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 ON THE SPACES OF SIEGEL CUSP FORMS

 OF DEGREE TWO*

 By RYuJi TSUSHIMA

 0. Introduction. Let (5g be the Siegel upper half plane of degree g

 and rg(l) the principal congruence subgroup of the Siegel modular group

 of level 1. Let r be a subgroup of finite index of rg(l). We denote by Sk(r)

 the vector space of Siegel cusp forms of weight k with respect to r.

 Y. Morita and U. Christian calculated the dimension of Sk(P2(l))

 (1 2 3) by the Selberg's trace formula ([11], [3] and [4]), and T. Yamazaki

 obtained the same result by the formula of Riemann-Roch-Hirzebruch

 ([19]). In these works it was essential that the action of rg(l) (1 2 3) on Eg
 is fixed point free.

 Let r be as above. Then it is known that r contains rg(l) for some

 1 > 3, if g 2 2 ([2] and [10]). In this paper we restrict ourselves to the case

 of degree two and study the action of r/r2(l) on the smooth compactifica-

 tion of the quotient space of S2 by r2(l), and we represent the dimension
 of Sk(r) in terms of group theoretical conditions of r/r2(l) as a subgroup

 of r2(1)/r2(l) by using holomorphic Lefschetz formula of Atiyah-Singer

 (Theorem (5.2)). Especially we compute the dimension of Sk(r2(l)) and

 Sk(r2(2)) explicitly.
 In [16] the author computed the dimension of Sk(r3(l)) (I 2 3). If the

 fixed subvarieties in 3 of the elements of finite order of r3(1) are
 classified and their isotropy groups are determined, then we can get

 similar results in the case of degree three. And we can hope that the struc-

 ture of the graded ring of Siegel modular forms with respect to I3(1) will

 be determined by this method.

 T. Arakawa calculated the dimension of the space of Siegel cusp

 forms with respect to some arithmetic discrete subgroups of Sp(2, R)

 whose Q-rank is equal to 1, by the Selberg's trace formula ([21]). H.

 Manuscript received April 13, 1981.
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 844 RYUJI TSUSHIMA

 Yamaguchi obtained similar results by the formula of Riemann-Roch-

 Hirzebruch ([23]). Recently K. Hashimoto succeeded to calculate the

 dimension of the space of Siegel cusp forms with respect to discrete sub-

 groups of Sp(2, R) with torsion elements by the Selberg's trace formula

 and computed the dimension of Sk(r2(l)) and Sk(Po(p)) explicitly ([22]).

 His results include the case when Q-rank is equal to 1.

 Notations.

 Fix(g): the fixed subvariety of g.

 IGI: The order of a group G.
 G(r): (?1)r/(?1)F2(l).

 G(l): r2(1)/(?l)r2(1).

 i: 1
 27ri/3

 p: e

 : (1 + 2 -2)/3.
 27ri/S

 co: e
 7n/6

 or:e

 COO'), NOO)), CG(l)('10,
 NG(l)(4): Definition (2.1).

 CG(g): the centralizer of g E G in a group G.

 C(so): the centralizer in CG(l)(4) of ip E CG(l)(QI).
 s, s: p mod(? 1), Z mod(?l)P2(l), respectively, for s?

 E P2(1).

 <g >: the subgroup generated by g.

 @(R): Sp(2, R)/(?+1).
 KM: the canonical line bundle of a complex manifold

 M.

 -A): 0o.
 Ak(4): the k-th fundamental symmetric function of ir-

 reducible divisors in A(b).

 ci(M): the i-th Chern class of a manifold M.
 Fi(40): the i-th logarithmic Chern class of 4b in 4 (cf.

 [16], Section 1).

 Nx/y: the normal bundle of X in Y.
 2: 2ri/1

 II: lp I l,p: prime
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 SIEGEL CUSP FORMS 845

 1. Holomorphic Lefschetz Formula. 1. Let X be a compact com-
 plex manifold and V a holomorphic vector bundle over X, and let G be a

 finite group of automorphism of the pair (X, V). For any g E G, let Xg be
 Fix(g) and

 X9 = EX,g

 the irreducible decomposition of Xg, and let

 N,ga = E Ngu(O)
 0

 denote the normal bundle of XAgX decomposed according to the eigenvalues
 eio of g. We set

 CU0(Ng(O)) = (1 e X/i0y

 =HOt(?1 + io3+ 2(1_i)2x *

 where the Chern class of N9,(O) is

 c(Ng,(0)) = 11(1 + xv).

 Let 3(Xg) be the Todd class of Xg and ch(VIXXg)(g) the Chern character
 of VIX, with g-action ([1]). Set

 ,r(g, Xg) a=a Xg
 det(l- g I(N-,u)*) }

 and

 r(g) = E r(g, Xg).

 Then we have

 THEOREM (1.1). (Holomorphic Lefschetz Theorem [1]).
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 846 RYUJI TSUSHIMA

 S (-1)'Trace(gIHP(X, 0(V))) = r(g).
 p20

 Let HP(X, 0(V))G be the invariant subspace of HP(X, O(V)) by G. Then
 we have the following

 THEOREM (1.2).

 E (-1)PdimHP(X, 0(V))G = 1 G r(g). p?-O IGI gEG

 2. We use the same notation as in [16], Section 1.3. Let r be as in the

 Introduction. r/r2(l) acts on the pair (t(l), kL2 - A(2)) as a group of
 automorphism, and this induces an automorphism of Sk(r2(l)) defined by

 (M.f)(M.Z) = f(Z)det(CZ + D )k,

 where

 /AB\

 M= ( ) r, f E Sk(r2(l)) and Z E22
 \C DJ

 In the case of degree two we have

 det(CZ + D) = det(-CZ - D).

 Therefore, the action of M on Sk(P2(l)) coincides with that of -M. Hence
 it suffices to consider the action of

 G(r) = (?l)r/(?l)r2(l).

 We have

 Sk(r) = Sk(r2(1))G().

 Recall the following vanishing theorem (cf. [16], Corollary (7.10)).

 THEOREM (1.3). If p > 0 and k 2 4, then

 HP (2W(l), 0(kL2- A(2))) = 0.
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 SIEGEL CUSP FORMS 847

 Therefore, we derive the following

 COROLLARY (1.4). If k 2 4, then

 dim Sk (r) 1 E -r(g).
 G(r)I gEG(r)

 Let

 2 2()2* )

 be as in [16], Section 1.3. Set theoretically, 2(l) is a disjoint union of
 VW(), copies of Vj(W) and copies of Vo(l). We call a copy of V(l) and a
 copy of VW(l) in z5*(1) a cusp of degree 1 and a cusp of degree 0, respec-
 tively. In Section 2, Section 3 and Section 4, we consider fixed subvarieties

 of elements of G(l) in 2*(l), in s (cusps of degree 1) and in s -I (cusps of
 degree 0), respectively.

 2. Fixed Subvarieties in the Interior of the Siegel Space. 1. Fixed

 subvarieties in S2 of the elements of finite order of r2(1) were classified by
 [17] using [5] and also by [20]. Let b be an element of finite order of r2(1),
 and let 4' be Fix(sb). We denote sb mod(?1) by - and so mod(?l)P2(l) by
 so, and we denote the image of 4' by the natural projection of S2 to S4(l)

 by 4'. The closure 4' of 4A in *(l) is an irreducible component of Fix(<).
 We denote P2(1)/(? 1) by 5.

 Definition (2.1).

 I) i)C~(') ={gE($5g.x=xforanyx E},
 ii) Cp(4') = {g E C~(') Ig x x implies x E 4},
 iii) N(') = {g E lIg -4 =

 Elements of Cp(4i) are called proper elements of C,(4').
 II) Let ir be the natural homomorphism of 0 to G(l).

 i) CG(1)(4') =r(CO(4O)) = {g E G(l) Ig x = x for any x E },
 ii) CG(l)(4') iz(C;~(+f)) = {g E CG(l)(') 4 ' is closed in Fix(g)},
 iii) NG()(4') = (N (4i)) = {g E G(l)Ig 4= }.

 C~(4) and CG(I)(C) are isomorphic through T.

 THEOREM (2.2). ([17]). An irreducible component of the fixed sub-

 variety in *(l) of an element of G(l) which intersects (1) is equivalent
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 848 RYUJI TSUSHIMA

 to one of the following under the action of G(l), and they are not

 equivalent to each other. ING()(Q)l are calculated below. We omit the
 (2, 1) coefficients, since the matrices are symmetric.

 4? 1? I CG(I)(4) I NG(I)(4)

 1) +, (~ Z3) 1 1l/2)1ll0n(l -p-2)(1 _p-4)

 2) (2 (z2 ?) 2 161(1_ p2)2
 z

 zZl 1/2 61H()1-p ), if 2 1

 ( Z2 43 _ p if 2 1 1

 4) 4 ( K ) 4 2111(1-p

 zz 1/2 3(413I(1- p -2) if 2t1
 5)5 L )3 T - 2) 5) +5 t z y 4 k8/3)111(- p, if 2 1 1

 Z z/2\ (61( - p -2) if 3,j'l

 6)4+6 )J 6 9/2)l3l(19p p-2), if 3 11

 (i OT\ 3 -2)
 7) ( 7 K 9 4 211(1- p

 8) (I 8 ( ) 6 313II(1- p-2)

 9) 49 ( i 16 16

 10) (blo ) 36 36

 1p ( D
 11) 4+11 t )12 12

 1) 4 12 3 ) 12 12
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 SIEGEL CUSP FORMS 849

 Oq1 (7- /20
 13) (13 ( ) 24 24

 14) 4)14 ( +)4 5

 The isotropy groups of these fixed subvarieties were determined by

 [4]. In the following we do not list the matrices themselves but indicate

 them by the symbols of [17], and we list only the representatives of con-
 jugacy classes of proper elements of CG(l)(I)- We denote by C(Q) the cen-

 tralizer in CG(l)(4)) of fo for fp E CG(l)(4) and indicate the eigenvalues e a of
 the normal bundle of 4' by 0.

 THEOREM (2.3). The representatives of conjugacy classes of proper

 elements Of CG(l)QJ) are asfollows:

 so IFP Q() |0 det(CZ + D)
 (symbol of [171) for z E 4

 2) 02 II c a) 2 i -1

 3) p3 II j b) 2 ir -1

 4) 'P4 II c) 4 ir,ir 1

 5) s II Od) 4 7r,ir 1
 6) sO6 II ? c) 3 2,A/3, 47r/3 1
 7) P7(l) III ? a) 4 i, 37r/2

 'P7(2) III ? b) 4 ir/2, ir

 8) 'P8(1) III ( a) 6 2ir/3, 47r/3 p2

 $P8(2) III (j) b) 6 2ir/3, 41r/3 p

 'P8(3) III T a) 6 4r/3, 57r/3 -p2
 'P8(4) III T b) 6 7r/3, 27r/3 -p

 9) P9(1) IIQa) 16 ir,ir, r -1
 'P9(2) IV (D a) 8 7r/2, 3ir/2, 3ir/2 -i
 'P9(3) IV Q b) 8 7r/2, 7r/2, 37r/3 i

 10) sOIO(1) II ? a) 36 47r/3, 4ir/3, 47r/3 p

 so,0(2) II O b) 36 2ir/3, 27r/3, 2ir/3 p2
 'Pl0(3) IV ? c) 18 27r/3, 7r, 4ir/3 -1
 $P?l(4) IV O e) 12 ir/3, 47r/3, 47r/3 -p
 sn10(5) IV ( f) 12 2r/3, 27r/3, 57r/3 - p2
 ,plo(6) IV ? g) 36 2ir/3, 27r/3, 57r/3 -p
 'P10(7) IV ( h) 36 x/3, 4ir/3, 4ir/3 -p

 splo(8) IV 0 a) 12 2ir/3, 5-7r/3, 57r/3 p2
 ,P10(9) IV ? b) 12 ir/3, 7r/3, 4r/3 p

 11) s011(1) IV ? a) 12 27r/3, 5r/6, ir a7
 sojj(2) IV ? b) 12 ir, 77r/6, 4r/3 a5

This content downloaded from 129.15.14.45 on Sat, 25 Aug 2018 15:36:58 UTC
All use subject to https://about.jstor.org/terms



 850 RYUJI TSUSHIMA

 so11(3) IV ? c) 12 27r/3, 7r, 117r/6 a
 sp,1(4) IV ? d) 12 7r/6, 7r, 47r/3

 12) (P12 IV ? a) 6 27r/3, 7r, 47r/3 -1
 13) 'P13 IV O c) 4 7r/2, 7r, 37r/2 -1

 14) 'P14(1) IV 0 a) 5 27r/5, 47r/5, 87r/5 c2
 'P14(2) IV ? b) 5 47r/5, 67r/5, 87r/5 co3
 'P14(3) IV ? c) 5 2-x/5, 4i-/5, 67r/5 co3
 'Pl4(4) IV ? d) 5 27r/5, 67r/5, 87r/5 co

 2. LEMMA (2.4). Let g E 5 and - E C (4)). Then g belongs to

 N~(4) if and only if g .*p*g belongs to C(4)). The map:

 g -1 .- .

 induces an injection of C~(p)\N~(4)) to C~(4)).

 Proof. If g E No(4)) and Z E 4), then g (<(g(Z))) = g (g(z)) =
 Z. Conversely, if g .9 .g E C~(4)), then -(g(Z)) = g(Z) for Z E 4). Since
 p is a proper element of Co(4)), we infer g(Z) E 4).

 The image of the map in the lemma consists of the elements of Co(-?)
 which are conjugate to - in N~(4)). We can determine this image easily,
 and as a result the image consists of the elements of C~(4?) which are con-

 jugate to < in C~(4)). Now we have the following

 COROLLARY (2.5).

 2) N,(42) = CO(SD2)
 3) N,(43) = C(GP3).
 4) N,(44) = C,(p4).
 5) N,(45) = C>(-s).

 6) NO(46) = CO(6) U CO(G6)-6, where 6 is defined below.
 7) N,(47) = C,(p7(1)).
 8) N6(b8) = C@(58(1))

 Let &oe, , 6 and f be

 cos 0 -sin 0 0 0 \/1 0 0 1/2 0 1 0 0

 sin 0 cosO 0 0 0 1 1/2 ( 1 0 0 0
 91 ) and

 0 0 cosn - sinO 0 0 1 0 0 0 0 1
 \o0 0 sinO -sin \ 0 0 1 / 0 0 1 0
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 SIEGEL CUSP FORMS 851

 /1 + V3 -i1 +V3 0 0

 -1 + V3 1 + o 0

 0 0 (1 + ~-3)14V-3 (1 - 0-5 ,,0- 'respectively.
 0 0 (1 - V)/4V (1 + V)l

 THEOREM (2.6). (4), 5) and 6) are due to [13]).

 (/a 0 b, 0

 0 a2 0 b2
 2) CO($02) = (6> X E Sp(2, Z) /(? 1).

 c2 d, 01
 0 \ C2 ? d2/

 (/a, 0 b1/2 0 ai, bi, ci, di E Z,

 T'-' x 0 a2 0 b2/2 a- d3i mod2,
 3) CW(e3) E E<>- Sp(2, R) I I ,(l( )

 2c1 0 d, 0 / bi-c3_imod2,

 \0 2C2 0 d2 / fori=1,2 )

 /aOb O\

 4) COP4) = (6> X <(P4> X I E Sp(2,Z)
 c O d O

 < Oc O d/

 5) Co(,os) = T6a>6' X TH1e , where

 a 0 b/2 0 \ y = 0, 1, 2, 3, ad-bc = 1,

 0 O a 0 b/2 a, b, c, d E (V-2)13Z,

 =|2c 0 d O a d, b c mod 2(V) ,

 t\0 2c 0 d where = (1 + (-1)+1 )/2

 6) C(O6) ,H2 where

 0a b/4 0 y O,.., 5, ad-3bc = 1,

 0 O a 0 b/4 a, d E (VI)3-,Z,

 H=ij12c 0 d 0 (e6 b, c E (0) t+-)

 O 12c 0 d where f = (1 + (-1)Y+l)/2
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 852 RYUJI TSUSHIMA

 ( = 0, 1, 2, 3,

 ( 0 a 0 b\ y=0 .,5

 8) Cy=O.() s817 ab / )

 0 \0 c 0 Elt SL(2, Z)

 Proof. We prove only 3), 4), 5) and 6). Others are easily proved.

 Proof of 3). Let (@(R) = Sp(2, R)/(? 1). Since 93 = E92 *~ e , we
 have

 C@(R) (93y) = 0 * )

 Therefore it follows

 C@(3) = * C@(R)(92) *' fl n

 The assertion is proved from this fact.

 Proof of 4). Let C@(R4) = CR2(?( 4)/(?1). Then since 63*2 =
 -have, we have

 C@(R)3) = <(6CR *)C(24)

 which is a semi-direct product of (6l and Cl(o4)+. M E P2(1) belongs to
 The(l,(<4)if and only if M is written in the following form:

 C1C2 dl d2

 P~of o 4. Lt \-(C4) Cr21)041? . Then sic d
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 SIEGEL CUSP FORMS 853

 Then for some 01 E R,

 a a' b b2\

 -a' al -b2' bl

 M= c 0 dl d) *&10 (C = Cl + C2).

 \ O c ~~-d2' dll

 If c ? 0, then the condition to be symplectic implies a' = b= d= 0. If

 c = 0, then (a0)2 + (a )2 ? 0, and so for some 62 E R,

 /a 0 b' b

 (o a -b?" b "
 M= 0 a db ) &0 (a2 = (a)2 + (a?')2)

 O O d' d2 &2
 0 -d2" d 1

 a ? 0 and the condition to be symplectic imply b = d= 0. Therefore,

 in any case, M can be written in the following form:

 /a b O\

 O a O b
 M = ).&.

 The condition M E r2(1) implies that a, b, c, d E Z and 0 = wk/2 (k E Z).
 Therefore, we can conclude

 0 a b O

 { a O b

 C@((4)+ = < 4> X E Sp(2, Z) A?+1).
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 854 RYUJI TSUSHIMA

 This implies that the semi-direct product before is also a direct product.

 Proof of 5). Since 05 =*4 * E, we have

 CO(R)(SA5) = E 1C(R)(*4E

 Therefore,

 C@(05) = E * Cf(R)(lP4) * E n

 The above argument implies that

 0l/ b O

 0 a () b

 C((4= 4 2).0eO E Sp(2, R) 1).

 The assertion is proved from this fact.

 Proof of 6). The fact that Trace(s06) ? 0 implies that

 CO(p6) = Cr2(1)(iP6)/(?1).

 M E r2(1) belongs to Cr2(1)(iP6) if and only if M is written in the following
 form:

 a, a2 b, b2

 -a2 a, + a2 b1-b2 b,

 C I C2 d, d2

 \-C1-C2 cl -d2 d1-d2

 Then

 al al b1' b2\

 = -a2 al' -b2' bi'

 cC dl' d2

 -c2' c' -d' d,
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 SIEGEL CUSP FORMS 855

 Therefore, we infer that C,(R)(96) = {.C@(R)()- 1. The assertion
 follows from this fact.

 COROLLARY (2.7). We define Nr2(1)(4) similarly as in Definition
 (2.1) and N(4)(l) to be Nr2(1)(4) n r2(l). Let 1 2 3. Then we have the
 following.

 (/a 0 b, 0

 o a2 0 b2
 2) N($J2)(1) E r2(1)

 c1 0 d, 0/

 0 C2 0 d2

 r a I O b1/2 0 ail big ci, di E Z,

 3 a2 ) b2/2 a -1-bi _ modl, 3) N(43)(1) = bE Sp(2, R E
 0 d1 0 ai d3-i mod 21,

 2C2 0 d2 Cbic3-i mod 21

 /aOb O\

 O a O b

 4) N(44)(1) E I r2(l)
 c d O

 \OcO d

 (Ia 0 b/2 0 a, b, c, d E Z,

 O a O b/2 ad-bc = 1,

 2c 0 d 0 a - 1 b -0 modl,

 (0 2c 0 d a- d b-c Omod21i

 0a b/4 0 a, b, c, d E Z,

 O a 0 b/4 ad-3bc = 1
 6) N(h6)(1) =t,t

 12c 0 d 0 ad _1 mod

 12c b c Omod 1
 0 0 d

 7 a1 0 0 0E }

 7) and 8) N($7)(1) = N(-$8)(1) = |OaObE r2(1) 1
 0O O 1 0
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 856 RYUJI TSUSHIMA

 The values of ING(,)(4) in Theorem (2.2) are obtained from Cor-
 ollary (2.5), Theorem (2.6) and Corollary (2.7). See the proof of Theorem

 (2.8) for the details.

 3. THEOREM (2.8).

 r(D1,I1)2 103 3 35 1((2k-2)(2k-3)(2k-4)110

 -240(2k-3)18 + 144017)11(1-p -2)(1-p -4).

 2)r(2, )2-7 3-2 (-1)k((k- 1)(k-2)1 6(2k-3)1 + 361)1(1-p )2.

 3) r(P3, 4'3) =

 2 63 (1)k ((k- 1)(k -2)1 - 3(2k - 3)1 + 121 )11(1 -p ), if 2 j1,

 24 3 (-1) ((k-1)(k-2)1 -3(2k-3)l + 21)H(l-p ), if 2 1.

 -5 -1 3 2)r( -2)
 4) r(o4, 44) = 2 53 1((2k - 3)1Y - 21)_(1 p f2)

 (2 5((2k- 3)1Y - p-2) if 2 ' 1,

 2 3 ((2k-3)1 -81 )11(1-p ), if 21 1.
 - 1 -2 ~3 2 -2

 ( 3((2k-3)1 -91)11(1-p ), if 3{l ,
 6) ro6 6) = 3 1 3 2 -2

 62331((2k - 3)1- 91)(1 - p ), if 3 1.

 7) r(P7(1), 7) = 2 3 Y(i)k(1 + i)((2k - 3 + i)13- 1212)(1 _ p -2).

 'r('7(2), 47) = 2 3 1 (- k(1 - i)((2k - 3 -i)l3- 1212)(1 _ p -2)

 8) T(08(1), 48) = 2 3 (p2)k ((3k-4 + p2)13 -1812) 1( -p ).

 r(908(2), N8) = 2 3 (p) k((3k - 4 + p)l3- 181 2)H(l -2

 r(08(3), 48) = 2 3 2(-_p2)k(1 + 2p)((k- 2 _ p213 - 612)n(l -2).

 T( P8(4), (8) = 2 332 (-p)k(1 + 2p2)((k- 2-p)13 -612)H(1 -2

 9) T(pg(l), () = 2-3 (1,3 k

 -2 k

 k(p9(3), D9) = 2 ((i)k(1 - i).

 10) r(spo(1), b'o) = 3 (p) (1 + 2p).

 -2 2)k 2
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 SIEGEL CUSP FORMS 857

 -r(<pj(3), -411) = 2-- 3 -1 (_ 1k.

 T('pI0(4), -4io) = T(,pi0(7), 4)io) = 31 (kP)k

 r(,pI0(5), -I)o) = -r(,p,(6), 4,o) = 3- (P2)k.

 r(,oI0(8), -Io) = 3 (P ) (1 + 2p).

 r(ojo(9), 4Io) = 3 (p) (1 + 2?p ).

 11) -rpII(1), -1),,) 2 13 (c- 7(1 - p)( 7 -1

 1r(,1I(2), -11) =) 2 3 (o)5k(l _ p2)(1 _ 5)-

 -r(<11(3), -I) , 2 3 1(a)o(1 - p)(l - o)

 -r(pj(4) -),, 2-1 3-1 (r11 k 2 11- r(fo11(4),4)11) =2 3 l(al)k(l-_p)(l-_ 1)-

 12) -r(p12, 412) = 2 3 (-1)

 13) -r(<13, 4)13) = 2 (-1)k.

 14) -r(<4(1), 414) = 5 (w) (1 - 2)

 r(< 14(2), 4 )4 ) = 51 1@2 k ( 1 -4

 r(<O14(3), 4)14) = 51 ( 13 (1 - w)

 N(I14(4), -4)W) = 51(4)kk(l - 3)

 Proof. 1) follows from the fact that r(ep1, bl) = dim Sk(F2(l)). 9),
 ...,14) are easy. We prove only 3), 6) and 7). 2), 4), 5) and 8) are

 similarly proved. We always denote a divisor, the line bundle determined

 by the divisor and its first Chern class by the same symbol.

 Proof of 3). Let

 a, 0 bh/2 0

 O a2 0 b2/2
 g e' E N(b3)1)-

 2cl 0 d1 0

 0 2C2 0 d2
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 Then g acts on ($ as

 alzl + b1/2 1

 g(ZI 1/2) 2c1z+dl )d2

 Z2 a2z2 + b2/2

 2C2z2 + d2

 Therefore, if we define t: e1 X 251 3 by

 (z1/2 1/2),
 O(ZI, Z2) = 9

 \ Z2/2

 then we have

 = (alzt + b1 a2z2 + b
 clzl + d1 C2Z2 + d2

 We put

 ((:: bi) (:2 b2
 1 d,

 and

 N(( 3)(10 = {g'lg E N(43)(1)}.

 Then N(?3)(l1' is a subgroup of SL(2, Z) X SL(2, Z) which contains rP(21)
 X I1(21) as a normal subgroup of index six (resp., eight), if 1 is odd (resp.,

 even). We prove only the case when 1 is odd. The case when 1 is even is

 similarly proved.

 Assume that 1 is odd. We denote the elements of SL(2, Z/21Z):

 (G 0) mod 21, ( )mod 21, ( )mod 21,

 ( ')mod 21, ( )mod21
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 and

 ( ) ~mod 21,
 (I 1)

 by A1, ..., A6, respectively. Then

 F = N(43 )(l)'/r 1 (21) X r 1 (21)

 consists of (A1, A1), (A2,A3), (A3, A2), (A4, A4), (A5, A6) and (A6, A5).
 Let P1,o be the subgroup of SL(2, Z) defined by

 ={(+' n nEZ}

 Then the cusps of t*(21) correspond bijectively to

 rFl(21)\rj(1)/Pj,0

 by the correspondence:

 /a() b )( /a b) r 1(21)t )P1,0 1-* '(21)t d) .

 Let M be the subset of Z/21Z X Z/21Z consisting of elements of order 21.
 Then we have another bijection:

 rl(21)\r2(1)/Pl,O - M/(? 1),

 /ab\

 IF (21)( )P10 ? (a mod 21, c mod 21).
 \c

 Let U, V and W be the sets of cusps of t*(21) corresponding to

 {(a, b) E M/(?1)Ia * 0, b 0 mod 2},

 {(a, b) E M/(?1)Ia 0, b h 0 mod 2},

 {(a, b) E M/(?1)Ia * 0, b * 0 mod 2},
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 respectively, by the above bijection. U, V and W consist of (1/2)1211(1-
 p 2) cusps, respectively. A2, A3 and A4 fix any u E U, any v E Vand any w

 E W, respectively, and do not fix other cusps, and A5 and A6 fix no cusps.

 Let S denote t*(21) X t*(21), and for a cusp p of 1t*(21) let Cp and
 Dp denote the divisor {p} X t*(21) and t*(21) X {p} on S, respectively.
 Then (A2, A3) transforms Cu and Dv into themselves and fixes u X v for
 any u E U and v E V. Similarly, (A3, A2) (resp., (A4, A4)) transforms C,
 and Du (resp., Cw1 and DW2) into themselves and fixes v X u (resp., w1 X
 w2) for any v E V and u E U (resp., w1, w2 E W).

 Let b be as above. Then ,t induces a morphism of St(21) X 25*(21) to
 4'3. This morphism induces a rational map of S to 43 which is not

 holomorphic at U X V, V X U and W X W. Let S be the blowing up of S

 at U X V, V X U and W X W. Then it is easily seen that l induces a

 morphism of S to 43 and S = F\S is isomorphic to 43. Let p1 and P2 be
 the projection of S to the first and the second factors, and let Q, ir, Q and i
 be as in the following diagram:

 S . VIM(2) X VIM(2) - 3
 tQ

 S1r

 S--- - 3 L* Yl).

 Let Cp and Dp denote the proper transforms of Cp and Dp byQ,
 respectively, and let Cp and Dp denote ir(Cp) and 7r(Dp), respectively. Let
 Epxq be the exceptional curve on S over p X q E S, and let EpXq be
 1(EpXq )b

 Since

 (Cp)2[S] = (Dp)2[S] = 0,

 we have

 22 21 l _ -2. (Cp)2[S] = (DP)2[3] = -(1/2)1 H(1-p ).

 Since ir*(Cp) = Qp + Cp, + Cp,,, where Cp, C-p and Cp, are disjoint, we
 have

This content downloaded from 129.15.14.45 on Sat, 25 Aug 2018 15:36:58 UTC
All use subject to https://about.jstor.org/terms



 SIEGEL CUSP FORMS 861

 (1) (Cp)2[S] = (C )2[(1/6) *(S)] = (7*(Cp))2[(1/6)S]

 =-(1/4)12HI(1 _ p-2).

 Similarly we have

 2 )1~~21-( - 2 . (2) (D) [S = -(1/4)l2I(1 -p )

 Since ir ramifies at Epxq with ramification index 2, and 7r*(Epxq) =
 2(Epxq + Ep'Xq' + Ep xq"), we have

 (3) (Epxq)2[S] = (r*(Epxq))2[(1/6)S] =-2.

 Further we have

 (4) ((i * 0)*(L2)) [SI = ((i* t * )*(L2)) [(1/6)S]

 = (Q*(p (L*14) + pT(L1)))2 2[(1/6)3

 = (1/6)(p *(L1) + p *(L1)) [SI

 = (1/48)16H(l - p -2)2

 (5) (( * N*L2) *Ep x q)[S]

 = ((i47r)*(L2)*(Epxq +Ep'Xq' +Ep "xq "))[(1/3)S]

 = (Q*(p *(L-l) + p *(Ll)) * Q*(O + 0 + 0))[(1/3)S] = 0,

 and

 (6) ((W O)(L) * Cp )[S]I

 = ((i.47r)*(L2).(Cp + Cp, + Cp,,))[(1/6)S]

 = (p*(L1).(Cp + Cp, + Cp,,))[(1/6)S] = (1/8)1 3I(1 _ p 2).
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 Similarly we have

 3 -2. (7) ((i4)*(L2)Dp)[S] = (1/8)/H(1 _-p ).

 Further, by the proportionality ([16], Theorem (1.3)) we have

 (8) C2(b3)[b3] = (1/2)(C1 (b30))2 [R3]

 = 2(i*(L2))2[R3] = (1/24)1611(1 - p -2)2

 Let

 C= Y2Cp, D=2 Dp and E= Epxq
 pEU pEU pXqEUXV

 Then we have

 +*(A((DA)= C + D + E,
 (9)

 (iW )*(A(2)) = C + D + 2E,

 and

 (i - 0(2L2 = Ks + i*(A(4)3)).

 Therefore, it follows that

 (10) b*(N3(7r)) =-(i.-,)*(Kt*(1)) + Ks =-(i.4,)*(L2) + E,

 where N3(7r) is the normal bundle of 4)3. Further, by [16], Proposition

 (1.2), we have

 (11) C1(S) = i*(C1(4D3) + A(43)) =-2(i.Q)*(L2) + C + D + E,

 and

 (12) C2(S) j*(c2(4C2 ) + F1()*).A(4(b3) + A2(D3))

 -i*(2((o)) - 2(i *)*(L2) * (C + D + E)

 + (D*E + C *E + C.D).
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 By (1) - (12) we can compute the intersection numbers which appear

 in r(%3, 43) and obtain the assertion.

 Proof of 6). Let

 a O b/4 0\

 ( a 0 b /4

 g =E t (N($6)(l).
 12c 0 d O

 \0 12c 0 d

 Then g acts on (6 as

 z-+-2b (az+2b \

 g.(z z/2) (\3cz/2 + d 3cz/2 + d/2

 z ~~~~~az + 2b
 3cz/2 + d

 Therefore, if we define V: - -6 by

 V(z) )

 then we have

 (r1 az+b
 (- *g * )(z) =

 3cz + d

 We put

 a h

 and

 N(4t6)(1)' = {gA'Ig E N(46)(l)1}
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 Then N(46)(1D 1 is a subgroup of SL(2, Z) which contains r1(31) as a nor-
 mal subgroup of index six (resp., nine) if 3 , I (resp., 3 1 1). Let

 F = NQ16)(l)0/rF1(31),

 R = *(31),

 R =F\R,

 and let ir be the natural projection of R to R, i the inclusion of D6 to tj(2),
 and it the isomorphism of R to (N. Then it is easily seen that

 (13) (i.-X)*(L2) = 2L1,

 and

 (14) i*(L2) = K 6 + A(4D6).

 The boundary of (I?6 intersects the boundary of t*(1) at the points which
 are equivalent to

 under the action of G(l) (see Section 4). Therefore, we have

 (15) i*(A(2)) = 3A(D6)-

 Let N6(2ir/3) and N6(4ir/3) be the subbundles of the normal bundle

 of 4'6 corresponding to the eigenvalues p and p 2, respectively. Then it is
 easily seen that

 N6(2i-/3) = N6(4ir/3)

 - (-i*(Kt*(1)) + K )/2
 (16)

 (-i*(Kt*(,) + A(2)) + + 3AQ16))/2

 --i*(L2) + IA(46).
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 It is easily proved as before that (6 has 12/(1 - p ) (resp.,

 (3/4)12 H(1 _ p-2)) cusps if 3 t I (resp., 3 1 1). Therefore, by (13)-(16)
 we can compute T(906, D6).

 Proof of 7). We compute only r(ep7(1), 4-7). Tr(e7(2), 4-7) is similarly

 computed. 4-7 is isomorphic to *Q(l). Let b be the isomorphism of *Ql)
 to 47, i the inclusion of 4,7 to *(l), andj the inclusion of 4-7 to D2*

 Let

 (ZI Z2:

 be the coordinate system of e2. Then we have

 d7'(( aZ, ) ) = ( aZ19)

 and

 dip7(1)(( dZ2 ) ) ( a p2

 where p E 47. Therefore, if we denote by N7(x) and N7(3ix/2) the sub-
 bundles of the normal bundle of 4-7 corresponding to the eigenvalues -1
 and -i, respectively, then we have

 (17) N7(ir) = Nt7/t2 = 0,

 and

 (18) N7(37r/2) =^j*(N2/2*()) =-j*(L2)

 Further, we have

 (19) (.4)*(L2) =L1,

 (20) i*((2)) = )
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 and

 Cl((D)= -2i*(L2) + A(4-7).

 By (17)-(21) we can compute r(07(1), (D7).

 3. Fixed Subvarieites over Cusps of Degree One. 1. Let (*(l) be
 (the closure of) one of the cusps of degree one in i5(I). Let

 (z1 Z2:

 Z3/

 be the system of coordinates of 2. Cusps of degree 1 in 2(l) are
 equivalent to each other under the action of G(l). We assume 1(*l) is
 defined by Im Z3 = oo. We denote by P2,1 the subgroup of r2(1) consisting

 of elements which transform the rational boundary component of S2

 defined by Im Z3 = oo to itself and P2,1 n I2(l) by P2,1(1). An element M
 of P2,1 is uniquely decomposed as

 a b 0\ /1 0 0 \/1 0 0 n\ /1 0 0 0

 0 1 0 0 0u 00 m 1 n 0 01 0 r
 c 0 d 0 0 0 1 0 0 0? 1 -\ 0 1 0

 0 0 1\ 0 0 u 0 1\ 0 0 1

 where

 /ab
 (| )E SL(2,Z), u = 1 and m,n,rE Z.

 \cd/

 If M is in P2,1(1), then this decomposition is done in P2,1(1). M acts on S2
 as

 _azl +b Z2+mZ2+n

 zZ1 Z20 cz, + d (cz1 + d)u

 \ Z3/ Z3+MZ2+r(mzl + Z2 + n)(dm - cz2 - cn)
 Z3+mZ2+r+ ~ CZ +z +d/
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 sl (5 (1)) has a structure of an elliptic surface. See [8] and [12] for the

 details. Letp E El (I),then s 1(p) has the structure of elliptic curve deter-

 mined by the lattice l(pZ + Z), where p E El is a representative of p.
 Therefore, a point of s (l(1)) is determined by p and q E C/l(1pZ + Z).
 Let q E C be a representative of q. We denote the point determined byp and q

 by

 symbolically. If p is a cusp of El (1), then s (p) has a structure of an

 1-gon of rational curves.

 Let M be as before. Then the element (? 1)MP2,1(1) of P2,1 /(? 1)P2,1 (1)
 acts on s l (l)) as

 ,, / ap + b q + mp+n

 (?1)MP2,1() ( ) = cp+d (cp +d)u )
 00~~~~0

 and acts on the normal bundle of s as a multiplication by

 exp 2 -xi Z2+ r (mzI + Z2 + n)(dm- cz2- cn)
 expt27ritmz2 +r+ ~ -~ cz+ + d

 Therefore, to classify the fixed subvarieties in s -1(t*(1)), it suffices to
 consider the cases when

 (c b) ( ), ?( O), ?( ) o ?(' O)
 d 0 1 -1 -1 -1

 In the case when 1 is odd, we denote by ? 17

 U ( 1/2)( (lz + 1)/2)( (lz + l + 1)/2)

 0
 and in the case when / is even, we denote by 4D 17
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 (z1/2) (z (+ /2)( (lz +1)/2)( (lz + 1+ 0/2)

 Let (i7 be the closure of 4? in s 1( 1 (l)). I17 is an irreducible curve and

 has a structure of a covering space over 1 (l) of degree three (resp., four)

 if I is odd (resp., even) by s.

 4)17 does not ramify over W (l). In the case when l is odd, 4)17 has two
 branches over a cusp of S*(l), and one of them does not ramify, and the
 other ramifies with ramification index two. In the case when l is even, we

 can classify the cusps of t*(l) into U, V and W as in the proof of Theorem

 (2.8), 3). Note that 1 here corresponds to 21 before. If u E U, then 41l7 has
 four branches over u, and they do not ramify. If v E V and w E W, then 4 17

 has two branches over v and w, and they ramify with ramification index

 two. In both cases a branch which does not ramify intersects a side of an

 l-gon of rational curves, and a branch which ramifies intersects a vertex of

 an l-gon.

 For a fixed subvariety 1 in s 1(I(l)) of an element of G(l), we
 define CG(1)(Q7), C'G(1)(4) and NG(,)(b) as Definition (2. 1). Now we have the
 following

 THEOREM (3.1). Fixed subvarieties in s 1(Q (l)) of elements of

 G(l) which intersect s 1Q(?(l)) are classified as follows. f' means the

 closure of 4?O in s I( 1c(l)).

 4' 0 I CG(,)(4) I I NG(I)(P) |

 15) 4) 1 (z1 Z2) ZI E S 1 161(l p-2,
 1X Z2 E C

 16) 4'16 { )l E 21 14H(_(1 p-2)

 /4H(l - p ), if 2, 1
 17) 4'17 21

 14/39) (_ p-(+ if 2 11

 18) 't18 t 0J41 41

 (i (+ 1)/20

 19) 4,19 t 0)41 41
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 20) 2O ( 0) 61 61
 00

 ZP(P + 2)/30
 21) 421 ( ) 31 31

 \ 00 /

 I CG(l(4)I and I NG(1)(4)l in this theorem are easily determined. In
 the following theorem we list only the proper elements of CG(l)(c1). We in-
 dicate the eigenvalues eio of the normal bundle of 4' by 0.

 THEOREM (3.2). The proper elements Po of CG(I)(4)) are as follows:

 Representative The condition s? det(CZ + D)
 so of so inr2(1) to be proper 0 for Z E 4

 1 000\

 O 1 O r
 15) so15(r) r 0 Omodl 2irr/l 1

 o o 1 o

 \0 0 0 1

 -1 0 00\

 O 1 O r
 16) so16(r) r ) Omodl r, 27rr/l -1

 1 ) -1 0

 \ 00 0 1/

 /-1 0 01\

 ( 1 -1r
 17) sol7(r) r 0 O mod / 7r, 2rr/ / -1

 0) 0 -1(

 \ 00 01/

 / o 1 0

 O 1 O r
 18) pol8(l, r) r 0 O mod I r/2, 7r, 27rr/l -i

 0-1 ? ? ?

 O 1 Or
 ,p,8(2, r) r 0 O mod I x, 37r/2, 27rr/l i

 I10 00
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 / 0 11\

 19) so19(1,r) -1 1 0 r -x/2, 7r,
 -(2r -1)/I -i

 -1 0 0 0

 \ O OO 1/

 0- 1 0\

 01 -1 r r, 3ir/22
 sop9(2,r) I I --1(2r + 1)/I

 l1 0 0 -11

 O 0 1

 / 00 10\

 0 1 0 r 2-x/3, 4-r/3, 2
 20) S020(l1r) r 0 Omodl 27rr/I p

 -1 0 -1 01

 00 01!

 -1 0 -1 0\

 ( 01 Or 2ir/3, 47r/3,
 'P20(2, r) r K 0 modl 27rr/I p

 0 0 010

 0 0 -1 0

 0 1 0 r 4-r/3, 5ir/3, 2
 'P20(3, r) r 0 modl1 2 7rr/l _p2

 10 00/

 00 0 1

 / 1 0 1 0\

 0 1 0 r ir/3 2ir/3,
 'P20(4, r) r 0 modl1 2 7rr/l -p

 -10 00)

 00 0 1

 /00 1 1\

 -1 1 -1 r 2ir/3, 4-3g 2
 21) so21(l,r) 2-r(3r - 1)/31 p

 -1 0 -1 0

 00 01
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 /-1 0-1 1\

 . - 2 7r/3, 4 7r/3,
 'P21(2, r) 2i-x(3r + 1)/31 p

 10 O -

 \ 00 0 1

 2. THEOREM (3.3).

 31(9-(2k-3)1 (2k-3)1-6 4 2
 15) T(SP15(r), t15) 2 3 (1 r) + (1_r)2 -(1- r)3/

 1-_ r (r / r)
 16) (al6() +16 = 2-53 - 1 _ k (12 (2k -3)1) 2fll -

 (2 (-1) ( + (p)12I( -p2) if 24-1,

 17) T(St'i7(r), 4'7)= L3 k 2 -(2kp-i3f 4 2

 18) T((O18(1, r), P18) = 2-2(_i)k(l - i)(tr- 1)-

 T(S0l8(2, r), 18) = 2 2(i)k(l + j)(tr- 1)-_

 19) T(Sl19(l, r), bil) = 2 2(-i.j)k (1 - i)(exp(i-i(2r - 1)/1)-

 T(S019(2, r), (Di) = 2 (i) (1 + i)(exp(7-i(2r + 1)/1) - 1

 20) T((020(l, r), P20) = 3 1(P2)k (r -)

 T(s020(2, r), P20) = 3 1(p)k(tr _ )- -

 T(sP20(3, r), P20) = 3 1(_p2)k(1 + 2p)(tr_ 1)-

 T(sP20(4, r), t2O) = 3 1(-p)k(l + 2p2)(r _ 1)-

 21) T(s021(l, r), t21) = 3 (p ) (exp(27ri(3r - 1)/31) - 1)

 T(s021(2, r), P21) = 31 (P)k (exp(27ri(3r + 1)/31) - )-1

 Proof. We prove only 15) and 17). 16) is similarly proved, and the

 others are easily proved.
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 Proof of 15). Let i be the inclusion of b15 to ;*(I). Then we have

 i*(L2) = (S I I'1)*(01

 (21) i*(A(2)) i*(4,Dis) + A(Q15),

 and

 (S I

 Therefore, we have

 (22) (j*(L2))2[4 15= (i*(L2) A(4)15))[1415= (A(]))2[4] = 0.

 By [16], Remark (3.5), Lemma (4.) and Lemma (6.8), we have

 (23) (i*(QI15).A(4)15))[115] =-l3H(1 _ p 2),

 (24) (i*(L2.4)15))[14151 -(1/12)1 41(1 _p 2),

 and

 (25) (i*(415))2[ 415 = (1/6)13II(1 _ p -2),

 It is easily seen that

 (26) (A2(415))[4151 = (1/2)131(1 _ p-2).

 Further, by [161, Proposition (1.2), Lemma (5.1) and Remark (5.4),
 we have

 (27) cl(415) = Fj(405) + A(115) = (SI415)*(-3L1 + A(1)),

 (28) C2(4)15) = C2(45) + 1 1(4%>A(415) + A2(415) = 2(15),

 and

 (29) i*(415)'
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 Since (P15(r) acts on the normal bundle of 415 as a multiplication by
 , we have

 (30) ch((kL2 - A(2)) j415)((P15(r)) = rch((kL2 - A(2)) 1 115).

 The assertion is proved by (21) - (30).

 Proof of 17). We prove only the case when / is odd. Let i be the in-

 clusion of 17 to (V*Q), j the inclusion of 17 to 415, and N17(x) and
 N17(2irr/l) the subbundles of the normal bundle of '17 corresponding to
 the eigenvalue -1 and ', respectively. Then we have

 (31) j*(L2) = (s | '17)*(E1)q

 (32) c 1 (' 17) =-2i*(L2) + A(4 17),

 (33) i*(A(2)) = i*(415) +j*(A(415)),

 (34) N17(ir) =-j*(KD 1) + KD17

 =-i*(L2) +j*(A(115)) -(17)9

 and

 (35) N17(2rr/l) = i*(17).

 By (1), (2) in the proof of Theorem (2.8) 3), we have

 (36) j*(415)[117] = -(1/4)12H(1 p-2),

 and it is easily seen that

 (37) (A(417))[417] =1211(1 _ p -2)

 and

 (38) (j*(A(4115)))[K17] = (3/2)1211(1 - -2).

 The assertion is proved by (31)-(38).
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 4. Fixed Subvarieties over Cusps of Degree Zero. 1. Let p be one of

 the cusps of degree 0 in 2*(1). Let

 (Z1 Z2)

 be the coordinate system of S2. Cusps of degree 0 in j*(1) are equivalent
 to each other under the action of G(l). Therefore, we assume that p is

 defined by Im z1 = Im Z3 = 00. S l(p) is a reducible rational variety com-

 posed of (1/4)13/(1 _ p 2) projective lines meeting three at each one of
 the (1/6)13H(1 - p 2) vertexes ([81). These projective lines are equivalent
 to each other, and these vertexes are equivalent to each other, under the

 action of G(l). Therefore, it suffices to consider a single projective line and

 a single vertex to classify the fixed subvarieties in s -1(p).
 We denote by P2,0 the subgroup of r2(1) consisting of elements which

 fix the rational boundary component of e2 defined by Im z1 = Im Z3 = 00

 and P2,o n r2(l) by P2,0(1). An element M of P2,O is written as

 /U RtU-l M=( 7)
 M t tU- )

 where U E GL(2, Z), and R is a symmetric matrix with integral coeffi-

 cients. Let Q2,0 be the subgroup of P2,0 consisting of elements such that
 U = 12, and let Q2,o n r2(l) = Q2,0(1). Let e be the map:

 e52 Q2,0(1)\e52

 (Z 2 Z2 exp(27rizi/l) exp(2wxiz2/1)l

 Z3 Z3 exp(2iriZ3/1)

 Let XC2 be the torus embedding corresponding to the Delony-Voronoi

 decomposition of degree two ([12]). 9C2 has Q2,0(1)\e2 as an open subset,

 and the action of P2,0/Q2,0(1) extends to 92. P2,0(1)/(?1)Q2,0(1) acts on
 9C2 without fixed points. Let 7r be the natural projection of 9C2 to

 P2,0(l)\V2. The neighborhood of s 1(p) is constructed asP2,0(1)\92.
 Let E be the central cone in the Delony-Voronoi decomposition ([8]
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 and [12]). WS = Spec C[ZZ2, Z21, Z2Z3] has a structure of an affine
 open subset of 9C2 ([9]). The neighborhood of the affine line defined by

 Z1Z2 = Z2Z3 = 0 is mapped isomorphically into P2,0\9C2 by -r. There-
 fore, it suffices to consider this affine line instead of the projective line in

 s 1(p) and the origin (ZVZ2 Z71,Z2Z3) = (0, 0, 0) instead of the vertex.
 We denote the point (ZVZ2, Z7', Z2Z3) = (0, exp(-2iri z2/l), 0) on the
 affine line by

 00 Z2)

 symbolically. Therefore, the origin is written as

 (00 -00)

 symbolically.

 Let

 /U RtU-\

 M=( RU)E P20
 M o lu-1 I(20

 where

 /rs\

 UE GL(2,Z) and R )

 We denote the element (? 1)MQ2,0(l) of P2,0/(? 1)Q2,0(l) by

 U(r, s, t).

 M acts on Z E S2 as

 Z . UZtU + R,

 and (? 1)MQ2,0(1) acts on XCr by this action through wr.
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 Let U1, U2, U3 and U4 be

 (1 O)( 1 )( ') an Q 0)

 (O 1 -1 O) (1 O) ( 1)

 respectively, and let V1, V2, **., V6 be

 /1 OX /-1 -10 / 1\0 10 1 0 K-1 -10
 \O 1J 1 0/ \-1 -1/ \1 0 \-1 -1/ \ 1

 respectively. Then by [8] the elements of P2,0/(? 1)Q2,0(l) which
 transform the affine line Z1Z2 = Z2Z3 = 0 to itself are

 UW(r, s, t) (i = 1, 2, 3, 4),

 and the elements of P2,0/(? 1)Q2,0(1) which fix the origin Z1Z2 = Z2=

 Z2Z3 = 0 are

 Vi(r, s. t) (i = 1, 29 ..., 6).

 By this result we can determine the fixed subvarieties in s- 1(p) and

 their isotropy groups. Let o22 be

 {(o z )

 t(m~~ E) CX

 and D22 the closure of )22 in s (p).

 THEOREM (4.1). The fixed subvarieties in s'(p) are classified as
 follows.

 I CG(4) I I NG(Y)(I) |

 22) )22 212 413

 23oo O0 2 2
 23) (D23 =w }j 41 41
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 24) D24 = { )} 412 412

 25) 42 = r { ; 613 613

 In the following theorem we list only the proper elements of CG(1)(?b).
 We indicate the eigenvalues eio by ei0.

 THEOREM (4.2). The proper elements (o of CG(l)(4) are as follows.

 Representative

 of so in The condition so

 5t7 P2,0/( ? 1)Q2,0(1) to be proper eio

 22) (22(1, r,t) UI(r,O,t) rt 0 Omodl 1r t

 'P22(3, r, t) U3(r, 0, t) r + t 0 Omodl ??(r+t)/2

 23) S023(2, r, t) U2(r, 0, t) r + t 0 Omodl ??(r+t)/2

 f023(4, r, t) U4(r, O, t) rt 0 O mod 1r vt

 24) p024(2, r, t) U2(r,-1, t) r + t o Omodl ?+(r+t)/2

 f024(4, r, t) U4(r, -1, t) rt 0 O mod 1r vt

 25) fp25(1, r, s, t) VI (r, s, t) (r + S)(S + t) s 0 o Pr+s, vS+t' ?-s
 modi

 modi

 '25(4, r, s, t) V4(r, s, t) (r + 2s + t)s 0 + ?(r+0+t)/2
 mod l

 det(CZ + D) for Z E 4 is equal to det(D), since C = 0.

 Remark (4.3). CG(l)(Q25) has other proper elements whose repre-
 sentatives are Vi(r, s, t) (i = 3, 5, 6). We omitted them in the above theorem

 and the following theorem, since they are conjugate to op25(i, r, s, t) (i = 2

 or 4) in CG(1)(25). It suffices to double (resp. treble) the contribution of
 sp25(2, r, s, t) (resp., (P25(4, r, s, t)) in the dimension formula (Theorem (5.2),
 (49)) instead of them.
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 2. THmOREM (4.4).

 1 ( 2 2 )
 22) r(SP22(l, r, t), D22) = _ i)- - 1) {(+r _) +(t +3}.

 G )( _ 1) ( ~ _ 1) Gt-

 T((P22(2, r, t), 422) =(tr+t _1) {(r+t _ 3

 23) and 24) T(5023(2, r, t), D23)= T(O24(2, r, t), D24) = 2' 1(r+t - 1)1.

 T(p23(4, r, t), 23) T(sP24(4,r,t),424) = 2 1)k(f r1)-I( t - 1)-

 = r+s 1 s+t 1 s - 25) T(S2s5(l, r, s, t), 42s) = - iF)(+ - 1) G( - 1)

 r+s+t -
 T(<p25(2, r, s, t), 425) = ( -1)

 T(so25(4, r, s, t), 425) = (-.)k ?r+2s+t - -1)-s - -1

 Proof. We prove only 22). Others are easily proved.

 Proof of 22). We compute only 'T('22(l, r, t), c122). Let i be the in-

 clusion of b22 to 2*Q), and N22(2ir/l) and N22(2irt/l) the subbundles of
 the normal bundle of D22 corresponding to the eigenvalues Pr and t,

 respectively. By [16], Theorem (2.4) and Remark (3.5), we have

 (39) i*(L2)[422] = 0,

 (40) N22(27rr/1)[b22] =-2,

 (41) N22(27rt/1)[b22] =-2

 and

 (42) i*(A(2))[K22] = -2.

 Further, we have

 (43) C1(422)[422] = 2,
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 and

 (44) ch((kL2 -A(2)) J4'22)((P22(1, r, t)) = t-r-tch((kL2 - A(2)) |1422).

 The assertion is proved by (39)-(44).

 5. The Dimension Formula. Let g E G(l). We compute the trace of

 the action of g on Sk(r2(l)). Fix(g) has M.4a (M E G(l), aY = 1, .., 25)

 as an irreducible component, if and only if

 M-1.g.M= (,

 for some (p E C'P(1)(4a). If M' E CG(l)(0), then we have

 (MM'F) 1 *g * (MM') = so.

 Therefore, g also fixes MM' -4),,. The number of irreducible components
 of Fix(g) on which g acts as sp is

 (45) I CG(l)() I I CG(l)() I I NG(Y)(4?)I
 CG()(s) fl NG(l)(4?a) NG(l)(4a) I I CG()(o) n NG(l)(4?a)

 The map

 NG(l)(4Ia) CG(1)(4?a)

 9 -1 I 1 g ~g so g

 induces an injection of (CG(l)(o) n NG(l)(4a))\NG(l)(4a) to CG()(4)a)

 (Lemma (2.4)). The image of this map consists of elements of CG(I)(4a)
 which are conjugate to so in NG(I)(4X). But as a result we can see that the
 image of this map consists of elements of CG(I)(4X) which are conjugate to

 so in CG(I)(41X). Therefore, the value in (45) is equal to

 ICG(l)(() I I CG(I)(X?)
 INGY (4 a)l IQ(P) I
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 where C(so) is the centralizer of so in CG(I)(4'a). Let Cl(CP (I)QJ?)) be the set

 of representatives of conjugacy classes of CG(1)Q(J,) contained in CPJ(1)(4',).
 We denote the conjugacy relation in G(l) by -. We proved the following

 TiEOREM (5.1). If k 2 4, then

 Trace(g I Sk( 2(l))) = r(g)

 (46) = S , |~2 CG(1)((f) IICG(1)(bR) IT(P (46) = I CG (I((,) I I C a)I
 C=a1 E(CP(l)(ca) ING(1)(4>a) I I C( I

 25 CY(
 (47) = E T(~, 4))

 Z gO

 Let r D r2(l) be as in the Introduction. We compute the dimension

 of Sk(r). Let g1, ..., gh be the representatives of conjugacy classes of
 G(r). Then we have if k 2 4, then

 dim Sk(r) = I | (g)g
 I G(r) I gEGPr)

 h 1

 i-l CG(r)(9i)I

 Therefore we have the following

 THEOREM (5.2). If k 2 4, then

 dim Sk(r)

 (48)

 h 1 25 ICGUO I - I CG(l)(4a) IT( b )
 I CG(r)(g9) a=1 q'ECI(C?(1)(41")) I NG(I)(4)a) I )I Q(P)I

 p -gi

 (49)

 h 1 25_ _G _ _(P

 i-1 CG(r)(g1) I CY-1 iOEC?q(/) jN() NG() I NGY )
 p -gi
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 The conjugacy classes of r2(r)/P2(p) (p = prime) are classified by
 [18]. If 1 = IHp is square free, then we have

 r2(1)/r2(l) = H(r2(1)/r2(p)).

 Therefore, I CG(l)() j is determined if I is square free.
 Now we can compute dim Sk(r2(l)) and dim Sk(r2(2)).

 LEMMA (5.3).
 1-1 -r1

 i) Er=1 (1 - Pr) = (1/2)(1 - 1).

 ii) rl-l (I _ r)-2 = (1/12)(1 - 1)(1 - 5).
 r=) 1-(1 _P)-= -(1/8)(1 - 1)(1 -3).

 Example (5.4). By the above theorem we have if k 2 4, then

 25

 dimSk(2(1)) E
 a1 EC' 2/)()) NG(1)(4)a)I

 By Lemnma (5.3) and a rather complicated computation, we can see that
 this is equal to the coefficient of tk in

 1 + t3 1 1

 (I1_t4)(1-_tlj(1 _t10)(1 _t12) (1-_t4)(1-_tl)

 Let Ak(r) be the vector space of Siegel modular forms of weight k with
 respect to r. Then by the surectivity of 4k-operator ([15]), we have if k >
 5, then dim Ak(P2(1)) is equal to the coefficient of tk in

 1 + t35

 (1-_t4)(1-_t6)(1 _t10)(1 _t12)*

 This coincides with the result of [7], and we can determine the struc-
 ture of the graded ring:

 00

 k(i) Ak (r2( ) k=t

 by this result ([71).
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 Example (5.5). Let r be r2(2) and 1 (>- 3) an odd integer. We study
 the action of

 G(r) = r2(2)/(?l)r2(21)

 on Sk(r2(2l)). By the isomorphism

 f:G(21) = r2(1)/(?l)r2(21) - r2(1)/r2(2) (0 P2(1)/(?l)r2(l)

 G(r) is isomorphic to

 (} (0 r2(1)/(?l)r2(l).

 If sp E G(21), then we denotef(so) by (so mod 2, sp mod 1). sp is conjugate to

 an element of G(r) if and only if sp mod 2 = 1, and in such a case we have

 CG(21)((P) = r2(1)/r2(2) D CG(1)((P mod 1),

 and

 CG(r)(so) {1} 0 CG(l)((P mod 1).

 Therefore, it follows that

 I CG(21)((P) I r2(1)/r2(2)1 = 720.
 CG(r)(so)

 Hence we have if k 2 4, then

 dim Sk(r2(2)) = 720 25 T(so, )
 CY= 1 SoECPG(21)("b") I NG(21)("b)I

 omod2= 1

 This is easily computed and equal to

 (1/24)(2k - 9k2- 17k + 84) + (5/8)(-1)k (k - 9k + 20).
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 It is known that S*(2) has fifteen cusps of degree 1 and fifteen cusps
 of degree 0 ([14]), and if k (> 4) is even, then

 dim Sk(rl(2)) = (1/2)(k - 4).

 Therefore, by [15] if k (2 6) is even, then

 dim Ak(r2(2)) dim Sk(r2(2)) + 15 dim Sk(rl(2)) + 15

 = (1/12)(k3 + 3k2 + 14k + 12).

 If k (2 5) is odd, then

 dim Ak(r2(2)) = dim Sk(r2(2))

 = (1/12)(k 3- 12k2 + 59k - 108).

 These results coincide with that of [7].

 Remark (5.6). Let X be a homomorphism of r to C* such that
 Ker(x) = rI is a subgroup of finite index of r. We denote by Sk(r, X) the
 vector space of Siegel cusp forms of weight k and character X with respect
 to r. Let I (- 3) be an integer such that r D r2(l). We can obtain the

 similar result about dim Sk(r, X) by studying the action of r/r2(l) on

 (0*(2), (9(kL2 - A(2))).

 Remark (5.7). Let ro(l) be the subgroup of r2(l) defined by

 ro(l) (Mn( ) C-modl},

 and let X be a character of (Z/lZ)*. For an element

 M =(
 VC DJ

 of ro(l), we define x(M) by

 X(M) = x(det(A) mod 1).
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 Then X is a character of ro(l) whose kernel contains r2(1). If I is square
 free, we can represent dim Sk(o(l), X) explicitly.
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 CORRECTIONS TO [16]

 P. 941, line 3: " c l (3)" should read "c l (3)2
 P. 949, line 3: The (3,3) coefficient of the third matrix should be O.

 P. 949, line 10: The (3,3) coefficient of the second matrix should be -1.

 P. 949, line 1 from bottom: "a2, 03, a2" should read "a2, 03, a3"-
 P. 950, line 2: "al, 7Y2 a," should read "al, Y2' a13 .
 P. 962, line 4 and 8: "0Dj(Di)" should read "ji*OD,(Di)",
 P. 962, line 5 and 9: "ODW(Di )" should read "ji*OD,'(Di ),.

 P. 962, line 10: "ch (O D (D)) I D " should read ch (j*O5 (D)) I D + ch (9D5)",
 P. 962, line 12: The right hand side should be added "ch ((95)", where ji: Di - X, ji': Di' - D

 and] :D - X mean the inclusions, and ID means the pullback by j. There exists the
 relation:

 ch(OF9(D)) = ch(j*0i5(D))q5 + ch((95).

 These errors do not affect the statement of Lemma (5.1).

 P. 967, line 7: "((pO + m /2)z + m0/2)" should read "((p3 + m j/2)z + mj'/2)".
 P. 973, line 2: "7(12)-" should read "7(18)- 3 0

 P. 973, line 18: "7(12)-i" should read "7(18)-i'".
 P. 975, line 1 from bottom: "p4" should read "p -4.

 P. 976, line 7: "4cl/AlA22 should read "3cl\A/22".
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