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VECTOR VALUED SIEGEL'S MODULAR FORMS OF DEGREE TWO 

AND THE ASSOCIATED ANDRIANOV L-FUNCTIONS 

TSUNEO ARAKAWA 

In [i], [2], Andrianov constructed a remarkable Hecke 

theory for Siegel's modular forms of degree two. In 

this article we extend some of his results to the case 

of vector valued Siegel's modular forms of degree two. 

0. Introduction 

0.i. We summarize our results. For non-negative integers k, v, 

let 0k,v be the holomorphic irreducible representation of GL2(C) 

defined by 

(0.I) pk,v(g) = det(g)kov(g) (gEGL2(C)) , 

where ~ denotes a symmetric tensor representation of GL2(C) of 

degree v. We simply write 0 for Ok, v and denote by V the 

representation space of 0. There exists a non zero vector v0e V 

which satisfies the condition: 

0(b)v 0 det(b)kb~v0 for all b=(~l x 1 (0.2) = E GL2(C). 
b 2 

Such a vector v 0 is uniquely determined up to a constant multiple. 

Here we note that any holomorphic representation of GL2(C) with 

finite dimension is equivalent to a direct sum of representations 

Ok, v of the form (0.i). We set 
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I ~ GSp(2,R) = M6M4(R) I MjtM=v(M)J' v(M) > 0 , J= _E 2 

The real symplectic group GSp(2,~) with similitudes acts on the 

Siegel upper half plane H 2 of degree two in a usual manner: 

<0.3> z > M<Z>:<AZ+B><CZ+D> -I <Z H 2, M I$ aSp<2,R >. 

The canonical automorphic factor J(M~Z) is defined by 

J(M,Z) = CZ+D (Z6 H2, M= D 

Denote by F the Siegel modular group Sp(2,~) of degree two. A 

V-valued holomorphic function f on H 2 is called a modular form of 

weight 0 with respect to F, if f satisfies the equalities: 

(0.4) f(M<Z~) = ~(J(M,Z))f(Z) for all M~ r. 

Let Mk, v be the space of modular forms of weight p with respect to 

r. If v is odd, then, Mk, v is trivially zero. Denote by ~ the ~- 

operator of Siegel on Mk, v and by Sk, v the space of cusp forms of 

Mk,v: Sk~v= {fEMk, v I ~f=0 ~. Let Nk, v be the orthogonal complement 

of the subspace Sk, v in Mk, v with respect to the Petersson inner 

product on Mk, v. For v even and k odd, we have Nk,v=(0}. The space 

Mk, v decomposes into the direct sum of subspaces Sk, v and Nk,v: Mk, v 

= Sk,v~ Nk, v. Let T(m) (m=l,2,...) be the Hecke operators acting on 

the space Mk, v (for the definition, see w 2). The properties of 

Hecke operators make it possible to show that the subspaces Sk,v, 

Nk, v are invariant under the action of T(m) (m=l,2,...) and that 

each subspace has a basis consisting of common eigen forms. If k> 4 

and v >0, then one can show that the space Nk, v is isomorphic to the 

space S I of elliptic cusp forms of weight k+v with respect to 
k+v 

SL2(Z). The isomorphism of S Ik+v to Nk, v is given by Klingen's 
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Eisenstein series (see w i). 

For f~ Mk,v, f(Z) has a Fourier expansion of the form 

(0.5) f(Z) = ~ af(T)exp(2~J~tr(TZ)) (af(T) E V), 

where T is over all semi-positive definite half-integral symmetric 

matrices of size two. Let fE Mk, v be a common eigen form, i.e., 

T(m)f=l(m)f (m=l,2,...). The Andrianov L-function associated to f 

is defined by 

(0.6) Lf(s) = ~(2s-2k-v+4) ~ l(m)m -s. 
m=l 

The Dirichlet series Lf(s) is absolutely convergent, if Re(s) is 

sufficiently large. We attach the F-factor to Lf(s): 

(0.7) ~f(s) = (2~)-2SF(s)F(s-k+2)Lf(s). 

When v=0 (the original case), it has been proved by Andrianov [1], 

[2] that Lf(s) can be continued analytically to a meromorphic 

function in the whole complex plane which satisfies the functional 

equation: 

Yf(2k-2-s) = (-l)kyf(s). 

Suppose v> 0. For f E Mk,v, Cf(z) (Imz>0) has the form: 

Cf(z) = ~(z)v 0 with some ~6 S I 
k+~" 

It will be shown that f6 Nk, v is a common eigen form, if and only 

if the corresponding ~ E S 1 is a common eigen form. Moreover, for 
k+v 

a common eigen form f6 Nk, v , the L-function Lf(s) can be written 

in the form: 
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(0-8) Lf(s) = L~(s)L@(s-k+2), 

where L~(s) is the associated L-function to ~. 

For cusp forms, we obtain the following theorem, which will be 

regarded as generalization of Andrianov's results to the case v> 0. 

Theorem. Suppose v > 0. Let f E Sk, v be a common eigen form and 

assume that af(E2)#0. Then, the L-function Lf(s) is continued 

analytically to an entire function of s which satisfies the 

functional equation: 

(0--9) Tf(2k+v-2-s) = (-l)kyf(s). 

If fs Nk, v is a common eigen form, then the analytic continuation 

of Lf(s) and the functional equation (0-9) can be derived directly 

from the identity (0-8). 

Example. By virtue of the explicit calculation of the 

dimension of the space Sk, v due to Tsushima [ii], [12], it is known 

that dimcSl7,4=l. It will be shown that the unique cusp form • of 

S17,4 gives an example of a common eigen form with the condition 

a• 

0.2. The method for the proof is similar to that of Andrianov 

[i]. However, in the vector valued case, there is one difficulty 

which did not appear in the original case of Andrianov. The 

difficulty arises from the following property of Fourier 

coefficients af(T) of f (Mk,v: 

(0-i0) af(UTtU) = p(U)af(T) for all U E GL2(Z). 
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Because of this property of Fourier coefficients, we are not able 

to prove the theorem without the assumption af(E2)~0 for the 

moment. 

0.3. The present article consists of four sections. In w I, 

basic properties of vector valued modular forms of degree two are 

explained. In w 2, we study the relation between Fourier 

coefficients of f~ Mk, v and those of T(m)f. The aim of w 3 is to 

translate the results of w 2 into terms of the Andrianov L-function 

and to prove the theorem with the use of a certain integral 

representation of Lf(s). In w 4, we give a method of constructing 

cusp forms f with the non-zero Fourier coefficients af(E2). 

Notation 

Let Z, Q, R and C denote the ring of rational integers, the 

rational number field, the real number field and the complex number 

field, respectively. For any natural number n and for any commutative 

ring S with an identity element, Mn(S) , GLn(S) , and SLn(S) denote the 

ring of all matrices of size n with entries in S, the group of all 

invertible elements in Mn(S) , and the group of elements in Mn(S) 

whose determinants are one, respectively. For any element A of M (S), 
n 

we denote by tA, tr(A), and det(A) the transposed matrix of A, the 

trace of A, and the determinant of A, respectively. Moreover, we 

denote by E n the unit matrix of Mn(S). 

For any element Z of Mn(C) , Re(Z), Im(Z), and Z denote the real 

part of Z, the imaginary part of Z, and the complex conjugate, 

respectively. We denote by F(s) and ~(s) the gamma function and the 

Riemann zeta function, respectively. The symbol e[w] (ws C) is used 

as an abbreviation for exp(2~/l-iw). 
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I. Vector valued modular forms of degree two 

I.I. Throughout the present paper, we keep the notation used in 

the introduction. 

The general theory of vector valued Siegel's modular forms has 

been fruitfully investigated by Godement in [9, Expos$ 5~-~i0]. Here 

we only consider the degree two case. 

Let (0k,v,V) be the representation of GL2(C) defined by (0.I). 

Note that Pk,v is holomorphic and irreducible. We fix k and v, and 

write p for 0k,v, if there is no fear of confusion. We choose a 

positive definite hermitian scalar product (v,w) (v,w EV) on V 

satisfying 

(i.i) (~(g)v,w) = (v,~(t~)w) (v,w~V, g~G~2(c)). 

Put Hvll = (v,v) I/2 (vE V). Throughout the first three sections, we 

assume v >0. 

The Siegel upper half plane of degree two is denoted by H2: H2= 

{Z~ M2(C) I tZ=Z, ImZ is positive definite}. The action on H 2 of the 

real symplectic group GSp(2,R) of degree two with similitudes is 

given by the map (0.3). Denote by Mk, v the space consisting of V- 

valued holomorphic functions on H 2 which satisfy the condition (0.4). 

Any function of Mk, v is called a modular form of weight 0 with 

respect to F=Sp(2,~). Note that, for an odd integer v, Mk,v={0}. The 

Fourier expansion of f~ Mk, v is given by the equality (0.5). Then 

the property (0.4) implies the relation (0.I0). 

Let H I be the upper half plane. The ~-operator of Siegel on the 

space Mk, v is defined by 
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(z0) 
(1.2) Cf(z) = lim f O~-ik 

k-~ +oo 
(f( Mk,v, z (HI). 

Denote by S I the space of elliptic cusp forms of weight m with 
m 

respect to SL2(~). Then the image of r is characterized by the 

following lemma. 

Lemma i.i. Assume v> o. Then, for f~ Mk,v, there exists a ~ of 

S I satisfying Cf(z)=~(z)v 0 (for the vector v0, see (0 2)) 
k+~ " " 

Proof�9 It is not difficult to see from the property (0.i0) 

(m ~)(m~ Z, m~ 0) is a scalar that each Fourier coefficient af 0 

multiple of the vector v 0. Moreover, from (0.i0) and the assumption 

v> 0, we easily get af(0)=0. Thus one can set 

Cf(z) = @(z)v 0 (z~ H I ) with @(z)= ~ a(m)e[mz] (a(m) E C). 
m=l 

With the use of the property (0 4) we easiy deduce that @~ S I 
�9 ' k+v" 

1.2�9 The subspace Sk, v of cusp forms in Mk, v is given by Sk,v = 

{f~Mk,v I Cf=0}. Let F be a fundamental domain of F in H 2. Following 

Godement [9, Expose 7], we define the Petersson inner product on 

Mk,v: Let fj (j=l,2)~ Mk,v, and let one of fj be a cusp form�9 Set 

(1.3) <fl,f2~ = IF (p(Im(Z))fl(Z),f2(Z))dZ, 

dZ being an invariant measure on H 2. Note that the integrand is 

invariant under F, and that the integral is absolutely convergent 

(see [9, Expose 7, TheorSme i]). Let Nk, v be the orthogonal complement 

of Sk, v in Mk, v with respect to the inner product (1.3). Then we 
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easily get Mk,v = Sk,v@ Nk, v (a direct sum). If k is odd, then it 

easily follows that Nk,v={0). Now we define Klingen's Eisenstein 

(Zl z121 
series following [5]. For Z= E H2, we write Z*=z I. Denote 

z12 z 2 J 

by F the subgroup of F consisting of matrices of F with the last 

rows (0,0,0,• For an elliptic cusp form @ of S Ik+v, we set 

(1.4) [ ~(M<Z)*)P(J(M,Z)-I)v0 �9 Sk'~(Z'O'v0) = M(F\F 

Provided that the infinite series in (1.4) is absolutely convergent, 

then Ek,v(Z,~,v0) is well-defined. The next proposition is a 

modification of Klingen's results [5] to our situation. 

Proposition 1.2. Let k, v be even integers with k)4, v~0. 

Then, Ek,v(Z,~,v 0) is absolutely convergent for any Z~ H 2. Moreover, 

we have 

Ek,v(Z,~,v0)~ Nk,v, and CEk,v(*,~,v0)=~(z)v0 . 

i 

Proof. The proof is essentially due to Godement [9, Expose 9, 

Th$or~me i] and [5]. Put, for Z s H 2 and ME F, 

Io(Z)=o((Im(Z))I/2) and Jp(M,Z)=Io(M(Z>)o(J(M,Z))I0(Z) -I 

From (i.i), we get IIJo(M,Z)vll = livll for any v~V. Further, we have 

ll p Z voll = det  m Z  kJ2 m Z*  J211voilo 

Since @~ S I there exists a positive constant C such that 
k+v ' 

(Im(z))(k+v)/21~(z) I ~ C for any zs H I . 
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Therefore, we easily get 

llIp(Z)Ek,v(Z,*,Vo)ll <_- 
MEF\F 

im(M<Z>, )-( k+~)/211i (M<Z>)Vol I 

= CIlVoIldet(Im(z))k/2 [ Im(M<Z>~)-k/2]det(J(M,Z))l -k, 
MEF\F 

where the last infinite series is convergent if k >4, due to [5]. 

Thus the absolutely convergence of Ek,v(Z,~,v0) is verified. Other 

assertions of the proposition are similarly proved as in [5], so 

we omit the proof. Q.E.D. 

Lemma i.I and Proposition 1.2 imply the proposition. 

Proposition 1.3. Let k, v be even integers with k>4, v> 0. 

Then, the space Nk, v is isomorphic to S I . . . .  k+v' and the isomorphism of 

Slk+v t__o Nk, v __is given via the map: ~ > Ek,v(Z,~,v0). 

1.3. We denote by P~ the set of positive definite half-integral 

symmetric matrices of size two: 

{ ( tl t121 I t I t 2 2t12(Z tl~0 det(T)~0 1 (1.5) PZ = T= tl 2 t2 ] . . . . .  

For the later use, we need some estimates for the Fourier 

coefficients af(T) (T(P~) of a cusp form f. By virtue of a result 

of Godement [9, Expose 7, Corollaire 3 of Theoreme i], we have, 

for f 6 Sk,v, 

(1.6) ll0(T-i/2)af(T)II < c(f) for all TEP~, 

where c(f) is some positive constant independent of T. 
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2. Hecke operators and Fourier coefficients. 

2.1. 

Put 

Set, for each natural number m, 

S 
m 

oo 

S=~J S . 
m:l m 

M M4< ) i  Jt -mJ}' -E 2 

For f(Mk, v and M(S, we define a function flM on 

H 2 by 

(fIM)(z) : ~(J(M,Z))-If(M<Z>) (Z ( H 2 ). 

Then we get (flM) IM'=flMM' for all M, M'6 S. The Hecke operators 

T(m) (mE Z, m>0) on Mk, v are defined by 

T(m)f = m 2k+v-3 [ flM (f (Mk,v), 
MEF\S m 

where M runs over a complete set of representatives of all left 

cosets of S modulo F. Since flM=f for all M(F, the operation of 
m 

T(m) is well-defined and T(m)f(Mk, v. From the properties of the 

abstract Hecke ring due to Shimura [i0], it follows that, for 

natural numbers m, m', 

T(m)T(m') = T(m')T(m) 

(2.1) l T(m)T(m') = T(mm') if (m,m')=l, 

and that, for a prime p, the formal power series 

given by 

c o  

T(p6)t ~ i s  

co 

(2.2) ~ T(p6)t 6 = (l-p~-It2)~ 
~=0  

(l-T(p)t+{T(p)2-T(p2)-p~-l}t2-p~T(p)t3+p2gt4) -I, 
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where we put ~=2k+v-3 for simplicity. In the same manner as in 

Maass [8, Satz 4], it is not difficult to verify that the Hecke 

operator T(m) is self-dual on Mk, v with respect to the inner 

product (1.3): Namely, for fl' f2 ~ Mk,v' 

(2.3) <T(m) fl, f2> = <fl,T(m) f2> (m=l, 2 .... ), 

where one of fi t Sk, v. Therefore, the subspaces Sk,v, Nk, v are 

invariant under the action of the Hecke operators T(m). Further, 

in view of (2.1) and (2.3), the subspace Sk, v has a basis consisting 

of common eigen forms of all T(m). 

2.2. Fix a prime p. For a non-negative integer B, let R(p B) 

be the same set introduced as in [2, w Namely, R(p B) is the set 

of matrices u3 u4 of SL2(~.) whose first rows (Ul,U 2) run over a 

complete set of representatives modulo the equivalence relation: 

(Ul,U 2) ~-J (u~,u~) (modp B) 

T which means that there exists vs Z, (v,p)=l such that vu l~u I 

(modp B) and vu 2~u~ (modp B) (the second rows (u3,u 4) are chosen 

so that UlU4-U2u3=l). 

Denote by N 2 the set of half-integral symmetric matrices of size 

two and by A 2 the set of all V-valued functions b on N 2 which 

satisfy the relations b(UTtU)=p(U)b(T) for all Us and all 

T~ N 2. The Fourier coefficients af(T) (fE Mk, v) define a function 

of A2, if we put af(T)=0 when T is not semi-positive definite. 

Following [i, w [2, w we define some operators on the set N2: 

For non-negative integers ~, B, ~, and b ~A2, put 
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(2.4) 

I A+(p~)b)(T) = p(p-~E2)b(p~T) , 

(A-(pY)b)(T) = b(p-YT), 

where we understand b(S)=0, if a rational symmetric matrix S does 

not belong to N 2. 

For f( Mk,v, we set, as a Fourier expansion of T(pS)f, 

T(pS)f(Z) = ~ af(pS;T)e[tr(TZ)]. 

In the same manner employed as in [I, w [2, w we easily 

Obtain 

(2.5) af(pS;T) = ~ pSp+3~+B(A-(pY)H(pB)A+(pa)af)(T), 
~+fl+u 

where p=2k+v-3 and ~, 8, Y run over all non-negative integers 

satisfying ~+B+u 

2.3. Let Tk+v(m) (m=l,2,...) be the usual Hecke operators 

acting on the space S I k+v (see [4, w or [i, (2.3)]). The following 

commutation formulae for the Hecke operators T(p 6) (8=1, 2) and the 

operator r are essentially due to Maass [8, Satz 20]. 

Proposition 2.1. Suppose v> 0. Let f~ Mk, v and set Cf(z)=~(z)v 0 

with some @~ S I k+v" Then, for any prime p, 

(i) r = (l+pk-2)Tk+v(p)~(z)v0 , 

(ii) r = {(l+pk-2+p2k-4 2 )Tk+v(P )~(z)+pp-l(p-l)~(z)}v0 �9 
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Proof. We give only the proof of (i) (the assertion (ii) is 

similarly verified). Let the Fourier expansion of ~ be 

@(z) = [ a(m)e[mz] (z EHI), 
m=l 

(m 0) = a(m)v0 (m=l,2 ...). We may choose the and note that af 0 0 

following set as R(p): 

-- -- ' 0 " 

T=(~ ~)(t6 2, t> 0). Then, in view of the relations (2.5), Put 

(0.I0), and (0.2), we easily get 

O) af(p;T) = af(~ t ~) + p~af(t~P 0 

+ p~+l{P~ 1 p(~-m/p~ a (t~p 0)+ p(l~p 0]^ ,pt 
l pJ f 0 11 f 0 

= (l+pk-2){a(pt)+pk+V-la(t/p)}v0, 

which completes the proof of the assertion (i). Q .E .D. 

2.4. Now we study the Fourier coefficients af(p6;T) (f(Mk,v) 

under certain conditions on T EP Z (for the set PZ' see (1.5)). 

We set T=( a bc/2 ) b/2 6P~ and require the following conditions 

for T : 

(2.6) 

I (i) 
(ii) 

T is primitive, i.e, (a,b,c)=l, 

d=b2-4ac is the discriminant of the imaginary 

quadratic field K=Q(~-d), 
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(iii) the class number h K of K is one. 

b-YY 
Put z= 2a 

defined by 

�9 For any 0 of K, a 2• rational matrix L(8) is 

For any ideal ~ (resp. any number e) of K, denote by N(~) (resp. 

N(O)) the norm of ~ (resp. 0). We see easily that 

L(9)TtL(8) = N(8)T. 

Now recall that (gv,V) is a symmetric tensor representation of 

GL2(C) of degree v (see (0.I) in the introduction)�9 Define a 

subspace V(T) of V by 

(2.7) V(T) = {v~ V I ~ for all units s of K}. 

Any ideal ~ of K is written in the form m=(e) with some 8( K, due 

to the property (iii)of (2.6). Then, a linear transformation 

aT(a) of the space V(T) is defined by 

OT(~) = av(L(8)) for ~=(8), 8 6 K. 

Obviously, a T is well-defined. It is easy to see that gT is a 

direct sum of Hecke's GrZssencharacters of K. Moreover, a L-functior 

L(s,ov,T) is defined by 

(2.8) L(s,g ,T) : [ OT(~)N(~)-s , 

where ~ is over all integral ideals of K. The L-function L(s,g ,T) 

is absolutely convergent, if Re(s) is sufficiently large, and has 
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the expression as Euler products: 

L(s,~ ,T) = H (I-~T(F)N(~)-s)-I , 
Y 

where ~ is over all prime ideals of K. 

Proposition 2.2. Let fEMk, v and let p be a prime. Suppose 

[ a b/2] 
that T= b/2 E PZ satisfies the conditions of (2.6). Let m be a 

positive integer coprime to p. Then the following relations hold: 

(i) If p splits in K/Q (p=~, ~), then, 

(H(PB)af)(mT) = P-kB(aT(~)-Baf(mT)+~T(~)-~af(mT)} (B~I). 

ii) If p ramifies in K/Q (p=~2), then, 

(H(PB)af)(mT) = I P-kaT(~)-laf(mT) i__ff B=I, 

0 i ! ~> 1 

iii) If p remains prime in K/Q, then, (H(pB)af)(mT)=0 (8 ~ i). 

Proof. Suppose that p splits in K/Q and put p=~, ~@~. By the 

condition (iii) of (2.6), we have ~=(~) for some integer w of K. 

a is coprime to p. If we put ~=Ul+U2Z (B ~ I, First assume that 

Ul, u 2 ~Q), then, Ul, u 2E ~ and a divides u 2. We easily get 

I Ul u2 1 
L(~ B) = _eu2/a Ul+bU2/a (E M2(~)). 

Since det(L(wB))=N(wB)=p B 

integer k I such that 

and (Ul,U2)=l, there exists a rational 

c ~ b 
klUl-~-u 2~0 (modp), and klU2+Ul+~U2 ~0 (modpB). 
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Determine integers u3, u 4 by the relation 

u 3 u 4 p B k I i L(~B)" 

Ul u2] 
If we put UI= u3 u4 , then, UI(SL2(Z). Similarly if we set ~B_ 

1 r SLi(ZI Vl+V2 z with Vl, v 2 (Z, then there exist k 2 ~ Z and Ui= v3 v4 

(; 01[  0j 
satisfying the relation U2= L(~g). As is shown in the 

p B k 2 

proof of Theorem 2.3.1 of [2], the matrices UI, U 2 give a complete 

set of representatives of R(p 8) so that 

m 1 p8 (U ( R(p B ) 

is a half-integral symmetric matrix. Then we have 

m(P~ 8 I)0]U'TtU'(I~ l\ 0 ;8] = m(kl i ~IT( ~ ~i] (i=1,2). 

Therefore, from the definition of H(p 8) and (0.i0), we get 

(H(pS)af)(mT) = o(L(~ B))-laf(mT)+p(L(~B))-laf(mT) 

= p-kB{~T(F)-Baf(mT)+~T(~)-Baf(mT)}. 

Next assume that p divides a. There exists some U6 SLi(Z) such 

t [ a' b'/2) 
that, if we put UT U = Set b'/2 c' , then a' is coprime to p. 

b'-~ 
Zv-- - 

2a' 

Further, 

For any 8 ~ K, define a 2~2 rational matrix L'(~) by 

determine a matrix W of M2(Q)by (iz,)__W( l]z . Then we have 
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L'(e)=WL(e)W -I. Put 8=~+qz=6'+~'z' with ~, q, ~', ~'( Q. 

Immediately, (~,q)=(~',~')W. On the other hand, we have 

N(e) = -&- a' (6',q')T' 

where we put T'=UTtU. From these equalities, we easily get T'= 

a' WTtW. Therefore, we have a 

a f 

--W =UP a with some PC SO0(T), 

where SO0(T)={A~ SL2(R) I ATtA:T}. Note that the orthogonal group 

SO0(T) is commutative, and hence we see that L(e) commutes with 

P. Therefore, we get 

(2.9) L'(e) = UL(e)U -I (e 6 K). 

Since (a',p)=l, we have, as is shown above, 

(2.10) (H(p6)af)(mT ') = p(L'(~6))-laf(mT')+0(L'(~6))-laf(mT'). 

Taking the relations (0.i0), (2.9), and (2.10) into account, we 

obtain 

(H(pB)af)(mT) = p(u)-l(H(p6)af)(mT ') 

= p(L(w6))-laf(mT)+p(L(~B))-laf(mT), 

which completes the proof of the assertion (i). The assertions (ii), 

(iii) are easily to be seen. Q.E.D. 

As an easy corollary of Proposition 2.2, we obtain the following. 

Proposition 2.3. 

Proposition 2.2. 

Let the assumption be the same as in 
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(i) I f  p splits in K/Q ( p = ~ ,  ~ 9 } ) ,  then 

af(p6;mT) = af(p6mT) 

B=I 
p(k+v-2)B{dT(F)-Baf(p~-BmT)+OT(9)-Sa~(p6-~mT)} " 

(ii) If p ramifies in K/Q (p=~2), then, 

af(pS;mT) = af(p6mT)+pk+V-2OT(~)-laf(p6-1mT). 

(iii) If p remains prime in K/Q, then, af(p6;mT)=af(p6mT 

w 3. Andrianov's L-functions. 

3.1. To define an L-function associated to a common eigen form 

of Mk,v, we have to get some information on eigen values. 

Let f6 Sk, v. By virtue of the inequality (I.6) and the relation 

(2.5), we easily get, for any prime p, any 6~I, and for all Ts P~, 

(3.1) Ilo(T- /2)af(p  T)ll < cl(f)p C, 

where cl(f) and c are some positive constants independent of T, p, 

and 6. Then the estimate (3.1) and the property (2.1) immediately 

imply the proposition: 

Proposition 3.1. Let f(Sk, v be a common eigen form, and put 

T(m)f=l(m)f (m=l,2,...).Then we have 

I ,(m)l < 01 me 

for some positive constants C I and c. 
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In case of modular forms of Nk,v, the following proposition holds. 

Proposition 3.2. Let f E Nk, v and put ~f(z)=~(z)v 0 with some 

s S I Then, f is a common eigen form, if and only if ~ is a 
k+v" 

common eigen form. In this situation, set T(m)f=l(m)f and 

Tk+v(m)~=10(m)~ (m=l,2 .... ). Then, for any prime p, we have 

(3.2) 

I ~(p) = (l+pk-2)~o(p) , 

k(p 2) = (l+pk-2+p2k-4)ko(p2)+(p_l)p 2k+~-4 

The assertion of Proposition 3.2 is easily derived from 

Proposition 2.1 and the relation (2.3), so we omit the proof. 

Now let fs Mk, v be a common eigen form and put T(m)f=l(m)f 

(m=l,2,...). The Andrianov L-function Lf(s) associated to f is 

defined by (0.6) in the introduction. Then, Proposition 3.1 

immediately implies that the Dirichlet series Lf(s) for fs Sk, v is 

absolutely convergent, if Re(s) is sufficiently large. Moreover, 

it is not difficult to see from Proposition 3.2 and some properties 

of Hecke operators T(m) that Lf(s) for f6 Nk, v also converges 

absolutely for a sufficiently large number of Re(s). By virtue of 

the relations (2.1), (2.2), we get the expression for Lf(s) as 

Euler products: 

Lf(s) = H (l-X(p)p-S+<x(p)2-X(p2)-p~-l}p-2S-X(p)p~-3S+p 2~-4s )-l, 
P 

where we put ~=2k+v-3. 

3.2. In case of f~ Nk,v, the L-function Lf(s) is reduced to 

some products of L-functions associated to an elliptic eigen cusp 
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form. 

Proposition 3.3. Let f 6Nk, v be a common ei$en form and put 

Cf(z)=@(z)v 0 with a common eigen form @( Slk+v (Tk+v(m)@=10(m)@' 

m=l,2,...). Then we have 

Lf(s) = Lg(s)L%(s-k+2), 

where we set L@(s): [ 10(m)m-S. 
m=l 

Proposition 3.3 is easily derived from (3.2) 

3.3. Due to the estimate (1.6), note that the Dirichlet series 

co 

af(mT)m -s (f( Sk,v, T6 PZ ) 
m=l 

is absolutely convergent, if Re(s) is sufficiently large. Following 

the method used in [i, Theorem 2], we easily obtain the proposition 

which plays a key role for us to prove the theorem in the 

introduction: 

Proposition 3.4. Let f ~Sk, v be a common eigen form, and let 

T E PZ satisfy the conditions of (2.6). Then we have 

co 

L(s-k+2,~v,T) ~ af (mT)m -s = Lf(s)af(T), 
m = l  

if Re(s) is sufficiently large. 

3.4. To represent Lf(s) in a certain integral of Rankin's type, 

we shall review some preliminary tools from [i, w (cf. [2, Chapter 

3]). 

We define a 3-dimensional symmetric space H* by 
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I 

Then the group SL2(C) acts on H* in the manner: 

( Y ~Y2+(~w+B)(~w+~) ) 
u=(y,w) > o<u>= ao(u) ' a~(u) ' 

where we put o=(~ ~)~ SL2(e)and A (u)=Iyl2y2+Iyw+g[ 2. We fix an 

embedding ~ of C into M2(E) by setting 

Let Sp(2,E) be the real symplectic group of degree two: Sp(2,E)= 

{ME GSp(2,E) I v(M)=l}. For o=( ~ ~) E SL2(C) we set 

= , I0= �9 0 E 2 r r 0 E 2 0 -i 

Then the map @ gives an injective homomorphism of SL2(C) into 

Sp(2,E). Denote by G the image of ~ in Sp(2,E). Furthermore, define 

the subset H of H 2 by 

H = {Z=X+J-~YE2 I y~0, X(M2(R), tX=X, tr(X)=0}. 

For each ME G, the automorphism Z >M(Z) of H 2 induces an 

automorphism of H. For Z= x+_ Y -x+~-ly ' 

u(Z) = (y,w) with w=x+Jl--It. 

Then it is easy to see that the action of the group G on H is 

compatible with the action of SL2(C) on H*: Namely, 

u(~(o)iz)) = a<u(Z)) for aZZ z~K, ~SL2(C). 
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Set 

F0 = SL2(O)/{• , and F0, = i( I IB) I ~0 I' 

where we put O=~[J~], the ring of integers in Q(~). Then, F0, ~ 

is naturally regarded as a subgroup of 1" 0 . F o r  c~--( ~ ~ ) 6  SL2(C ) and 
Y 

u - - ( y , w ) ( H  ~, we d e f i n e  an  a u t o m o r p h i e  f a c t o r  j ( c~ ,u )  by 

= 

We easily get 

j(~a',u) = j(~,~'<u>)j(~',u), 

3-5- 

af(E2)%0. Set 

co 

Rf(s) = ~ af (mE2)m-S. 
m=l 

Define a function Ff on H* induced from f by 

Ff(u) = f(Z) for ZE H with u=u(Z). 

It easily follows that, for any ~ E F 0, 

Ff(~<u>) = 0(J(~,u))Ff(u). 

If we put 

S = {u=(y,x+~-It)& H* I x , t~, IxlSI/2, lwI~/2}, 

then in the same manner as in [1,(3.16)], the following identity 

tj(~,u)j(~,u) = Aa(u)E 2 (~, J'~ SL2(C) , u~H*). 

Now we put T=E 2 and K=Q(~rZ~). Let f 6 Sk, v and assume that 
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holds: 

(3.3) (4w)-SF(s)Rf (s) = ~S yS-IFf (u)du' 

where we put du=dxdtdy for u=(y,x+~l~t)( H*. 

Now we introduce the Endc(V)-valued Eisenstein series on H*: 

ySov(j(O,u)) 
E(u,s;o v) = X (u=(y,w)(H*). 

O~FO,~\r 0 Ao(u)S 

The Eisenstein series E(u,s;o v) converges absolutely, if Re(s) > 

2+v/2. Further, we see easily that 

E(o<u>,s;qv) = E(u,s;ov)ov(j(o,u))-I for all o s 0. 

In case of v=0, the Eisenstein series E(u,s;o v) is precisely studied 

by Kubota [6]. Moreover, it is known by a general theory of Eisenstein 

series due to Langlands [7] that E(u,s;o v) has an analytic 

continuation to a meromorphic function of s in the whole complex 

plane which satisfies a certain functional equation. Here we treat 

E(u,s;o v) in an elementary manner. 

For {, q (C, and u=(y,w)E H*, put 

n{g ,n} (u)  : igl2y2+lgw+nl2 

We set, for u=(y,w)( H*, 

e(u,s;%) = T r(s) [ 
{~,,l} 

%(r o ) 

n{~,~}(u) s 

where ~, q run over all elements of O=Z[~-/~] with the condition 

(6,n)9(0,0). The infinite series @(u,s;o v) is absolutely convergent 
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if Re(s)> 2+ 2 . Then we easily get 

(3.4) e(u,s;a v) = 

where we put 

LK(S,av) - 

w-SF(s)LK(S,av)E(u,s;av), 

i 
4 % ~60, G~O 

Taking notice of the fact L(e)=r (~6 K) for T=E2, we have 

(3.5) LK(S,a v) = L(s,av,E 2) on V(E 2) (see (2.7), (2.8)). 

Moreover we define a kind of theta series: 

) K(v;u,a v) = ~ av(r p --~-- a{~ n}(u) , 
{~,n} 

where u=(y,w)( H* and v >0. Immediately, we have 

I~ vSK(v;u,av ) dv - 28(u,s;a v) (Re(s)> 2+ v ) 
(3.6) 0 v -2 " 

Proposition 3.5. Let v be an even inteser > 0. Then, 

i v+2 , 
K(7 ;u,~ v) = v avtlo)K(v;u,av). 

Proof. Since (av,V) is a polynomial representation of GL2(C), 

we may naturally extend av(g) to g(M2(C). Set, for ~, q EC and 

u=(y,w)& H*, 

) f(~,n) = dv(r162 -7-- A{~ n}(u) �9 

~n euclidean measure d~ on C (~=~l+JL-i~2 , El, 62(R) is normalized 

by d~=d~id~ 2. The Fourier transform of f(~,n) is defined by 
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t 
f*(~',n') = Jc 2 f(~,~)e[Re(~'+~')]d~dn (~', n'6C). 

By an easy calculation, we get 

f*(~',n')=v-V-2c~v(Io)~v(q~(g'-wrl')-/-2-1yr - ~ A { _  n,,g,}(u) 

(cf. Eichler [3, Chapter I]). 

Therefore, the Poisson summation formula easily implies Proposition 

3.5. Q.E.D. 

By the relation (3.6) and Proposition 3.5, we have 

ov 
(3.7) 20 (u, s;~ v ) = (vS+av(10)vV+2-S)K(v;u'~v) 7- 

The identity (3.7) gives an analytic continuation of e(u,s;~ v) to an 

entire function of s, and also implies that 

e(u,v+2-s;av) = ~v(10)e(u,s;~v). 

3.6. Finally, we give a proof of the theorem in the 

introduction. 

Following [I, w we easily get the integral representation of 

Rf(s) from (3.3): 

(3.8) (4~)-Sr(s)Rf(s) = ID E(u,s-k+2; av )ykFf(u ) dUy3 

D being a fundamental domain of F 0 in H*. 

Now suppose that f is a common eigen form. It easily follows 

from Proposition 3.4 and (3.5) that 

(3.9) LK(s-k+2,~v)Rf(s) = Lf(s)af(E2) �9 

(Re(s)> 2+ ~ ) 

(Re(s))) 0), 
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If we put 

$f(s) = (2v)-2SF(s)F(s-k+2)Lf(s), 

then, by virtue of (3.4), (3.8), and (3.9), we obtain 

(3.10) yf(s)af(E2 ) = 2-k ~ 0(u,s_k+2;~v)ykFf(u ) d__uu 
D y3 ' 

if Re(s) is sufficiently large. As is known, we may take as D the 

following set (see [6]): 

D = { u = ( y , x + ~ - - - l t ) I  0~ x+t, x~I/2, t~i/2, l~x2+t2+y2}. 

From (3.7) and (3.10), we get 

2~k-2~f(s)af(E2) = 

D y k F f ( u )  ( v S + ~ v ( I 0 ) v v + 2 - S ) K ( v ; u ' ~ v )  ~ y3 

T h e r e f o r e ,  f o l l o w i n g  the  a rgumen t  o f  [1 ,  w ( 3 . 2 9 ) ] ,  we e a s i l y  

deduce  t h a t ,  u n d e r  t h e  a s s u m p t i o n  a f ( E 2 ) # 0  , ~ f ( s )  can be c o n t i n u e d  

a n a l y t i c a l l y  to  an e n t i r e  f u n c t i o n  o f  s and t h a t  ~ f ( s )  s a t i s f i e s  

t h e  f u n c t i o n a l  e q u a t i o n  ( 0 . 9 )  i n  t h e  i n t r o d u c t i o n  ( n o t e  t h a t  

~ v ( I 0 ) a f ( E 2 ) = ( - 1 ) k a f ( E 2 ) ) .  

Thus we have completed the proof of the theorem in the 

introduction. 
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w 4. Construction of cusp forms with af(E2)~0. 

4.1. Let (T,W) be a finite dimensional holomorphic 

representation of GL2(C). We denote by M T the space of modular 

forms of weight T with respect to F=Sp(2,Z) consisting of all 

W-valued holomorphic functions f on H 2 which satisfy 

f(M<Z)) = ~(J(M,Z))f(Z) for all MEt. 

The ~-operator on M is also given by (1.2) for f(M . If T is 
T T 

m 
equivalent to a direct sum �9 T. of irreducible holomorphic 

j=l J 

representations (Tj,Wj) of GL2(@) , then it is clear that M T is 

m 
isomorphic to the direct sum O M (as C-vector spaces). Let 

j =I Tj 

(Pkl,vl,Vl) and (Pk2,v2,V2) be two representations of GL2(C) 

given as in (0.i) in the introduction. For simplicity, we put 

Tl=Pkl,V I and T2=Pk2,v 2. We consider the product representation 

TI~ T 2 of GL2(@) with the representation space VI~ V 2. It is 

known that TI~ T 2 decomposes into a direct sum of irreducible 

representations of type (0.i) in the following manner: 

(4.1) TI~ T 2 ~ O Pkl+k2+J,Vl+V2_2J (p=Min(vl,V2)), 
j=0 

where ~ denotes the equivalence of representations. Then there 

exist invariant subspaces Wj (0~j~ ~) of VI~V 2 such that the 

restriction of TI~T 2 to Wj is equivalent to Pkl+k2+J,Vl+V2_2J 

and 
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VI@V 2 = ~9 Wj. 
j=O 

We write Mk, v for MO, when p=Ok, v. Due to the relation (4.1), one 

can identify MTI@ T2 with the space j=0~ Mkl+k2+J,Vl+V2_2J. For 

f j (  MT. ( j= l ,  2), the function f l (Z)@f2(Z) is  na tura l ly  regarded 
J 

as a modular form of M . We may put 
TI | T2 

(4.2) fl(Z)@ f2(Z) = [ ~j(Z) with ~jE Mkl+k2+ j,vl+v2_2 j. 
j=0 

Assume that ki, v i (i=l, 2) are all even integers. Let v 0 (resp. 

v$) be a vector of V I (resp. V2) satisfying the condition (0.2) 

with respect to k I, v I (resp. k2, v2). By Lemma i.i, we have 

Cfl(z)=r 0 and Cf2(z)=r $ (z ( H I) 

with some r 6 S 1 (i=l, 2). Therefore, we easily get 
ki+v i 

r162174 = r (Z~Hl). 
j--O 

Since it is easily verified that v 0@v$6W 0, for each j (l~j~ ~), 

~j is a cusp form. Let the Fourier expansion of r (i=l, 2) be 

r ~ ai(m)e[mz] (zE HI). 
m:l 

Thus, for the Fourier coefficient afl @ f2(E2) of the modular 

form fl(Z)@ f2(Z), we easily have 

afl@f2(E2 ) = al(1)a2(1)w* , 
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where we put 

We choose ~I' r so that aj(1)%0 (j=l,2), and write w*= [ w. 
j=l J 

(wj 6 Wj). If Vl%V2, then it is not difficult to verify that C- 

linear spans of (TI(g)| for all g6GL2(C) generate the 

space VI~V 2. Therefore we have w.%0 for all j. Thus we see that, ' j 

if Vl#V2, then for each j (i_~ j~ ~), ~j is a cusp form with the 

condition a~j(E2)#0. 

4.2. We give an example. The same notation as above will be 

kept. Set kl=6 , Vl=6 , k2=8 , v2=4, and Yi=06,6 , T2=08, 4. Let A(z) 

be the Ramanujan A-function: 

oo 

A(z) = q ~ (l-qm), q=e[z] (Z6Hl). 
m=l 

Define fl & M6, 6 and f2EM8,4 as Klingen's Eisenstein series by 

the following: 

fI(Z)=E6,6(Z,A,v0) and f2(Z)=E8,4(Z,A,v$) (see (1.4)). 

We write 
4 

(fl| [ ~j(z) 
j=o 

with ~j 6MI4+j,10_2j (0!j! 4). 

As is shown in 4.1, we have, for each j (l! js 4), 

~j 6 SI4+j,10_2j and a~j(E2)#0. 

By virtue of the explicit calculation of the dimension of the 

space Sk, v due to Tsushima [ii], [12], we know that 

dim~Sls,8 =4, dimcSl6,6=5, dimcSl7,4 =I, dimcSlS,2 =2. 

183 



ARAKAWA 

Hence one can deduce that the unique cusp form • of S17,4 

satisfies the condition ax(E2)~0 and that the theorem in the 

introduction holds for X. 
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