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ON SIEGEL MODULAR FORMS OF GENUS TWO.**

By Jun-1cHI IcUSA.

I. Introduction. Since the publication of Siegel’s Einfiihrung in die
Theorie der Modulfunktionen n-ten Grades, the theory has been enriched by
several mathematicians. However, even in the case of degree two, the whole
subject is rather misty compared with the clarity we have in the elliptic case.
We are not talking here about the superstructure but the very foundation of
the theory. As Siegel’s treatment already shows, one of the fundamental
objects of study is the graded ring of (finite sums of) modular forms. How-
ever, we know very little about this ring beyond the facts that it is finitely
generated and that an operator @ introduced by Siegel is almost an epi-
morphism of the graded rings of degree n to degree n—1 [3,6]. Now, among
modular forms, Eisenstein series (in the original sense of Siegel) are singled
out by their importance in the analytic theory of quadratic forms [9]. We
shall show that, in the degree two case, every modular form is a polynomial
of Eisenstein series of weight four, siz, ten and twelve. These four Eisenstein
series are, of course, algebraically independent. Thus, we have a complete
structure theorem of the ring and it gives answers to some well-known problems
in this field, e. g. the dimension of the complex vector space of modular forms
of a given weight and the structure of “ Satake’s compactification”” of Siegel’s
fundamental domain (in the degree two case). We shall also determine the
birational correspondence between the projective varieties associated with the
graded ring of “even” projective invariants of binary sextics and with the
graded ring of modular forms. In other words, we shall obtain explicit
rational expressions for the three fundamental absolute invariants in terms
of the four Eisenstein series.

We shall give an outline of our method. The results in AVM imply
that the projective variety associated with the graded ring of even projective
invariants of binary sextics is a compactification of the variety of moduli of
curves of genus two. However, this projective variety does not contain the
Siegel fundamental domain. In fact, those points of the Siegel fundamental
domain representing products of elliptic curves are all mapped to one simple

* Received November 4, 1961.
1 This work was partially supported by the Alfred P. Sloan Foundation.
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point of the projective variety. The first thing we do is, therefore, to “blow
up” this point to a two dimensional affine space to construct the Siegel
fundamental domain explicitly. We note that the blowing up is not a monoidal
transformation. At any rate, once we know the structure of the Siegel funda-
mental domain as an (incomplete) algebraic variety, we can very easily
characterize “multi-canonical differentials” on the variety which correspond
to modular forms whose weights are multiples of six. In this way, we are
able to determine the structure of the graded ring of (finite sums of) such
modular forms. Then, by taking its normalization in the field of fractions
of modular forms, we get the graded ring of all modular forms and can prove
that it is generated by four modular forms of weight four, six, ten and twelve.
The relation between these modular forms and Eisenstein series will finally
be obtained by comparing their Fourier expansions. In this paper, we shall
use classical formulae on elliptic theta-functions due to Jacobi and well-known
results on elliptic modular forms, i.e. those we can find in Hurwitz’s papers,
without specific references. We shall use, also, the following standard
notations:

@&, = Siegel upper-half plane of degree n, i.e. the variety of complex
symmetric matrices of degree n with positive-definite imaginary
parts

T, = homogeneous modular group of degree n (= Sp(n,Z)) operating
in &, as

T (a7+ b) (er+4d)t
F, = Siegel fundamental domain of degree n (= T'\,\&,).
II. Blowing up of projC[4,B,C, D].

1. Let 4, B, C, D be the projective invariants of binary sextics of degree
two, four, six, ten defined in AVM. If &,&,- - -, & are roots of a sextic

UeX ¢+ u X5 - - - ug

and if we denote &— &, by (jk), the values of 4, B, C, D at this sextic have
the following irrational expressions

A(w)—ug? 3 (12)34)7(56)°
B(u) = u,* g (12)2(23)2(31)2(45)2(56)2(64)2
O(u) =uo® 3. (12)*(28)*(31)*(45)°(56)7(64)*(14)*(25)*(36)*

D(u) = us* I (k)2
i<k
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Tn general, if S is a finitely generated graded integral ring over the field €
of complex numbers, we shall denote by projS the (complex) projective
variety associated with S.2 We are interested in the following projective
variety:

X —projC[4,B,C,D].

We have shown in AVM that points of X which are not on D=0 form the
variety of moduli of curves of genus two, hence also of their jacobian varieties
(with canonical polarizations) over €. Now, the jacobian varieties can
degenerate to products of ellipitic curves, and they form a two dimensional
affine space. However, since the projective invariants B, ¢, D vanish simul-
taneously at sextics with triple roots, such abelian varieties are mapped to
one point of X. We shall, therefore, try to blow up this point to get the two
dimensional affine space of products of elliptic curves. We note that, since
the points of X which are not on 4 = 0 form a three dimensional affine space,
the point in question is, at any rate, simple on X. In fact, the following
three absolute invariants

B/A? O/A3 D/A®
form a set of uniformizing parameters of X around this point. Therefore,

we take a point
(71 T 12)
-
Tiz T2

of &, and try to expand the above three absolute invariants into power-series
of e—=r;, (assuming that e is small). The actual calculation was guided by
the following observation.

Suppose that 71,=10 in =. Then, certainly = corresponds to a product
of elliptic curves whose Weierstrass invariants are j(r;) and j(r,). However,
if we start from a product of elliptic curves, there exist infinitely many
points in &,, some not even satisfying v, = 0, which correspond to the product
and ¢ does not have any intrinsic meaning. Consider the subvariety of &,
defined by the equation r,,=0. Then, we can see by a simple matrix calcu-

2 In Grothendieck’s language, what we are defining is
Proj(8)¢(C) = Homgpeecy (Spec(C), Proj(8)).

Since we are assuming that § is finitely generated, this point-set has the unique struc-
ture of a projective variety, i. e. a closed subvariety of a projective space.

12
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lation that elements of T', which keep this subvariety stable are those we can
expect, i.e. of the following two types

a 0 b, O 01 0 O0]fag O b, O
0 a O b, 1 0 0 0[]0 a O b,
¢c 0 dy O 0 0 0 1| ]|e, O dy O
0 ¢ 0 d 0 01 0]|0 ¢ O d,

By these elements, the parameter e =7;, of points of a tubular neighborhood
of the subvariety r;, =0 undergoes the following transformation :

e—> ¢/ (i + dy) (cora + ds) mod €2

Therefore, if we take powers of e and multiply elliptic modular forms in =,
and 7, of the corresponding weight, we can make it invariant modulo higher
powers of e If we require, in addition, that the modular forms to be
multiplied have no zeros, which is certainly a reasonable condition to get a
good parameter, the smallest weight of the modular forms will be twelve.
In this way, we can foresee that the parameter we need is 8(r)8(r;)&'? up
to some normalizing constant with

3(0) — (o) IT (1 — e (10) )

in which e¢( ) stands for exp(2«¢ ) and v is a point of &,. This was a very
discouraging conclusion because it forced us to calculate expansions of absolute
invariants up to order twelve in . However, very fortunately, the blowing up
is not monoidal and this complication on the part of the transformation
brought about an unexpected simplification of the other.

2. As in the previous section, let = be a point of &,. Then, four column
vectors of a two-by-four matrix (r1,) generate a discrete subgroup of two
dimensional complex vector space and the corresponding quotient group 7 is a
complex torus carrying a positive divisor ® satisfying deg(®,®) —2. More-
over, by a suitable translation in 7, we can make ® symmetric in the sense
that it is stable under the transformation z— — 2. There exist sixteen such
divisors and they are zeros of the following theta-functions:

Orgrg (7, 2) =§6[%'t(n +a/R)r(n+g/?) +*(n+a/2)(2+5/?)]

in which g and § are column vectors with 0, 1 as their coefficients. On the
other hand, if the point r is not equivalent (with respect to I';) to a point
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on 7,=0, we know that the divisor ® is actually a non-singular curve of
genus two and T is its jacobian variety [11]. In this case, the three lambdas
which appear in what we called Rosenhain normal form of ® in AVM can be
expressed by theta-functions of zero argument

‘otgtb (T, 0) == otQtf) (T) = ﬂtgtb.

We have a choice of seven-hundred twenty expressions, and we shall use the
following one

A-1 == (0110001000/0010000000) 2 A-Z = (6100161100/0000100100) 2
)\3 = (0100101000/0000100000) 2

which is given by Rosenhain [7]. Conversely, if Ay, A;, As are three complex
numbers different from each other and from 0, 1, co, we can consider a period
matrix belonging to the corresponding Rosenhain normal form. If we
normalize the period matrix suitably in the form (r1,), the three lambdas
can be expressed as above with respect to this r. We shall try to expand the
lambdas into power-series of e =r,,. We observe that, in case neither (g1, %,)
nor (gs, hs) is (1,1), we have

T1 € hd 2271' d"’ d"l» . on
oﬂuhhlhs( 1_2) = E) Tanyi W%M(n) W%ﬂhe(fz) &n.

€

The verification is formal and straightforward. Therefore, we can express the
coefficients of the expansions

M=+ ar€® - ape* - - -

Ao="bo -} b1e® - boe* |- - -

Ag=0Co + 1+ Cae* - - -
in terms of elliptic theta-functions of zero argument and their derivatives.
For instance, we have -

@o=Dbo=Cco=x(71)
in which
A(0) = (810(®) /Boo () ) *.

Now, we evaluate the projective invariants A4, B, C, D at a sextic
X (X —1) (X —X1) (X —As) (X —2s) and replace the three lambdas by their
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expansions in e. Then, writing A=A (r,) for the sake of simplicity, we get
the following expansions

A=0622(1—N)24F 4 (1—1)(1—2) e+ - -
B=2A(1—X)2(1—A+2A%) D (by—cy) 2%t
+4A(1— Q) (1 —20) X ay (by—cy)%€®
—2A2(1—A)2(1—2A) Yoy 2 (by—cq) 2%
F A=A — A+ 22 S (hi—) (br— ) -+ - -
C=42(1—MN*(1—r+22) X (by—cy)%*
F 23 (1—A)3(1—2A0) (R—A+A2%) Xai(b—¢1)%
208 (1— ) (1—2)) (2 — 38X+ 82) Sy 3 (b — ¢,) 268
F (L — ) (A — A+ A2 B (Bi—0y) () 4+ - -
D=2(1—A)8(by—c1)%(c1—ay)2(ay—by)2%2 - -« -

in which the summations are symmetrizations in a, b, ¢. On the other hand,
we need the following classical identities:

0104 + 0014 = 0004t (000010901)8 =2R8%

d 0 d b
ﬁ;log(om/ﬂoo) = TTZ b01* %Mg (600/‘001) = ‘LZ‘/ 010%

Using some of them, we get

a4 p log 000(T2)010(Tz>
bl =7r1:)\(1~—‘/\)000(7'1)4$— 10g010(72)901(72)
Cq ].Og 001 (Tz) 000 (‘rz) .

Therefore, if we put
t=28(71)d(72) (we) 12
we have
D/A> =285t - - -.

Furthermore, since the Weierstrass invariant j and A are related as

J=R(1—A+21%)3/N(1—1)%,
we have
(B/4%)? =252 (r)j(r2) - - .
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Finally, powers of C/A® themselves are of no use, because 3C/A4% and B/A?
have the same leading term. However, if we examine their difference, terms
involving a,, b,, ¢, cancel each other and we get

((8C—AB)/A%)? =2723°(j(r1) —2°8%) (ji(r2) —R°8%)t - - .
3. We, now, introduce following set of uniformizing parameters
x;, = 2*3°B/A? x, =2°3%(3C — AB)/A® z3=2-3%D/A°

of X =projC[4,B,C, D] at the point B—=C =D =0. Also, in view of the
calculation we made in the previous section, we put

Y1 =2.%/x3 Yo = T2 /5.

Then, the normalization of the integral ring C[zi, @, s, 1, y-] (in its field
of fractions) is generated by

Ys = T, %% /5.

The proof is as follows. Clearly y, is an element of the field of fractions.
Moreover, since we have ys® — 9.y, certainly y, is integral over the ring.
We have only to show, therefore, that C[=1, %, s, 91, 9, 5] is normal. How-
ever, if we operate a cyclic group of order six to a ring of polynomials in
three letters ¢, ¢, ¢, as

tl) t2: by —> Cztla §3t2: Csts (Ce =1 ))

the ring of invariant elements of C[¢,t,%,] can be identified with
Clz,, @, 3,91, Y2, Y2, in fact, in the following way

Ty = tltsz Ty = t2t33 T3 =— tse

Y= 1,3 Yo = t,? Ys = 12585,

Therefore, certainly €[, s, s, ¥1,s, 9] is normal, and this proves the
assertion. Also, we can write down very easily a base of the ideal of relations
of @1, @, Ts, Y1, Y2, Ys consisting of six polynomials. We also note that, if V,
and V are the affine varieties with C[21, ©,, @5, 41, 9.] and €[, @s, s, Y1, Y, ¥5]
as their co-ordinate rings, the holomorphic map of V to V, associated with
the inclusion of the rings is a bijection. In fact, over the point of V, not on
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@3 =0, there exists only one point, and over the point of V, on 2z =0, there
also exists only one point, because we necessarily have y, — 0.

We shall, now, show that the variety of moduli and the variety V form
an open affine covering of F, =T,\&,. We recall that the variety of moduli
is the complement of D=0 in X and it is isomorphic to a quotient variety
of a three dimensional affine space modulo a cyclic group of order five operating
in this space as follows

t—> ot §=1,2,3 (£=1).

Since the three lambdas considered as meromorphic functions in &, by means
of the expressions in terms of theta-functions of zero argument undergo seven-
hundred twenty transformations by operations of I';, which are just automor-
phisms of the field of lambdas relative to the field of absolute invariants, the
absolute invariants can be considered as meromorphic functions in &, invariant
by operations of I',. Therefore, the absolute invariants are meromorphic
functions on the the corresponding quotient variety F,. We shall show that,
if we denote by (x3) = (#3)0— (%3), the divisor on F, of the absolute
invariant xs;, elements of the co-ordinate ring of the variety of moduli are
holomorphic in #, minus the support of (zs),, simply F;—supp.(xs),, and
elements of the co-ordinate ring of V are holomorphic in F,— supp.(@s) .
First of all, if a point » of &, corresponds to a curve of genus two, values
of the three lambdas at = are different from each other and from 0, 1, co.
Therefore, the 4, B, C, D, written as polynomials in the lambdas, are all finite
at + and D is different from 0. On the other hand, if r corresponds to a
product of elliptic curves, i.e., if = is (equivalent to) a point on ¢ =0, we have
Ty =0y =03 =13 =0 and

yr=14(m)i(r:) Yo = (j(r1) —2%8°) (§(r2) —2°3%).

Therefore, supp. (#s), consists of points of ¥, representing products of elliptic
curves and it has no point in common with supp.(zs),. Also, elements of
the co-ordinate ring of the variety of moduli are holomorphic in &, at points
r which correspond to curves of genus two, hence they are holomorphic in
F,—supp.(2;),. Furthermore, the corresponding holomorphic map is a bi-
jection of F, — supp. (23), to the variety of moduli. On the other hand, the six
absolute invariants @y, @, @3, 91, Y2, ¥s are all holomorphic in F, — supp.(2;) «-
It is clear that they are holomorphic in F,—supp.(2s). However, their
expansions in € show immediately that they are also holomorphic at every point
of supp. (#3),. Furthermore, the corresponding holomorphic map is a bijection
of F'y—supp. (#3) to V. In fact, it gives a bijection of F,—supp.(z;s) to V



SIEGEL MODULAR FORMS. 183

minus z; = 0 and of supp.(zs), to the set of points of V on 23=0. Now,
since the variety of moduli and V are both normal, the bijective holomorphic
maps are necessarily isomorphisms. In the present case, since the varieties
concerned are “V-manifolds” [cf. 8], we have only to use an elementary
lemma on removable singularities [2]. This completes the proof.

The observations made so far permit us also to prove the following
important lemma:

LemMma. The field of meromorphic functions on F, can be identified
with the field of absolute invariants such that holomorphic functions corres-
pond to constants.

Since this is an immediate consequence of a general theorem proved by
Baily [1] (and of some properties of absolute invariants), we shall give only
an outline. Knowing the absolute invariants which generate the co-ordinate
rings of the variety of moduli and V, we can easily find a set of projective
invariants of the same-degree which gives a projective embedding of F,. In
this way, we get a normal projective variety which is a compactification of F,
such that the complement is one dimensional. This is all we need. Actually,
the compactification is a “ V-manifold” and the elementary lemma on
removable singularities is again sufficient.

III. Ring of algebraic modular forms.

a b
u=(; 3)
is an element of Sp(n, R), the jacobian of the corresponding transformation

in G,

4. In general, if

7= Mr= (ar +b) (or + d)

is known to be det(cr+ d)™?*. We need this fact only for elements of
Sp(n,Z) (in the case n=2) and an easy proof is to verify it for some
generators of Sp(n,Z). This being remarked, a modular form ¢ of degree n
is defined by the following two conditions:

(1) For every element M of Sp(n,Z), ¢ satisfies a functional equation
of the form

l//(M'r) = det(CT -+ d)“’t[/(‘r)

with some even integer w;
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(2) 4t is holomorphic in S,.

The integer w in (1) is called the weight of the modular form. In the above
definition, the elliptic case n =1 is exceptional and we have to assume that y
is holomorphic also at to0. More precisely, since, in general, a modular form
is invariant under a transformation of the form r— 7 -5, in which b is a
symmetric integer matrix of degree n, it admits a Fourier expansion of the
form

Sa(T)e(tr(T7)).

The summation extends over all symmetric half-integer matrices (i.e. sym-
metric matrices such that diagonal coefficients and twice all other coefficients
are integers) of degree n. Since the modular form is also invariant under a
transformation of the form r— wrtu, in which « is a unimodular integer
matrix of degree n, the coefficient ¢ (T") depends only on the class of T in the
sense a('uTu) —a(T). Now, a closer examination first made by Koecher
shows that a(T") is zero unless 7' is positive semi-definite [5]. The elliptic
case is, however, exceptional and this is not a consequence but an assumption.
At any rate, we shall not use this theorem of Koecher and, in the case n —2,
it will simply come out from our later considerations.

If we consider the set of finite sums of modular forms, we get a subring
of the ring of all holomorphic functions in &, and it is obviously graded.
We are interested in the structure of this graded ring in the simplest unknown
case n=2. We say that a modular form (in the case n=2) is algebraic if
its weight is a non-negative integer divisible by six. Finite sums of algebraic
modular forms form a graded subring of the graded ring of all modular
forms and we shall determine its structure.

We take an algebraic modular form ¢ of weight w and, using the absolute
invariants @, z., x5, we consider

b=y (7) (0(21, 2o, %3) /0 (71, T2y T12) )-w/s.

Then, it is a meromorphic function in &, and, because of the property of
the jacobian, it is invariant under operations of T',; hence it is meromorphic
on F;. The lemma in Section 3 implies, therefore, that ¢ is a rational function
of @,, @,, ;. Suppose, conversely, that ¢ is a rational function of z,, ., s
and consider

¥ (7) = ¢ (0(@1, @2, @3) /0 (71, 72, 712) ywls.

Then, it satisfies the functional equation, but it may not have the property
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(R). We shall, therefore, try to obtain necessary and sufficient conditions
(in terms of the rational function ¢) for ¢ to be holomorphic in &.,.

We first recall that the three lambdas are holomorphic in &, minus those
points which are equivalent to points on e=0. Therefore, we get a holo-
morphic map of this open subvariety of &, to the space of lambdas, which
is a three dimensional affine space minus nine planes defined by D =0, and
this map is surjective. The point is that we have an unramified covering, i.e.
the holomorphic map is a local isomorphism. In fact, the inverse map is
given locally by representing r as a part of a period matrix belonging to a
Rosenhain normal form, and it is certainly holomorphic. We can construct
another proof using the fact that no operation of I', belonging to the so-called
principal congruence group modulo 2 has a fixed point in the said open sub-
variety of ©;. On the other hand, the lambda space is a ramified covering of
the variety of moduli and the ramification takes place along those points
which represent curves of genus two having “many automorphisms,” i.e. at
the singular point A — B = (=0 and along a surface which corresponds to
lambda triples satisfying A;—A; + MAs—Ash; — 0. For this, the reader is
referred to the last section of AVM. This surface is related to the “skew-

invariant” in the following way. Using the same notation as in Section 1,
we consider the following expression:

1 4486 &&
uolaﬁy det |1 & +& && .
1 &44& &6

Then, since each factor has an invariant property, the symmetrized product
defines a projective invariant B of degree fifteen. Since the degree is odd,
it can not possibly be expressed by 4, B, C, D, but its square E? can be
expressed by these projective invariants. This being remarked, if we express
E in terms of the lambdas, we get fifteen distinct irreducible factors one of
which is As—A; 4~ Md2 —Ashi.  Therefore, the surface in question is defined
by E*—=0 on the variety of moduli and the ramification index is two. We

need also an expansion of E? into power-series of e. The calculation is
straightforward and we get

EZ/A15=2—233—15(}'(71) ___j(1_2>)2t2_|_ PN

5. Now, consider &, minus points equivalent to points on e=0 and
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points on A = 0. This open subvariety is ramified over the variety of moduli
minus points on 4 =0 along E2=0. We shall translate the condition for y
to be holomorphic in the said open subvariety of ©,. We observe that the
co-ordinate ring of the variety of moduli minus points on 4 =0 is generated
over € by absolute invariants whose denominators are power-products of 4
and D. Therefore, the co-ordinate ring in question is the ring of fractions
of C[z,, z,, 23] With respect to powers of z;. Since the ramification index is
two along E?=0, the condition we are looking for is that ¢ multiplied by
E?/A* to the power w over 6 is in the co-ordinate ring, i.e. that ¢ is a linear
combination of
(AY/E?)wisg ag,ea /0

in which ey, e,, e; are integers and e, e, are non-negative. We shall next
write down the condition for y to be holomorphic at points on 4 = 0. Since
the condition is (by the lemma on removable singularities) along 4 =0 and
not at special points on 4 —0, we have only to examine those points of it
which are not equivalent to points on ¢ = 0 and not on BE? — 0. Then, instead
of the 7’s, we can use

Uy = ,%/T3 = R731AB?/D Uy = T,° /4% = R18B°/ D?
U3 = 1121:172/:173 = 29B(3C _A.B)/D

as local co-ordinates. Since we have

Ty = Us /U, P Ty = Usls/Uy® Ty = U2 /U,%,
we get

(A*2/E?)wl® (92,0 /35%) (0 (21, T2y T5) /0 (s, Usy Us) ) V12

= ¥qy,~261-3ext503-Tw/6 U pfrree-2estwWyy e

in which * is a unit depending on w but not on e,, e, ¢s. Therefore, for a
fixed w, the condition is that a linear combination of the form

2 const. u1—261—362+563—7w/6 u 261+62-263+’w:u382

be finite along u, — 0. However, in case two distinct triples (e) and (¢’)
give the same exponent of u, in the above linear combination, certainly they
give different exponents either to u, or to us;. Consequently, for each (e),
the exponent of u; has to be non-negative. Therefore, the condition is simply

(C1) bes— Tw/6 = 2e, 1 3¢,
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for every (e) — (€1, ¢€s,65). In particular, the integer e, is also non-negative.
Finally, we shall write down the condition for ¢ to be holomorphic at those
points which are equivalent to points on e=0, i.e. along e=0. In order to
get this condition, we shall use the parameters #,, ¢,, 5 introduced in Section
3. Since t; is of order two in ¢, however, we have to use u defined by #; = 4>
Then, we have

(A5 /E2)wI0 (050 /5% ) (021, T2, ) /0 (U, T2, 1) ) ©F°

— t1e1t2%2(261+3ez-663)+3w

in which * is a unit depending on w but not on e, e;, e;. Therefore, in the
same way as before, we get

(C?) 2, -+ 3¢, = 6e;— Sw

for every (e) — (es,es,¢5). We have thus finished the translation of the
condition completely. The result can, obviously, be stated by saying that
there exists a monomorphism of the graded ring of algebraic modular forms
to the graded ring of multi-canonical differentials on X and that the image
ring consists of finite sums of

(A5 /E2)wi8 (m,0,02 /340 (dydwsdas ) I

in which ey, e,, e; are non-negative integers satisfying both (C1) and (CR).
We note that these differentials are linearly independent and, for a given w,
we can compute the number of such differentials quite easily. For instance,
we get 1, 1, 3, 4, 8, 11,- - - for w=0, 6, 12, 18, 24, 30,- - -.

6. We shall examine the structure of the graded ring of algebraic
modular forms. For this purpose, we put w= 6¢, and consider an additive
monoid of non-negative integer quadraples (ei, es,es,6,) satisfying

5e;—Te, = Re, -+ e, = 6e;— e,

The connection between the ring in question and this monoid is clear. We
shall determine the structure of this monoid. If we replace the above two
inequalities by equalities, we get a submonoid, and this submonoid is generated
by (0,1,2,1) and (3,0,4,2). Now, suppose that (es, ez, €s,¢,) is an arbitrary
element of the monoid. Then, the difference (ey, s, €s,6.) —e€2(0,1,%,1)
— (e1,0, 65— 2¢s, €,— ¢€;) is again an element of the monoid, and this reduces
our consideration to its submonoid consisting of elements of that type. In
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fact, if four real numbers &, e, =0, €5, €, satisfy the above inequalities and if
& 1s non-negative, the others are also non-negative, This simple remark will
be used repeatedly. Suppose, now, that (e, 0,es, e,) is an arbitrary element
of the submonoid. This time we subtract (3, 0,4,2) from (e, 0, e;, €4) so that
the first coefficient of the difference becomes 0, 1 or 2. Then, as we know,
the other coefficients are non-negative ; hence the difference is still an element
of the monoid. Suppose, therefore, that (e;,0,es,6,) is an element of the
monoid and that ¢, =0,1,2. If we have ¢; =0, the element is in the sub-
monoid consisting of elements of the form (0,0, es,¢,) in which es;, e, are,
of course, non-negative and satisfy

5eg—Te, =0 3e,—Re; =0.

If we replace one of the inequalities by an equality, we get (0,0,%,5) and
(0,0,3,2), and these elements generate the submonoid. In fact, the element
(0,0, e, ¢,) decomposes into Seg— e, times (0,0,3,2) and 3e,— Re; times
(0,0,7,5). If we have e;=1, we try to reduce the element (1,0, es, €s)
using (0,0,3,2) and (0,0,%,5). The reduction will fail to work if both
(1,0, es,e5) —(0,0,8,2) and (1,0, es,e.) —(0,0,7,5) are outside the monoid.
This happens if and only if we have both 5e;—7e,=2 and Re¢;—8e,= 0.
Thus, we get (1,0,6,4). Finally, if we have ¢; =2, we again try to reduce
the element (2,0, 5, ¢,) using (0,0,3, 2) and (0,0,%,5). The reduction fails
to work if and only if we have 5¢;— Ve, —4 and 2¢;— 8¢, =1. This gives
(2,0,5,3). We have, thus, shown that our monoid is generated by the fol-
lowing six elements:

(0,1,2,1) ~ (0,0,3,2)  (3,0,4,2)
(0,0,7,56)  (2,0,5,3)  (1,0,6,4).

In other words, we have found generators of the graded ring of algebraic
modular forms. The structure of this ring will be known, therefore, if we
determine all possible relations between the above six generators. For this
purpose, we observe that a column vector with six coefficients is annihilated
by the matrix

= D = O
oW o O

0
0
v
5

W ot O W
B o O

3
0
4
2
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if and only if the coefficients are of the form 0, 0, =, y, —2z -}y, 2—2y.
In particular, we have

2(2)0) 5>3) = (3’0>4>2) + (1:0: 6:4)
2(1:0> 6:4) = (O:O> 7:5) + (2:0> 5:3)
(2,0,5,8) 4+ (1,0,6,4) = (3,0,4,2) -+ (0,0,7,5).

Using these relations, we can lower the sum of multiplicities of (2,0,5,3) and
(1,0,6,4) in any expression of an element of the monoid by the six generators
as long as it is at least equal to two. In this way, every element of the monoid
can be expressed in one of the three forms

p(0,1,2,1) +¢(0,0,3,2) +1(3,0,4,2) +5(0,0,%,5)
+0, (2,0,5,3), (1,0,6,4)

in which p, ¢, r, s are non-negative integers. Moreover, the expression is
unique. Thus, the structure of the ring of algebraic modular forms is com-
pletely determined. In particular, the dimension N, of the complex vector
space of modular forms of weight w is, in case w is (non-negative and)
of the form 6m, equal to the number of partitions of m into the form
p-+2(qg+7r)+5s+0,8,4. There are ten formulas for N, according to the
values of w modulo sixty and, for example, we have

N60k=150(7§) +190 (72“) +51 (7{) +1.

IV. Main theorems.

7. Since the structure of the ring of algebraic modular forms is deter-
mined, using this result, we shall start investigating the ring of all modular
forms in connection with Eisenstein series. In general, if 7 is a point of &y,
the Eisenstein series of degree n and of weight w is defined as follows

l//w(f) = det(CT+ d)'“’.
{c.d}

The summation extends over all classes of coprime symmetric pairs, i.e. over
all inequivalent bottom rows of elements of Sp(n,Z) with respect to left
multiplications by unimodular integer matrices of degree n. It is a classical
theorem of H. Braun that the series is absolutely convergent for w >n -1
and represents a modular form of weight w. The modular forms defined by
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Eisenstein series are connected with positive-definite quadratic forms by their
Fourier expansions. In the Einfiihrung, Siegel gives a formula for the
coefficients of Fourier expansions of HEisenstein series in terms of what he
called p-adic densities [9]. Therefore, in order to calculate the Fourier
coefficients using this formula, we have to calculate certain p-adic densities
for all p including p==2. In some cases, however, the so-called Siegel main
theorem can be used to go around this tedious calculation. On the other
hand, if a(T) is a Fourier coefficient of Eisenstein series of degree n, the
said Siegel formula shows that

a(T)) —=a (%)11 g)

is a Fourier coefficient of Eisenstein series of degree n—1 and of the same
weight. This allows us, in some cases, to reduce the calculation of the Fourier
coefficient from degree n to degree m—1, thus finally to the elliptic case.
In this case, if we denote the Eisenstein series of weight w by ¢, we have

bo(0) =1+ ((2ri) */P()E()) 5 (Fd)o(tw).

Also, in the case n =2, we have the following table:

w=—4

a(é g)=243-5 a(§ g>=24335

a((l) (1))=25335-7 a(; %)=273-5-7
w==~6

a((l) g>=—~23327 a(§ g>=—23337‘11

a((l) (1))=2*335-7-11 a(i %‘j)=26327-11
w=28

a((l) g)=253-5 o} g)=2s325'43

1 0\ Jenor. L 3Y_ges. 5.
a(o 1)—235 61 “(1 1)—2357
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w=10
1 0 - 3q. R 0 _ 39411 .
a(o 0)———23 11 a(o 0)—-—-2311 19
1 0 494 1
a 0 1 =RQ%345-7-11-19 277 - 43867~
1 % 6 N1
al 1 =263-7-11-19-809 43867
2
w=12
a 1 O)=2*325‘7-13~691‘1 @ 20 =R43%5-7-13-683-691"
0 0 00

a(é ;)) —=2°3%5-7-13-19-23-2659-131-1593-1691*

a(i %) =2R73%5-7-13-23-1847- 13115931691,
Some of the large prime numbers we find in this table come from Bernoullian
numbers. For instance 43867 is the numerator of the ninth Bernoullian
number. At any rate, if we observe that we always have a(0) =1, we see
that the above table gives Fourier coefficients a(T') of Eisenstein series of
weight at most twelve for all (symmetric half-integer positive semi-definite)
matrices T satisfying ¢r(7T) = 2. Also, in order to avoid a possible misunder-
standing by some reader, we note that the table is not really necessary until
we start proving explicit rational expressions of absolute invariants by Eisen-
stein series.

Now, it is known (in the case n =2) that the dimension N, is zero for
w =2 and one for w =4, 6, 8. This fact was proved by Maass [6] and partly
by Witt [12]. One of their main ideas is to use a remarkable lemma by Siegel
on a unique determination of modular forms (of a given weight) by their
first few Fourier coefficients. Incidentally, this lemma shows also that the
Fourier coefficients of the five Eisenstein series in the previous table determine
these modular forms uniquely. When we started working on the subject,
beside some general results, that was practically all we knew about the ring
of modular forms. At any rate, we shall not make any use of the above results
and they will come out from our subsequent considerations.

We shall denote by e,0,00, the algebraic modular form defined by

Yoreaeser (1) = (R3804 /F2) 04 (w,000,%2/ 5% ) (8 (@1, Ta, T3) /D (71, T2, T12) ) 24

It will become necessary to expand this modular form into a Fourier series or,
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more precisely, into a power-series of e(ry), e(r;) and e==r;,. For this
calculation, we need following expansions

§=2533%,2/($s® — ps?) = e(— o) + 22331 4 223°1823 - ¢(0) 4+ - -
0(21, @2, 3) /0 (71, T2, T12)

=278 (j (1) —j(r2))7' (1) 5" (72) (y5*'/y:%92%) (1/€) 4=+ - .

This being remarked, we note that Yooss, Yozas, Y042 form a base of the vector
space of modular forms of weight twelve. Since y,® is a modular form of
the same weight, therefore, it is a linear combination of these modular forms.
The coefficients of the linear combination can be calculated with the aid of
Fourier expansions. If we observe that the three modular forms are linearly
independent also on ¢= 0, we have only to calculate the Fourier expansion
of Y, on €= 0, but this is simply ¢.(71)¢«(r2). In this way, without really
using the Fourier coefficients of y, itself, we get

11/3042 —_— 2363127’{12(//43.

We can also use the following argument to see that yse.. and y,* differ only
by a constant factor. Because of N,, =3, we have N, =1, hence N,=—1.
On the other hand, the divisor of Y0, in &, is three times another divisor.
Therefore, its cubic root divided by ¢, defines a “multiplicative function,” i.e.
a function whose absolute value is single-valued, on F,. However, using the
structure of the compactification, we can conclude very easily that the function
itself is single-valued. Consequently, the cubic root of yse. is a modular
form of weight four and, because of N,=1, it differs from y, by a constant
factor. In this way, we can minimize the use of numerical computation.
Besides, the exact constant factor is not necessary in proving most of our
theorems.

At any rate, if we adjoin y, to the ring of algebraic modular forms, we
get a new graded ring. We shall show that the normalization, say S, of this
graded ring (in its field of fractions) is precisely the graded ring of all
modular forms. Suppose that ¢ is an arbitrary modular form of weight w.
Then, first of all, the weight w is non-negative. Otherwise, the product
Y2y, %% will be a holomorphic function on F,, hence it is a constant by a
lemma in Section 3. In particular, both ¢ and ¢, will be units in the ring
of holomorphic functions in &,. But, certainly ¢, is not a unit. Hence w
is non-negative. This being remarked, let R2¢ be the least residue of w
modulo six. Then, the product yy,® is certainly an algebraic modular form.
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Hence, every modular form is in the field of fractions. Furthermore, since
the sixth power of any modular form is an algebraic modular form, it is
integral over the ring. Therefore, every modular form is in §. On the other
hand, we know in general that a normalization of a graded integral ring over
a field is itself a graded ring [13]. In particular, our S is a graded ring.
Moreover, a homogeneous element ¢ of S can be expressed as the quotient of
two homogeneous elements of the ring, and they are modular forms. There-
fore, it satisfies the functional equation. Also, since ¢ is integral over the
ring of holomorphic functions in &,, it is holomorphic there. This shows
that ¢ is a modular form, hence § is the graded ring of modular forms.
We shall, now, determine the structure of § explicitly. In doing this, we
shall not use the second half of the above proof, i.e. the fact that every homo-
geneous element of S is a modular form. It will come out as a consequence.

We recall that the ring § is the normalization of a graded ring generated
over C by

t//4’ ¢0121} ¢0032} ¢00753 ¢2053) ‘1’/1064'
These elements, except o1z, and yooss, are related as
l//20533 = const. 91146300075 ¢10643 = const. 1P43‘//00752~

Therefore, the field of fractions of €[y, Yoors, Yoosss Y106¢] is of degree of trans-
cendency at most two over €. Since the field of fractions of the ring of
modular forms is of degree of transcendency four over C, the degree of trans-
cendency in question is precisely two and the two elements yo121 and yoos. are
algebraically independent over that field. Therefore, by recalling that a ring
of polynomials with coefficients in a normal integral ring is itself normal, we
conclude that, if R is the normalization of €[y, Yoors, Y2053, Y10s:] (in its field
of fractions), we get S by just adjoining o2, and yos. to B. Now, if we
put x =vz055/94% We have
x® = const. Yqo7s-

Hence x is in R, and R is also the normalization of C[y4,x,Y10sa]. On the
other hand, we have

Y1064° = const. (Yux®)®,
hence y1964 = const. yx*. Since C[yy, x] is certainly normal (as a ring of poly-

nomials in two letters with coefficients in C), therefore, we get R — C[ys,x],
hence finally

§=C [l//4, X> Yo121, 1,00032] .

We state our result in the following way:

13
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THEOREM 1. The graded ring of modular forms is generated over C by
four (algebraically independent) modular forms

\04, 1/10121> X=ll/2053/1//42> ¢0032
of respective weight four, siz, ten and twelve.

CoroLLARY. The dimension N, of the complex vector space of modular
forms of wetght w is equal to the number of non-negative integer solutions of
the linear Diophantine equation

w=4p+ 6q 4 107 | 12s.

8. We have shown that the graded ring of modular forms is generated
by four modular forms of which one is the Eisenstein series y,.. We shall
show that other three can also be expressed by Eisenstein series. First of all,
since we have Ny =1, two modular forms ¢ and ., differ only by a constant
factor. This constant factor can be determined immediately. In order to
make the rest of the argument clear, we shall explicitly use Siegel’s operator
® which maps a modular form of degree n to a modular form of degree n—1
of the same weight for n=1,2,3,- - -. If y is a modular form of degree n
and if a(T') is its Fourier coefficient, the Fourier coefficient of ®y is given by

T, 0
a(T)) —=a 01 O)’

In particular, Eisenstein series are mapped by @ to Eisenstein series. The
operator ® gives rise to a homomorphism of the graded rings of modular
forms [10] and it is almost surjective [6]. In the case n — 2, the surjectivity
is obvious because the graded ring of elliptic modular forms is generated by
the Eisenstein series ¢, and ¢¢. A modular form is called a cusp form if it
is in the kernel of ®. In the case n = 2, therefore, there exists one cusp form
and only one up to a constant factor of weight ten and of weight twelve.
These cusp forms can be obtained in two ways. Since we have ¢sps=— 10,
we see that Y. — y;, vanishes along e =0, hence, certainly, it is a cusp form.
Also, since we have
32728 + 2 - Biehg? — 691y, — O,

we get a cusp form by replacing phi by psi. We have thus found cusp forms
of weight ten and twelve, and they have Fourier expansions of the following
form
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Ve — Yo = — 21235527 - 53 - 438671e (v, ) € (75) (we)2 + - - -
32720, 4+ 2 - 5%% — 691y,
— 218375372337 - 13171593 (ry) e (r2) + - - -.
Therefore, we shall define normalized cusp forms by
X1o = — 43867 - 2-123-55-20-153 (yp — yr,)
X1z =131-593 - 2-183-75-37-2337-1 (8272 ® + 2 - 536> — 691y,).

On the other hand, the modular forms y and 93, in Theorem 1 are also cusp
forms of weight ten and twelve, and they have Fourier expansions of the form

x = 2543878 (1) e (72) (we)2 4+ + -
Voosz = R%632%x 2% (1) e(rs) +- .

Therefore, we have the following theorem:

THEOREM 2. The three modular forms yoiz1, x nd Yoose can be expressed
by Disenstein series in the form

o121 = 218387 X — 274318718y
Yoose = 238327 2x1,.

CoroLLARY. The graded ring of modular forms is generated over C by
the Eisenstein series yu, We, Y10 aNd P15.

Now, we recall that elements of weight zero of the field of fractions of
the graded ring of modular forms are called modular functions. By the
lemma in Section 3, modular functions are absolute invariants. The converse
is also true, i.e. absolute invariants are modular functions. They can be
expressed, therefore, rationally in terms of Eisenstein series. Now, there is
a problem once proposed by Siegel to get these rational expressions explicitly
[9, p. 604]. In order to solve this problem, we have only to write down the
three absolute invariants z:, @, 3 by Yu, Y6, x10 a0d x12. However, using the
relation betwen algebraic modular forms and multi-canonical differentials
on X, we immediately get the following result:

THEOREM 3. The three absolute invariants can be expressed by the four
modular forms in the form

T, = l//4X102/X122 Ty = ¢6X103/X123 T3 = X106/'X125'

Thus, the problem raised by Siegel is completely solved.
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9. In this last section, we shall investigate the structure of Satake’s
compactification in the case n=2. Because of Theorem 1, the problem is
reduced to determining the structure of

Y=pr0j C[Tz, Ts, T5, Te]

in which Ty, T's, T5, T's are indeterminates of degree four, six, ten, twelve and
the ring is graded by the total degree. The projective variety ¥ admits a
covering by four open affine subvarieties ¥',, Y3, ¥, ¥ in which ¥; is the
complement of T;=0 for j=2, 3, 5, 6. We shall start by examining these
affine varieties.

First, if we operate a cyclic group of order two to a ring of polynomials
in three letters ¢y, o, t5 as

b1y boy by —> — b1, — 1, 15,

the ring of invariant elements of €[y, ¢, ¢;] can be identified with the co-
ordinate ring of ¥, in the following way:

T393T5€5T666/T282 — {,¢st,95¢ 4,

In fact, the condition on one side is 3e; -+ 5e5 -+ 6¢s — 2¢, and the condition
on the other side is e; 4 ¢;=0mod 2. These two conditions are clearly equi-
valent. Since the co-ordinate ring of ¥, is the subring of C[¢,, ¢, ¢5] generated
by .2, t,ts, 1,2 ts, the variety ¥, is isomorphic to a product of a representative
cone of a non-degenerate conic and a straight line. The singular locus of ¥,
is, therefore, the locus of the vertex of the cone, which is a straight line
defined by T's = T5;=0. As for ¥, if we operate a cyclic group of order three
to a ring of polynomials in ¢, %, {5 as

biytoy ts—> by, Lty ts (3 =1),

the ring of invariant elements of C[#,%,,¢;] can be identified with the co-
ordinate ring of ¥; in the following way:

T262T565T666/T383 = t162t225t3ee.

In fact, the two conditions 2e, 4 5e5 4 6¢¢ — 3¢5 and e, 4 e;=0mod 3 are
equivalent. Since the co-ordinate ring of Y, is the subring of C[ty,t,,%;]
generated by ¢,°, t,%t,, 1,2,%, 4.°, t5, the variety ¥, is isomorphic to a product
of a representative cone of a cubic space curve and a straight line. The
singular locus of Y, is, therefore, the locus of the vertex of the cone, which
is a straight line defined by T, =T;=0. We have to examine two more
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varieties. If we operate a cyclic group of order five to a ring of polynomials
in ¢y, &5, t3 as
t]_)gjti j"=1,2:3 (£5=1);

the ring of invariant elements of C[?,,?,,%5] can be identified with the co-
ordinate ring of Y5 in the following way:

TzezTaesTge"/T525 = t196t262t3%.

Therefore, as we have shown in AVM, the co-ordinate ring of Y5 is the
subring of C[#, 1, ;] generated by ¢.%, 1,36, 61152, £1%ts, tals, tats®, 12°, £5° and
the variety Y is isomorphic to the variety of moduli. The singular locus of
Y5 is the point defined by T, = Ts = T's=0. Finally, if we operate a cyclic
group of order six to a ring of polynomials in #,, £, ¢; as

by by b —> Oy, L2, %ty (Ce = 1)>

the ring of invariant elements of C[#y,1%,,%;] can be identified with the co-
ordinate ring of Y in the following way:

T262T3€3T5€5/T6€e = t192t263t365.

Therefore, the variety Y, is isomorphic to the affine variety 7 in Section 3
and its singular locus consists of two straight lines defined by T,=T5=0
and by 73 = T5=0. Hence, the singular locus of ¥ itself consists of a point
defined by T, =Ts=Ts=0 and of two projective straight lines defined by
T;=T;=0 and by Ty =1T5;=0 intersecting at T, =T, =T;=0.

It is, now, easy to determine Betti numbers b; of the variety ¥ for all j.
Since ¥, admits a three dimensional affine space as a two-sheeted covering,
if a singular chain of ¥ does not cover the whole Y, twice this chain is
homotopic to a singular chain on T, =0. Therefore, beside by="0s=1, we
have b;=0. Since the intersection of ¥; and T, —0 is a two dimensional
affine space, we have b,=1 and b;=0. Finally, since the intersection of Y’;
and T, =T,=0 is a straight line, we have b,=1 and b;=0. Therefore,
the projective variety ¥ has the same Betti numbers as three dimensional
complex projective space.

We have thus investigated the structure of ¥ which is defined abstractly.
We shall, now, translate the results into a language of modular forms. For
this purpose, we put

Ty =ay, Ty="bys Ts = cyays + Y10
Tym g + A9 + s
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in which @, b, ¢, ¢/, d, d’, d” are constants and abc’d” is different from zero.
Then, we get a holomorphic map of F, to Y so that the variety of moduli
and the variety V are mapped isomorphically to ¥'s and Y, Since the verifi-
cation is straightforward, we shall leave it to the reader. Moreover, the com-
plement of the image is a projective straight line isomorphic to proj C[ s, ¢e).
This can be identified with j-line compactified by a point at infinity, i.e. with
the union of ¥, and F,. Therefore ¥ is isomorphic to Satake’s compactifi-
cation of F, and it is a “V-manifold” whose structure we know completely.
We note that the singular locus of Y consists of a point representing the
jacobian variety of y?=1-—2° and of two projective straight lines of
points representing products of elliptic curves of which at least one factor
is y>=1—2a® or y>=1—a* (allowing another factor to degenerate to
y?=1—2?). Equations in terms of the Eisenstein series of these cases are
l//4=l//6=¢12=0, 1I/4=l//10=0 and ¢6=¢10=0-

Appendix. The dimension N, of the complex vector space of modular
forms of weight w is equal to the number of non-negative integer solutions
of w=4p-4 6¢g -+ 10r 4 12s. This is derived from a structure theorem of
the graded ring of modular forms. It is known, on the other hand, that A.
Selberg has a general “trace formula” which contains a formula for N, as
a special case. However, since his formula is not given in a “finite form”
even in the case of modular group of degree two (because of serious com-
plications coming from non-compact boundaries), we did not try to use this
formula. Nevertheless, we feel that we have to spend a few lines connected
with this approach to the problem of determining the structure of the graded
ring of modular forms, because it is the only general method we can think
of at the present moment.

The result we have for N, can be written in the form
Ny =Reszo dz/ (1 —2?) (1 —2°) (1 —2°) (1 —a8) 2™+

for k=0,%1,=42,- - . We transform this formula using the theorem of
residues and calculate all residues. In this way, we get the following formula

Ny = 274372571 (%2 - 48k2 |- 347k + 728)
+ (—1)243(k +8)
2753 (P - ) (6 +- 41)
+ 273747 (p% - 57%)
4 272372 (g - ¥ - pt - )
+ 5_2% & — gt
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for k=0,1,%,- - -, where p stands for ¢(%) and 5 is its complex conjugate.
Now, it may be possible to prove this formula by Selberg’s method. There-
fore, it will be of some importance if we shall show that this dimension formula
implies the structure theorem. At any rate, we get the two cusp forms x;,
and x;, as in Section 8. We shall show that ., s, x10 and x;. are alge-
braically independent over €. If they are not algebraically independent, there
exists a homogeneous element P(7T') not equal to zero in the graded ring
C[T,, T, T5,Ts] (of Section 9) satisfying P (s, ¥s, X10, x12) = 0. We take
as P(T) one which has a smallest degree and write it in the form
Py(T2, T3, T5,Ts)Ts + P1 (T2, T5,Ts). Now, we introduce an operator ¥
to be the restriction of (finite sums of) modular forms to the subvariety of &,
defined by e=0. Then ¥ is a homomorphism and x,, is in the kernel.
Therefore, applying ¥ to

Po (Y45 Yo5 X105 X12) X10 + P (4, Y6, X12) = 0,

we get Py (¥ys, B, Tx12) =0. We shall show that ¥y, ¥y and Py, are
algebraically independent (over €). For this purpose, we observe that we
have a relation of the form

Wx12 (71, T2) = const. ¢, (1) 3hs(2)® - const. ¢g (1) 26 (72)
+ const. (¢ (71) *e (2) 2 4 Pa(72) *be (71) %)

in which the third constant coefficient is different from zero. On the other
hand, if z, y, 2/, y” are algebraically independent, certainly za/, yy’, 23y’ + 2/%y*
are also algebraically independent. Therefore ¥y, ¥ys, ¥yy, are algebraically
independent. Hence, we have P,(T,Ts,Ts) =0. This will imply that
Py(T) is different from zero and Py (s, Ve, x10,X12) = 0. Since Po(T) is of
a smaller degree than P (T'), we get a contradiction. Therefore ¥, ys, x10 and
x:2 are algebraically independent. Then, by the dimension formula, the graded
ring generated by these four modular forms will be the ring of all modular
forms. This is the structure theorem.

THE JoENS HOPKINS UNIVERSITY.




200 JUN-ICHI IGUSA.

REFERENCES.

[1] W. L. Baily, “ Satake’s compactification of V,,” American Journal of Mathematics,
vol. 80 (1958), pp. 348-364.

[2] S. Bochner-W. T. Martin, Several complex variables, Princeton (1948).

[8] Séminaire H. Cartan, Fonctions automorphes, E.N.S. (1957-58).

[4] J. Igusa, “Arithmetic variety of moduli for genus two,” Annals of Mathematics,
vol. 72 (1960), pp. 612-649 (cited AVM).

[56] M. Koecher, “ Zur Theorie der Modulfunktionen n-ten Grades, I,” Mathematische
Zeitschrift, vol. 59 (1954), pp. 399-416.

[6]1 H. Maass, “Uber die Darstellung der Modulformen n-ten Grades durch Poin-
carésche Reihen,” Mathematische Annalen, vol. 123 (1951), pp. 125-151.

[7]1 G. Rosenhain, Abhandlung iiber die Functionen zweier Variabler mit vier Perioden,
1851, Ostwald’s Klassiker der Exacten Wissenschaften, no. 65 (1895).

[8] I. Satake, “On the compactification of the Siegel space,” Journal of the Indian
Mathematical Society, vol. 20 (1956), pp. 259-281.

[9]1 C. L. Siegel, “ Uber die analytische Theorie der quadratischen Formen,” Annals of

Mathematics, vol. 36 (1935), pp. 527-606.

, “ Binfiihrung in die Theorie der Modulfunktionen n-ten Grades,” Mathe-

matische Annalen, vol. 116 (1939), pp. 617-657.

[11] A. Weil, “ Zum Beweis des Torellischen Satzes,” Géttingen Nachrichten, Nr. 2
(1957), pp. 33-53.

[12] E. Witt, “ Eine Identitéit zwischen Modulformen zweiten Grades,” Abhandlungen
aus dem Mathematischen Seminar der Hansischen Universitit, vol. 14
(1941), pp. 323-337.

[13] O. Zariski, “ Some results in the arithmetic theory of algebraic varieties,” American
Journal of Mathematics, vol. 61 (1939), pp. 249-294.

[10]



	Article Contents
	p. 175
	p. 176
	p. 177
	p. 178
	p. 179
	p. 180
	p. 181
	p. 182
	p. 183
	p. 184
	p. 185
	p. 186
	p. 187
	p. 188
	p. 189
	p. 190
	p. 191
	p. 192
	p. 193
	p. 194
	p. 195
	p. 196
	p. 197
	p. 198
	p. 199
	p. 200

	Issue Table of Contents
	American Journal of Mathematics, Vol. 84, No. 1 (Jan., 1962), pp. i-iv+1-204
	Volume Information [pp. i-iv]
	Front Matter
	A Unique Decomposition Theorem for 3-Manifolds [pp. 1-7]
	A Remark on a Paper of M. Hironaka [pp. 8-10]
	On the Union of Two Solid Tori [pp. 11-15]
	Partitions of Large Multipartites [pp. 16-34]
	Homology of Iterated Loop Spaces [pp. 35-88]
	On Galois Theory of Fields with Operators [pp. 89-109]
	Simultaneous Quadratic Forms [pp. 110-115]
	On the Purity of the Branch Locus [pp. 116-125]
	On the Number of Lattice Points in a Convex Set [pp. 126-133]
	Approximation by Solutions of Partial Differential Equations [pp. 134-160]
	Some Results on Analytic Iteration and Conjugacy [pp. 161-169]
	The Conformal Transformation Group of a Compact Riemannian Manifold [pp. 170-174]
	On Siegel Modular Forms of Genus Two [pp. 175-200]
	Correction: A Characterization of the Simple Groups SL(2,2) [pp. 201-204]
	Back Matter



