(4, F') contains a
generic constituent. Under certain technical assumptions on 7 we could show this for
arbitrary unramified connected reductive groups [MR].
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A. Representations of finite groups

Let IF, be the finite field of order g. For certain linear groups G over I, we recall the
irreducible representations of G(g). Fix an non-trivial additive character ¢ : F, — C*.
For odd g let Ag and Ay be the non-trivial quadratic characters of F and IF;Q.

The character x, of a representation ¢ is denoted by ¢ again, when the meaning is
clear from the context.

A.1. GL(2,q9) and SL(2,q)

An extensive survey of the representation theory of GL(2,¢q) has been given by
Piatetski-Shapiro [PS83a|. The conjugacy classes of G = GL(2, q) are those which
admit an [F-rational Jordan normal form and the anisotropic classes E(«) of elements
with eigenvalues a, a? for a € F), — F< like (§ —ar) € E(a).

1 a+tal
Theorem A.1. Up to isomorphism, the irreducible representations of G are
1. twists of the trwial representation p - 1g = podet for p: Fy — C*,
2. twists of the Steinberg representation - Stg for p: Fy — C*,
3. principal series ji1 X pg for characters py, po : Ky — C* with p1y # pia,
4. cuspidal representations wy for a character A : quz — C* with A # A‘.
They are pairwise inequivalent except for g X po = ps X py and w(A) = w(A?). The

character values are listed in Table A.1.

A representation (o,V') of GL(2,q) is generic if it admits a non-zero v € V with
o(t%)v =1(x)v for x € F,. This does not depend on the choice of ¥. Except for
the twists of the trivial representation, all the irreducible representations are generic.

For odd ¢ there is an explicit model of the cuspidal irreducible representations:

Proposition A.2. For an odd prime power q fix a character A of IFqXQ with A # A9,

Let V. ={f :Fy — C} and let p : G — Aut(V) be the homomorphism given on the
standard Borel of G by
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Conj. class (§2) (§a) (§a) E(a)
a€Fy acFx a,d€FyX,a#d a€elFry —Fy
# of classes q—1 qg—1 %(q—l)(q—Q) %(q—l)q
PET ula)? u(a)? p(ad) o nr(a)
i Sty aula)? 0 ulad) —yonr(a)
pxv (gt Dpaw(e)  par(@)  pa)(d) + pdvia) 0
TA (g — 1DA(a) —A(a) 0 —A(a) — Aa?)

Table A.1.: Character table of GL(2, ¢q).

and on the non-trivial Weyl group element w' = (_; 1) by

(p)f)@) == Y Aly™) Y wla+afA()f(y).

adt =gy

Jor a,d,x € FS and b € F,. This gives rise to a well-defined cuspidal irreducible
representation (p, V') of G isomorphic to my.

Proof. For the proof, see Piatetski-Shapiro [PS83a, §13].! ]

Remark A.3. In the special case ¢ = 2 there is an isomorphism GL(2,2) = Y3
to the symmetric group in three letters given by the natural action of GL(2,2) on
the projective space P'F,. Therefore irreducible representations of GL(2,2) can be
classified by partitions of three as in [BFvdGO0S|.

Irreducible representations of SL(2,¢) can be obtained by restricting representations
of GL(2, q). The definition of generic is the same as for GL(2, ¢), but depends on .

Corollary A.4 (Irreducible Representations of SL(2,q)). Let o be an irreducible
representation of GL(2,q). If q is even or if \go ¥ o, then ils restriction [o] to
SL(2, q) is irreducible. Otherwise the restriction has two irreducible equidimensional
constituents, a ¥-generic [o]; and a non--generic [o|_. These are all the irreducible
representations of SL(2, q).

For non-square a € ) the representation [o]_ is 1,-generic and [o], is not 1,-generic
with respect to the additive character v, : = +— ¥ (ax).

Remark A.5. For odd ¢, the only representations o of GL(2,¢) with 0 = A\go are
0 = X Aoy and o = my, such that qu_l = A is the nontrivial quadratic character of
F .. The character values of [o]. onu, = (' §) are tr((ux Aopt) 13 us) = T(1Xo(z)®)
and tr((ma)+;u,) = 3(—1 £ Ao(2)®) with the GauR sum & = erqu Xo(2)(x).

!There is a minus sign missing in the definition of j in loc. cit.
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A.2. (GL(2,¢)?)

Let G = (GL(2,¢)%)° be the group of (z,y) € GL(2,¢)* with equal determinant
det z = dety. We call an irreducible representation (p, V') of G generic, if it contains
a non-zero v € V with p((* %), (' ¥))v = ¢(z + y)v. This condition does not depend
on the choice of 1.

Lemma A.6 (Irreducible representations). For an irreducible representation o =
o1 Moy of GL(2,q)? let [o] denote its restriction to G. If q is even or if oy %
Xoo1 or 03 ¥ Noa, then [o] is irreducible. Otherwise® [o] is a direct sum of two
equidimensional irreducible representations o]y and [o]|_, where [o]4 is generic and
[0]_ is not generic.® These are all the irreducible representations of G.

Proof. For an irreducible representation o of GL(2, ¢)?, Frobenius reciprocity implies

dim Homg([o], [0])
= Y dimHomgr (01, 41+ 01) - dim Homgy o) (00, 57" - )

HEFy

1 q even,
1+ dim HOII’IGL(QH) (0'1, )\0 : O'1> - dim HomGL(Z,q) (0'2, /\0 . 0'2) q odd.

The sum runs over characters p : F — C* and for p? # 1 the factors must be
zero by comparing central characters. For odd ¢, this term is two if and only if
0; = Ao; and in that case there are two irreducible constituent in [¢]. Each of
these irreducible subquotients decomposes into two irreducible representations of
SL(2,q) x SL(2, q) by the analogous argument. Let [¢], be the G-constituent that
becomes [o1]; X [o3] @ [01]- X [02]_ upon restriction to SL(2,q)?, then for any
choice of 1) exactly one of these SL(2, ¢)*>-constituents contains a Whittaker-vector.
By Frobenius reciprocity every irreducible representation of G is contained in some
irreducible representation of GL(2, q)?. ]

Remark A.7. The twist of [o] by a character y of F is
p - [o1,02] = [po1, 03] = [0, pos). (A1)

This is the only equivalence between representations of G.

For an irreducible representation o = oy X 09 of GL(2,¢)? we call the involution
o — 0" = 09 W oy the opposite. For the corresponding representations of G write

2This happens exactly when o1 and o5 belong to the cases described in Remark A.5.
3If ¢ is odd and Ao =2 ¢ and if we replace (z,y) — ¥(x +y) by ¥ : (z,y) — ¥ (az + by), where
ab is not a square in Fy, then [o]_ is ¢'-generic and [o] is not v’-generic.
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[o]* := [0*] and [o]% := [0*]+. The generic representations are preserved under this
involution, so the notation is justified.

On the unipotent element u = ((* %), (' %)) € G with uy,uy € F* Remark A.5
implies that the character value of [0y, 9]+ is

tr([1 X Ao, 1 X AgJa;u) = tr([may, mag |5 u) = 5(1 £ Ao(—uruz)q), (A.2)

tr([1 X Ao, may s u) = tr([may, 1 X Aglasu) = 5(—1 4 Ao(—urug)q). (A.3)

A.3. GSp(4,q) for odd ¢

The irreducible representations of the finite group G = GSp(4, ¢) with odd ¢ have
been classified by Shinoda [Shi82, Table 5.

Characters of ) are denoted A or v, while A, w, A and © will always be characters
of F75, Folg + 1], F5[2(g — 1)] and F 5 [(q — 1)(¢° + 1)), respectively. We only consider
the case where A\ does not factor over some A, which means \'(—1) = —1. The
non-trivial quadratic character of F ;2 [q + 1] is wy. For typesetting reasons, we write

A Ao, V] =M R Ky + A KA R M\

FATT R A KAy AT RN R A N\,
B[A1, Ao, v] =M B (Mg xv) + AR (Mg x Av),
CIAL, Ao, V] =(A1 X o) Bv 4+ (AT x Ag) K\

Shinoda denotes the conjugacy classes of G by Ag, Ai, ..., Ly in his Table 2. He gives
explicit values for certain virtual characters in his Table 5. For their decomposition

into irreducibles see Table A.2. This gives all the irreducible representations of G
[Shi82, §5|.

Lemma A.8 (Shinoda [Shi82, p.1403]). The decomposition of the virtual charac-
ters Xi,..., X5 and x1,...,xs into irreducible components is given in Table A.2.
The characters 6,(v),...,05(v) and T(N),...,75(X) for N(=1) = —1 are always
wrreducible.

Corollary A.9. The parabolic restriction (Jacquet functor) of the irreducible repre-
sentations of GSp(4, q) is given by Table A.4.

Proof. This is directly implied by Frobenius reciprocity and the decompositions in
Table A.2. n
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Lemma A.10. Shinoda’s virtual characters are pairwise inequivalent except for the
following identities.

X4(0) = X4(07) = X,(07) = X,(07)

X5(A, CU) = X5(AC:),(U_1) = X5(Aq,w_1) = X5(Aqu~ﬂ,w) = X5(A, (A O 'iq—l) . w_l)
= X5(A%, (A0, 1) w) = X5(A@, (A oiy 1) w ) = X5(A%%, (Aloi, 1) w),

X1\ v) = xa(A7H ), X2\, v) = x2(A7H, M)
xs(\ v) = xs(A™, A), Xa(Av) = xa(A ™ \),
Xs(w,v) = xs(w™,v), Xo(w,v) = xs(w ™, v),
x7(A,v) = x7(A% v), xs(A,v) = xs(A% v),
T1(A) = 11 (A o), T3(A) = 13(A o),
Ta(X) = Ta(\), 75(A) = 75(\).

The identities between X;, Xy, X3 are those from the action of the Weyl group and
parabolic induction.

Proof. This is a simple calculation. O]

Lemma A.11. Let p be an irreducible representation of GSp(4,q) for odd q. Table
A.8 lists the central character w, of p; the cuspidal p (a "o“ in the c-column); the
generic p (a "8 in the g-column); and the dimension of invariants under the subgroup

{diag(1,1,,%)} € GSp(4,q).

Proof. The central characters are given by w,(a) = p(Ao(a))/ dim p for a € Fy. The
cuspidal irreducible representations are those that do not occur as subrepresentations
of parabolically induced proper representations in Table A.2. The generic irreducible
ones are exactly those whose dimension is a fourth degree polynomial in ¢ [Shi82,
p. 1405]. The dimension of invariants under {diag(1, 1, *, %)} is given by %5 (p(Ao(1))+

> p(Do(1,b))). The calculations are straightforward. O
1£bEFY
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p € Rz(G) induced Decomposition for
X1(A,do,v) A XA xv (irreducible) T# M #NT#£1
x1(A1,v) +x2(A1,v) AMFEN=1
X3()\1,Z/)+X4()\1,V) A1 = Ao 7& 1, Ao
Z/(Tl +7’2+)\0T2+T3) )\1:)\2:)\0
V(90+201+93+94+95) )\1:)\2:1
Xo(A,v) w(A) xv (irreducible) AT #£ AFL
Xa(A,v) = x3(A,v) A=XoNgp
X5 (wa, V) + x6(wa, V) A=wproNg_1
V(—Tl—)\oTQ+T2+T3) A=A
V(—90—93+94—|—95) A=1
X3(A,N) A xm(A) (irreducible) {Aq?f A, 2 7& Land
A7 7& AO ifA = )\0
x7(A) + xs(A) A=1
x2(A,v) — x1(A\ V) A=voNg
T4(N) + 15(X) A= )\O,A:)\/ON(q_'_l)/Q
V(—90+93—94+95) )\Zl,AzyoNq+1
X4(0) (irreducible) O £
T5()\/) - T4()\/) O=XNo N(q2+1)/2
V(90—91+02+95) @:VONqLH
X5(A,w) (irreducible) {Aq 7& A, w#1and
Aoig_1 # w,w?
xe(w,v) — x5(w, v) A=voNgq,w?#1
xs(A) — x7(A) w=lorw=~Aoi;_
V(Tl_TQ_)\OT2+T3) A:I/Oqul,w:(ﬂo
V(00—292—93—94+95) A:UONqul,w:l
x1(A,v) A X v1gspe,q  (irreducible) A#1
V(e(] + 91 + 94) A=1
X2(A, V) A X VStasp(2,q)  (irreducible) A#1
V(01+93+05) )\:].
x3(\, v) AMar,q @ v (irreducible) A2 £1
V(Tl + )\0’7’2) A= AO
V(00+91+93) A=1
Xa(A, V) AStgr(,q ¥ v (irreducible) A2 #£1
V(T2 + 7'3) A= )\0
V(01+94+95) A=1
X5 (w, V) (irreducible) w2 £1
v(tg —11) w = wy
1/(—00 + 92 + 94) w = 1
X6 (w, V) (irreducible) wr#1
V(T3 — AoT2) w=wp
V(702 — 93 + 05) w=1
x7(A) (irreducible) U |
/\(790+92 +93) A= >\0Nq+1
xs(A) (irreducible) AL £1
/\(*92 704+95) A= )\ONq_H

Table A.2.: Decomposition of virtual representations p of GSp(4, ¢) for odd gq.
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p € Irr(G) wp dim pldiag(1,1%.%)}
3430246044 vt =121 A, A A
Xl(/\17>\27V) )\1)\2V2 ¢+ q2+ q+ v 3 ALy A25 ALAN2
¢ +3¢%+59+3 else
XAr)  (Noig)? @+ +2-2 v =1 Al
7 ! CH+g?+qg—1 else
X3(A,I/) (Aoiq+1)y q +q2+q+1
X4(@) @Oiqz_H q3+q2_q_1
X5 (A, w) Aoigyy @ - +q-1
2 2 v l=2\1
x1(\, v) A2 q°+3q + v ,
@ +29+1 else
3 2 2 4 3 -1 :A 1
XQ()\vl/) )\l/2 q + q2+ q+ v )
@ +2¢%+3¢+2 else
E+3¢+3 vi=)
x3(A ) At +20+3 vi=X1
> +29+2 else
B+2¢3+49+2 v =2
xav) A2 P +2¢° +4g+1 v =21
@ 4+2¢2+3¢g+1 else
2
2 ¢¢+qg—1 v=1
) Y ¢ v#£1
2 B+2—2 v=1
XG(W7V) v 3
¢ +q—-1 v#1
X7(A’l/) AOZ'q_;'_l q2_|_1
X8 (Aa V) A [¢] iq+1 q‘3 —+ q
2 A=1A
’7'1()\) )\2 Q+ s N0
g+1 AN#1 XN
P+2+1 A=1
T2(\) A2 PHg+2 A=A
CHqg+l A#£1 X
73()) A2 P+ +3¢ A=1X
’ P+ +2¢ N£1 )\
a(N) Aoy q+1
75(\) N oig lg+1)
Oo(X) N2 1 a=1
0 AN£1
1,2
5 5 4) A=1
01(\) A2 f(q2+ q+4)
H?+3¢+2) A#£1
62(\) A2 3a(g—1)
03()\) A2 L +q+4) r=1
WP +q+2) A#£1
l( 2 _
¢ +3q) r=1
04(N) 22 % , .
5(a° +q) #1
05(\) A2 . @+ +20) A=1
@+ +q A#1

Table A.3.: The irreducible representations p of GSp(4, ¢) for odd q.
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p € Irr(G) r% (p) € Rep((Gin(9))?) 1%, (p) € Rep(G(q) x GL(2,9)) 1% (p) € Rep(GL(2,9) X Gn(q))
N‘HAVT\/ML\V \:\/Tv,wuﬁn_nx:ywuvﬁ“& mA\/Tv,quvnTmA\/wvvﬁutv QAVT\/mL\vnTQAvL“v,mIHL\V
Xo(A,v) 0 0 m(A) Ry +7(A™1) &Z_ﬁwt
X3(A,v) 0 AR m(A) + A" LR AT(A) 0
x1(A, v) IRAKy +1IRKA TR ARv1I+ A IR AL C(\ 1)
FARIRK Yy + AT KIR AW +1X (A x v)
x2(A\, v) IRAKy +1IRKA TR AR v St + A7 XA St C(\ L)
FARIR Yy + AT KIK WY +1X (A xv)

x3(A, v) AN A, V] B(M\ A\ v) ARy + A T1IR Ny

+(AXx A TH R
Xa(A, v) AN A V] B(M\ A\ v) AStK v+ AL St XK A2y

+(AX A TH R
Xs5(w, V) 0 0 m(wo Ny—q) v
X6(w, V) 0 0 m(wo Ny—q) Xv
x7(A,v) 0 1X7(A) 0
xs(A,v) 0 1X7(A) 0
ﬂHATv yo&&ogtn_n\/o@yo@yot yo&A\/OXN\V yoH@TnTvéHgvfoN\
ﬁwT\v A XA Ky + A X Ag X Agr VO&AV,OXN\V AStR Y4+ A1 K A\gv
ﬂwﬁtv A XA X v+ Ag X Ag X A\gr vfogﬂx/oXTv Ao St X v 4+ Mg St X Agv
T4(N) 0 Ao @3.@«023+:\wv 0
ﬂmA\/\v 0 yogﬁ.mv&ozﬁaﬁ:v\& 0
Oo(v) IXIXy IXvl 1Xv
01(v) IIXy +1XK1IXY IXv1+1XvSt 1Xv 4 StXv
05(v) IXIXY 1XvSt 1Xv
04(v) 1K1Ky IKv1 St X v
05(v) IXIXy 1XvSt St X v

Table A.4.: Parabolic restriction for non-cuspidal irreducible representations p of GSp(4, ¢) with odd g.
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A.4. GSp(4,q) for even ¢

For even ¢ the Frobenius gives rise to an isomorphism GSp(4,q) = Fx x Sp(4, q), so
it is sufficient to know the irreducible representations of Sp(4, ¢). The irreducible
representations of Sp(4,¢) with even ¢ have been classified by Enomoto [Eno72|.
Enomoto’s notation is different from Shinoda’s. Fix a generator & of the Pontrjagin
dual of F ;. Denote by 4 its restriction to Iy, by 6 its restriction to F’; and by 7 its
restriction to IF;[g 4 1]. Enomoto defines certain virtual characters of Sp(4, ¢), which
depend on integers (k,[). For example, the character xi(k,!) for k,l € Z/(q — 1)Z
corresponds to the principal series representation 4% x 4! x 1. These virtual characters
are pairwise inequivalent except for the following identities:

1. the eight characters generated by the equivalence x(k,1) = xs(l, k) = xs(—1, k)
are equal for s € {1,4},

2. xs(k) = xs(=k) = xs(qk) = xs(—qk) for s = 2,5,
3. X3(k7 l) = X3<k7 _l) = X3<_k7 l) = X3<_k7 _l)>
4. and (k) = xs(—k) for s =6,7,8,9,10,11,12,13.

The decomposition into irreducible components is given in Table A.5. The properties
of the irreducible representations are given in Table A.6. The parabolic restriction is
described in Table A.7. Again, for typesetting reasons, we write

AR AR = A RAR A RATR 4T R TR Ry
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P Parameters Name Decomposition for
x1(k, 1) k1 €Z/ -1z A x4 x1 (irreducible) 0 # 1 # +k # 0
Xe(k) + x10(k) 1 =Ek
x7(k) +xu(k) =0
0o +201 +02+03+0, l=k=0
x2(1) lez/ -1z w(6) x1 (irreducible) (¢ £+ 1)l #0
xs(k) +x12(k) 1=(¢— 1Dk
x10(k) = xe(k) 1= (q+1)k
—0g—02+035+0, 1=0
xs(k,l) k€Z/g-nz  AFx7i) (irreducible) &k #0,1#0
l € Z/(g+1)z xo(l) +x13(1) k=0
xu(k) —x7(k) =0
—bp+60,—035+60, k=0,1=0
xa(k, 1) k,l€Z/(g+1)z (irreducible) 0#k # £l #0
xi2(k) — xs(k) =%k
x13(k) — xo(k) =0
Op—0s—603+604—205 I=k=0
xs(k)  ke€Z/@+1)z (irreducible) &k # 0
Op—01+0,+65 k=0
X6 (k) ke€Z/q-yz A lar(z,g ¥ 1 (irreducible) & #0
Op+61+6 k=0
x7(k) keZ/g-1z AFx 1gp(2,9) (irreducible) &k #0
Op+01+635 k=0
xs (k) k € Z/(g+1)z (irreducible) &k #0
—0p+0s5+05 k=0
Xo(k) k € Z/(g+1)Z (irreducible) & #0
—Og+62+05 k=0
xw(k) k€Zq-1z 4 Stareg ¥ 1 (irreducible) &k #0
01+63+64 k=0
x11(k)  k€Zfg-1z  AFx Stgp(2,9) (irreducible) k #0
01+60,+604, k=0
xi12(k) k€ Z/gr1)z (irreducible) &k # 0
—by+04,—05 k=0
x13(k) k€ Z/g+1)z (irreducible) &k #0
—O3+604—605 k=0
6o 1gp(4,9) (irreducible)
61 (irreducible)
0o (irreducible)
05 (irreducible)
0,4 StSp(4,q) (irreducible)
05 (irreducible)

Table A.5.: Decomposition of Enomoto’s virtual characters p of Sp(4, q) for even q.
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pP= P|Sp(4,q) MNw, ¢ g dimp{diag(l,L*,*)}

3 2
R q° +3¢°+6q+4 r==x(k+1), £k -1)
kD) RAT . ’
xi(k, 1) K5 {q3+3q2+5q+3 r#+(k+1),£(k-1)
3 2
. q°+q°+2q—2 r ==l mod (¢ —1)
) XA"
Xz2(l) M5 ° {q3+q2+q1 r# £l mod (¢ — 1)
xs(k, 1) A" P+ +q+1
xa(k, 1) A" - +q-1
x5 (k) A" P+ —q-1
¢ +3¢+3 r=0
xa(k) 7" ¢ +24+3 r= L2k
q2+2q+2 T#i?k,o
2
A q°+3q+2 r ==tk
k)X A"
x7(k) B {q2+2q+1 r# +k
2
. ¢ +qg—1 r=0
xs(k) X5 {q2 r#0
Xo(k) KA" ¢ +1
¢ +2¢° +4q +2 r=0
X10(k) B 4" ¢*+2¢° +4q+1 r=£2k
P2 +3g+1 r # +2k,0
3 2
. q° +2¢° +4q9+3 r =4k
k)X A"
Xll() v {q3+2q2+3q+2 T7é:|:k
3
A ¢ +2q—2 r=20
k)X A"
xiz2(k) X4 {q3+q—1 r#0
Xlg(k) |Z| ’A}’T q3 + q
1 r=20
J,T
0o X% {0 r#£0
17,2
1 5 4 =
6, 4" %(q2+ . T
3(@® +3q+2) r#0
1,2 4 —
6,8 4" %(q2+q+) r=0
3@ +q+2) r#0
;(2 _
R q* + 3q) r=20
03 K 4" :
{é(q2+q) r#0
3 2
. q° +q° + 2q r=20
0, XA" .
4 Xy {q3+q2+q r#0
05X A" 3> —q)

Table A.6.: The irreducible representations p of GSp(4, q) for even ¢q. The conditions

for irreducibility of plgp(,q) are tacitly imposed on the parameters. The

central character of p is w, = 4" for some r € Z/(q — 1)Z.
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Sp(4, Sp(4, Sp(4,

p P00 (0) € Rep(Ff x FY) 1D (o) € Rep(F) x Sp(2,0)) T, (p) € Rep(GL(2.q))
0 1K1 1K 15,0 lar(2.g)
01 IX14+1X1 1X mamwﬁmbv +1X 1g,00 p(2,q) mﬁﬁbﬁbv + 1gLi2,g)
0o 1X1 11X Stgyo p(2,q HOEPS
03 1X1 1X H_.mvn Q) maﬁbﬁw,@v
%» 1X1 1K wﬁmmﬁwhv mﬁﬁhﬁwbv
xi(k, 1) AR AN + AT AR AR (2 1) +47FR (5 x1) (7" x4 + (3% x 579
AR (7 2 1) + 47 R (55 % 1) +ATF XA+ (BFx AT
Y2 (1) 0 0 (6 + 767
x3(k,1) 0 AR + 5 R (i) 0
x6(k) ATk AR AR (A 1) +47FR(F x1) AFL4+4F14+(F x47h)
x7(k)  AFRI+AFRI+ IR F1R4F AFR1+4FR1I+1K (55 x1) (AF x 1) 4+ (7% x 1)
xs (k) 0 0 m(fla=k)
X9 (1) 0 1X7(7') 0
(k) A'[5R, 4] YRR (A% % 1) +47F R (% % 1) Ak St +47F St + (5% x 47F)

X10 54 AT (5 ¥ ¥ v XA
xi1(k) AFRI+AFPRIFIRA IR AFRSt+4PR St+ 1K (5% x 1) (3 x 1)+ (37* x 1)
x12(k) 0 0 m(fla=Dk)
x13(1) 0 1X 3.30 0

Table A.7.: Parabolic restriction for non-cuspidal irreducible representations p of G = Sp(4, q) with even q.
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B. Vector-valued Siegel modular forms

For the convenience of the reader, we give a brief survey on the correspondence
between Siegel modular forms and automorphic representations (without proofs). A
good reference is the book of Gelbart [Gel75| and also the survey article of Schmidt
and Asgari [ASO1l]. We then review the results of Chapter 5 for classical Siegel
modular forms.

Classical Siegel modular forms. The real symplectic group of genus g > 1

Sp(29,R) = {z € GL(29,C) |xJz' = J} for J= (—I Ig)
g

acts on the Siegel upper half space
H, = {r = " € Mat(g x ¢,C) | Im(7) > 0}

via modular substitutions
-1 a b
z-7=(ar+0b)(ct +d)77, e € Sp(2¢, R).

The automorphic factor
7 :Sp(2¢9,R) x H, — GL(g,C), j(x,7) = (et + d).
satisfies the cocycle condition j(xixe, 7) = j(x1,227)j(x2, T) for x1, 29 € Sp(2g,R).

Fix a holomorphic finite-dimensional irreducible complex representation (p, V,,) of
GL(g,C) and a hermitian scalar product (-,-) , on V, with

(p(x)v,w), = (v,p@")w) ~ Vz € GL(g,C),

so that p|y(g) is unitary. The symplectic group Sp(2g¢, R) acts from the right on the
space of holomorphic functions f : H, — V, via the Petersson operator

(f o 2)(7) = pli(z, 7)) f(z - 7).

A wector-valued Siegel modular form of weight p with congruence subgroup I' C
Sp(2¢,Z) is a holomorphic function f : H, — V, that is invariant under the right
action of I' and holomorphic at the cusps.
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By the Kocher principle, the second condition is redundant for ¢ > 1. The Siegel
modular forms of type p and level I' form a vector space S,(I").

The imaginary part Im(7) of 7 € H,, transforms via

Jj(z, T)t “Im(z-7)-j(x,7) =Im(r) for z € Sp(2n,R), (B.1)
so 7+ {p(Im(7)) f1(7), f2(7)),, is invariant under I" for Siegel modular forms fi, f> €

S,(T"). The Petersson scalar product for square-integrable! f, fo is the hermitian

product
1

B = a2 T

/F o)), 7)) (B.2)

where dr = detTm(7) "' - [],, dz;; dy;; is a fixed Sp(2g, Z)-invariant measure.

Real automorphic forms. The stabilizer of il, = diag(s,...,i) € H, is the
compact group

Koo = {(%%) [aa’ +bb" = Iy, ab’ = ba'} € Sp(2g,R),

which is isomorphic to the unitary group U(g) C GL(g,C) via x — j(z,il,). For a
convenient normalization of the Haar measure this gives rise to a homeomorphism

Sp(29,R)/ K = Hy, = x- i, (B.3)

For a Siegel modular form f € S,(I"), the smooth function

¢y Sp(2n,R) =V, op(x) = (f |, 2)(ily), (B.4)
satisfies
p(i(k,ily) " by (a) = ¢5(yak), k€ Ku,vel. (B.5)
Since p(Im(il,)) = id, (B.1) implies
(05,(x), 01,(x)), = (p(Im(7)) f1(7), fo(7)) , , fi, 2 € Sp(T)

for x € Sp(2¢,R) and 7 = « - il,. Hence, up to normalization of the Haar measure,
the Petersson scalar product for square-integrable fi, fo equals

1
(Df1: Opa) = Sp(29.2) : T /r\sp(Qg,R)/Koo (D5 (2), bp, () da. (B.6)

This defines an isometric embedding f +— ¢ from square-integrable vector-valued
Siegel modular forms to vector-valued K -finite automorphic forms.

By definition, a Siegel modular form f is square-integrable if and only if (f, f) exists.
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Strong approximation. The rational idele A* = R* x A7 admit a decomposition
A =Q*(Rs x Z*), where Q* is diagonally embedded and

Z=VmZ/nZ = |[Z, C Ag
n p
is the Priifer ring. Strong approximation is the generalization of this result to
reductive groups.
Denote by GSp* (29, R) C GSp(2g, R) the connected subgroup with similitude char-
acter in R-o. Fix a compact open subgroup K C GSp(2g, Agy). If the similitude
character sim : K — Z* is surjective, every g € GSp(2¢g, A) admits a decomposition

90(gsck) With gg € GSp(29,Q), goo € GSpT(2¢,R) and k € K. In other words, there
is a decomposition

GSp(2g, A) = GSp(29,Q)(GSp* (29, R) x K) (B.7)
for the diagonally embedded GSp(2¢g, Q). We obtain a homeomorphism
'\ Sp(29,R) = GSp(2g9, Q)\ GSp(2g, A)/(R* x K) (B.8)

for I' = (GSp™(2¢, R)K)NSp(2n, Q). For example, the modified principal congruence
subgroup

K'(N) = {z € GSp(29,Z)| 3N € Z : = = diag(I,, \],) mod N}

satisfies sim(K'(N)) = 7% and T = K'(N) N Sp(2g,Q) is the principal congruence
subgroup of level N.

Adelic automorphic forms. By strong approximation, a real automorphic form
¢ : I'\'Sp(2g,R) — V, gives rise to a function ¢, : GSp(2g,Q)\ GSp(2g,A) — V.

This defines an isometric Hecke-equivariant embedding from square-integrable Siegel
modular forms to the subspace of V,-valued adelic automorphic forms ¢, with

L. (ﬁA(’}/SL’k) = ¢A(‘I) for Ve Gsp(zna(@)v k€ K7
2. Oa(zkso) = p(j(koo,ily))pa(x) for ks € Ko,
3. ¢oa(zx) = pp(x) for z € Z(A) the center of GSp(2g),

4. ¢, is square-integrable over GSp(2¢g,Q)\ GSp(2g,4A)/Z(R) K .
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Automorphic representations. Fix an arbitrary non-zero linear projection V, —
C. For every V,-valued automorphic form ¢,, its scalar-valued image belongs to
the space of automorphic forms L?(GSp(2g,Q)\ GSp(2g,A), 1) with trivial central
character. Every automorphic representation 7 occuring in this space decomposes as
a tensor product ™ & m., ® g, of representations of GSp(2g, R) and GSp(2g, Agy).
This decouples the congruence condition from the weight condition: The weight
is encoded by the Langlands-parameter of the discrete series representation m.
Invariance under a compact open subgroup K of GSp(2g, Ag,) is a statement about
non-archimedean factor mg,.

For ¢ = 1 the theory of newforms provides a one-to-one correspondence between
normalized cuspidal elliptic newforms, eigenforms under the Hecke algebra, and the
automorphic representations they generate. For ¢ = 2 an analogous theory has been
developed by Roberts and Schmidt [RS07] for locally generic representations, but
the general case is still open.

We now translate the results about local parahoric restrictions into the language of
Siegel modular forms.

On the Saito-Kurokawa lift.

Corollary B.1. Fiz an elliptic cuspidal newform f of level I'y[N] C SL(2,7Z) for
squarefree N and weight 2k — 2, k > 3, with Atkin-Lehner eigenvalues €, atp | N,
which is an eigenform of the Hecke algebra. For any divisor M of N with Mobius
w-function

M(M) _ (_1)#{p7’imes dividing M} __ (_1)k’ HEIN (Bg)
pIN

there is a scalar-valued genus two Siegel cuspform F with weight det®, invariant
under the principle congruence subgroup T'[N] C Sp(4,Z), whose spinor L-function is

(1 _ p_s+k_1)(1 _ p—s+k—2)
(1 + Eppferka)

L(F,s) = ((s —k+1)¢(s — k+2)L(f,9) ||

p|M

)

where ¢ denotes the Riemann zeta function.

Proof. Let S = {p| M} U{oo} and let o be the cuspidal automorphic representation
of GL(2,A) generated by f. The Saito-Kurokawa lift 7 = 7(0, 0g) is automorphic by
(5.12) and

€(0,1/2) = e(f, k—1) = (—=1)*! Hep.

pIN
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It is cuspidal because S is not empty. Every local factor m,, v | N, has non-zero
hyperspecial parahoric restriction and one can show show that 7y admits non-zero
invariants under the modified principal congruence subgroup

K'(N) =[] {=. € GSp(4,Z,) | z, = diag(1, 1, ,%) mod N}.

V<0

Strong approximation defines an automorphic form on Sp(4, R), left-invariant under
Sp(4,Q) N K'(N) = I'[N]. This gives rise to a Siegel cuspform F' as above. The
spinor L-function is given at every non-archimedean place by (5.13). O

Schmidt [Sch07, Thm. 5.2.ii)| has already shown this with the restriction to the case
of even k and where M is the product over the primes with Atkin-Lehner eigenvalue
€p = —1.

On the Yoshida lift.

Corollary B.2. Fix cuspidal elliptic newforms fi, fa, eigenforms under the Hecke-
algebra, with weights r1 > ro > 2 such that r1 + 19 =0 mod 2 and with level T'o(N;),
1= 1,2, such that Ny and Ny are squarefree, but not coprime. Then there is a genus
two Siegel cuspform F with weight

p = Sym™ 2(std) @ det("1772)/2+2,

invariant under the principal congruence group T*(N) for the least common multiple
N =lem(Ny, No) and with spinor L-function

L(F,s) = L(f1, s)L(f2,5 + 5(ra — r1)). (B.10)

Proof. Let o; be the cuspidal automorphic representation of GL(2, A) generated by
fi. For every non-archimedean place v dividing /V;, the local factor o;, is a twist of
the Steinberg representation by an unramified character. Fix a prime py dividing
N; and Ny, then o;,, are both in the discrete series. By Thm. 5.6 there is a weak
endoscopic lift 7, attached to o, that is locally generic at every place except py and oo.
The archimedean factor mo, = I1_(04,) is the non-generic holomorphic discrete series
representations. By strong approximation o; , is Iwahori-spherical for every v dividing
N;, so Thm. 4.7 implies that 7, # 0 admits non-zero invariants under the modified
principal congruence subgroup of level p for every prime p dividing N; or Ny. Pick
a non-zero adelic automorphic form ¢ in 7 invariant under the modified principal
congruence K'(N) subgroup of level N = lem(Ny, N3) and whose archimedean
component corresponds to a lowest weight vector. By strong approximation ¢ gives a
Siegel modular form F' of weight p invariant under the principal congruence subgroup

I2[N].

The equation of L-factors holds at every non-archimedean place by Prop. 5.7. [
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The result on the Yoshida lift has already been shown by Schmidt and Saha [SS13,
Prop. 3.1], but under the restriction that the Atkin-Lehner eigenvalues of fi, fa
coincide at every common divisor of Ny and Ns.

The case N1 = Ny = 2 proves the first part of Conjecture 6.1 of Bergstrom, Faber
and van der Geer [BFvdGO8|. By similar arguments using Lemma 5.21 one can also
prove the second part.
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