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1 Introduction

It has been known since the 1950s that there is a close relationship between modular
forms and the cohomology of local systems on moduli spaces of elliptic curves. The
theorem of Eichler and Shimura expresses this relationship by exhibiting the vector
space Sk+2 of cusp forms of even weight k + 2 on SL(2, Z) as the (k + 1, 0)-part of
the Hodge decomposition of the first cohomology group of the local system Vk on
the moduli space A1 of elliptic curves. Here, Vk is the k-th symmetric power of the
standard local system V := R1π∗Q of rank 2, where π : E → A1 is the universal
elliptic curve.

Deligne strengthened the Eichler–Shimura theorem by proving that, for a prime p,
the trace of the Hecke operator T (p) on Sk+2 can be expressed in terms of the trace
of the Frobenius map on the étale cohomology of the �-adic counterpart of Vk on the
moduli A1 ⊗ Fp of elliptic curves in characteristic p. Using the Euler characteristic
ec(A1, Vk) = ∑

(−1)i [Hi
c (A1, Vk)], we can formulate this concisely (in a suitable

Grothendieck group) as

ec(A1, Vk) = −S[k + 2] − 1,

where S[k + 2] is the motive associated (by Scholl) to Sk+2 and where the term −1 is
the contribution coming from the Eisenstein series.

The moduli space Ag of principally polarized abelian varieties carries the local
system V := R1π∗Q of rank 2g, where π : Xg → Ag is the universal principally
polarized abelian variety. The local system V comes with a symplectic form, com-
patible with the Weil pairing on the universal abelian variety. For every irreducible
representation of the symplectic group GSp2g , described by its highest weight λ, one
has a local system Vλ, in such a way that V corresponds to the dual of the standard
representation of GSp2g . Faltings and Chai have extended the work of Eichler and
Shimura to a relationship between the space Sn(λ) of Siegel modular cusp forms of
degree g and weight n(λ), and the cohomology of the local system Vλ on Ag . Note that
the modular forms that appear are in general vector-valued and that the scalar-valued
ones only occur for the (most) singular highest weights. The relationship leads us to
believe that there should be a motivic equality of the form

ec(Ag, Vλ) =
∑

(−1)i [Hi
c (Ag, Vλ)] = (−1)g(g+1)/2 S[n(λ)] + eg,extra(λ),

generalizing the one above for genus 1. The (conjectural) element S[n(λ)] of the
Grothendieck group of motives should be associated to the space Sn(λ) in a manner
similar to the case g = 1. As an element of the Grothendieck group of �-adic Galois
representations, this means that the trace of a Frobenius element Fp on S[n(λ)] should
be equal to the trace of the Hecke operator T (p) on Sn(λ). Our ambition is to make
the equality above explicit. To do this, we need a method to find cohomological
information.

The moduli space Ag is defined over the integers. According to an idea of Weil,
one can obtain information on the cohomology of a variety defined over the integers
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by counting its numbers of points over finite fields. Recall that a point of Ag over Fq

corresponds to a collection of isomorphism classes of principally polarized abelian
varieties over Fq that form one isomorphism class over Fq ; such an isomorphism
class [A] over Fq is counted with a factor 1/|AutFq (A)|. By counting abelian vari-
eties over finite fields, one thus gets cohomological information about Ag , and with
an explicit formula as above, one would also get information about Siegel modular
forms.

In fact, if one has a list of all isomorphism classes of principally polarized abelian
varieties of dimension g over a fixed ground field Fq together with the orders of
their automorphism groups and the characteristic polynomials of Frobenius acting on
their first cohomology, then one can determine the trace of Frobenius (for that prime
power q) on the Euler characteristic of the �-adic version of Vλ for all local systems
Vλ on Ag .

For g = 2, the moduli space A2 coincides with the moduli space Mct
2 of curves

of genus 2 of compact type and this makes the above counting feasible. Some years
ago, the last two authors carried out the counting for finite fields of small cardinal-
ity. Subsequently, they tried to interpret the obtained traces of Frobenius on the Euler
characteristic of Vλ on A2 ⊗Fq in a motivic way and arrived at a precise conjecture for
e2,extra(λ). That is, a precise conjecture on the relation between the trace of the Hecke
operator T (p) on a space of Siegel cusp forms of degree 2 and the trace of Frobenius on
the �-adic étale cohomology of the corresponding local system on A2 ⊗ Fp, see [21].
This is more difficult than in the case of genus 1, due to the more complicated con-
tribution from the boundary of the moduli space and to the presence of endoscopy.
The conjecture for genus 2 has been proved for regular local systems, but is still open
for the non-regular case, see Sect. 6. The conjecture and our calculations allow us to
compute the trace of the Hecke operator T (p) on all spaces of Siegel cusp forms of
degree 2, for all primes p ≤ 37. In [5], all three authors extended this work to degree 2
modular forms of level 2. Inspired by the results in genus 2, Harder formulated in [32]
a conjecture on a congruence between genus 2 and genus 1 modular forms determined
by critical values of L-functions.

Our aim in this article is to generalize the work above to genus 3, that is, to give an
explicit (conjectural) formula for the term e3,extra(λ) in terms of Euler characteristics
of local systems for genus 1 and 2.

The conjecture is based on counts of points over finite fields, using the close rela-
tionship between A3 and the moduli space M3 of curves of genus 3, and a formula for
the rank 1 part of the Eisenstein cohomology. Both in genus 2 and genus 3, the motivic
interpretation of the traces of Frobenius is made easier by the experimental fact that
there are no Siegel cusp forms of low weight in level 1. Together, the conjecture and
the calculations open a window on Siegel modular forms of degree 3. We sketch some
of the (heuristic) results.

The numerical Euler characteristic

Ec(A3, Vλ) :=
∑

(−1)i dim Hi
c (A3, Vλ)

has been calculated for the local systems Vλ and is known for the correction term
e3,extra(λ). This allows us to predict the dimension of the space of Siegel modular
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cusp forms of any given weight. So far, these dimensions are only known for scalar-
valued Siegel modular forms by work of Tsuyumine, and our results agree with this.
For g = 2, the dimensions of most spaces of Siegel cusp forms were known earlier,
so the dimension predictions are a new feature in genus 3.

Assuming the conjecture and using our counts, we can calculate the trace
of T (p) on any space of Siegel modular forms Sn(λ) of degree 3 for p ≤
17. Moreover, if dim Sn(λ) = 1, we can compute the local spinor L-factor at
p = 2.

We make a precise conjecture on lifts from genus 1 to genus 3. In particular, for
every triple ( f, g, h) of elliptic cusp forms that are Hecke eigenforms of weights
b + 3, a + c + 5, and a − c + 3, where a ≥ b ≥ c ≥ 0, there should be a Siegel
modular cusp form F of weight (a −b, b−c, c+4) that is an eigenform for the Hecke
algebra with spinor L-function L( f ⊗ g, s)L( f ⊗ h, s − c − 1).

We find strong evidence for the existence of Siegel modular forms of degree 3
(and level 1) that are lifts from G2, as predicted by Gross and Savin. Finally, we are
able to formulate conjectures of Harder type on congruences between Siegel modular
forms of degree 1 and degree 3. All these heuristic findings provide strong consistency
checks for our main conjecture.

We hope that our results may help to make (vector-valued) Siegel modular forms
of degree 3 as concrete as elliptic modular forms.

Our methods apply to some extent also to local systems on the moduli space
M3 and Teichmüller modular forms; for more on this, we refer to the forthcoming
article [6].

After reviewing the case of genus 1, we introduce Siegel modular forms and give
a short summary of the results of Faltings and Chai that we shall use. We then dis-
cuss the hypothetical motive attached to the space of cusp forms of a given weight.
In Sect. 6, we review and reformulate our results for genus 2 in a form that is close
to our generalization for genus 3. We present our main conjectures in Sect. 7. The
method of counting is explained in Sect. 8. We then discuss the evidence for Siegel
modular forms of type G2. In the final section, we present our Harder-type con-
jectures on congruences between Siegel modular forms of degree 3 and degree 2
and 1.

This work may be viewed as belonging to the Langlands program in that we study the
connection between automorphic forms on GSp2g and Galois representations appear-
ing in the cohomology of local systems on Ag . Instead of using the Lefschetz trace
formula, as we do here, one can find cohomological information of this kind via the
Arthur–Selberg trace formula. The study of the latter trace formula is a vast field
of research; the reference [2] could serve as an introduction. The group GSp2g has
been investigated by several people, see for instance the references [39,40,44,56].
Clearly, the Arthur–Selberg trace formula has been used successfully in these and
other references; to our knowledge, however, this method does not produce formu-
las as explicit as the ones in this article. We hope that researchers in automorphic
forms will be interested in our results, even though we use a rather different lan-
guage. See [10] for some very interesting recent developments closely related to
our work.
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2 Genus one

We start by reviewing the theorem in genus 1 by Eichler, Shimura, and Deligne that we
wish to generalize to higher genera. This theorem describes the cohomology of certain
local systems on the moduli space of elliptic curves in terms of elliptic modular forms.

Let π : X1 → A1 be the universal object over the moduli space of elliptic curves.
These spaces are smooth Deligne–Mumford stacks over Z.

First, we consider the analytic picture. Define a local system V := R1π∗C on
A1 ⊗ C. For any a ≥ 0, we put Va := Syma(V). We wish to understand the com-
pactly supported Betti cohomology groups Hi

c (A1 ⊗ C, Va) with their mixed Hodge
structures. Define the inner cohomology group Hi

! (A1 ⊗ C, Va) as the image of the
natural map

Hi
c (A1 ⊗ C, Va) → Hi (A1 ⊗ C, Va),

and the Eisenstein cohomology group Hi
Eis(A1 ⊗ C, Va) as the kernel of the same

map. Since the element −Id of SL(2, Z) acts as −1 on V, all these cohomology groups
vanish if a is odd. We therefore assume from now on that a is even.

The group SL(2, Z) acts on the complex upper half space H1 by z �→ α(z) :=
(az + b)(cz + d)−1 for any z ∈ H1 and α = (a, b ; c, d) ∈ SL(2, Z). We note that
A1 ⊗ C ∼= SL(2, Z)\H1 as analytic spaces. We define an elliptic modular form of
weight k as a holomorphic map f : H1 → C, such that f is also holomorphic at
the point in infinity and such that f (α(z)) = (cz + d)k f (z) for all z ∈ H1 and
α ∈ SL(2, Z). We call an elliptic modular form a cusp form if it vanishes at the
point in infinity. Let Sk be the vector space of elliptic cusp forms of weight k and put
sk := dimC Sk . The Hecke algebra acts on Sk . It is generated by operators T (p) and
T1(p2) for each prime p. These operators are simultaneously diagonalizable and the
eigenvectors will be called eigenforms. The eigenvalue for T (p) of an eigenform f
will be denoted by λp( f ).

Example 2.1 The best known cusp form is probably �. It has weight 12 and can be
defined by

�(q) := q
∞∏

n=1

(1 − qn)24 =
∞∑

n=1

τ(n)qn,

where q := e2π i z and τ is the Ramanujan tau function. Since s12 = 1,� is an
eigenform and λp(�) = τ(p) for every prime p.

Similarly to the above, we define a bundle E := π∗�X1/A1 on A1 ⊗ C and for any
a ≥ 0 we put Ea := Syma(E). The moduli space A1 can be compactified by adding
the point at infinity, giving A′

1 := A1 ∪ {∞}. The line bundles Ea can be extended to
A′

1. We have the identification

H0(A′
1 ⊗ C, Ek(−∞)

) ∼= Sk .
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The Eichler–Shimura theorem (see [13, Théorème 2.10]) then tells us that

Sa+2 ⊕ Sa+2 ∼= H1
! (A1 ⊗ C, Va),

where Sa+2 has Hodge type (a + 1, 0). If a > 0, then H1
Eis(A1 ⊗ C, Va) ∼= C with

Hodge type (0, 0), whereas H0
c (A1 ⊗ C, Va) and H2

c (A1 ⊗ C, Va) vanish.
In order to connect the arithmetic properties of elliptic modular forms to these

cohomology groups, we turn to �-adic étale cohomology and we redo our definitions
of the local systems by putting V := R1π∗Q� and Va := Syma(V), which are �-adic
local systems over A1. For each prime p, we define a geometric Hecke operator, also
denoted by T (p), by using the correspondence in characteristic p coming from the
two natural projections to A1 from the moduli space of cyclic p-isogenies between
elliptic curves. The operators T (p) act on Hi

c (A1 ⊗ Fp, Va) and Hi (A1 ⊗ Fp, Va).
The geometric action of T (p) on H1

! (A1 ⊗Fp, Va) is then equal to the action of T (p)

on Sa+2 ⊕ Sa+2, see [13, Prop. 3.19].
On the other hand, the cohomology groups Hi

c (A1 ⊗ K , Va) come with an
action of Gal(K/K ). For any prime p, there is a natural surjection Gal(Qp/Qp) →
Gal(Fp/Fp), and if p �= �, there is an isomorphism

Hi
c (A1 ⊗ Fp, Va) → Hi

c (A1 ⊗ Qp, Va)

of Gal(Qp/Qp)-representations. This isomorphism also holds for Eisenstein and inner
cohomology. We define the (geometric) Frobenius map Fq ∈ Gal(Fq/Fq) to be the
inverse of x �→ xq . The two actions are connected in the following way:

Tr
(
Fp, H1

! (A1 ⊗ Fp, Va)
) = Tr(T (p), Sa+2),

see [13, Prop. 4.8]. We also note that for a > 0,

Tr
(
Fp, H1

Eis(A1 ⊗ Fp, Va)
) = 1

for all primes p �= �.
We can choose an injection Gal(Qp/Qp) → Gal(Q/Q) and talk about Frobe-

nius elements in Gal(Q/Q) as elements of Gal(Qp/Qp) that are mapped to Fp ∈
Gal(Fp/Fp). We will, for each prime p, choose such a Frobenius element and it will
by abuse of notation also be denoted by Fp.

Remark 2.2 The traces of Fp for all (unramified) primes p determine an �-adic
Gal(Q/Q)-representation up to semi-simplification, see [12, Proposition 2.6].

For any p �= �, the two Gal(Qp/Qp)-representations Hi
c (A1 ⊗ Qp, Va) and

Hi
c (A1 ⊗Q, Va) are isomorphic, and the same holds for inner cohomology. It follows

that

Tr
(
Fp, H1

! (A1 ⊗ Q, Va)
) = Tr(T (p), Sa+2),
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and this then determines the Gal(Q/Q)-representation H1
! (A1 ⊗ Q, Va) up to semi-

simplification.
For a ≥ 2, there is a construction by Scholl [47, Theorem 1.2.4] of a corresponding

Chow motive S[a + 2]. This motive is defined over Q, it has rank 2 sa+2, its Betti
realization has a pure Hodge structure with types (a + 1, 0) and (0, a + 1), and its
�-adic realization has the property that

Tr(Fp, S[a + 2]) = Tr(T (p), Sa+2),

for all primes p �= �. See also [11] for an alternative construction of S[a + 2].
We can then rewrite the results above in terms of a motivic Euler characteristic:

ec(A1 ⊗ Q, Va) :=
2∑

i=0

(−1)i [Hi
c (A1 ⊗ Q, Va)].

Here follows the theorem that we wish to generalize to higher genera.

Theorem 2.3 For every even a > 0,

ec(A1 ⊗ Q, Va) = −S[a + 2] − 1.

Remark 2.4 As a result, one can compute Tr(T (p), Sa+2) by means of Tr(Fp, ec(A1⊗
Fp, Va)), which in turn can be found by counting elliptic curves over Fp together with
their number of points over Fp. Essentially, make a list of all elliptic curves defined
over Fp up to Fp-isomorphism; determine for each E in this list |AutFp (E)| and
|E(Fp)|. Having done this, one can calculate Tr(T (p), Sa+2) for all a > 0. But there
are of course other (possibly more efficient) ways of computing these numbers, see
for instance the tables of Stein [50].

For a = 0, we have ec(A1 ⊗ Q, V0) = L , where L is the so-called Lefschetz
motive. The �-adic realization of L equals the cyclotomic representation Q�(−1),
which is one-dimensional and satisfies Tr(Fq , Q�(−1)) = q for all prime powers q.
For bookkeeping reasons, we want the formula in Theorem 2.3 to hold also for a = 0,
so we define S[2] := −L − 1. To be consistent, we then also put s2 := −1.

For further use below, we note that in [47] there is actually a construction of a motive
M f for any eigenform f ∈ Sk . This motive will be defined over some number field
and its �-adic realization has the property that Tr(Fp, M f ) = Tr(T (p), f ) = λp( f ).

3 Siegel modular forms

In this section, we recall the notion of Siegel modular forms of degree g, which are
natural generalizations of the elliptic modular forms that occur in genus 1. General
references are [1,23,24], and [55].

The group Sp(2g, Z) acts on the Siegel upper half space

Hg := {z ∈ Mat(g × g) : zt = z, Im(z) > 0}
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by τ �→ α(τ) := (aτ+b)(cτ+d)−1 for any τ ∈ Hg and α = (a, b; c, d) ∈ Sp(2g, Z).
Let W be a finite-dimensional complex vector space and ρ : GL(g, C) → GL(W )

an irreducible representation. A Siegel modular form of degree g and weight ρ is a
holomorphic map f : Hg → W such that f (α(τ)) = ρ(cτ + d) f (τ ) for all τ ∈ Hg

and α ∈ Sp(2g, Z). When g = 1, we also require f to be holomorphic at infinity. Let
U be the standard representation of GL(g, C). For each g-tuple (n1, . . . , ng) ∈ N

g ,
we define U(n1,...,ng) to be the irreducible representation of GL(g, C) of highest weight
in

Symn1(∧1U ) ⊗ Symn2(∧2U ) ⊗ · · · ⊗ Symng−1(∧g−1U ) ⊗ (∧gU )ng .

It can be cut out by Schur functors. We have for instance U ⊗∧2U ∼= U1,1,0⊕U0,0,1 for
g = 3. We let the cotangent bundle E := π∗�1

Xg/Ag
(the Hodge bundle) correspond

to the standard representation of GL(g, C) and using the above construction we get
vector bundles E(n1,...,ng). For g > 1, we can then identify the vector space of Siegel
modular forms of weight (n1, . . . , ng) with H0(Ag ⊗ C, E(n1,...,ng)). If we take any
Faltings–Chai toroidal compactification A′

g of Ag and if we let D := A′
g \ Ag be the

divisor at infinity, then we can define the vector space of Siegel modular cusp forms,
S(n1,...,ng), to be H0(A′

g ⊗C, E(n1,...,ng)(−D)). In other words, a Siegel modular form
is a cusp form if it vanishes along the divisor at infinity. We will call a Siegel modular
cusp form classical if it is scalar-valued, that is, if n1 = n2 = · · · = ng−1 = 0. Let us
also put s(n1,...,ng) := dimC S(n1,...,ng).

The Hecke algebra, whose elements are called Hecke operators, acts on the space
S(n1,...,ng). It is a tensor product over all primes p of local Hecke algebras that are
generated by elements of the form T (p) and Ti (p2) for i = 1, . . . , g, see [1] or
[24]. These operators are simultaneously diagonalizable and we call the eigenvectors
eigenforms with corresponding eigenvalues λp and λi,p2 . To a Hecke eigenform, we
can then associate a homomorphism from the Hecke algebra to C.

The Satake isomorphism identifies the local Hecke algebra at any prime p with the
representation ring of GSpin2g+1(C), the dual group of GSp2g . Thus, a Hecke eigen-
form f determines, for each prime p, a conjugacy class sp( f ) in GSpin2g+1(C). If we
fix a representation r of GSpin2g+1(C), we can form an L-function by letting the local
factor at p equal Q p(p−s, f )−1, where Q p(X, f ) is the characteristic polynomial
det(1 − r(sp( f ))X) of r(sp( f )), see [9, p. 50]. In this article, we will let r be the spin
representation, from which we get the so-called spinor L-function L( f, s).

The local Hecke algebra of GSp2g can also be identified with the elements of the
local Hecke algebra of the diagonal torus in GSp2g that are fixed by its Weyl group.
Using this, we can associate to a Hecke eigenform f the (g + 1)-tuple of its Satake
p-parameters (α0( f ), α1( f ), . . . , αg( f )) ∈ C

g+1. The local factor L p(s, f ) of the
spinor L-function of f then equals Q p(p−s, f )−1, where

Q p(X, f ) :=
g∏

r=0

∏

1≤i1<i2<···<ir ≤g

(
1 − α0( f )αi1( f ) · · · αir ( f )X

)
.
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Note that the polynomial Q p(X, f ) has degree 2g , and the coefficient of X is equal
to −λp( f ).

Example 3.1 In [42, p. 314], Miyawaki constructed a non-zero classical cusp form
F12 ∈ S0,0,12. Define

E8 := {(x1, . . . , x8) ∈ R
8 : 2xi ∈ Z, xi − x j ∈ Z, x1 + · · · + x8 ∈ 2Z},

which is the unique even unimodular lattice of rank 8. Let I3 be the 3 × 3 identity
matrix and define Q to be the 3 × 8 matrix (I3, i · I3, 0, 0). If 〈·, ·〉 denotes the usual
inner product on R

8, then

F12(τ ) :=
∑

v1,v2,v3∈E8

Re
(

det
(
Q(v1, v2, v3)

)8
)

exp
(
π i Tr

(
(〈vi , v j 〉)τ

))
.

Since s0,0,12 = 1, F12 is an eigenform and Miyawaki computed the eigenvalues for
T (2), T1(4), T2(4), and T3(4), where the first equals −26 · 747. Based on these com-
putations, he conjectured for all primes p the equality

λp(F12) = λp(�)
(
λp( f ) + p9 + p10),

where f is an eigenform in S20. This was proved by Ikeda, see further in Sect. 7.3.

4 Cohomology of local systems

In this section, we introduce the Euler characteristic that we would like to compute
and review results of Faltings and Chai on the cohomology in question.

Let Mg be the moduli space of smooth curves of genus g and Ag the moduli
space of principally polarized abelian varieties of dimension g. These are smooth
Deligne–Mumford stacks defined over Spec(Z).

Using the universal abelian variety π : Xg → Ag , we define a local system on
Ag . It comes in a Betti version 0V := R1π∗Q on Ag ⊗ Q and an �-adic version
�V := R1π∗Q� on Ag ⊗ Z[1/�]. We will often denote both of them simply by V.

For any [A] ∈ Ag , the stalk (V)A is isomorphic to H1(A) (with coefficients in
Q or Q� depending on the cohomology theory). Using the polarization and Poincaré
duality, we get a symplectic pairing 0V × 0V → Q(−1), where Q(−1) is a Tate twist
(and similarly, �V × �V → Q�(−1), where Q�(−1) corresponds to the inverse of the
cyclotomic character).

Let V be the contragredient of the standard representation of GSp2g , which is
isomorphic to the tensor product of the standard representation of GSp2g and the
inverse of the multiplier representation η, see [23, p. 224]. We will consider partitions λ

of length at most g and they will be written in the form λ = (λ1 ≥ λ2 ≥ · · · ≥ λg ≥ 0).
For each such partition λ, we define the representation Vλ of GSp2g to be the irreducible
representation of highest weight in

Symλ1−λ2(∧1V ) ⊗ · · · ⊗ Symλg−1−λg (∧g−1V ) ⊗ Symλg (∧gV ).
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It can be cut out using Schur functors. This gives all irreducible representations of
GSp2g modulo tensoring with η. For instance, for genus 2, we have ∧2V ∼= V1,1 ⊕
V0,0 ⊗ η−1.

Our local system V corresponds now to the equivariant bundle defined by the
contragredient of the standard representation of GSp2g . By applying the construction
above to V, we define a local system Vλ. For example, we have ∧2

V ∼= V1,1⊕V0,0(−1)

for genus 2. If λ1 > · · · > λg > 0, then this local system is called regular. For a
partition λ, we define |λ| := ∑g

i=1 λi to be the weight of λ.
We are interested in the motivic Euler characteristic

ec(Ag, Vλ) =
g(g+1)∑

i=0

(−1)i [Hi
c (Ag, Vλ)]. (4.1)

In practice, we will be considering this expression either in the Grothendieck group of
mixed Hodge structures (denoted K0(MHS)), by taking the compactly supported Betti
cohomology of 0Vλ on Ag ⊗ C, or in the Grothendieck group of �-adic Gal(Q/Q)-
representations (denoted K0(GalQ)), by taking the compactly supported �-adic étale
cohomology of �Vλ on Ag ⊗ Q.

Remark 4.1 Note that further tensoring with η does not give new interesting
local systems, since it corresponds to Tate twists, that is, Hi

c (Ag, Vλ(− j)) ∼=
Hi

c (Ag, Vλ)(− j).

Remark 4.2 The element −Id belongs to GSp2g and it acts as −1 on V. This has the
consequence that H∗

c (Ag, Vλ) = 0 if |λ| is odd. From now on, we therefore always
assume that |λ| is even.

We also define the integer-valued Euler characteristic:

Ec(Ag, Vλ) =
g(g+1)∑

i=0

(−1)i dim
(
Hi

c (Ag ⊗ C, 0Vλ)
)
.

4.1 Results of Faltings and Chai

The cohomology groups Hi
c (Ag ⊗ C, Vλ) and Hi (Ag ⊗ C, Vλ) carry mixed Hodge

structures of weight ≤ |λ| + i , respectively, ≥ |λ| + i , see [23, p. 233]. Since �Vλ is
a sheaf of pure weight |λ|, the same weight claim holds for the �-adic cohomology
in the sense of Deligne, see [16, Cor. 3.3.3, 3.3.4]. The steps in the Hodge filtration
for the cohomology groups are given by the sums of the elements of any of the 2g

subsets of {λg + 1, λg−1 + 2, . . . , λ1 + g}. In genus 3, the explicit Hodge filtration
for λ = (a ≥ b ≥ c ≥ 0) is

F0 ⊇ Fc+1 ⊇ Fb+2 ⊇ Ft2 ⊇ Ft1 ⊇ Fa+c+4 ⊇ Fa+b+5 ⊇ Fa+b+c+6,

where t1 ≥ t2 and {t1, t2} = {b + c + 3, a + 3}. For H•
c (A3 ⊗ C, Vλ) and a �= b + c,

the graded pieces in the Hodge filtration can be identified with the following coherent
cohomology groups:
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F0/Fc+1 ∼= H•−0(A′
3 ⊗ C, Eb−c,a−b,−a(−D)),

Fc+1/Fb+2 ∼= H•−1(A′
3 ⊗ C, Eb+c+2,a−b,−a(−D)),

Fb+2/Fr1 ∼= H•−2(A′
3 ⊗ C, Eb+c+2,a−c+1,−a(−D)),

Fa+3/Fr2 ∼= H•−3(A′
3 ⊗ C, Ea+c+3,b−c,1−b(−D)),

Fb+c+3/Fr3 ∼= H•−3(A′
3 ⊗ C, Eb−c,a+c+3,−a(−D)),

Fa+c+4/Fa+b+5 ∼= H•−4(A′
3 ⊗ C, Ea−c+1,b+c+2,1−b(−D)),

Fa+b+5/Fa+b+c+6 ∼= H•−5(A′
3 ⊗ C, Ea−b,b+c+2,2−c(−D)),

Fa+b+c+6 ∼= H•−6(A′
3 ⊗ C, Ea−b,b−c,c+4(−D)),

where r1, r2, r3 depend in the obvious way on the ordering of b + c + 3 and a + 3. If
r = a + 3 = b + c + 3, then the above holds, except that Fr/Fa+c+4 ∼= H•−3(A′

3 ⊗
C, Ea+c+3,b−c,1−b(−D)) ⊕ H•−3(A′

3 ⊗ C, Eb−c,a+c+3,−a(−D)).

Notaion 4.3 For any partition λ, we put

n(λ) := (λ1 − λ2, λ2 − λ3, . . . , λg−1 − λg, λg + g + 1).

The last step of the Hodge filtration of H g(g+1)/2
c (Ag ⊗ C, Vλ) is given by the

Siegel modular cusp forms of weight n(λ), that is,

F |λ|+g(g+1)/2 ∼= H0(A′
g ⊗ C, En(λ)(−D)) ∼= Sn(λ),

see [23, p. 237].
We define the inner cohomology Hi

! (Ag, Vλ) as the image of the natural map
Hi

c (Ag, Vλ) → Hi (Ag, Vλ). It is pure of weight |λ| + i . Define the Eisenstein coho-
mology Hi

Eis(Ag, Vλ) as the kernel of the same map and let eg,Eis(λ) denote the corre-
sponding Euler characteristic. If λ is regular, then Hi

! (Ag, Vλ) = 0 for i �= g(g+1)/2,
see [22].

5 The motive of Siegel modular forms

The formula in genus 1 (for a even and positive)

ec(A1 ⊗ Q, Va) = −1 − S[a + 2] (5.1)

of Theorem 2.3 and the results of Faltings and Chai (see Sect. 4.1) suggest (or invite)
a generalization to higher g. Unfortunately, the generalization is not straightforward.
On the one hand, the Eisenstein cohomology (the analog of the −1 in Equation (5.1))
is more complicated, and on the other hand, there are contributions from endoscopic
groups. Furthermore, it is not known how to define the analogs of S[a + 2] for higher
g. But the first expectation is that each Siegel modular form of degree g and weight
n(λ) that is an eigenform of the Hecke algebra should contribute a piece of rank 2g

to the middle inner cohomology group. We therefore introduce S[n(λ)], a conjectural
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element of the Grothendieck group of motives defined over Q, of rank 2g sn(λ), and
whose �-adic realization should have the following property for all primes p �= �:

Tr(Fp, S[n(λ)]) = Tr(T (p), Sn(λ)).

This property determines S[n(λ)] as an element of K0(GalQ), see Remark 2.2.
The (conjectural) Langlands correspondence connects, loosely speaking, automor-

phic forms of a reductive group G with continuous homomorphisms from the Galois
group to the dual group Ĝ. In our case, the spinor L-function of a Siegel modular form
for GSp2g (see Sect. 3) should equal the L-function of a Galois representation

Gal(Q/Q) → ĜSp2g(Q�)
∼= GSpin2g+1(Q�) → GL(2g, Q�),

where the last arrow is the spin representation. That is, if f1, . . . , fsn(λ)
is a basis

of Hecke eigenforms of Sn(λ), then the characteristic polynomial C p(X, S[n(λ)]) =
det(1 − Fp X) of Frobenius acting on the �-adic realization of S[n(λ)] should equal
the product of the characteristic polynomials of the corresponding Hecke eigenforms,
that is,

C p(X, S[n(λ)]) =
sn(λ)∏

i=1

Q p(X, fi ).

As said above, the first expectation is that each Hecke eigenform contributes a piece
of rank 2g to the middle inner cohomology group. However, this expectation fails:
some modular forms contribute a smaller piece; these will be called non-exhaustive.
So, we also introduce Ŝ[n(λ)], another conjectural element of the Grothendieck group
of motives over Q. It should correspond to the direct sum of the actual contributions to
the middle inner cohomology group coming from the various Hecke eigenforms. We
will continue to use S[n(λ)] as well; it is surprisingly useful as a bookkeeping device.

We will say that a direct summand �n(λ) of Sn(λ) as a Hecke module over Q has the
expected properties if there is a submotive �[n(λ)] of Ŝ[n(λ)] of rank 2g dim �n(λ)

such that if f1, . . . fk is a basis of Hecke eigenforms of �n(λ), then

C p(X, �[n(λ)]) =
k∏

i=1

Q p(X, fk)

holds for all p �= �; moreover, as an element of K0(MHS), the dimension of the piece
of Hodge type (r, |λ| + g(g + 1)/2 − r) should equal dim �n(λ) times the number of
subsets of the list (λg + 1, λg−1 + 2, . . . , λ1 + g) that have sum r . If the whole of
Sn(λ) has the expected properties (which happens when there are no non-exhaustive
forms), then we will call λ normal.

In genus 1, the motive S[a + 2] for a ≥ 2 has been constructed. It appears in the
first inner cohomology group of V(a) on A1 and λ = (a) is normal for all a ≥ 2. As to
a = 0, the inner cohomology of A1 with Q� coefficients vanishes and thus Ŝ[2] = 0;
purely for bookkeeping reasons, we earlier defined S[2] = −L − 1 and thus s2 = −1.
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The inner cohomology does not only consist of Ŝ[n(λ)]; what is left should be con-
tributions connected to the so-called endoscopic groups. We call these contributions
the endoscopic cohomology, and we denote its Euler characteristic by eg,endo(λ). By
definition, we have

ec(Ag, Vλ) = (−1)
g(g+1)

2 Ŝ[n(λ)] + eg,endo(λ) + eg,Eis(λ).

We also define the extraneous contribution eg,extr(λ) through the following equa-
tion:

ec(Ag, Vλ) = (−1)
g(g+1)

2 S[n(λ)] + eg,extr(λ).

5.1 Preview

In Sect. 7, we will formulate a conjecture for the motivic Euler characteristic
ec(A3, Vλ) for any local system Vλ on A3, in terms of L , S[n1], S[n1, n2] and
S[n1, n2, n3]. This conjecture was found with the help of computer counts over finite
fields: we have calculated

Tr(Fq , ec(A3 ⊗ Q, �Vλ)) (5.2)

for all prime powers q ≤ 17 and all λ with |λ| ≤ 60.
In Sect. 8, we explain how we did these counts. In Sects. 9 and 10, we will dis-

cuss properties of Siegel modular cusp forms of degree three that we find under the
assumption that our conjecture is true: we consider characteristic polynomials and the
generalized Ramanujan conjecture as well as lifts from G2 and various congruences.

Before this, in Sect. 6, we will review the situation in genus 2, with and without
level 2 structure, which we dealt with in the articles [21] and [5].

6 Genus two

6.1 The regular case

In the article [21], the two latter authors formulated a conjectural analog of Theorem 2.3
for genus 2 (as we will do here for genus 3 in Conjecture 7.1). It was based on the
integers

Tr
(
Fq , ec(A2 ⊗ Q, �Vλ)

)

for all prime powers q ≤ 37 and all λ with |λ| ≤ 100, which were found by counting
points over finite fields, compare Sect. 8. Here is a reformulation of this conjecture,
using the conjectural motive Ŝ[n1, n2] described in Sect. 5.
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Conjecture 6.1 The motivic Euler characteristic ec(A2, Vλ) for regular λ = (a, b)

(with a + b even) is given by

ec(A2, Vλ) = −Ŝ[a − b, b + 3] + e2,Eis(a, b) + e2,endo(a, b),

where

e2,Eis(a, b) = sa−b+2 − sa+b+4Lb+1 +
{

S[b + 2] + 1, a even,

−S[a + 3], a odd,

and

e2,endo(a, b) = −sa+b+4S[a − b + 2]Lb+1.

Moreover, all regular λ are normal.

The formula for e2,Eis(a, b) has been proved by the third author in the categories
K0(MHS) and K0(GalQ) using the BGG-complex, [54, Corollary 9.2]. Moreover,
Weissauer has proved the conjectured formula for the Euler characteristic of the inner
cohomology in K0(GalQ), see [57, Theorem 3] (but note that in the formulation of
the theorem, the factor 4 should be removed). Consequently, Conjecture 6.1 is proved
completely in K0(GalQ).

This gives us the possibility of computing traces of Hecke operators on spaces of
Siegel modular forms of degree 2 using counts of points over finite fields.

Example 6.2 For λ = (11, 7), the conjecture tells us that

ec(A2, Vλ) = −S[4, 10] − L8.

We then know that for all primes p �= �,

Tr(T (p), S4,10) = −Tr(Fp, ec
(A2 ⊗ Q, �Vλ)

) − p8.

By Tsushima’s dimension formula (see below), we have s4,10 = 1. The counts of
points over finite fields thus give the eigenvalues of any non-zero form F in S4,10 for
all primes p ≤ 37. We have for example:

λ2(F) = −1680, λ3(F) = 55080, λ37(F) = 11555498201265580.

6.2 The non-regular case

For the non-regular local systems, Conjecture 6.1 may fail. We refine the conjecture
for a general local system in the following way.
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Conjecture 6.3 The motivic Euler characteristic ec(A2, Vλ) for any λ = (a, b) �=
(0, 0) (with a + b even) is given by

ec(A2, Vλ) = −S[a − b, b + 3] + e2,extr(a, b),

where

e2,extr(a, b) := −sa+b+4S[a − b + 2]Lb+1

+ sa−b+2 − sa+b+4Lb+1 +
{

S[b + 2] + 1, a even,

−S[a + 3], a odd.

The difference between the general case and the regular case is that the Eisenstein
and endoscopic contributions may behave irregularly. But we believe that their sum
will not, except in the case when λ is not normal, see Sect. 6.4.

There is a formula by Tsushima, see [52], for the dimension s j,k for all j ≥ 0 and
k ≥ 3 which is proven for all j ≥ 1 and k ≥ 5 and for j = 0 and k ≥ 4 (note that the
ring of scalar-valued modular forms and its ideal of cusp forms were determined by
Igusa [34]). On the other hand, taking dimensions in Conjecture 6.3, we get that

−Ec(A2, Vλ) − 2sa+b+4 sa−b+2

+ sa−b+2 − sa+b+4 +
{

2 sb+2 + 1, a even,

−2 sa+3, a odd,
(6.1)

should equal 4 sa−b,b+3. By what was said in Sect. 6.1, this is true for all regular (a, b).
We can decompose A2 = M2 ∪ A1,1, where A1,1 := (A1 × A1)/S2. There is a

formula by Getzler for Ec(M2, Vλ) for any λ, see [26]. Together with the following
formula, where m := (a − b)/2 and n := (a + b)/2,

Ec(A1,1, Va,b) =
b∑

i=0

m−1∑

j=0

Ec(A1, Va−i− j ) Ec(A1, Vb−i+ j ) +

+
n∑

k=m

{
Ec(A1, Vk)

(
Ec(A1, Vk) + 1

)
/2, a even,

Ec(A1, Vk)
(
Ec(A1, Vk) − 1

)
/2, a odd,

we get a formula for Ec(A2, Vλ). Grundh (see [28]) recently proved that for all (a, b),
Formula (6.1) is equivalent to Tsushima’s dimension formula. From this, it follows
that Tsushima’s dimension formula also holds when k = 4 and j > 0.

Example 6.4 For all λ for which (6.1) tells us that sa−b,b+3 = 0 (there are 85 cases),
we find as expected that

Tr
(
Fp, ec(A2, Vλ)

) = Tr
(
Fp, e2,extr(a, b)

)

for all primes p ≤ 37.
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Example 6.5 For λ = (50, 0), Conjecture 6.3 tells us that

ec(A2, Vλ) = −S[50, 3] − 4 S[52]L + 4 − 5L .

For all primes p �= �, it should then hold that

Tr(T (p), S50,3) = −Tr(Fp, ec
(A2 ⊗ Q, �Vλ)

) − 4p · Tr(T (p), S52) + 4 − 5p.

Formula (6.1), together with the fact that Ec(A2, V(50,0)) = −37 (see [26]), then
tells us that (conjecturally) s50,3 = 1. The counts of points over finite fields thus give
the eigenvalues of any nonzero form F in S50,3 for all primes p ≤ 37. We have for
example (conjecturally):

λ2(F) = −37528320, λ3(F) = −3184692509880,

λ37(F) = 86191557288628492956664825102803613165420.

Example 6.6 For λ = (32, 32), Conjecture 6.3 tells us that

ec(A2, Vλ) = −S[0, 35] + S[34] + 5L34

and the space S0,35 is generated by one form, which Igusa denoted χ35. Our conjecture
then tells us for instance that

λ2(χ35) = −25073418240, λ3(χ35) = −11824551571578840,

λ37(χ35) = −47788585641545948035267859493926208327050656971703460.

6.3 Weight zero

As in the case of genus 1, we want Conjecture 6.3 to hold also for Q�-coefficients.
Recall that ec(A2, V0,0) = L3 + L2 and that these two classes belong to the Eisen-
stein cohomology. We thus extend the conjecture to the case λ = (0, 0) by defining
S[0, 3] := −L3 − L2 − L − 1 and s0,3 = −1 (remembering that S[2] = −L − 1 and
s2 = −1). Since the inner cohomology vanishes, we have Ŝ[0, 3] = 0.

6.4 Saito-Kurokawa lifts

For λ regular, every Siegel cusp form of degree 2 and weight n(λ) that is a Hecke
eigenform gives rise to a four-dimensional piece of the inner cohomology. We believe
that this fails for the special kind of Siegel modular forms called Saito–Kurokawa lifts,
which should contribute only two-dimensional pieces. In their presence, λ will thus
fail to be normal.

For a odd, the Saito–Kurokawa lift is a map S2a+4 → S0,a+3, see [59]. We can
split S0,a+3 as an orthogonal direct sum of the Maass Spezialschar �SK

0,a+3 and its
orthocomplement (w.r.t. the Petersson inner product); we denote the latter space by
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�
gen
0,a+3 and observe that it is stable under the Hecke algebra. The Saito–Kurokawa

lift F of a Hecke eigenform f ∈ S2a+4 is a Hecke eigenform in S0,a+3 with spinor
L-function

ζ(s − a − 1)ζ(s − a − 2)L( f, s).

This tells us that for all p, the trace of T (p) on the Maass Spezialschar equals

Tr(T (p), S2a+4) + s2a+4(pa+2 + pa+1).

We conjecture that �
gen
0,a+3 has the expected properties (see Sect. 5), with �gen

[0, a + 3] the corresponding piece of Ŝ[0, a + 3]. The contribution corresponding to
�SK

0,a+3 will be denoted by �SK [0, a+3], and the first guess would be that �SK [0, a+
3] equals S[2a +4]+ s2a+4(La+2 + La+1). Considering the Hodge types, we find that
S[2a + 4], s2a+4La+2 and s2a+4La+1 have to live inside Hi

! (A2, Va,a) for i = 3, 4, 2
respectively. This is not possible, because they should all have the same sign. Instead,
we conjecture that �SK [0, a + 3] = S[2a + 4], compare Sect. 6.6 and [51].

Conjecture 6.7 For λ = (a, a), where a is odd, we have

Ŝ[0, a + 3] = �SK [0, a + 3] + �gen[0, a + 3] = S[2a + 4] + �gen[0, a + 3].

In all other cases, λ is normal.

It follows from this conjecture that for a odd,

Tr(Fp, Ŝ[0, a + 3]) = Tr(T (p), S0,a+3) − s2a+4(pa+2 + pa+1).

Example 6.8 For λ = (11, 11), Conjecture 6.3 tells us that

ec(A2, Vλ) = −S[0, 14] − 1 + L13.

Formula (6.1), together with the fact that Ec(A2, V(11,11)) = −4 (see [26]), then
tells us that (conjecturally) s0,14 = 1. Since s26 = 1, the modular form in S0,14 is a
Saito-Kurokawa lift. We should then have that

Tr(Fp, ec(A2, Vλ)) = −(
Tr(T (p), S[26]) + p12 + p13) − 1 + p13.

This indeed holds for all primes p ≤ 37.
For a ≤ 15 odd, the space S0,a+3 is generated by Saito–Kurokawa lifts. In all these

cases, Tr(Fp, ec(A2, Va,a)) equals

−(
Tr(Fp, S[2a + 4]) + s2a+4(pa+1 + pa+2)

) + Tr
(
Fp, e2,extr(a, a)

)

for all primes p ≤ 37.
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6.5 Characteristic polynomials

We would like to state some observations on the factorization of the local spinor
L-factor of Siegel modular forms of degree 2.

Any Siegel modular form of degree 2 that is not a Saito–Kurokawa lift gives
rise to a four-dimensional piece of the corresponding third inner cohomology group
(see [57] and [51]). We will disregard the Saito–Kurokawa lifts (since their spinor
L-functions will come from elliptic modular forms) and consider the spinor L-
functions of elements in �

gen
a−b,b+3. For an eigenform f ∈ �

gen
a−b,b+3, the local spinor

L-factor L p(s, f ) equals Q p(p−s, f )−1, where Q p(X, f ) is the following polyno-
mial:

1 − λp( f ) X + (
pλ1,p2( f ) + (p3 + p)λ2,p2( f )

)
X2 − λp( f ) pa+b+3 X3

+p2(a+b+3) X4.

All forms in �
gen
a−b,b+3 will fulfill the Ramanujan conjecture, that is, for every prime

p �= �, the roots of the characteristic polynomial just stated will have absolute value
p−(a+b+3)/2, see [56, Th. 3.3.3].

The polynomial Q p(X, f ) for f ∈ �
gen
a−b,b+3 is equal to the characteristic polyno-

mial of Frobenius acting on the corresponding �-adic representations, which are found
inside �gen[a − b, b + 3]. To compute the characteristic polynomial of Frobenius Fp

acting on �gen[a −b, b+3], we therefore need to compute Tr(Fi
p, �

gen[a −b, b+3])
for 1 ≤ i ≤ 2 dim �

gen
a−b,b+3. Using Conjecture 6.3 and the fact that Fi

p = Fpi , we can

reformulate this to computing Tr(Fpi , ec(A2, Va,b)) for i from 1 to 2 dim �
gen
a−b,b+3.

Since we have computed Tr(F2i , ec(A2, Va,b)) for 1 ≤ i ≤ 4, we can determine the
characteristic polynomial at p = 2 for any λ = (a, b) such that dim �

gen
a−b,b+3 ≤ 2. For

|λ| ≤ 100, there are 40 choices of λ = (a, b) for which sgen
a−b,b+3 := dim �

gen
a−b,b+3 = 1

and 27 choices for which sgen
a−b,b+3 = 2 (this follows from the formula in Sect. 6.2).

These characteristic polynomials are irreducible over Q, except for the following
local systems: λ = (22, 4), (20, 10), (21, 21), (23, 23). The factorization into two
polynomials of degree 4 for the two latter local systems was found by Skoruppa [49].
It is shown in [45] that there is a Siegel modular form f of degree 2 and weight
(10, 13) such that λp( f ) = Tr

(
Fp, Sym3(S[12])) for all primes p. This accounts for

the splitting of the characteristic polynomial in the case λ = (20, 10). In the case
λ = (22, 4), the characteristic polynomial at p = 2 splits in the following way:

(1 + 32736 X + 857571328 X2 + 32736 · 229 X3 + 258 X4) ·
(1 − 7920 X + 45752320 X2 − 7920 · 229 X3 + 258 X4).

6.6 The case of level 2

In [5], a similar kind of analysis was made for local systems on the moduli space A2[2]
of principally polarized abelian surfaces together with a full level two-structure. Here,
one has the additional structure of the action of GSp(4, Z/2) ∼= S6 on the cohomology
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groups. We will give some additional comments on the (conjectural) picture we have
in this case. Our understanding benefited very much from two letters sent to us by
Deligne ([17]).

What was called middle endoscopy in [5] is called endoscopy in this article. For any
two Hecke eigenforms of level 2, f ∈ Sa+b+4(�(2)) and g ∈ Sa−b+2(�(2)), there is
a contribution to ec(A2[2], Va,b) of the form

X ⊗ M f + Y ⊗ Lb+1 Mg,

where X and Y are (either zero or) different representations of S6. The contributions
of the form Y ⊗ Lb+1 Mg make up the endoscopic cohomology. The contributions of
the form X ⊗ M f correspond to the cases where there is a lift of Yoshida type (see
[5, Conj. 6.1, 6.4]), taking the two forms f and g to an eigenform F ∈ Sa−b,b+3(�2)

with spinor L-function

L(F, s) = L( f, s) L(g, s − b − 1).

In the cohomology, we thus only see the two-dimensional piece M f , corresponding
to the factor L( f, s) of the L-function, instead of the expected four-dimensional piece
(compare Sect. 6.4). Note that these non-exhaustive lifts in level 2 occur for regular
local systems.

If a = b, we can take Mg equal to L + 1. The corresponding contributions are then
of Saito-Kurokawa type (cf. [5, Conj. 6.1, 6.6]).

Example 6.9 In the notation of [5], ec(A2[2], Vλ) for λ = (5, 1) equals (conjecturally)
the sum of the following contributions. Here, s[μ] denotes the irreducible representa-
tion of S6 corresponding to the partition μ. First, there is the Eisenstein cohomology,

−S[�0(2), 8]new(s[23] + s[3, 2, 1] + s[4, 2])
−L2(s[3, 2, 1] + s[32] + s[4, 12] + s[4, 2] + s[5, 1]) + (s[32] + s[4, 12]),

then the endoscopic cohomology,

−L2 S[�0(4), 6]new(s[3, 13] + s[4, 12]),

and finally, there is a lift of Yoshida type, contributing

−S[�0(4), 10]new s[2, 14].

7 Genus three

We now formulate our main conjecture.

Conjecture 7.1 The motivic Euler characteristic ec(A3, Vλ) for any λ = (a, b, c) �=
(0, 0, 0) is given by

ec(A3, Va,b,c) = S[a − b, b − c, c + 4] + e3,extr(a, b, c),
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where

e3,extr(a, b, c) := −ec(A2, Va+1,b+1) + ec(A2, Va+1,c) − ec(A2, Vb,c)

−e2,extr(a + 1, b + 1) ⊗ S[c + 2] + e2,extr(a + 1, c) ⊗ S[b + 3]
−e2,extr(b, c) ⊗ S[a + 4].

Remark 7.2 The term e3,extr(a, b, c) is thus formulated in terms of genus 2 contribu-
tions, which can be computed using the results of Sect. 6. The Euler characteristics
for λ with |λ| ≤ 18 are given at the end of the paper.

7.1 Integer Euler characteristics

The numerical Euler characteristic Ec(A3, Vλ), which was defined in Sect. 4, can be
computed for any λ using the results of [8,7]. Taking dimensions in the formula in
Conjecture 7.1 we end up with the following definition:

E3,extr(a, b, c) := −Ec(A2, Va+1,b+1) + Ec(A2, Va+1,c) − Ec(A2, Vb,c)

−2 E2,extr(a + 1, b + 1) sc+2 + 2 E2,extr(a + 1, c) sb+3

−2 E2,extr(b, c) sa+4 ,

and the following conjecture.

Conjecture 7.3 For any local system λ = (a, b, c) �= (0, 0, 0),

sa−b,b−c,c+4 = 1

8

(
Ec(A3, Va,b,c) − E3,extr(a, b, c)

)
.

The first check of this conjecture is that Ec(A3, Vλ) − E3,extr(λ) is a nonnegative
integer divisible by 8 for each λ with |λ| ≤ 60. The dimension of the space S0,0,k

of classical (i.e., scalar-valued) Siegel modular cusp forms of weight k is known by
Tsuyumine (for k ≥ 4), see [53]. In the case λ = (a, a, a), we have then checked that
Conjecture 7.3 is true for all 0 ≤ a ≤ 20.

Example 7.4 There are 317 choices of λ for which |λ| ≤ 60 and Conjecture 7.3
tells us that sn(λ) = 0. For all these choices, we find that Tr

(
Fq , ec(A3, Vλ)

) =
Tr

(
Fq , e3,extr(λ)

)
for all q ≤ 17.

One such instance is λ = (15, 3, 0), where Conjecture 7.1 tells us that

e3,extr(λ) = S[12, 7] − S[18]L − 2L6 − L + 1.

Example 7.5 For |λ| ≤ 18, the only cases for which Conjecture 7.3 tells us that sn(λ)

is nonzero are λ = (8, 4, 4), (11, 5, 2) and (9, 6, 3), and then sn(λ) = 1. In Table 1,
we list sn(λ) for all λ of weight 20 and 22.

In the case λ = (11, 5, 2), Conjecture 7.3 tells us that

ec(A3, Vλ) = S[6, 3, 6] − S[12] L3 + L7 − L3 + 1.
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Table 1 Conjectural dimensions of spaces of degree 3 cusp forms

λ sn(λ) λ sn(λ) λ sn(λ) λ sn(λ)

(20, 0, 0) 0 (19, 1, 0) 0 (18, 2, 0) 0 (18, 1, 1) 0

(17, 3, 0) 0 (17, 2, 1) 0 (16, 4, 0) 0 (16, 3, 1) 0

(16, 2, 2) 0 (15, 5, 0) 0 (15, 4, 1) 0 (15, 3, 2) 0

(14, 6, 0) 0 (14, 5, 1) 0 (14, 4, 2) 1 (14, 3, 3) 0

(13, 7, 0) 0 (13, 6, 1) 1 (13, 5, 2) 0 (13, 4, 3) 1

(12, 8, 0) 0 (12, 7, 1) 0 (12, 6, 2) 1 (12, 5, 3) 0

(12, 4, 4) 1 (11, 9, 0) 0 (11, 8, 1) 0 (11, 7, 2) 0

(11, 6, 3) 1 (11, 5, 4) 0 (10, 10, 0) 0 (10, 9, 1) 1

(10, 8, 2) 1 (10, 7, 3) 0 (10, 6, 4) 1 (10, 5, 5) 0

(9, 9, 2) 0 (9, 8, 3) 0 (9, 7, 4) 0 (9, 6, 5) 0

(8, 8, 4) 0 (8, 7, 5) 0 (8, 6, 6) 1 (7, 7, 6) 0

(22, 0, 0) 0 (21, 1, 0) 0 (20, 2, 0) 0 (20, 1, 1) 0

(19, 3, 0) 0 (19, 2, 1) 0 (18, 4, 0) 0 (18, 3, 1) 0

(18, 2, 2) 0 (17, 5, 0) 0 (17, 4, 1) 1 (17, 3, 2) 0

(16, 6, 0) 0 (16, 5, 1) 1 (16, 4, 2) 1 (16, 3, 3) 0

(15, 7, 0) 0 (15, 6, 1) 1 (15, 5, 2) 1 (15, 4, 3) 1

(14, 8, 0) 0 (14, 7, 1) 1 (14, 6, 2) 1 (14, 5, 3) 1

(14, 4, 4) 1 (13, 9, 0) 1 (13, 8, 1) 1 (13, 7, 2) 1

(13, 6, 3) 1 (13, 5, 4) 1 (12, 10, 0) 0 (12, 9, 1) 0

(12, 8, 2) 1 (12, 7, 3) 1 (12, 6, 4) 1 (12, 5, 5) 0

(11, 11, 0) 0 (11, 10, 1) 1 (11, 9, 2) 1 (11, 8, 3) 1

(11, 7, 4) 1 (11, 6,5) 0 (10, 10, 2) 0 (10, 9, 3) 0

(10, 8, 4) 1 (10, 7, 5) 0 (10, 6, 6) 0 (9, 9,4) 0

(9, 8, 5) 0 (9, 7, 6) 0 (8, 8, 6) 0 (8, 7, 7) 0

For all primes p �= �, we should then have that

Tr(T (p), S6,3,6) = Tr
(
Fp, ec(A3, Vλ)

) − (−Tr(T (p), S12) p3 + p7 − p3 + 1
)
.

The space S6,3,6 should be spanned by one form, say F6,3,6, and from our computations
we get that (conjecturally)

λ2(F6,3,6) = 0, λ3(F6,3,6) = −453600, λ17(F6,3,6) = −107529004510200.

Example 7.6 For λ = (15, 13, 12), Conjecture 7.3 tells us that sn(λ) = 1 and Conjec-
ture 7.3 that

ec(A3, Vλ) = S[2, 1, 16] − S[4, 15] − 2S[16] L13 + 2L15 − 2L13.
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Conjecturally, for F2,1,16 a generator of S2,1,16 , we find that

λ2(F2,1,16) = 6994944, λ3(F2,1,16) = 134431309152,

λ17(F2,1,16) = 14399876302755866405698174344.

7.2 Weight zero

In order to make Conjecture 7.1 true for λ = (0, 0, 0) we put

S[0, 0, 4] := L6 + L5 + L4 + 2 L3 + L2 + L + 1,

because we know that ec(A3, V0,0,0) = L6 + L5 + L4 + L3 + 1, see [30]. All of this
cohomology is Eisenstein and thus Ŝ[0, 0, 4] = 0.

Note that by our definitions, the rank of S[2] equals −2, the rank of S[0, 3] equals
−4, and the rank of S[0, 0, 4] equals 8. The definitions so far fit into the pattern

S[0, 0, . . . , 0, g + 1] = (−1)g(1 + Lg) S[0, 0, . . . , 0, g],

but this will not be true in general, because at some point, classical cusp forms of
weight g + 1 will appear. In fact, it follows from work of Ikeda [35] that there exists
a classical cusp form of weight 12 in genus 11 (e.g., the form F23 in Table 3, p. 494).

7.3 Non-exhaustive lifts

We conjecture the existence of the following three types of lifts of Siegel modular
forms.

Conjecture 7.7 The Hecke module Sa−b,b−c,c+4 splits into a direct sum of the two
submodules �

gen
a−b,b−c,c+4 and �ne

a−b,b−c,c+4 , where the latter is generated by the
following forms.

i) For any choice of eigenforms f ∈ Sb+3, g ∈ Sa+c+5, and h ∈ Sa−c+3, there
exists an eigenform F ∈ Sa−b,b−c,c+4 with spinor L-function

L(F, s) = L( f ⊗ g, s)L( f ⊗ h, s − c − 1).

ii) For any choice of eigenforms f ∈ Sa+4 and g ∈ S2b+4, there exists an eigenform
F ∈ Sa−b,0,b+4 with spinor L-function

L(F, s) = L( f, s − b − 1)L( f, s − b − 2)L( f ⊗ g, s).

iii) For any choice of eigenforms f ∈ Sc+2 and g ∈ S2a+6, there exists an eigenform
F ∈ S0,a−c,c+4 with spinor L-function

L(F, s) = L( f, s − a − 2)L( f, s − a − 3)L( f ⊗ g, s).
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A precursor of this conjecture for the case of classical Siegel modular forms can be
found in the work of Miyawaki. He observed in [42] that for the nonzero cusp form
F12 of weight (0, 0, 12), the Euler factor at p = 2 of the spinor L-function L(F12, s)
was equal to L2(�, s − 9)L2(�, s − 10)L2(� ⊗ g, s), with eigenforms � ∈ S12 and
g ∈ S20, see Example 3.1. He then conjectured the equality of spinor L-functions

L(F12, s) = L(�, s − 9)L(�, s − 10)L(� ⊗ g, s). (7.1)

This conjecture was proved by Ikeda [35], p. 474.
Miyawaki made a similar observation for the cusp form F14 of weight (0, 0, 14),

where now the role of g is taken by an eigenform h ∈ S26. He also observed that
such a lift of a pair f1, f2 of cusp forms of weight k1 and k2 to scalar-valued Siegel
modular forms of weight (0, 0, k) could only occur if (k1, k2) was equal to (k, 2k −4)

or (k − 2, 2k − 2). He then conjectured part (ii) and (iii) of Conjecture 7.7 for all
k − 4 = a = b = c.

Example 7.8 Let us check the two examples found by Miyawaki. In the case λ =
(8, 8, 8), Conjecture 7.1 tells us that

e3,extr(λ) = −L10 S[12] + S[0, 12] − L11 − L10 + S[12] + 1

and we can check that

Tr(Fp, ec(A3, Vλ)) − Tr(Fp, e3,extr(λ)) = Tr
(
Fp, S[12] ⊗ (S[20] + L10 + L9)

)

holds for all p ≤ 17. Similarly, for λ = (10, 10, 10) we have

e3,extr(λ) = −S[12] L13 + S[0, 14] − L13 − 2 L12 + 1

and

Tr
(
Fp, ec(A3, Vλ)

) − Tr
(
Fp, e3,extr(λ)

) = Tr
(
Fp, S[12] ⊗ (S[26] + L13 + L12)

)

holds for all p ≤ 17.
Using Conjectures 7.3 and 7.7, we find 19 choices, presented in Table 2, of λ for

which |λ| ≤ 60 and Sn(λ) = �ne
n(λ). In all these cases the expected equalities hold, just

as for λ = (8, 8, 8) and (10, 10, 10).

Example 7.9 In the case λ = (12, 12, 12), Conjecture 7.3 tells us that s0,0,16 = 3 and
the space generated by the lifts given in Conjecture 7.7 is two-dimensional. There is
therefore a Hecke eigenform F0,0,16 in �

gen
0,0,16 whose eigenvalue for T (p) is found

(conjecturally) by the formula

Tr
(
Fp, ec(A3, Vλ)

)−Tr
(
Fp, e3,extr(λ)

)−Tr
(
Fp, S[16] ⊗ (S[28] + 2 L14 + 2 L13)

)
,
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Table 2 Local systems for
which Sn(λ) = �ne

n(λ)

(a, b, c) S[a − b, b − c, c + 4]

(8, 4, 4) S[12](S[12] + L6 + L5)

(12, 4, 4) S[16](S[12] + L6 + L5)

(10, 9, 1) S[12](S[16] + L2 S[12])
(8, 6, 6) S[12](S[16] + L8 + L7)

(14, 4, 4) S[18](S[12] + L6 + L5

(13, 9, 0) S[12](S[18] + L S[16])
(11, 9, 2) S[12](S[18] + L3S[12])
(15, 9, 0) S[12](S[20] + L S[18])
(8, 8, 8) S[12](S[20] + L10 + L9)

(13, 13, 0) S[16](S[18] + L S[16])
(15, 13, 0) S[16](S[20] + L S[18])
(13, 13, 4) S[16](S[22] + L5S[12])
(10, 10, 10) S[12](S[26] + L13 + L12)

(15, 15, 2) S[18](S[22] + L3S[16])
(12, 10, 10) S[16](S[24] + 2(L12 + L11))

(12, 12, 10) S[12](S[30] + 2(L15 + L14)

(18, 9, 9) S[12](S[32] + 2L10 S[12])
(14, 14, 14) S[16](S[34] + 2(L17 + L16))

+S[18](S[32] + 2(L16 + L15))

and we find for example:

λ2(F0,0,16) = −115200, λ3(F0,0,16) = 14457333600,

λ17(F0,0,16) = −84643992509680105660020600.

Remark 7.10 There are 123 choices of λ such that |λ| ≤ 60 and for which the con-
jectures tell us that sgen

λ := dim �
gen
n(λ) = 1.

Consider an element of the Grothendieck group of motives of the form

M f ⊗ Mg + Lr M f ⊗ Mh,

where f ∈ Sk, g ∈ Sl , and h ∈ Sm are eigenforms, or m = 2 and Mh = L + 1.
Fix λ = (a, b, c) and assume that (k, l, m, r) is equal to one of the following three
possibilities:

(i) (b + 3, a + c + 5, a − c + 3, c + 1);
(ii) (a + 4, b + c + 4, b − c + 2, c + 1);

(iii) (c + 2, a + b + 6, a − b + 2, b + 2).

Assume furthermore that (k, l, m, r) is such that there is a lift as in Conjecture 7.7. One
could then expect to find the whole eight-dimensional motive in the cohomology, but,
similarly to the genus 2 case, we conjecture that only the part M f ⊗ Mg contributes.
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If (k, l, m, r) is such that there is no lift as in Conjecture 7.7, then we conjecture (in
the regular case) that the terms Lr M f ⊗ Mh will contribute to (and also generate) the
endoscopic cohomology, see Sect. 7.4.

Conjecture 7.11 For any local system λ = (a, b, c), we have

Ŝ[a − b, b − c, c + 3] = �gen[a − b, b − c, c + 4] + �ne[a − b, b − c, c + 4]

where �gen[a − b, b − c, c + 4] has the expected properties (see Sect. 5) and where
�ne[a − b, b − c, c + 4] is the sum of the following three contributions:

(i) sa−c+3 S[b + 3] ⊗ S[a + c + 5];
(ii) S[a + 4] ⊗ S[2b + 4], if b = c ;

(iii) S[c + 2] ⊗ S[2a + 6], if a = b and c > 0.

7.4 The regular case

In [54], it is proved that if λ is regular, then the rank 1 part of the Eisenstein cohomology
e3,Eis(a, b, c) equals

−ec(A2, Va+1,b+1) + ec(A2, Va+1,c) − ec(A2, Vb,c).

This is the first piece of the formula in Conjecture 7.1 for e3,extr(a, b, c).
Let us make a refinement of Conjecture 7.1 in the regular case. Note that contribu-

tions to the endoscopic cohomology should have Deligne weight a + b + c + 6 and
should appear with positive sign.

Conjecture 7.12 If λ = (a, b, c) is regular, then e3,endo(a, b, c) is given by

sb+c+4 S[a + 4]S[b − c + 2]Lc+1 + sa+b+6 S[c + 2]S[a − b + 2]Lb+2,

and e3,Eis(a, b, c) by

e3,extr(a, b, c) − e3,endo(a, b, c) + sa+c+5 S[b + 3]S[a − c + 3]Lc+1.

Example 7.13 For λ = (16, 13, 3), Conjectures 7.11 and 7.12 read:

Ŝ[3, 10, 7] = �gen[3, 10, 7] + S[16] ⊗ S[24],
e3,endo(a, b, c) = S[20] ⊗ S[12] L4,

e3,Eis(a, b, c) = S[20]L4 − 4S[16]L4 − 2S[20] + S[12]L4 + 2 S[16] − L4.

8 Counting points over finite fields

In this section, we will indicate how we found the information necessary to compute
the expression (5.2) for all q ≤ 17 and λ with weight |λ| ≤ 60.
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Just as in Sect. 2, the trace (5.2) can be computed in terms of finite fields, that is,

Tr
(
Fq , ec(Ag ⊗ Q, Vλ)

) = Tr
(
Fq , ec(Ag ⊗ Qp, Vλ)

) = Tr
(
Fq , ec(Ag ⊗ Fq , Vλ)

)
.

Let [Ag(Fq)] denote the set of Fq -isomorphism classes of principally polarized
abelian varieties of dimension g defined over Fq . For an [A] ∈ [Ag(Fq)], we denote by
α1(A), . . . , α2g(A) the eigenvalues of the Frobenius map acting on H1(A ⊗ Fq , Q�),
ordered in such a way that αi (A)αg+i (A) = q. Let s<λ>(x1, . . . , xg; t) ∈ Z[t] be
the Schur polynomial for Sp(2g, Q) associated to λ and homogenized using t , where
x1, . . . , xg have weight 1 and t weight 2, see [25, p. 466]. We then find that

Tr(Fq , (Vλ)A⊗Fq
) = s<λ>

(
α1(A), . . . , αg(A); q

)
.

From the Lefschetz trace formula, it follows that (see [14, Th. 3.2])

Tr
(
Fq , ec(Ag ⊗ Fq , Vλ)

) =
∑

[A]∈[Ag(Fq )]

s<λ>

(
α1(A), . . . , αg(A); q

)

|AutFq (A)| . (8.1)

The monomials in the power sums, pk(x1, . . . , xg) := ∑
i xk

i for 1 ≤ k ≤ g, form
a rational basis for the symmetric polynomials in x1, . . . , xg . For a partition μ, let μ̂

denote the dual partition. We can then write

s<λ> =
∑

|μ|≤|λ|
rλ
μ t

|λ|−|μ|
2 pμ,

for some rλ
μ ∈ Q and where pμ := ∏μ1

i=1 pμ̂i . By the Lefschetz trace formula,

ai (A) := Tr
(
Fqi , H1(A ⊗ Fq , Q�)

) = pi
(
α1(A), . . . , αg(A)

)

for any [A] ∈ [Ag(Fq)], and so

aμ(A) :=
μ1∏

i=1

Tr
(
Fqμ̂i , H1(A ⊗ Fq , Q�)

) = pμ

(
α1(A), . . . , αg(A)

)
.

It follows that computing

aμ(Ag; q) :=
∑

[A]∈[Ag(Fq )]

aμ(A)

|AutFq (A)| (8.2)

for each μ such that |μ| ≤ |λ| gives a way to compute (8.1).
For any substack X ⊂ Ag , we define aμ(X; q) in the corresponding way. It is used

repeatedly below that for any [A] ∈ [Ag(Fq)], it is enough to know ai (A) for all
1 ≤ i ≤ g to compute aμ(A) for any partition μ.
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We now reformulate (8.2) for genus 3 in terms of curves using the Torelli morphism,
tg : Mg → Ag. This morphism between stacks is of degree 1 if g ≤ 2 (where the
genus 1 case should be interpreted as the isomorphism t1 : M1,1 → A1) and of degree
2 if g ≥ 3, ramified along the hyperelliptic locus Hg ⊂ Mg .

Let [Mg(Fq)]denote the set of Fq -isomorphism classes of smooth curves of genus g
defined over Fq . It is essential for us that if [C] ∈ [Mg(Fq)], then H1(C ⊗ Fq , Q�)

and H1(tg(C)⊗Fq , Q�) are isomorphic as Gal(Fq/Fq)-modules. We define aμ(C) in
the same way as for an abelian variety and we note that by the Lefschetz trace formula,
|C(Fqi )| = 1 + qi − ai (C).

Turning to genus 3 and putting M0
3 := M3 \ H3 and A1,1,1 := A3

1/S3, we have
the following stratification:

A3 = t3(M0
3) � t3(H3) � (t2(M2) × A1) � A1,1,1. (8.3)

Therefore, aμ(A3; q) = aμ(t3(M0
3); q) + aμ(t3(H3); q) + aμ(t2(M2) × A1; q) +

aμ(A1,1,1; q) and we now turn to the computation of the different terms in this sum.

8.1 Non-hyperelliptic curves of genus 3

For any [C] ∈ [M0
3(Fq)], there are precisely two elements of [A3(Fq)] whose repre-

sentatives are isomorphic over Fq to the Jacobian J (C), namely, the Jacobian J (C)

itself and its “twist” J (C)−1, see for instance [41], Appendix. On the other hand, the
automorphism group of J (C) includes the element −1, which does not come from an
automorphism of C . It directly follows from this that aμ(t3(M0

3); q) = aμ(M0
3; q) if

|μ| is even. If |μ| is odd, then aμ(t3(M0
3); q) = 0, but this does not necessarily hold

for aμ(M0
3; q).

For any non-hyperelliptic curve C of genus 3, the canonical linear system gives
an isomorphism of C with a plane quartic curve. Conversely, any non-singular plane
quartic curve is non-hyperelliptic of genus 3. Any plane quartic curve can be given
by a homogeneous degree 4 polynomial in three variables. Identify this space of
polynomials with P

14 and let Q ⊂ P
14 denote the subset that gives rise to non-singular

quartics. All isomorphisms between plane quartic curves are induced by PGL3, the
automorphism group of the plane. It follows that

aμ(M0
3; q) = 1

|PGL3(Fq)|
∑

C∈Q(Fq )

aμ(C).

For all q ≤ 25 and C ∈ Q(Fq), we have computed |C(Fq)|, |C(Fq2)|, and |C(Fq3)|.
From this information, we can then compute aμ(M0

3; q) for any partition μ.

8.2 Hyperelliptic curves

The Torelli morphism gives a bijection between [Hg(Fq)] and [tg(Hg)(Fq)], and
AutFq (C) = AutFq (tg(C)) for every [C] ∈ [Hg(Fq)]. It follows that aμ(tg(Hg); q) =
aμ(Hg; q) for all partitions μ.
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A hyperelliptic curve of genus g ≥ 2 comes with a canonical separable degree two
morphism to P

1. Using this morphism, we can describe any hyperelliptic curve as a
separable degree two extension of k(P1) ∼= k(x), where we have chosen a coordinate x .
If we assume that the characteristic is not two, then the degree two extension can be
written in the form y2 = f (x), where f is a square-free polynomial of degree 2g+1 or
2g + 2. Denote the set of such polynomials by Pg . The isomorphisms between curves
written in this form are generated by PGL2 = Aut(P1) and scalar multiplications of
y. If C f is the hyperelliptic curve corresponding to f ∈ Pg , then

ai (C f ) = −
∑

x∈P1(Fqi )

χ2,i ( f (x)),

where χ2,i is the quadratic character and f (∞) is equal to the (2g + 2)nd coefficient
of f . So, for characteristics not equal to two:

aμ(Hg; q) = 1

|GL2(Fq)|
∑

f ∈Pg(Fq )

aμ(C f ).

For a corresponding expression in characteristic two, see for instance the descrip-
tion in [4, Section 8]. For all q ≤ 17 and f ∈ P3(Fq), we have computed
|C f (Fq)|, |C f (Fq2)|, and |C f (Fq3)|. From this information, we can then compute
aμ(H3; q) for any partition μ and q ≤ 17.

An elliptic curve comes with a marked point and it has a canonical separable degree
two morphism to P

1 such that the marked point is a ramification point over infinity.
Thus, the elliptic curves can also be written in the form y2 = f (x), where f belongs
to the set P ′

1 of square-free polynomials of degree 3, and the group G of isomorphisms
is generated by scalar multiplications of y and morphisms induced from elements of
PGL2 that keep infinity fixed.

8.3 The decomposable abelian threefolds

Consider first the abelian threefolds that are isomorphic to a product of an elliptic
curve and a Jacobian of a genus 2 curve. The first cohomology group of such an
abelian variety is equal to the direct sum of the first cohomology groups of the two
curves. Moreover, the automorphisms of the abelian variety come only from the auto-
morphisms of the curves. We therefore find that aμ(t2(M2) × A1; q) equals

1

|GL2(Fq)|
1

|G(Fq)|
∑

f ∈P2(Fq )

∑

h∈P ′
1(Fq )

μ1∏

i=1

(
aμ̂i (C f ) + aμ̂i (Ch)

)
.

From the computation, for all q ≤ 17, of |C f (Fq)| and |C f (Fq2)| for all f ∈ P2(Fq)

and |Ch(Fq)| for all h ∈ P ′
1(Fq), we then compute aμ

(
t2(M2) × A1; q

)
for any

partition μ.
Let us now consider an abelian threefold that is a product of three elliptic curves.

Again, the first cohomology group of such an abelian threefold is the direct sum of
the first cohomology groups of the curves. There are three possibilities for the abelian
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threefold to be defined over Fq . Either all three elliptic curves are defined over Fq ; or
one of them is defined over Fq and the two others are defined over Fq2 , where one is
sent to the other by Frobenius Fq ; or finally, all are defined over Fq3 and Frobenius Fq

permutes these three curves cyclically. If we are in the first case and any of the curves
are equal, then there are extra automorphisms coming from the possible permutations.
In the second case, Fq becomes a new non-trivial automorphism, and in the third case,
we have both Fq and F2

q . These observations leave us with the following formula for
aμ

(A1,1,1; q
)
:

1

6

1

|G(Fq)|3
∑

f1, f2, f3∈P ′
1(Fq )

μ1∏

i=1

(
aμ̂i (C f1) + aμ̂i (C f2) + aμ̂i (C f3)

)

+1

2

1

|G(Fq)|
1

|G(Fq2)|
∑

f ∈P ′
1(Fq )

∑

h∈P ′
1(Fq2 )

μ1∏

i=1

(
aμ̂i (C f ) + aμ̂i (Ch)

)

+1

3

1

|G(Fq3)|
∑

f ∈P ′
1(Fq3 )

μ1∏

i=1

(
aμ̂i (C f )

)
.

For all q ≤ 17, 1 ≤ j ≤ 3 and f j ∈ P ′
1(Fq j ), we have computed |C f j (Fq j )|. From

this information, we can then compute aμ(A1,1,1; q) for any partition μ and q ≤ 17.

8.4 Closed formulas for numbers of points

In the articles [3] and [4], the first author counted points over any finite field for the
spaces M0

3,n and Hg,n , for g ≥ 2 and n ≤ 7. Using this information, ec(M0
3 ⊗Q, Vλ)

and ec(Hg ⊗ Q, Vλ), for all g ≥ 2, could be determined as elements of K0(GalQ)

for all |λ| ≤ 7. This information can be pieced together (with genus 1 information
from Theorem 2.3) using the decomposition (8.3), compare [7], to determine ec(A3 ⊗
Fq , Vλ) for |λ| ≤ 6 as an element of K0(GalQ). The results are polynomials in
Q�(−1).

Theorem 8.1 Let q denote the class of Q�(−1) in K0(GalQ). The following holds:

λ ec(A3 ⊗ Q, Vλ) λ ec(A3 ⊗ Q, Vλ)

(0, 0, 0) q6 + q5 + q4 + q3 + 1 (2, 0, 0) −q3 − q2

(1, 1, 0) −q (4, 0, 0) −q3 − q2

(3, 1, 0) 0 (2, 2, 0) 0
(2, 1, 1) 1 (6, 0, 0) −2q3 − q2

(5, 1, 0) −q4 (4, 2, 0) −q5 + q
(4, 1, 1) 1 (3, 3, 0) q7 − q
(3, 2, 1) 0 (2, 2, 2) 1
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Remark 8.2 If we assume it to be known that sn(λ) = 0 for all λ with |λ| ≤ 6, then
this theorem proves that Conjecture 7.1 is true for these local systems.

9 Characteristic polynomials

In this section, we will use the conjectures stated in Sect. 7 together with the informa-
tion coming from our counts of points over finite fields to (conjecturally) determine
the local spinor L-factor at p = 2 of certain Siegel modular forms of degree 3.

Let f ∈ �
gen
a−b,b−c,c+4 be an eigenform and put m = (a + b + c + 6)/2. The local

spinor L-factor L p(s, f ) equals Q p(p−s, f )−1, where Q p(X, f ) is the characteristic
polynomial of the image of the conjugacy class sp( f ) in GSpin7(C) under the spin
representation. It is known that Q p(X, f ) satisfies the following duality:

Q p(X, f ) = (pm X)8 Q p(p−2m X−1, f ).

Let � be the set of λ for which Conjecture 7.3 together with Conjecture 7.7 indicate
that sgen

λ = 1, that is, that the space of generic Siegel modular forms is one-dimensional
(with |λ| ≤ 60). This set consists of 123 elements. For λ in �, a single eigenform fλ
should generate the space of generic Siegel modular forms.

We thus expect �gen[n(λ)] to be of rank 8 for λ in �. Assuming this, we can use
Conjecture 7.1 and Conjecture 7.11 together with the computations of Tr(F2i , ec(A3⊗
F2i , Vλ)) for 1 ≤ i ≤ 4 to compute the first five coefficients of a polynomial F2,λ(X)

of degree 8, which should equal the characteristic polynomial C2(X, �gen[n(λ)]) of
F2. Recall from Sect. 5 that C2(X, �gen[n(λ)]) should in turn equal Q2(X, fλ). Thus,
using the duality above, we have a conjectural way of finding the local spinor L-factor
at p = 2 for 123 Siegel modular forms of degree 3.

We will now make two “checks” of the polynomials F2,λ(X) that we have found.
We view these as substantial consistency checks for our conjectures.

First, for all λ in �, we find that the Ramanujan conjecture is fulfilled for F2,λ(X),
that is, the roots of F2,λ(X) have absolute value 2−m .

If we normalize Q p(X, f ) by

Q̂ p(X, f ) := Q p(p−m X, f ),

we will get a polynomial of the form

X8 − AX7 + B X6 − C X5 + DX4 − C X3 + B X2 − AX + 1, (9.1)

for which (see [29, Prop. 2.2.2])

A2(D + 2B + 1) = C2 + 2AC + A4. (9.2)
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If we fix λ in � and put

F̂2,λ(X) := F2,λ(2
−m X),

we get a polynomial of the form (9.1). The second check is that for all λ in � the
condition (9.2) holds for F̂2,λ(X).

9.1 Motives for G2

In the article [48], Serre asked if there are motives with motivic Galois group of
type G2. Gross and Savin suggested in [27] that one should search for such motives
inside the cohomology of a moduli space of principally polarized abelian varieties of
dimension 3 with an Iwahori level structure at a finite number of primes. They were
able to construct automorphic forms of level 2 and of level 5 for PGSp6 that both are
lifts from automorphic forms for G2 ([29, Prop. 4.5.8]).

The dual group of an anisotropic form of G2 equals G2(C) and we have an inclusion
of dual groups G2(C) ↪→ Spin7(C), which realizes G2(C) as the stabilizer of a non-
isotropic vector in the spin representation, see [27]. The Langlands program then
predicts that there should be a lift of automorphic forms from G2 to GSp6. For a
Siegel modular eigenform f for GSp6 that is a lift from G2, the normalized spinor
L-function Q̂ p(X, f ), which is of the form (9.1), will fulfill the relation (9.2) and the
relation

2A − 2B + 2C − D − 2 = 0. (9.3)

These relations have the consequence that Q̂ p(X, f ) has (X − 1)2 as a factor.
We expect the motive corresponding to a Siegel modular eigenform f that is a lift

from G2 to have rank 8, and it should decompose into an irreducible piece of dimension
7 and a Tate class. The Tate class will leave a footprint on Q̂ p(X, f ) as one of the
factors (X − 1) mentioned above. In [27], it is shown that if there are lifts from G2 to
GSp6, then they will appear for local systems of the form (b + c, b, c).

For all λ in �, we can compute F̂2,λ(X) as described above, and we found F̂2,λ(X)

to be irreducible except in the following 12 cases:

(9, 6, 3), (10, 8, 2), (10, 6, 4), (11, 10, 1), (11, 8, 3), (11, 7, 4), (12, 12, 0),

(12, 9, 3), (12, 6, 6), (14, 14, 0), (12, 11, 5), (15, 15, 0).

In all these 12 cases, conditions (9.2) and (9.3) were found to hold. We see that all
these local systems are of the form (b + c, b, c), except for λ = (12, 11, 5). For the
single case, the behavior at p = 2 may be an anomaly. In the other 11 cases, we expect
that there is a motive of rank 7 with motivic Galois group of type G2 appearing in
H6

c (A3, Vλ).
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Example 9.1 For λ = (9, 6, 3), we use the method above to compute

F2,λ(X) = (1 − 212 X)2 (1 + 7112 X + 34431488 X2 +
+176085008384 X3 + 224 · 34431488 X4 + 248 · 7112 X5 + 272 X6),

which we expect to be the characteristic polynomial at p = 2 of a modular form lifted
from G2.

10 Congruences

Motivated by his work on the Eisenstein cohomology of a local system on A2, Harder
formulated in [31,32] a conjectural congruence between the Hecke eigenvalues of
an elliptic cusp form and those of a degree 2 Siegel modular form modulo a “large”
prime that divides a critical value of the L-function of the elliptic modular form. In this
section, we will present this conjecture and several similar conjectural congruences
for Siegel modular forms of degree 2 and 3. These conjectures were formulated in
close collaboration with Harder.

We view the conjectures in this section as the beginnings of a general theory of
congruences, and every concrete example of a congruence as an additional confirma-
tion of the conjectures in Sects. 6 and 7, for which we have much more evidence than
for the conjectures below. As the case of Harder’s conjecture shows, special care will
be required when the local system given by (a, b) or (a,b,c) is not regular.

Definition 10.1 For a Siegel modular eigenform f of degree g, a prime number p,
and an integer r ≥ 1, we use the Satake parameters to define

λpr ( f ) =
g∑

s=0

∑

1≤i1<i2<···<is≤g

(
αp,0( f )αp,i1( f ) · · · αp,is ( f )

)r
.

For r = 1, this definition coincides with our previous one: The eigenvalue of f
under the action of the Hecke operator T (p).

Remark 10.2 Note that this notation is non-standard.

Definition 10.3 For a Siegel modular eigenform f , we have a finite field extension,
namely Q f := Q(λp( f ) : p prime). If f1, . . . , fn are eigenforms, then Q f1,..., fn will
denote the compositum of the fields Q f1, . . . , Q fn .

For an eigenform f ∈ Sk , we put L∞( f, s) := �(s)/(2π)s and �( f, s) :=
L∞( f, s) L( f, s). The function �( f, s) has a holomorphic continuation to the whole
complex plane and it fulfills the functional equation �( f, s) = (−1)k/2�( f, k − s).
The numbers �( f, r) for k/2 ≤ r ≤ k −1 are called critical values of f . By a theorem
of Manin and Vishik, see [29], there exist two real numbers ω+( f ) and ω−( f ), called
periods, such that �′( f, r) := �( f, r)/ω±( f ) (where we take ω+ if r is even, and
ω− if r is odd) lies in the field Q f . We will say that a prime � in Q f divides �′( f, r)

if it divides the numerator of �′( f, r). Moreover, if � in Q f lies above the prime p in
Q, then � will be called ordinary (for f ) if λp( f ) ≡� 0 does not hold.
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Conjecture 10.4 (Harder [32,55]) Assume a > b. Take an eigenform f ∈ Sa+b+4.
If for an ordinary prime � in Q f and s ≥ 1 the number �s divides the critical value
�′( f, a + 3), then there is an eigenform F ∈ Sa−b,b+3 such that

λq(F) ≡�s λq( f ) + qa+2 + qb+1

holds in Q f,F for all prime powers q.

Remark 10.5 The original conjecture supposed � to be “large” (a slightly imprecise
notion, but � greater than the weight of the form should suffice). Harder suggested to
replace it by “ordinary.” The conjectural congruence has been checked numerically in
many instances, see [55, p. 237–240].

The congruences in Harder’s conjecture should come from denominators of Eisen-
stein classes in the Betti cohomology. In the case a = b even, there is no Eisenstein
class (see [33]) and hence no conjectured congruence either. In the case a = b odd, the
conjecture is trivially true due to the presence of Saito–Kurokawa lifts. The statement
with Sa−b,b+3 replaced by �

gen
a−b,b+3 is nontrivial. It has been proved under certain

conditions, see [39, Section 6] and [20].

For any elliptic modular eigenforms f1, . . . , fm , where fi ∈ Ski , we define the
following L-function through an Euler product:

L
( m⊗

i=1

Symri ( fi ), s
) :=

∏

p

( m∏

i=1

ri∏

j=0

(
1 − αp,0( fi )

ri αp,1( fi )
j p−s)

)−1
.

Below, several different instances, here denoted L(·, s), of this L-function will
appear and we will naively assume that we have corresponding properties to what
we saw above for L( f, s) (for more details, see [15]). That is, that we can define a
factor at infinity L∞(·, s), such that �(·, s) := L∞(·, s) L(·, s) has a meromorphic
continuation to the complex plane and fulfills a functional equation. Moreover, that
there is a set of integers r called critical values and two real numbers ω+( f ) and
ω−( f ), such that for each critical value r , the quotient �′(·, r) := �(·, r)/ω±( f ) lies
in the field Q f . We will then, in the same way as above, talk about primes dividing
�′(·, r). In the two cases appearing in the section for genus 2, these properties are
known to hold; see [58] for the case L(Sym2 f, s). The conjectures we will formulate
will be slightly imprecise in the sense that we will not specify what is meant by a large
prime. One may suspect that � being ordinary for the g = 1 forms involved should
suffice.

Our general philosophy can somewhat vaguely be formulated as follows. Congru-
ences appear between elements of different subspaces of Hi

c (Ag, Vλ) invariant under
the Hecke algebra, due to integrality issues (compare [32, p. 255]), and their appear-
ance is governed by vanishings of critical values of L-functions modulo primes. We
are interested in congruences involving generic Siegel modular forms of genus g, and
thus, we consider the middle cohomology group.

In this picture, the following congruence in genus 1 is connected to the class in
H1

Eis(A1, Va) that comes from an Eisenstein series whose Hecke eigenvalue for T (p)
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equals 1 + pa+1. If a prime � divides the numerator of ζ(−a − 1), then there is an
eigenform F ∈ Sa+2 such that

λq(F) ≡� 1 + qa+1

holds in QF for all prime powers q.
In a similar way, Harder’s congruence should be connected to the classes

sa+b+4Lb+1, found in H3
Eis(A2, Va,b), if a �= b, and to the classes coming from

Saito-Kurokawa lifts, if a = b is odd (cf. [33]).

10.1 Congruences in genus 2

First we put

e2,SK(a, b) := −S[2a + 4] − s2a+4(La+1 + La+2) if a = b is odd

and then

Nq(a, b) := −Tr
(
Fq , ec(A2, Va,b)

) + Tr
(
Fq , e2,extr(a, b)

) + Tr
(
Fq , e2,SK(a, b)

)
.

10.1.1 Kurokawa-Mizumoto congruence

The following conjecture was formulated together with Harder (it should be compared
with [19, Prop. 4.4]) and is connected to the Eisenstein series which give rise to the
classes S[a + 3] found in H3

Eis(A2, Va,b). It generalizes, to the vector-valued case,
a congruence found by Kurokawa, which was proved (also in the case of higher
genera) by Katsurada and Mizumoto, see [38] and [43]. The Kurokawa-Mizumoto
congruence is the case a = b in our conjecture. Several instances of this generalized
congruence have already been proved for vector-valued Siegel modular forms, see [46]
and [19].

Conjecture 10.6 Take an eigenform f ∈ Sa+3. If for a “large” prime � in Q f and
s ≥ 1 the number �s divides the critical value �′(Sym2( f ), a + b + 4), then there is
an eigenform F ∈ �

gen
a−b,b+3 such that

λq(F) ≡�s λq( f )
(
qb+1 + 1

)
(10.1)

holds in Q f,F for all prime powers q.

Let f ∈ Sk and k ≤ 22 be such that a “large” prime � to the power s divides
�′(Sym2( f ), m) for k + 1 ≤ m ≤ 2k − 2, see for instance [18, Table 1]. We have
then checked that sgen

a−b,b+3 ≥ 1 for the corresponding pairs (a, b). There are seven

cases for which sgen
a−b,b+3 = 1, and in all these, Nq(a, b) is congruent, modulo �s , to

the right hand side of (10.1) for all q ≤ 37.
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10.1.2 Yoshida-type congruence

This congruence should be connected to the endoscopic contribution −sa+b+4S[a −
b + 2]Lb+1, and it was found following a suggestion by Zagier.

Conjecture 10.7 Take any eigenforms f ∈ Sa+b+4 and g ∈ Sa−b+2. If for a “large”
prime � in Q f and s ≥ 1 the number �s divides the critical value �′( f ⊗ g, a + 3),
then there is an eigenform F ∈ Sa−b,b+3 such that

λq(F) ≡�s λq( f ) + qb+1λq(g) (10.2)

holds in Q f,g,F for all prime powers q.

That a+3 was the correct critical value of the L-function was suggested by Dummi-
gan. He computed (algebraically) the critical value �′( f ⊗ g, a + 3) for eigenforms
f ∈ Sa+b+4 and g ∈ Sa−b+2, when (a, b) = (18, 8), (20, 4), (21, 3), or (20, 0).
The only large primes dividing the norm of these critical values were � = 263 for
(18, 8), � = 223 for (20, 4), and � = 2747 for (21, 3). In all these cases, sa−b,b+3 = 1
and Nq(a, b) is congruent, modulo �, to the norm of the right hand side of (10.2)
for all q ≤ 37. We have that s20,3 = 0, but there is at the same time no large prime
dividing the critical value for (a, b) = (20, 0).

10.2 Congruences in genus 3

First we put

e3,ne(a, b, c) := S[b + 3](S[a + c + 5] + Lc+1S[a − c + 3])

+ S[a + 4](S[2b + 4] + s2b+4(Lb+1 + Lb+2)
)

if b = c

+ S[c + 2](S[2a + 6] + s2a+6(La+2 + La+3)
)

if a = b

and then

Nq(a, b, c) := Tr
(
Fq , ec(A3, Va,b,c)

) − Tr
(
Fq , e3,extr(a, b, c)

)

−Tr
(
Fq , e3,ne(a, b, c)

)
.

10.2.1 Congruences of Eisenstein type

The following two conjectures were formulated together with Harder and should be
connected to contributions to the Eisenstein cohomology of the form sb+c+4 Lc+1S[a+
4] (respectively sa+b+6Lb+2S[c + 2]) and to non-exhaustive lifts of the form (ii) and
(iii) in Conjecture 7.7.

Conjecture 10.8 Take any eigenforms f ∈ Sa+4 and g ∈ Sb+c+4. If for a “large”
prime � in Q f,g and s ≥ 1 the number �s divides the critical value �′(Sym2( f ) ⊗
g, a + b + 6), then there is an eigenform F ∈ �

gen
a−b,b−c,c+4 such that
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Table 3 Congruences of the
form (10.3)

(a, b, c) �s (a, b, c) �s

(12, 6, 2) 101 (14, 7, 1) 172

(16, 8, 0) 43 (16, 7, 1) 263

(16, 5, 3) 127 (16, 4, 4) 29

(12, 12, 0) 37 (12, 9, 3) 137

(12, 6, 6) 229 (14, 11, 1) 37

(14, 7, 5) 71 (12, 8, 6) 73

(14, 14, 0) 59 (12, 8, 8) 61

(12, 12, 12) 107 (14, 13, 11) 41

(16, 16, 16) 157

λq(F) ≡�s λq( f )
(
λq(g) + qb+2 + qc+1) (10.3)

holds in Q f,g,F for all prime powers q.

Remark 10.9 This congruence was formulated in the scalar-valued case (generalized
to any Miyawaki-Ikeda lift) by Katsurada, [36].

Mellit computed (using numerical approximations) a list of critical values
�′(Sym2( f ) ⊗ g, ν), for all eigenforms f ∈ Sk1 and g ∈ Sk2 with k1, k2 ≤ 20.
There are 17 cases in this list, presented in Table 3, for which a large prime power �s

divides a critical value and (conjecturally) sgen
a−b,b−c,c+4 = 1, for the corresponding

tuple (a, b, c). In all these cases, Nq(a, b, c) is congruent, modulo �s , to the right hand
side of (10.3) for all q ≤ 17.

The critical values in Table 3 have also been checked algebraically by Katsurada, and
recently, Poor and Yuen have proved that the congruence holds in the case (a, b, c) =
(12, 12, 12), [36].

Conjecture 10.10 Take any eigenforms f ∈ Sc+2 and g ∈ Sa+b+6. If for a “large”
prime � in Q f,g and s ≥ 1 the number �s divides the critical value �′(Sym2( f ) ⊗
g, a + c + 5), then there is an eigenform F ∈ �

gen
a−b,b−c,c+4 such that

λq(F) ≡�s λq( f )
(
λq(g) + qa+3 + qb+2) (10.4)

holds in Q f,g,F for all prime powers q.

We only have one example of this congruence, namely, when (a, b, c) =
(13, 11, 10). There are then eigenforms f ∈ Sc+2 and g ∈ Sa+b+6 for which � = 199
divides the norm of the critical value �′(Sym2( f )⊗ g, a + c + 5), computed (numer-
ically) by Mellit. Conjecturally, sgen

a−b,b−c,c+4 = 1, and we have that Nq(a, b, c) is
congruent, modulo �, to the norm of the right hand side of (10.4) for all q ≤ 17.

There is also a contribution to the Eisenstein cohomology of the form sa+b+6Lb+2

S[a − b + 2], which should be connected to a congruence of the form

λq(F) ≡�s
(
λq( f ) + qb+1λq(g)

)
(1 + qc+1) (10.5)



Siegel modular forms of degree three 119

Table 4 Congruences of the
form (10.5)

(a, b, c) �s (a, b, c) �s

(14, 4, 2) 103 (15, 5, 4) 691

(24, 2, 2) 31

Table 5 Congruences of the
form (10.6)

(a, b, c) �s (a, b, c) �s

(12, 6, 2) 149 (10, 6, 4) 41

(13, 5, 4) 601 (12, 8, 2) 59

(12, 6, 4) 379 (20, 2, 2) 37

(15, 5, 4) 29 (13, 7, 4) 23

(13, 7, 6) 1621 (12, 8, 6) 53

(12, 8, 8) 89 (16, 16, 16) 691

for F ∈ Sa−b,b−c,c+4, f ∈ Sa+b+6, and g ∈ Sa−b+2. We have three examples of
Nq(a, b, c) being congruent, modulo a “large” prime, to the right hand side of (10.5)
for all q ≤ 17, and they are presented in Table 4.

Finally, we have a contribution to the Eisenstein cohomology of the form S[a − b,

b + 4], which should be connected to a congruence of the form

λq(F) ≡�s λq( f )(1 + qc+1) (10.6)

for F ∈ �
gen
a−b,b−c,c+4 and f ∈ �

gen
a−b,b+4. We have found twelve examples of

Nq(a, b, c) being congruent, modulo a “large” prime, to the right hand side of (10.6)
for all q ≤ 17, and they are presented in Table 5.

In our picture, there are two other possibilities, which are variants of the two lat-
ter congruences, but where the contributions are found in ec(A2, Vb,c) instead of in
ec(A2, Va+1,b+1). But we have not found any examples.

10.2.2 Congruences of endoscopic type

In the following two congruences, the critical value a + b + 5 of the L-function was
suggested by Dummigan, on the grounds that it would (like all the congruences in this
section) fit well with the Bloch–Kato conjecture. The first congruence is between lifts
of the form (i) in Conjecture 7.7 and forms in �

gen
a−b,b−c,c+4.

Conjecture 10.11 Take any eigenforms f ∈ Sb+3, g ∈ Sa+c+5 and h ∈ Sa−c+3. If
for a “large” prime � in Q f,g and s ≥ 1 the number �s divides the critical value
�′(Sym2( f ) ⊗ g ⊗ h, a + b + 5), then there is an eigenform F ∈ �

gen
a−b,b−c,c+4 such

that

λq(F) ≡�s λq( f )
(
λq(g) + qc+1λq(h)

)
(10.7)

holds in Q f,g,h,F for all prime powers q.
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Mellit computed the critical value �′(Sym2( f )⊗g⊗h, a+b+5) when (a, b, c) =
(12, 9, 3) and found that it was divisible by � = 37. We have conjecturally that
sgen

a−b,b−c,c+4 = 1, and Nq(a, b, c) is congruent, modulo �, to the right hand side of
(10.7) for all q ≤ 17.

The following congruence should be connected to the endoscopic contribution of
the form S[a + 4](S[b + c + 4] + Lc+1S[b − c + 2

)
.

Conjecture 10.12 Take any eigenforms f ∈ Sa+4, g ∈ Sb+c+4 and h ∈ Sb−c+2. If
for a “large” prime � in Q f,g and s ≥ 1 the number �s divides the critical value
�′(Sym2( f ) ⊗ g ⊗ h, a + b + 5), then there is an eigenform F ∈ Sa−b,b−c,c+4 such
that

λq(F) ≡�s λq( f )
(
λq(g) + qc+1λq(h)

)
(10.8)

holds in Q f,g,h,F for all prime powers q.

In this case, Mellit computed the critical value �′(Sym2( f ) ⊗ g ⊗ h, a + b + 5)

when (a, b, c) = (16, 14, 0), for which conjecturally sgen
a−b,b−c,c+4 = 1. It is divisible

by � = 71 and indeed Nq(a, b, c) is congruent, modulo �, to the right hand side of
(10.8) for all q ≤ 17.

In the regular case, the endoscopic contribution to ec(A3, Va,b,c) consists conjec-
turally of two pieces, see Conjecture 7.12. Hence, in our picture, there is possibly a
congruence connected to the other piece. But we have no numerical evidence, because
sgen

a−b,b−c,c+4 is conjecturally larger than 1 in all cases when the congruence could
appear.

(a, b, c) ec(A3, Va,b,c) (a, b, c) ec(A3, Va,b,c)

(0, 0, 0) L6 + L5 + L4 + L3 + 1 (2, 0, 0) −L3 − L2

(1, 1, 0) −L (4, 0, 0) −L3 − L2

(3, 1, 0) 0 (2, 2, 0) 0
(2, 1, 1) 1 (6, 0, 0) −2L3 − L2

(5, 1, 0) −L4 (4, 2, 0) −L5 + L
(4, 1, 1) 1 (3, 3, 0) L7 − L
(3, 2, 1) 0 (2, 2, 2) 1
(8, 0, 0) −L3 − L2 + S[12] (7, 1, 0) −L
(6, 2, 0) L (6, 1, 1) −L2 + 1
(5, 3, 0) 0 (5, 2, 1) 0
(4, 4, 0) 0 (4, 3, 1) 0
(4, 2, 2) L4 (3, 3, 2) −L6 + 1
(10, 0, 0) −2L3 − S[12]L3 (9, 1, 0) −L4 + 1

−L2 + L
(8, 2, 0) −L5 + L (8, 1, 1) 1
(7, 3, 0) −L6 − L (7, 2, 1) 0
(6, 4, 0) −L7 + L (6, 3, 1) −L2

(6, 2, 2) 0 (5, 5, 0) L9 − L
(5, 4, 1) 0 (5, 3, 2) −L3

(4, 4, 2) 0 (4, 3, 3) −L4 + 1
(12, 0, 0) −2L3 − L2 + S[16] (11, 1, 0) −L4 − S[12]L4



Siegel modular forms of degree three 121

(a, b, c) ec(A3, Va,b,c) (a, b, c) ec(A3, Va,b,c)

(10, 2, 0) −L5 + L (10, 1, 1) −L2 − S[12]L2 + 2
(9, 3, 0) −L6 + 1 (9, 2, 1) 0
(8, 4, 0) −L7 + L (8, 3, 1) −S[12]
(8, 2, 2) L4 + S[12] (7, 5, 0) −L8 − L
(7, 4, 1) 0 (7, 3, 2) L5

(6, 6, 0) L10 + S[0, 10] (6, 5, 1) −L2

(6, 4, 2) L6 − 1 (6, 3, 3) 1
(5, 5, 2) −L8 − L3 + 1 (5, 4, 3) 0
(4, 4, 4) −L6 + 1 (14, 0, 0) −S[16]L3 − 2L3

−L2 + L + S[18]
(13, 1, 0) −L4 − L − S[16]L + 1 (12, 2, 0) −L5 − S[12]L5 + 2L
(12, 1, 1) −L2 + 1 (11, 3, 0) −L6 − L
(11, 2, 1) 0 (10, 4, 0) −L7 + L + S[6, 8]
(10, 3, 1) −L2 − S[12]L2 + 1 (10, 2, 2) L4

(9, 5, 0) −L8 + 1 (9, 4, 1) 0
(9, 3, 2) L5 − L3 (8, 6, 0) −L9 + L
(8, 5, 1) −S[12] (8, 4, 2) L6 − 1
(8, 3, 3) −L4 + 1 (7, 7, 0) L11 − 2L
(7, 6, 1) 0 (7, 5, 2) L7

(7, 4, 3) 0 (6, 6, 2) −L9 + L3 + S[0, 10]
(6, 5, 3) L4 (6, 4, 4) 0
(5, 5, 4) −L8 + 1
(16, 0, 0) −S[18]L3 − 2L3 − L2 (15, 1, 0) −L4 − S[16]L4

+L + S[20] −S[18]L + 1
(14, 2, 0) −L5 + L + S[12, 6] (14, 1, 1) −L2 − S[16]L2 + 2
(13, 3, 0) −L6 − S[12]L6 − S[16]L + 1 (13, 2, 1) 0
(12, 4, 0) −L7 + L + S[8, 8] (12, 3, 1) −L2 − S[16]
(12, 2, 2) L4 + S[12]L4 − 1 + S[16] (11, 5, 0) −L8 − L
(11, 4, 1) 0 (11, 3, 2) L5 − L3 − S[12]L3 + 1
(10, 6, 0) −L9 + L + S[4, 10] (10, 5, 1) −L2 − S[12]L2 + 1
(10, 4, 2) L6 + S[6, 8] − 1 (10, 3, 3) −L4 + 1
(9, 7, 0) −L10 + 1 (9, 6, 1) 0
(9, 5, 2) L7 − L3 (9, 4, 3) 0
(8, 8, 0) L12 + L + S[12]L + S[0, 12] (8, 7, 1) L2 + S[12]L2 − S[12]
(8, 6, 2) L8 + L3 + S[12]L3 − 1 (8, 5, 3) S[12]L4 − S[12]
(8, 4, 4) −S[12]L6 + S[12] + S[4, 0, 8] (7, 7, 2) −L10 + 1
(7, 6, 3) 0 (7, 5, 4) L7 − L5

(6, 6, 4) −L9 + S[0, 10] (6, 5, 5) −L6 + 1
(18, 0, 0) −2S[20]L3 − 3L3 − L2 (17, 1, 0) −2L4 − 2S[18]L4

+L + S[22] −S[20]L + 1
(16, 2, 0) −2L5 − 2S[16]L5 + 2L (16, 1, 1) −L2 − S[18]L2 + 2
(15, 3, 0) −2L6 − L − S[18]L (15, 2, 1) 0

+1 + S[12, 7]
(14, 4, 0) −2L7 − 2S[12]L7 + 2L (14, 3, 1) −L2 − S[16]L2

+1 − S[18]
(14, 2, 2) L4 + S[18] + S[12, 6] (13, 5, 0) −2L8 − L − S[16]L

+1 + S[8, 9]
(13, 4, 1) 0 (13, 3, 2) L5 + S[12]L5 − L3 − 1
(12, 6, 0) −2L9 + L + S[6, 10] (12, 5, 1) −L2 − S[16]
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(a, b, c) ec(A3, Va,b,c) (a, b, c) ec(A3, Va,b,c)

(12, 4, 0) L6 + S[8, 8] − 1 (12, 3, 3) −L4 − S[12]L4 + 2
(11, 7, 0) −2L10 − L (11, 6, 1) 0
(11, 5, 2) L7 − L3 − S[12]L3 (11, 4, 3) 0

+1 + S[6, 3, 6]
(10, 8, 0) −2L11 + 2L (10, 7, 1) −S[12]L2 + 1
(10, 6, 2) L8 + L3 + S[4, 10] − 1 (10, 5, 3) 0
(10, 4, 4) S[6, 8] (9, 9, 0) 2L13 − L + S[12] + 1
(9, 8, 1) 0 (9, 7, 2) L9 − L3

(9, 6, 3) S[3, 3, 7] (9, 5, 4) L7 − L5

(8, 8, 2) −L11 + S[0, 12] (8, 7, 3) −L4 − S[12]
(8, 6, 4) L8 − 1 (8, 5, 5) −L6 + 1
(7, 7, 4) −L10 − L5 + 1 (7, 6, 5) 0
(6, 6, 6) −L9 − L8 + 1 + S[0, 10]
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