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HARMONIC MAASS-JACOBI FORMS WITH SINGULARITIES

AND A THETA-LIKE DECOMPOSITION

KATHRIN BRINGMANN, MARTIN RAUM, AND OLAV K. RICHTER

Abstract. Real-analytic Jacobi forms play key roles in different areas of
mathematics and physics, but a satisfactory theory of such Jacobi forms has
been lacking. In this paper, we fill this gap by introducing a space of harmonic
Maass-Jacobi forms with singularities which includes the real-analytic Jacobi
forms from Zwegers’s PhD thesis. We provide several structure results for the
space of such Jacobi forms, and we employ Zwegers’s μ̂-functions to establish
a theta-like decomposition.

1. Introduction

Jacobi forms have a long history, and they provide deep links between different
types of automorphic objects. An extraordinary Jacobi form is Zwegers’s real-
analytic function μ̂, which is a crucial tool in his PhD thesis [26] on mock theta
functions. This μ̂-function and similar real-analytic Jacobi forms also play a role
in the theory of Donaldson invariants of CP2 that are related to gauge theory
(see for example Göttsche and Zagier [12], Göttsche, Nakajima, Yoshioka [11], and
Malmendier and Ono [16]), and they also appear in the Mathieu moonshine (see
for example Eguchi, Ooguri, and Tachikawa [9]). Naturally, one wishes to better
understand real-analytic Jacobi forms. In [5], the first and third authors suggest
a definition of harmonic Maass-Jacobi forms, which up to singularities includes
Zwegers’s μ̂-function. However, the definition in [5] only allows Jacobi forms with-
out singularities, and hence the μ̂-function itself does not belong to the space of
such forms. Another drawback is that the entire space of Jacobi forms in [5] is too
large, and it seems impossible to analyze the structure of that space as a whole.

In this paper, we improve the definition in [5] by introducing the space MJΔ,H
k,m of

Heisenberg harmonic (H-harmonic) Maass-Jacobi forms (see Definition 3.4). This
is a space of real-analytic Jacobi forms with singularities that are annihilated by
the Casimir operator Ck,m in (3) and also by the Heisenberg Laplace operator ΔH

m

(a Jacobi form analogue of the usual Laplace operator) in (4). This new space
of Jacobi forms contains Zwegers’s μ̂-function. We are able to describe this space
explicitly, and we give a series of structure results for it. We now explain our main
results in more detail.
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Recall that the Fourier series expansion of a harmonic weak Maass forms consists
of a holomorphic part and a non-holomorphic part. The holomorphic part has the
shape of a weakly holomorphic modular form, while the non-holomorphic part is
more complicated and also features the special function H in (15). Bruinier and
Funke’s [6] operator ξk maps harmonic weak Maass forms of weight k to weakly
holomorphic modular forms of weight 2−k. Hence, one may view ξk as a differential
operator that “simplifies” the space of harmonic weak Maass forms. We encounter
similar phenomena in our situation. We consider the differential operators ξHk,m
(defined in (5)) and ξk,m (defined in (10)), which are analogs of ξk. H-harmonic
Maass-Jacobi forms that are annihilated by these operators are Jacobi forms with
an easier structure. For example, if an H-harmonic Maass-Jacobi form without
singularities is annihilated by ξHk,m, then it is semi-holomorphic, i.e., holomorphic
in the Jacobi variable z.

We introduce the following spaces of Jacobi forms of weight k and indexm, where
here and throughout the paper we always assume that k and m are half-integers and

thatm �= 0: The subspaces of forms inMJΔ,H
k,m that are annihilated by ξk,m and ξHk,m

are denoted by MJδ,Hk,m and MJΔ,h
k,m, respectively, and MJδ,hk,m := MJδ,Hk,m ∩MJΔ,h

k,m.

We write Jδ,hk,m⊆MJδ,hk,m, JΔ,h
k,m⊆MJΔ,h

k,m, Jδ,Hk,m⊆MJδ,Hk,m, and JΔ,H
k,m ⊆MJΔ,H

k,m for the
subspaces of forms without singularities. Note that we suppress the superscript !
that some authors would use to distinguish the space of holomorphic and weakly
holomorphic Jacobi forms. Table 1 lists key characteristics of the above spaces. The
first four spaces consist of smooth functions, while the last four spaces include Jacobi
forms with singularities. The prefix “M” stands for “meromorphic singularities”;
see Corollary 4.4 in this context.

Table 1. Spaces of H-harmonic Maass-Jacobi forms

Elements are

smooth annihilated by annihilated by
Space ξHk,m ξk,m

Jδ,hk,m � � �
JΔ,h
k,m � � —

Jδ,Hk,m � — �
JΔ,H
k,m � — —

MJδ,hk,m — � �
MJΔ,h

k,m — � —

MJδ,Hk,m — — �
MJΔ,H

k,m — — —

In Sections 3 and 4 we also study skew-Maass-Jacobi forms, but here we only
give structure results for the spaces in Table 1.
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Theorem 1.1.

(1) We have JΔ,H
k,m =JΔ,h

k,m and Jδ,Hk,m=Jδ,hk,m, i.e., any H-harmonic Maass-Jacobi form

without singularities is semi-holomorphic. If m < 0, then JΔ,h
k,m = Jδ,hk,m = {0}.

(2) We have MJΔ,h
k,m = JΔ,h

k,m +MJδ,hk,m, i.e., any φ ∈ MJΔ,h
k,m can be written as the

sum of a semi-holomorphic Jacobi form and a meromorphic Jacobi form. In

particular, if 0 �= φ ∈ MJΔ,h
k,m is not meromorphic, then m > 0.

(3) We have MJΔ,H
k,m = JΔ,h

k,m +MJδ,Hk,m, i.e., any φ ∈ MJΔ,H
k,m can be written as the

sum of a semi-holomorphic Jacobi form and a Jacobi form that is annihilated

by ξk,m. In particular, if 0 �= φ ∈ MJΔ,H
k,m does not vanish under ξk,m, then

m > 0.
(4) If m > 0, then MJΔ,H

k,m = MJΔ,h
k,m and MJδ,Hk,m = MJδ,hk,m, i.e., every H-harmonic

Maass-Jacobi form of positive index is semi-holomorphic.

Before we continue, we give examples of the spaces given in Table 1.

Example 1.2.

(1) The usual Jacobi forms and weak Jacobi forms in [10] belong to Jδ,hk,m (which is

Jδ,Hk,m by Theorem 1.1 (1)).

(2) The semi-holomorphic Jacobi-Poincaré series P(n,r)
k,m in [5] are examples of JΔ,h

k,m

(which is JΔ,H
k,m by Theorem 1.1 (1)).

(3) If 0 �= φ ∈ Jδ,hk,m, then 1
φ ∈ MJδ,h−k,−m.

(4) Theorem 1.1 (2) asserts that a typical element in MJΔ,h
k,m is a sum of a semi-

holomorphic Maass-Jacobi form and a meromorphic Jacobi form. For example,

let P(n,r)
k,m be the semi-holomorphic Jacobi-Poincaré series in [5], and let φ10,1

and φ12,1 be the usual Jacobi cusp forms of index 1 and weights 10 and 12,

respectively. Then P(12,0)
14,1 +

(φ12,1)
2

φ10,1
∈ MJΔ,h

14,1.

(5) Let μ̂m,l be as in (30) and let φ ∈ Jsk,δ,hk,m (defined in Section 3) with theta decom-

position φ =
∑

l (mod 2m) hl θm,l. Theorem 5.2 implies that
∑

l (mod 2m) hl μ̂m,l ∈
MJδ,Hk,−m.

(6) Theorem 1.1 (3) gives MJΔ,H
k,−m = MJΔ,h

k,−m + MJδ,Hk,−m, which shows how to

construct examples of forms in MJΔ,H
k,−m.

(7) Zwegers’s [26] real-analytic Jacobi form μ̂ has a decomposition of the form
μ̂ = μ1 + μ̂2, where μ1 is a meromorphic Jacobi form on H×C2 and where μ̂2

is a real analytic Jacobi form on H× C (see footnote (1) on page 7 of [25] and
also (32)). Note that the image of μ̂2 under ξ 1

2 ,−
1
2
was given incorrectly in [5],

and it should have been ξ 1
2 ,−

1
2
(μ̂2) = 0. One finds that μ̂2 ∈ MJδ,H1

2 ,−
1
2

.

Recall that harmonic weak Maass forms are uniquely determined by their singu-
larities at the cusps up to holomorphic modular forms, which are zero for negative
weight. Theorem 1.1 (1) provides the corresponding result for H-harmonic Maass-
Jacobi forms. Specifically, H-harmonic Maass-Jacobi forms are uniquely determined
by their singularities up to semi-holomorphic Maass-Jacobi forms, which are zero
for negative index. Note that the recent work of Dabholkar, Murthy, and Zagier [8]
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on quantum black holes and mock modular forms featuresmock Jacobi forms, which
may be viewed as the holomorphic parts of semi-holomorphic Maass-Jacobi forms.
Theorem 1.1 (1) implies that [8] investigates precisely the holomorphic parts of
H-harmonic Maass-Jacobi forms without singularities. Such Jacobi forms also play
an important role in fully understanding modularity properties of Kac-Wakimoto
characters (see the first author and Olivetto [3]).

We now turn our attention to another main result. The classical Jacobi forms in
Eichler and Zagier [10] have a theta decomposition, which can be phrased as in (26).
It is easy to see that the semi-holomorphic Maass-Jacobi forms in [5] also have such a
theta decomposition. In this paper, we employ the μ̂-functions from Zwegers [26,27]
to establish a theta-like decomposition for H-harmonic Maass-Jacobi forms. More
precisely, let M !

k− 1
2 ,ρ̌m

be the space of weakly holomorphic vector-valued modular

forms of weight k − 1
2 and type ρ̌m (see Section 5 for details), and let μ̂m,l be the

(completed) vector-valued Jacobi form defined in (30), which is a specialization
of Zwegers’s function in [27]. Theorem 5.2 gives the theta-like decomposition for
H-harmonic Maass-Jacobi forms, which can also be stated as follows:

Theorem 1.3. Let m > 0. The spaces M !
k− 1

2 ,ρ̌m
and MJδ,Hk,−m /MJδ,hk,−m are

isomorphic via (
hl

)
l
�−→

∑
l (mod 2m)

hl μ̂m,l.

The theta decomposition of classical Jacobi forms in [10] has a natural explana-
tion in terms of representation theory, which is discussed in detail in Berndt and
Schmidt [1]. Specifically, let πm

SW be the Schrödinger-Weil representation of the real
Jacobi group with a certain central character. Then the map

π̃ �−→ π := π̃ ⊗ πm
SW

gives a one-to-one correspondence between genuine automorphic representations π̃
of the metaplectic double cover of SL2(R) and automorphic representations π of the
real Jacobi group. It would be interesting to find such a representation theoretic
interpretation of the theta-like decomposition in Theorem 1.3. Note that there is
no such immediate analog in representation theoretic language, since non-trivial

elements of MJδ,Hk,−m /MJδ,hk,−m correspond to functions that are not in L2. We
expect that a combination of Theorems 1.1 and 1.3 will yield new relations of
certain quantities that, so far, have been treated by means of mixed mock modular
forms (for example, “contributions of bounded states of two primitive constituents
with primitive D4-brane charges to the full N = 2 supergravity partition function”;
see Section 4 and Appendix A in Manschot [17]).

The paper is organized as follows. In Section 2, we review differential opera-
tors for the Jacobi group. In Section 3, we define H-harmonic Maass-Jacobi forms,
and we explore their Fourier series expansions. In Section 4, we apply tools from
complex analysis of several variables to study Maass-Jacobi forms with singulari-
ties, and we prove Theorem 1.1 (2). In Section 5, we determine the structure of
H-harmonic Maass-Jacobi forms, and we prove Theorem 1.1 (1), (3), and (4), and
Theorem 1.3. Finally, in Section 6 we discuss H-quasi Maass-Jacobi forms, which
are real-analytic Jacobi form analogs of the usual quasimodular forms.



HARMONIC MAASS-JACOBI FORMS 5

2. Differential operators for the Jacobi group

In this section, we briefly review differential operators for the Jacobi group. Such
operators have been studied in detail in the integral weight case (see [1,20,21]), but
it is easy to see that the results carry over to the half-integral weight setting. We
will summarize these results after introducing necessary notation. Throughout, we
write τ = x + iy ∈ H (the usual complex upper half plane) and z = u + iv ∈ C.
Recall that the metaplectic cover Mp2(R) of SL2(R) is the group of pairs (g, ω),
where g =

(
a b
c d

)
∈ SL2(R) and ω : H → C, τ �→

√
cτ + d for a holomorphic choice

of the square root, with group law

(g, ω)(g′, ω′) = (gg′, ω ◦ g′ · ω′).

Let GJ := GJ(R) := Mp2(R) � (R2×̃R) be the metaplectic real Jacobi group with
group law

(
M,X, κ

)(
M ′, X ′, κ′) := (

MM ′, XM ′ +X ′, det

(
XM ′

X ′

)
+ κ+ κ′)

and let ΓJ := Mp2(Z) � Z2 be the full Jacobi group, where Mp2(Z) is the preim-
age of SL2(Z) in Mp2(R). For fixed half-integers k and m, and for all A =[( (

a b
c d

)
,
√
cτ + d

)
, (λ, μ), κ

]
∈ GJ , define the following slash operators on func-

tions φ : H× C → C :

(
φ
∣∣
k,m

A
)
(τ, z)(1)

:= φ
(aτ + b

cτ + d
,
z + λτ + μ

cτ + d

)
(
√
cτ + d)−2k e2πim

(
− c(z+λτ+μ)2

cτ+d +λ2τ+2λz+λμ+κ
)

and (
φ
∣∣sk
k,m

A
)
(τ, z)(2)

:= φ
(aτ + b

cτ + d
,
z + λτ + μ

cτ + d

)
(
√
cτ + d)2−2k |cτ + d|−1

· e2πim
(
− c(z+λτ+μ)2

cτ+d +λ2τ+2λz+λμ+κ
)
.

If κ = 0, then by a slight abuse of notation we write
[( (

a b
c d

)
,
√
cτ + d

)
, (λ, μ)

]
instead of

[( (
a b
c d

)
,
√
cτ + d

)
, (λ, μ), 0

]
∈ GJ . For convenience, we define

∂τ :=
∂

∂τ
=

1

2

(
∂

∂x
− i

∂

∂y

)
, ∂τ :=

∂

∂τ
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

∂z :=
∂

∂z
=

1

2

(
∂

∂u
− i

∂

∂v

)
, ∂z :=

∂

∂z
=

1

2

(
∂

∂u
+ i

∂

∂v

)
.
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The raising operators and lowering operators with respect to actions in (1) and (2)
are given by the differential operators,

Xk,m
+ := 2i

(
∂τ +

v

y
∂z + 2πim

v2

y2

)
+

k

y
, Xk,m

− := −2iy
(
y∂τ + v∂z

)
,

Y k,m
+ := i∂z − 4πm

v

y
, Y k,m

− := −iy∂z,

Xsk; k,m
+ :=2i

(
y2∂τ+yv∂z+2πimv2

)
+ 1

2y, Xsk; k,m
− :=−2i

(
∂τ+

v

y
∂z

)
+
(
k− 1

2

)1
y
,

Y sk; k,m
+ := iy∂z − 4πmv, Y sk; k,m

− := −i∂z.

The following proposition summarizes their properties.

Proposition 2.1 ([1, 21]). If A ∈ GJ and φ ∈ C∞(H× C), then

Xk,m
±

(
φ
∣∣
k,m

A
)
=

(
Xk,m

± φ
) ∣∣

k±2,m
A,

Xsk; k,m
±

(
φ
∣∣sk
k,m

A
)
=

(
Xsk; k,m

± φ
) ∣∣sk

k∓2,m
A,

Y k,m
±

(
φ
∣∣
k,m

A
)
=

(
Y k,m
± φ

) ∣∣
k±1,m

A,

Y sk; k,m
±

(
φ
∣∣sk
k,m

A
)
=

(
Y sk; k,m
± φ

) ∣∣sk
k∓1,m

A.

The Casimir operator with respect to the action in (1) is given by

Ck,m := 2Xk−2,m
+ Xk,m

− − 1
2πm

(
Xk−2,m

+ Y k−1,m
− Y k,m

− − Y k−1,m
+ Y k−2,m

+ Xk,m
−

)
(3)

+ 1
2πm (k − 2)Y k−1,m

+ Y k,m
− ,

and the Casimir operator with respect to the action in (2) is given by (normalized
as in [4])

Csk
k,m := 8πim

(
y

1
2−kC1−k,myk−

1
2

)
+ 2k − 1

(see also [1, 5, 7, 20, 21]).
Throughout, we adopt the following terminology. A real-analytic φ : H×C → C

is semi-meromorphic if φ(τ, · ) is meromorphic with isolated singularities for all

τ ∈ H. In this case φ is annihilated by Y k,m
− or by Y sk;k,m

− . Moreover, we call a
semi-meromorphic function that has no singularities semi-holomorphic. Finally, if
φ is annihilated by the Heisenberg Laplace operator

ΔH
m := Y k−1,m

+ Y k,m
− = Y sk; k+1,m

+ Y sk; k,m
− ,(4)

then φ is Heisenberg harmonic (H-harmonic). Note that the differential operator
Δ0 in [1, p. 38] is very similar to ΔH

m.

3. H-harmonic Maass-Jacobi forms

The understanding of Maass-Jacobi forms is evolving with connections to differ-
ent areas of mathematics and physics. Maass-Jacobi forms were first introduced
by Berndt and Schmidt [1], and then more thoroughly investigated by Pitale [20].
The first and third authors [5] extended Pitale’s approach even further to include
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weak Maass-Jacobi forms. The theory in [5] includes new examples in the form of
semi-holomorphic Poincaré series, but lacked new examples that are not holomor-
phic in z. The notion of harmonic Maass-Jacobi forms in [5] is also quite general,
and refinements of the definition of Maass-Jacobi forms are needed. In this section,

we introduce the space MJΔ,H
k,m of Heisenberg harmonic (H-harmonic) Maass-Jacobi

forms, and we give the differential operators that are needed to define its subspaces
in Table 1. These subspaces provide the desired refinements of Maass-Jacobi forms.

First we recall the weight k hyperbolic Laplacian

Δk := −4y2∂τ∂τ + 2kiy∂τ ,

which is needed for the definition of harmonic weak Maass forms:

Definition 3.1 (Harmonic weak Maass forms). A harmonic weak Maass form
of weight k on a congruence subgroup Γ ⊂ Mp2(Z) is a real-analytic function
f : H → C satisfying the following conditions:

(1) For all
( (

a b
c d

)
,
√
cτ + d

)
∈ Γ, we have f

(
aτ+b
cτ+d

)
=

√
cτ + d

2k
f(τ ).

(2) We have that Δk(f) = 0.
(3) The function f has at most linear exponential growth at all cusps of Γ.

Let Mk denote the space of harmonic Maass forms of weight k, and denote its
subspace of weakly holomorphic modular forms by M!

k ⊂ Mk.

The next definition allows us to define Jacobi forms with singularities in Defini-
tion 3.4.

Definition 3.2. We say that a function φ : Rn → C has a singularity of type fg−1

at x ∈ Rn if there are non-zero real-analytic functions f and g on a neighborhood
U ⊂ Rn of x such that φ− fg−1 can be extended to a real-analytic function on U .
In addition, if φ is defined on a space with a complex structure and if f and g are
holomorphic, then we say that φ has a singularity of meromorphic type.

Remark 3.3. Functions whose natural domain of definition (see [18] for details)
are multi-sheeted lead to singularities that are not as in Definition 3.2. Prominent
examples are logarithmic singularities and roots.

We now improve the definition of harmonic Maass-Jacobi forms in [5].

Definition 3.4 (H-harmonic Maass-Jacobi forms). Let φ : H× C → C be a real-
analytic function except for possible singularities of type fg−1, where f and g are
real-analytic, such that the singularities of φ(τ, · ) are isolated for every τ ∈ H. Then
φ is an H-harmonic Maass-Jacobi form of weight k and index m if the following
conditions are satisfied:

(1) For all A ∈ ΓJ, we have φ
∣∣
k,m

A = φ.

(2) We have that Ck,m(φ) = 0.
(3) We have that ΔH

m(φ) = 0.
(4) For every α, β ∈ Q such that {(τ, ατ + β) : τ ∈ H} is not a polar divisor of φ,

we have that φ(τ, ατ + β) = O
(
eay

)
as y → ∞ for some a > 0.

We write MJΔ,H
k,m for the space of such forms.

Remark 3.5. We call condition (4) in the previous definition the growth condition.
A priori, it is not clear if there are α, β such that the function φ(τ, ατ + β) has
singularities for arbitrarily large y. However, Proposition 5.4 shows that this is
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not the case. Note that we need the growth condition (4) only in the proof of
Theorems 1.3 and 5.2 in order to establish a relation to harmonic weak Maass
forms, which also satisfy a certain growth condition.

In the following we define analogs of Bruinier and Funke’s [6] operator ξk, which
are needed to characterize the spaces of Jacobi forms in Table 1. Set

ξHk,m(φ) :=
√
−my

−1
exp

(
− 4πm v2

y

)
Y k,m
− (φ) and(5)

ξsk,Hk,m (φ) :=
√
−my exp

(
− 4πm v2

y

)
Y sk;k,m
− (φ).(6)

The operators ξHk,m and ξsk,Hk,m are covariant with respect to the actions in (1) and

(2): If φ is a smooth function on H× C and A ∈ GJ , then(
ξHk,m(φ)

)∣∣sk
k,−m

A = ξHk,m

(
φ
∣∣
k,m

A
)

and(7)

(
ξsk,Hk,m (φ)

)∣∣
k,−m

A = ξsk,Hk,m

(
φ
∣∣sk
k,m

A
)
.(8)

Recall that the weight k hyperbolic Laplacian factors as Δk = −ξ2−k◦ξk. Similarly,
one finds that

ΔH
m = ξsk,Hk,−m ◦ ξHk,m = ξHk,−m ◦ ξsk,Hk,m .(9)

From [5] and [4] recall the definitions

ξk,m(φ) := yk−5/2
(
Xk,m

− (φ)− 1
4πmY k−1,m

− Y k,m
− (φ)

)
and

(10)

ξskk,m
(
φ
)
:= yk−5/2

(
Xsk;k,m

+ (φ)− 1
4πmY sk;k+1,m

+ Y sk;k,m
+ (φ)

)
= 1

4πmyk−
1
2 Lm(φ),

(11)

where Lm := 8πim∂τ − ∂2
z is the usual heat-operator. The operators ξk,m and

ξskk,m are also covariant with respect to the actions in (1) and (2): If φ is a smooth

function on H× C and A ∈ GJ , then(
ξk,m(φ)

)∣∣sk
3−k,m

A = ξk,m

(
φ
∣∣
k,m

A
)

and(12)

(
ξskk,m(φ)

)∣∣
3−k,m

A = ξskk,m

(
φ
∣∣sk
k,m

A
)
.(13)

The actions of the Casimir operators simplify when applied to semi-meromorphic
functions. Precisely, if φ is semi-meromorphic, then one verifies that

Ck,m(φ) = 2 ξsk3−k,m ◦ ξk,m(φ) and Csk
k,m(φ) = 2 ξ3−k,m ◦ ξskk,m(φ).(14)

We also consider the space MJsk,Δ,H
k,m of H-harmonic skew-Maass-Jacobi forms

of weight k and index m. This space consists of functions φ as in Definition 3.4,
where conditions (1) and (2) are replaced by

(1’) For all A ∈ ΓJ, we have φ
∣∣sk
k,m

A = φ.

(2’) We have that Csk
k,m(φ) = 0.



HARMONIC MAASS-JACOBI FORMS 9

The operators ξsk,Hk,m and ξskk,m allow us to define skew-Maass-Jacobi versions of the

spaces in Table 1. Specifically, the forms in MJsk,Δ,H
k,m that are annihilated by ξskk,m

and ξsk,Hk,m are denoted by MJsk,δ,Hk,m and MJsk,Δ,h
k,m , respectively, and MJsk,δ,hk,m :=

MJsk,δ,Hk,m ∩ MJsk,Δ,h
k,m . In this paper, we will encounter only the following two

subspaces of H-harmonic skew-Maass-Jacobi forms without singularities: The space

Jsk,δ,hk,m ⊆ MJsk,δ,hk,m , which contains Skoruppa’s skew-holomorphic Jacobi forms (see

[22,23]), and Jsk,Δ,h
k,m ⊆ MJsk,Δ,h

k,m . Note that Corollary 4.3 will show that MJsk,Δ,h
k,m

= Jsk,Δ,h
k,m and that Jsk,Δ,h

k,m = {0} if m < 0.
Our next task is to describe the Fourier series expansions of H-harmonic Maass-

Jacobi forms. For this purpose we will need the lower incomplete Gamma-function
γ(s, x) :=

∫ x

0
ts−1e−t dt and the function

H(w) := e−w

∫ ∞

−2w

t
1
2−ke−t dt.(15)

Observe that H(w) converges for k < 3
2 and has a holomorphic continuation in k if

w �= 0. If w < 0, then H(w) = e−w Γ( 32 − k,−2w) (see also page 55 of [6]), where

Γ(s, x) :=
∫∞
x

ts−1e−t dt is the upper incomplete Gamma-function. Throughout,

we write q := e2πiτ and ζ := e2πiz.

Proposition 3.6. Suppose φ ∈ MJΔ,H
k,m has a local Fourier series expansion of the

form ∑
n,r∈Z

D=4mn−r2

c(n, r; y, v)qnζr.(16)

If m > 0, then c(n, r; y, v) lies in the 2-dimensional vector space spanned by
c1(n, r; y, v) and c2(n, r; y, v) below. If m < 0, then c(n, r; y, v) lies in the 4-
dimensional vector space spanned by c1(n, r; y, v), . . . , c4(n, r; y, v) below. If D �= 0,
then

c1(n, r; y, v) = 1, c2(n, r; y, v) = H
(πDy

2m

)
exp

(πDy

2m

)
,

c3(n, r; y, v) = sgn
(
r + 2m v

y

)
γ
(

1
2 ,

−πy
m

(
r + 2m v

y

)2)
,

c4(n, r; y, v) = H
(πDy

2m

)
exp

(πDy

2m

)
sgn

(
r + 2m v

y

)
γ
(

1
2 ,

−πy
m

(
r + 2m v

y

)2)
.

If D = 0, then

c1(n, r; y, v) = 1, c2(n, r; y, v) = y
3
2−k,

c3(n, r; y, v) = sgn
(
r + 2m v

y

)
γ
(

1
2 ,

−πy
m

(
r + 2m v

y

)2)
,

c4(n, r; y, v) = y
3
2−k sgn

(
r + 2m v

y

)
γ
(

1
2 ,

−πy
m

(
r + 2m v

y

)2)
.
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Proof. It is easy to verify that all ci(n, r; y, v)q
nζr are in the kernels of Ck,m and ΔH

m.
Moreover, for each (n, r) the differential equation Ck,m

(
c(n, r; y, v)qnζr

)
= 0 has at

most four linear independent solutions, which can be seen as follows: For fixed n, r,
and y the differential equation for c(n, r; y, v) arising from ΔH

m

(
c(n, r; y, v) qnζr

)
=

0 has order 2, hence leading to at most two linear independent solutions fi(n, r; y, v)
with coefficients di(n, r; y) (i = 1, 2). Imposing Ck,m

(
di(n, r; y)fi(n, r; y, v) q

nζr
)
=

0 yields a differential equation of order 2 for each di(n, r; y). Thus, there are at
most two linear independent solutions for each di(n, r; y), and hence at most four
linear independent solutions for c(n, r; y, v).

In Section 4 we will prove Corollary 4.4, which implies that ψ := ξHk,m(φ) has
no singularities. In particular, ψ is a semi-holomorphic skew-Maass-Jacobi form of
index −m (observe (7) and (9)), and if ψ �= 0, then −m > 0. Thus, if m > 0,
then c(n, r; y, v) in (16) is a linear combination of the semi-holomorphic solutions
c1(n, r; y, v) and c2(n, r; y, v). �

The situation for H-harmonic skew-Maass-Jacobi forms is very similar. We only
record the result on their Fourier coefficients and omit the proof.

Proposition 3.7. Let φ ∈ MJsk,Δ,H
k,m such that ξsk,Hk,m (φ) has no singularities and

suppose that φ has a local Fourier series expansion of the form∑
n,r∈Z

D=4mn−r2

csk(n, r; y, v)qnζr.(17)

If m > 0, then csk(n, r; y, v) lies in the 2-dimensional vector space spanned by
csk1 (n, r; y, v) and csk2 (n, r; y, v) below. If m < 0, then csk(n, r; y, v) lies in the
4-dimensional vector space spanned by csk1 (n, r; y, v), . . . , csk4 (n, r; y, v) below. If
D �= 0, then

csk1 (n, r; y, v) = exp
(πDy

m

)
, csk2 (n, r; y, v) = H

(−πDy

2m

)
exp

(πDy

2m

)
,

csk3 (n, r; y, v) = exp
(πDy

m

)
sgn

(
r + 2m v

y

)
γ
(

1
2 ,

−πy
m

(
r + 2m v

y

)2)
,

csk4 (n, r; y, v) = H
(−πDy

2m

)
exp

(πDy

2m

)
sgn

(
r + 2m v

y

)
γ
(

1
2 ,

−πy
m

(
r + 2m v

y

)2)
.

If D = 0, then

csk1 (n, r; y, v) = 1, csk2 (n, r; y, v) = y
3
2−k,

csk3 (n, r; y, v) = sgn
(
r + 2m v

y

)
γ
(

1
2 ,

−πy
m

(
r + 2m v

y

)2)
,

csk4 (n, r; y, v) = y
3
2−k sgn

(
r + 2m v

y

)
γ
(

1
2 ,

−πy
m

(
r + 2m v

y

)2)
.

The ξ-operators in (5), (6), (10), and (11) provide the following interplay between
the Fourier coefficients in Proposition 3.6 and Proposition 3.7.

Proposition 3.8. Let ci(n, r; y, v) and cski (n, r; y, v) be the Fourier coefficients
in Proposition 3.6 and Proposition 3.7, respectively. With an abuse of notation
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we write c̃i := c̃i[k,m, n, r] := ci(n, r; y, v)q
nζr and c̃ski := c̃ski [k,m, n, r] :=

cski (n, r; y, v)qnζr. If D �= 0, then

ξk,m
(
c̃1
)
= 0, ξk,m

(
c̃2
)
= −

(−πD
m

) 3
2−k

c̃sk1 [3− k,m, n, r],

ξk,m
(
c̃3
)
= 0, ξk,m

(
c̃4
)
= −

(
−πD

m

) 3
2−k

c̃sk3 [3− k,m, n, r],

ξHk,m
(
c̃1
)
= 0, ξHk,m

(
c̃3
)
= −2

√
π c̃sk1 [k,−m,−n,−r],

ξHk,m
(
c̃2
)
= 0, ξHk,m

(
c̃4
)
= −2

√
π c̃sk2 [k,−m,−n,−r],

ξskk,m
(
c̃sk1

)
= 0, ξskk,m(c̃sk2 ) = −

(
πD
m

) 3
2−k

c̃1[3− k,m, n, r],

ξskk,m
(
c̃sk3

)
= 0, ξskk,m(c̃sk4 ) = −

(
πD
m

) 3
2−k

c̃3[3− k,m, n, r],

ξsk,Hk,m

(
c̃sk1

)
= 0, ξsk,Hk,m

(
c̃sk3

)
= −2

√
π c̃1[k,−m,−n,−r],

ξsk,Hk,m

(
c̃sk2

)
= 0, ξsk,Hk,m

(
c̃sk4

)
= −2

√
π c̃2[k,−m,−n,−r].

If D = 0, then

ξk,m
(
c̃1
)
= 0, ξk,m

(
c̃2
)
= ( 32 − k) c̃sk1 [3− k,m, n, r],

ξk,m
(
c̃3
)
= 0, ξk,m

(
c̃4
)
= ( 32 − k) c̃sk3 [3− k,m, n, r],

ξHk,m
(
c̃1
)
= 0, ξHk,m

(
c̃3
)
= −2

√
π c̃sk1 [k,−m,−n,−r],

ξHk,m
(
c̃2
)
= 0, ξHk,m

(
c̃4
)
= −2

√
π c̃sk2 [k,−m,−n,−r],

ξskk,m
(
c̃sk1

)
= 0, ξskk,m(c̃sk2 ) = ( 32 − k) c̃1[3− k,m, n, r],

ξskk,m
(
c̃sk3

)
= 0, ξskk,m(c̃sk4 ) = ( 32 − k) c̃3[3− k,m, n, r],

ξsk,Hk,m

(
c̃sk1

)
= 0, ξsk,Hk,m

(
c̃sk3

)
= −2

√
π c̃1[k,−m,−n,−r],

ξsk,Hk,m

(
c̃sk2

)
= 0, ξsk,Hk,m

(
c̃sk4

)
= −2

√
π c̃2[k,−m,−n,−r].

Proof. Observe the covariance properties of the ξ-operators in (7) and (12). All
identities of the proposition follow from straightforward computations. �

Let FEJ denote the space of real-analytic functions H × C → C that admit a
local Fourier series expansion at some point. H-harmonic Maass-Jacobi forms and
H-harmonic skew-Maass-Jacobi forms that have local Fourier series expansions are
connected in a natural way via the ξ-operators in (5), (6), (10), and (11), and the
following corollary is a direct consequence of Proposition 3.6, Proposition 3.7, and
Proposition 3.8.
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Corollary 3.9. The following diagrams are commutative:

FEJ ∩MJsk,δ,H3−k,m

ξsk,H3−k,m

��

FEJ ∩MJΔ,H
k,m

ξk,m
��

ξHk,m

��

FEJ ∩MJδ,h3−k,−m FEJ ∩MJsk,Δ,h
k,−m

ξskk,−m
��

FEJ ∩MJδ,H3−k,m

ξH3−k,m

��

FEJ ∩MJsk,Δ,H
k,m

ξskk,m
��

ξsk,Hk,m

��

FEJ ∩MJsk,δ,h3−k,−m FEJ ∩MJΔ,h
k,−m

ξk,−m
��

Remark 3.10.

(1) Any H-harmonic Maass-Jacobi form that has non-moving singularities admits
a local Fourier series expansion.

(2) It will follow from Theorem 1.1 and Proposition 4.2 that the top diagram in
Corollary 3.9 is already commutative when omitting the intersections with FEJ.

4. Maass-Jacobi forms with singularities

In this section, we investigate the singularities of H-harmonic (skew)-Maass-
Jacobi forms and prove Theorem 1.1 (2). A key ingredient is the next proposition,
which relies on the theory of several complex variables.

Proposition 4.1. Let φ : H×C → C be a real-analytic function except for possible
singularities of type fg−1, where f and g are real-analytic, such that the singular-
ities of φ(τ, · ) are isolated for every τ ∈ H. Suppose that ΔH

m(φ) = 0 for some
half-integer m. Then either φ has no singularities or there exist τ0 ∈ H and real-
analytic z0 : H → C such that φ has a Laurent series expansion of the form∑

n>−N,n′>−N ′

cn,n′(τ )
(
z − z0(τ )

)n(
z − z0(τ )

)n′

(18)

around
(
τ0, z0(τ0)

)
∈ H × C. In particular, if φ is semi-meromorphic, then its

Laurent series expansion around
(
τ0, z0(τ0)

)
∈ H× C equals∑

n>−N

cn(τ )
(
z − z0(τ )

)n
.(19)

Proof. Suppose that φ has a singularity at
(
τ0, z0(τ0)

)
, where τ0 ∈ H and z0(τ0) ∈

C. It suffices to show that there are open sets τ0 ∈ U ⊂ H and z0(τ0) ∈ V ⊂ C, and
a real-analytic function z0 : U → C such that for τ ∈ U the singularities of φ(τ, · )
in a neighborhood of z0(τ0) lie exactly at z0(τ ) and have the same multiplicities for
all τ ∈ U .

We first assume that φ is semi-meromorphic. Choose a neighborhood U × V of(
τ0, z0(τ0)

)
, small enough such that φ can be considered as a meromorphic function

of three complex variables x, y ∈ Cj := R + jR (j2 = −1) and z ∈ C restricted to
(τ, z) =

(
x + iy, z

)
∈ U × V with x, y ∈ R. We can write φ|U×V as a quotient of

two holomorphic functions f(x, y, z) and g(x, y, z) in three variables after possibly
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shrinking U and V (see the treatment of the Poincaré problem in [18, Proposition
3.1, Theorem 3.9]). We may also assume that f and g are coprime, i.e., there is no
open set W such that the sets of zeros of f |W and g|W are equal.

Since φ(τ, · ) has isolated singularities, we can apply the Weierstrass Preparation
Theorem (see [18, Theorem 2.1]) to g. We find that the singularities of τ �→ φ(τ, z)
are given by a product of powers of pairwise distinct irreducible pseudo polynomials
(i.e., polynomials in z with coefficients that are holomorphic functions of x and y)
p1(x, y; z), . . . , pl(x, y; z) for some l after possibly shrinking U and V further. Since
these polynomials are coprime, one can move τ0 within U (which may be needed
if l > 1) and then shrink U and V even further such that finally p1(x, y; z)

rφ(τ, · )
has a holomorphic continuation on U ×V for some 0 < r ∈ Z. This proves the case
when φ is semi-meromorphic.

If φ is not semi-meromorphic, then we will show that the locus of singularities

of φ locally coincides with that of a semi-meromorphic function. Write φ̃ for the

image of φ under ξHk,m or ξsk,Hk,m . Equation (9) and the assumption that ΔH
m(φ) = 0

imply that φ̃ is semi-meromorphic, and φ̃ has singularities that can be described as

above. In particular, φ̃ has a local Laurent series expansion of the form∑
n>−N

c̃n(τ )
(
z − z0(τ )

)n
.

For brevity we restrict ourselves to the case φ̃ = ξHk,m(φ); the case φ̃ = ξsk,Hk,m (φ) is
analogous. Then ∂z φ has a local Laurent series expansion of the form

i

√
−m

y
exp

(
− πm

(z − z)2

y

) ∑
n>−N

c̃n(τ )
(
z − z0(τ )

)n
.(20)

If τ ∈ H is fixed, then the assumptions on the singularities of φ guarantee that φ
has a local Laurent series expansion in z and z. In particular, the coefficient of(
z − z0(τ )

)−1
of the local Laurent series expansion of ∂z φ is zero, and one may

formally integrate (20) with respect to z. This yields a real-analytic function φra,
which has a locally convergent Laurent series expansion as in (18), and which locally

has the same locus of singularities as φ̃. Moreover, φ − φra is semi-meromorphic
and by the above it has a local Laurent series expansion as in (19). Thus φ has a
local Laurent series expansion as in (18), which concludes the proof. �

Another crucial ingredient is the following proposition:

Proposition 4.2. There is no φ ∈ MJsk,Δ,H
k,m that has a local Laurent series ex-

pansion with non-zero semi-meromorphic principal part

−1∑
n=−N

cn(τ )
(
z − z0(τ )

)n
,(21)

where N > 0 and c−N �= 0.

Proof. Let φ ∈ MJsk,Δ,H
k,m with singularities, and assume that φ has a local Laurent

series expansion as in Proposition 4.1 with non-zero semi-meromorphic principal
part

P(τ, z) :=
−1∑

n=−N

cn(τ )
(
z − z0(τ )

)n
,
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where N > 0 and c−N �= 0. By assumption, P is semi-meromorphic and Csk
k,m(P) =

0. The factorization (14) of Csk
k,m for semi-meromorphic forms implies that ξskk,m(P)

is meromorphic. In particular, ∂τ ξ
sk
k,m(P) = 0. Explicitly, we have

ξskk,m(P) = 2i yk−
1
2

−1∑
n=−N

(
∂τ

(
cn(τ )

(
z − z0(τ )

)n)− n(n− 1)

8πim
cn(τ )

(
z − z0(τ )

)n−2
)
.

(22)

We inspect the coefficients of
(
z− z0(τ )

)−N−3
and

(
z− z0(τ )

)−N−2
in the Laurent

series expansion of ∂τ ξ
sk
k,m(P)) and see that z0 and yk−

1
2 c−N (τ ) are holomorphic.

If n < 0, then an induction argument shows that

cn(τ ) =
∑

l∈Z+ 1
2

ylcn,l(τ ),

where cn,l(τ ) is holomorphic and the sum is finite. If n = −N , then this is true by
the above. Assume that the claim is true for all n < n0 < 0. Apply ∂τ to (22) to
obtain

∂τ

(
2iyk−

1
2

((
∂τ cn0−2

)
(τ )− (n0 − 2)

(
∂τz0

)
(τ )cn0−1(τ )−

n0(n0 − 1)

8πim
cn0

(τ )
))

= 0,

which proves that cn0
(τ ) is of the required form.

Let n0 < 0 be maximal such that cn0
�= 0. Expand the coefficient of

(
z − z0(τ )

)n0

in the Laurent series expansion of ∂τ ξ
sk
k,m(P) to find that

yk−
1
2

∑
l∈Z+ 1

2

(−il
2 yl−1cn0,l(τ ) + yl∂τ cn0,l(τ )

)
is holomorphic. It is easy to see that this is only possible if cn0

(τ ) = c y
3
2−k for

some 0 �= c ∈ C.

Note that n0 �= −N , since yk−
1
2 cn0

(τ ) is not holomorphic. Consider the coeffi-

cient of
(
z − z0(τ )

)n0−1
in the Laurent series expansion of ∂τ ξ

sk
k,m(P) to discover

that −n0cy∂τz0(τ )+yk−
1
2

∑
l∈Z+ 1

2

(−il
2 yl−1cn0−1,l(τ )+yl∂τ cn0−1,l(τ )

)
is holomor-

phic, which is only possible if ∂τz0(τ ) is a polynomial, since the sum over l is
finite.

Let AS :=
[( (

0 −1
1 0

)
,
√
τ
)
, (0, 0)

]
∈ ΓJ. If

(
τ0, z0(τ0)

)
is a singularity of φ =

φ
∣∣sk
k,m

AS , then so is
(
τ̃0, z̃0(τ̃0)

)
, where

(
τ̃0, z̃0(τ )

)
:=

(−1
τ0

, τz0
(−1

τ

))
. Moreover,

φ has a local Laurent series expansion with non-zero semi-meromorphic principal
part

P̃(τ, z) :=

−1∑
n=−N

c̃n(τ )
(
z − z̃0(τ )

)n
,

where c̃n = 0 for n > n0 and c̃n0
�= 0. By the above reasoning, c̃n0

(τ ) = c̃ y
3
2−k

for some 0 �= c̃ ∈ C, and z̃0 is a polynomial in τ . Observe that z̃0 has an analytic
continuation to H, and φ has singularities along z̃0(τ ) for all τ . Compare the n0-th

Laurent series coefficients of P and P̃ at (τ0, z0) = A−1
S (τ̃0, z̃0):(

c̃n0

∣∣sk
k,m

A−1
S

)
(τ )

(−z

τ
− z̃0

(−1

τ

))n0

= c̃n0

(−1

τ

)
|τ |−1τ1−k(−τ )−n0

(
z − z0(τ )

)n0 .
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The fact that φ = φ
∣∣sk
k,m

AS implies that

c̃ Im
(−1

τ

) 3
2−k |τ |−1τ1−k(−τ )−n0 = (−1)n0 c̃ y

3
2−k τk−2−n0τ−1 = c y

3
2−k,

which is impossible, since c, c̃ �= 0. This contradiction completes the proof. �

Corollary 4.3. We have MJsk,Δ,h
k,m = Jsk,Δ,h

k,m and Jsk,Δ,h
k,m = {0} if m < 0.

Proof. Let φ ∈ MJsk,Δ,h
k,m , and assume that φ(τ0, · ) has singularities for some τ0 ∈

H. Consider the Laurent series expansion of φ around a singular point
(
τ0, z0(τ0)

)
(see Proposition 4.1): ∑

n≥−N

cn(τ )
(
z − z0(τ )

)n
for some N > 0 and c−N �= 0. The functions cn : H → C are real-analytic and
z0(τ ) parametrizes the singularities in a neighborhood of

(
τ0, z0(τ0)

)
. However,

Proposition 4.2 implies the contradiction cn = 0 for n < 0. Hence φ has no

singularities and MJsk,Δ,h
k,m = Jsk,Δ,h

k,m .

The second part follows from the residue theorem as in the proof of [10, Theo-
rem 1.2]. �

We are now in a position to prove Theorem 1.1 (2).

Proof of Theorem 1.1 (2). If φ ∈ MJΔ,h
k,m, then Corollary 3.9 and Corollary 4.3

imply that ξk,m(φ) ∈ Jsk,δ,h3−k,m. Moreover, if ξk,m(φ) �= 0, then m > 0. Note that

ξk,m : JΔ,h
k,m → Jsk,δ,h3−k,m is surjective. For the subspace of cusp forms of Jsk,δ,h3−k,m, this

observation is the remark after Theorem 2 of [5]. It is easy to see that the argument
with Jacobi-Poincaré series given there holds for all weak skew-holomorphic Jacobi

forms of weight 3 − k and index m. In particular, there exists ψ ∈ JΔ,h
k,m such that

ξk,m(ψ) = ξk,m(φ). We find that φ−ψ is meromorphic, and φ = ψ+(φ−ψ) is the
desired decomposition. �

We end this section with a corollary whose proof does not rely on Proposition 3.6,
Proposition 3.7, and Proposition 3.8.

Corollary 4.4. Let φ ∈ MJΔ,H
k,m . Then ∂z(φ) has no singularities.

Proof. If ∂z(φ) had singularities, then so would ξHk,m(φ). However, (7), (9), and

Corollary 4.3 yield that ξHk,m(φ) ∈ Jsk,Δ,h
k,−m has no singularities. �

5. Theta decompositions

It is well-known that holomorphic and skew-holomorphic Jacobi forms have a
theta decomposition (see [10, 23]). This follows directly from the invariance un-

der the Heisenberg part of ΓJ, and hence semi-holomorphic forms in JΔ,h
k,m and

Jsk,Δ,h
k,m also have such a theta decomposition. Specifically, if 0 �= φ ∈ JΔ,h

k,m is

semi-holomorphic, then m > 0 by Theorem 1.1 (2) and

φ(τ, z) =
∑

l (mod 2m)

hl(τ ) θm,l(τ, z),
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where hl are harmonic weak Maass forms and

θm,l(τ, z) :=
∑

r≡l (mod 2m)

q
r2

4m ζr,(23)

where we write again q := e2πiτ and ζ := e2πiz. For semi-holomorphic skew-Maass-
Jacobi forms we have an analogous decomposition

∑
l hl θm,l.

We now review a more precise viewpoint of the theta decomposition. Recall
that the metaplectic cover Mp2(Z) of SL2(Z) is generated by T :=

(
( 1 1
0 1 ) , 1

)
and

S :=
( (

0 −1
1 0

)
,
√
τ
)
, where the root is given by the principal branch. The Weil

representation ρm of Mp2(Z) associated to the Jacobi index m > 0 is defined as
follows (for example, see [24] for details). It is a representation of Mp2(Z) on the
group algebra C

[
Z/2mZ

]
, which has canonical basis elements el for l ∈ Z/2mZ:

ρm(T ) el := e4m(l2) el,(24)

ρm(S) el :=
1√
2im

∑
l′ (mod 2m)

e2m(−ll′)el′ ,(25)

where here and throughout this section, em(w) := e
2πiw
m . We denote the dual Weil

representation by ρ̌m.
The Weil representation factors over the congruence subgroup

Mp2(Z)[4m] :=
{(

a b
c d

)
: a ≡ d ≡ 1 (mod 4m) and b ≡ c ≡ 0 (mod 4m)

}
.

Given h : H → C[Z/2mZ], we define a vector-valued slash action of Mp2(Z):

h
∣∣
k,ρm

g := ρm(g)h
∣∣
k
g

for all g ∈ Mp2(Z). We say that a map h : H → C[Z/2mZ] is a vector-valued
modular form if every component is a modular form (for some congruence subgroup)
and if h is invariant under the

∣∣
k,ρm

-action of Mp2(Z). This definition extends to

vector-valued harmonic weak Maass forms of weight k and type ρm. We write
Mk,ρm

for the space of such forms, and M!
k,ρm

⊂ Mk,ρm
for the subspace of weakly

holomorphic vector-valued modular forms of weight k and type ρm. Vector-valued
Jacobi forms can be defined analogously. The transformation laws of θm,l (see §5
of [10]) yield that (θm,l)l is a vector-valued Jacobi form of weight 1

2 , index m, and
type ρ̌m.

The theta decomposition for Jacobi forms can be stated more precisely as an
isomorphism between vector-valued modular forms and Jacobi forms (for example,
see [24]). It is easy to see that such isomorphisms hold also for semi-holomorphic

forms in JΔ,h
k,m and Jsk,Δ,h

k,m . Specifically,

Mk− 1
2 ,ρm

−→ JΔ,h
k,m, (hl)l �−→

∑
l

hl θm,l and(26)

Mk− 1
2 ,ρ̌m

−→ Jsk,Δ,h
k,m , (hl)l �−→

∑
l

hl θm,l(27)

are bijective for m > 0.
We next recall a set of μ-functions from Zwegers [26, 27] that will serve as a

substitute for the theta series in (23). Letm > 0. For n ∈ Z2m, write |n| :=
∑2m

i=1 ni
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and ‖n‖ :=
∑2m

i=1 n
2
i . Define

μm(z1, z2; τ ) :=
eπiz1

θ(z2; τ )2m

∑
n∈Z2m

(−1)|n|q
1
2‖n‖

2+ 1
2 |n|e2πi|n|z2

1− e2πiz1q|n|
,(28)

where

θ(z; τ ) :=
∑

r∈Z+ 1
2

(−1)r+
1
2 q

r2

2 ζr(29)

is a Jacobi theta function, and

R(z; τ ) :=
∑

n∈Z+ 1
2

(
sgn(n)− E

(√
2y

(
n+ v

y

)))
(−1)n−

1
2 q−

n2

2 ζ−n,

where

E(w) := 2

∫ w

0

e−πu2

du = sgn(w)√
π

γ
(
1
2 , πw

2
)

is the error function. Set

(30) μ̂m,l(z; τ ) := (−1)mq
−(l+m)2

4m ζ−(l+m)

·
(
μm

(
1
2 + (l +m)τ, 1

4m − z; τ
)
− i

2R
(
2mz + (l +m)τ − 2m+1

2 ; 2mτ
))

.

Note that μ̂m,l(z; τ ) in (30) coincides with (−1)l μ̂2m,l+m(u, v; τ ) of [27] evaluated
at u = 1

2 and v =
(

1
4m −z, . . . , 1

4m −z
)
, and [27, Theorem 4.5] immediately implies:

Proposition 5.1. The vector (μ̂m,l)l is a vector-valued Jacobi form of weight 1
2 ,

index −m, and of type ρm. More precisely,

μ̂m,l

∣∣
1
2 ,−m

[(
( 1 1
0 1 ) ,

√
1
)
, (0, 0)

]
= e4m(−l2) μ̂m,l and

μ̂m,l

∣∣
1
2 ,−m

[( (
0 −1
1 0

)
,
√
τ
)
, (0, 0)

]
=

i√
2im

∑
l′ (mod 2m)

e2m(ll′) μ̂m,l′ .

The following theorem is one of our main results, which provides a theta-like
decomposition for H-harmonic Maass-Jacobi forms.

Theorem 5.2. Let m > 0. The map

M!
k− 1

2 ,ρ̌m
×MJδ,hk,−m −→ MJδ,Hk,−m,(31) (

(hl)l (mod 2m), ϕ
)
�−→

∑
l (mod 2m)

hl μ̂m,l + ϕ

is bijective.

Remark 5.3.

(1) If the “meromorphic part” ϕ in Theorem 5.2 has poles only at torsion points,
then it has a decomposition into a so-called polar part and a finite part, which
admits a theta decomposition involving mock modular forms (for details see [26]
and [8]).
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(2) Note that Theorem 1.3 is simply a reformulation of Theorem 5.2. We find that

ξHk,m : MJδ,Hk,m /MJδ,hk,m−̃→Jsk,δ,hk,−m

is Hecke equivariant. In particular, skew-holomorphic Jacobi Hecke eigenforms
correspond to “Hecke eigenforms” in the subspace of moderate growth H-har-
monic Maass-Jacobi forms.

Proof of Theorem 5.2. The map (31) is well-defined by Proposition 5.1. Note that
we have not yet used the growth condition (4) in Definition 3.4. As a first step, we
will establish a weaker version of Theorem 5.2, where the growth conditions of the
left and right hand sides of (31) are removed. We will denote this weaker map by
(31)’. The theorem then follows from Proposition 5.4, whose proof only relies on
the weaker version of Theorem 5.2. For the remainder of this proof we implicitly
remove the growth condition for all spaces of modular forms and Jacobi forms that
occur.

A direct computation shows that

ξH1
2 ,−m

(
μ̂m,l

)
= θm,l,

and the linear independence of z �→ ξH1
2 ,−m

(
μ̂m,l(z; τ )

)
=θm,l(τ, z), for l=1, . . . , 2m,

and for any fixed τ establishes the injectivity of (31)’. It remains to prove that (31)’

is surjective. Let φ ∈ MJδ,Hk,−m. Equations (7) and (9) and Corollary 4.3 imply that

ξHk,−m(φ) ∈ Jsk,δ,hk,m . In particular, ξHk,−m(φ) has a theta decomposition of the form∑
l hl θm,l (see (26)) and ψ :=

∑
hl μ̂m,l ∈ MJδ,Hk,−m by Proposition 5.1. We have

ξHk,−m(ψ) = ξHk,−m(φ), so that ϕ := φ− ψ ∈ MJδ,hk,−m, which yields the surjectivity

of (31)’. �
We now prove Theorem 1.1 (1), (3), and (4), where we will repeatedly employ

the following fact already used in the proof of Corollary 4.3: If a non-zero semi-
holomorphic function φ satisfies the elliptic transformation property of a Jacobi
form of index m (i.e., φ is invariant under |k,m

[(
( 1 0
0 1 ) ,

√
1
)
, (λ, μ)

]
for λ, μ ∈ Z),

then m > 0. This follows exactly as in the proof of [10, Theorem 1.2].

Proof of Theorem 1.1 (1). If m < 0, then JΔ,h
k,m = Jδ,hk,m = {0} by the above fact.

The second equality in the theorem follows from the first, because Jδ,Hk,m = JΔ,H
k,m ∩

ker(ξk,m) and Jδ,hk,m = JΔ,h
k,m ∩ ker(ξk,m). We now show that JΔ,H

k,m = JΔ,h
k,m. Suppose

that φ ∈ JΔ,H
k,m , but φ �∈ JΔ,h

k,m. Then (7), (9), and Corollary 4.3 imply that 0 �=
ξHk,m(φ) ∈ Jsk,Δ,h

k,−m is semi-holomorphic. Hence −m > 0 and ξHk,m(φ) has a theta

decomposition of the form
∑

l hl θm,l. We use the same idea as in the proof of

Theorem 5.2. Consider ψ(τ, z) =
∑

hl(τ ) R̂m,l(z; τ ), where

R̂m,l(z; τ ) := (−1)m+1 i
2q

−(l+m)2

4m ζ−(l+m) R
(
2mz + (l +m)τ − 2m+1

2 ; 2mτ
)

is the “non-holomorphic” part of (30). Then ψ (not modular in τ ) has no singular-
ities, and 0 �= φ− ψ is semi-holomorphic and elliptic in z (see [27]). Thus, m > 0.
This contradiction completes the proof. �

Proof of Theorem 1.1 (3). Let φ ∈ MJΔ,H
k,m . Then ξHk,m(φ) ∈ Jsk,Δ,h

k,−m by (7), (9),
and Corollary 4.3. In particular, all principal parts of φ are semi-meromorphic,
and hence the same is true for ξk,m(φ). Corollary 3.9 and Proposition 4.2 imply
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that ξk,m(φ) ∈ Jsk,δ,H3−k,m. Now, if ξk,m(φ) were not annihilated by ξsk,H3−k,m, then

m < 0, since ξsk,H3−k,m

(
ξk,m(φ)

)
∈ Jδ,h3−k,−m is semi-holomorphic. As in the proof

of Theorem 1.1 (1), we find some ψ(τ, z) =
∑

hl(τ ) R̂m,l(z; τ ) (not modular in τ )
without singularities such that 0 �= ξk,m(φ)− ψ is semi-holomorphic and elliptic in
z. Then m > 0, which is a contradiction to our previous finding.

Thus, ξk,m(φ) ∈ Jsk,δ,h3−k,m. Recall from the proof of Theorem 1.1 (2) that ξk,m :

JΔ,h
k,m → Jsk,δ,h3−k,m is surjective. Hence there exists a φ̃ ∈ JΔ,h

k,m such that φ− φ̃ vanishes
under ξk,m, which establishes the claim. �

Proof of Theorem 1.1 (4). If φ ∈ MJΔ,H
k,m , then ξHk,m(φ) ∈ Jsk,Δ,h

k,−m by (7), (9), and

Corollary 4.3. Moreover, if ξHk,m
(
φ
)
�= 0, then Corollary 4.3 asserts that −m > 0,

yielding the first equality. The second equality follows from the first, sinceMJδ,Hk,m =

MJΔ,H
k,m ∩ ker(ξk,m) and MJδ,hk,m = MJΔ,h

k,m ∩ ker(ξk,m). �
We have now settled all analytic and structural properties of H-harmonic Maass-

Jacobi forms. We emphasize that we have not yet used the growth condition (4)
of Definition 3.4. To complete the proof of Theorem 5.2, we have to show that the
growth condition (4) of Definition 3.4 implies the growth condition for harmonic
weak Maass forms on the left hand side of (31).

Proposition 5.4. Fix φ∈MJΔ,H
k,m . Then for all but finitely many α, β∈Q (modZ),

the set {(τ, ατ + β) : τ ∈ H} is not a polar divisor of φ. For every such α, β, the
function φ(τ, ατ + β) has no singularities for sufficiently large y.

Proof. Fix τ ∈ H. By Corollary 4.4, the set of singularities of φ(τ, · ) is discrete
in C. In particular, there are at most finitely many α, β ∈ Q (modZ) such that
φ(τ, ατ + β) is a pole. This proves the first part.

To establish the second part, it suffices to show the claim for φ ∈ MJδ,Hk,m, since

MJΔ,H
k,m = JΔ,h

k,m +MJδ,Hk,m by Theorem 1.1. We employ the map (31)’ defined in the

proof of Theorem 5.2. Write φ as
∑

l (mod 2m) hl μ̂m,l+ψ. Note that if α, β ∈ Q such

that μ̂m,l(τ, ατ + β) is defined, then it has no singularities. Hence it remains to
consider the meromorphic Jacobi form ψ. Now, since ψ is meromorphic, ψ(τ, ατ+β)
is meromorphic, too. This implies that for sufficiently large y, it has no singularities,
proving the proposition. �

We conclude the section with a remark.

Remark 5.5. In Example 1.2 (7), we pointed out that Zwegers’s [26] μ̂-function has a

decomposition of the form μ̂ = μ1+μ̂2, where μ̂2 ∈ MJδ,H1
2 ,−

1
2

. Such a decomposition

can for example be found by setting

μ̂2(z; τ ) := μ̂
(
z + 1+τ

2 , 1+τ
2 ; τ

)
.(32)

Up to meromorphic Jacobi forms, μ̂2 is essentially the only Jacobi form that can be
obtained as a “specialization” of μ̂ (see [25]). Moreover, there is no meromorphic
Jacobi form h such that μ̂2+h has no singularities. One can see this by considering
the residues of the poles of z �→ μ̂2(z; τ ). More precisely, suppose that g is a
meromorphic Jacobi form of index 0 such that the Jacobi form (on Mp2(Z)�(2Z)2)

μ̂2(z; τ )−
g(τ, z)

eπizθ
(
τ, z + 1+τ

2

)(33)
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has no singularities. Then g is holomorphic, since the zeros of the denominator
of the second term in (33) occur precisely where μ̂2 has simple poles. Thus, g is
independent of z, i.e., g is a weakly holomorphic modular form. Suppose that the
residues at −1+τ

2 of the first and second terms in (33) are the same. Then the
transformation behavior of μ̂ and θ under z �→ z + 1 shows that the residues of
these terms at 1+τ

2 differ by a sign. In particular, the residues will not cancel, and
hence there is no g such that (33) has no singularities.

6. H-quasi Maass-Jacobi forms

Kaneko and Zagier [13] introduced the space of quasimodular forms, which in-
cludes the Eisenstein series E2. Quasimodular forms impact various aspects of
automorphic forms and physics, and the theory has been extended to the setting
of Jacobi forms (for example, see [14, 15]). The notion of quasi-Jacobi forms in
the literature mimics the definition of quasimodular forms by Kaneko and Zagier
somewhat closely, and “quasimodular behavior” with respect to the Jacobi variable
z has not been considered thus far. In this section, we fill this gap by introducing
completed H-quasi Maass-Jacobi forms (see Definition 6.1). Note that examples of
such forms have recently appeared as generating functions of Gromov Witten invari-
ants in [19]. The main result of this section (Theorem 6.4) gives a characterization
of completed H-quasi Maass-Jacobi forms in terms of H-harmonic Maass-Jacobi
forms, which implies that there exists no Jacobi form analog of the quasimodular
Eisenstein series E2.

With an abuse of notation we suppress from now on the superscripts and simply
write X± and Y± for the operators defined in Section 2. Recall that every quasi-

modular form can be completed to a (real-analytic) modular form f :=
∑D−1

d=0 ydfd
with holomorphic fd. Then f is annihilated by XD

− . More generally, if the functions

fd are only harmonic, then f is annihilated by XD
+XD

− . This motivates the next
definition of completed H-quasi Maass-Jacobi forms, where as before m �= 0.

Definition 6.1. Let φ : H×C → C be a real-analytic function except for possible
singularities of type fg−1, where f and g are real-analytic, such that the singu-
larities of φ(τ, · ) are isolated for every τ ∈ H. Then φ is a completed H-quasi
Maass-Jacobi form of weight k, index m, and depth D if the following conditions
are satisfied:

(1) For all A ∈ ΓJ, we have φ
∣∣
k,m

A = φ.

(2) We have that Ck,m(φ) = 0.
(3) We have that Y D

+ Y D
−
(
φ
)
= 0.

(4) For every α, β ∈ Q such that {(τ, ατ + β) : τ ∈ H} is not a polar divisor of φ,
we have that φ(τ, ατ + β) = O

(
eay

)
as y → ∞ for some a > 0.

Remark 6.2.

(1) H-quasi Maass-Jacobi forms of depth D = 1 are H-harmonic Maass-Jacobi
forms.

(2) One can define completed H-quasi skew-Maass-Jacobi forms by replacing
∣∣
k,m

,

Ck,m, and Y± in Definition 6.1 with their skew-analogs.
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(3) Observe that the commutator [Y−, Y+] = −2πm. Hence the operator Y D
+ Y D

−
can be expressed as a polynomial in the Heisenberg Laplace operator:

Y D
+ Y D

− =

D−1∏
d=0

(
ΔH

m + 2πmd
)
.(34)

Analogously, in the quasimodular setting XD
+XD

− can be expressed as a poly-
nomial in the hyperbolic Laplace operator:

XD
+XD

− =

D−1∏
d=0

(
Δk + (k − 2d)d

)
,

where (n)l :=
∏l−1

i=0(n− i) is the Pochhammer symbol ((n)0 := 0).

The following two results give descriptions of completed H-quasi Maass-Jacobi
forms.

Lemma 6.3. Let φ be a completed H-quasi Maass-Jacobi form of weight k, index m,
and depth D that is annihilated by Y D

− . Then

φ =
D−1∑
d=0

Y d
+

(
φd

)
,

where φd ∈ MJΔ,h
k−d,m.

Proof. We induct on D. The case D = 1 is clear by Definition 3.4. Let D > 1, and

set φD := Y D−1
− (φ). Then φD ∈ MJΔ,h

k+1−D,m. Consider

φ̃ := φ−
(
(−2πm)D−1(D − 1)!

)−1
Y D−1
+

(
φD

)
.

With the help of (34) and the fact that [Y−,Δ
H
m] = −2πmY−, we verify that

Y D−1
−

(
φ̃
)
= Y D−1

− (φ)− 1

(−2πm)D−1(D − 1)!
Y D−1
−

(D−2∏
d=0

(
ΔH

m + 2πmd
))(

φ
)

= Y D−1
− (φ)− 1

(−2πm)D−1(D − 1)!

(D−2∏
d=0

(
ΔH

m + 2πmd− 2πm(D − 1)
))

Y D−1
−

(
φ
)

= φD − 1

(−2πm)D−1(D − 1)!

D−1∏
d=1

(
− 2πmd

)(
φD

)
= 0.

Thus, φ̃ is a completed H-quasi Maass-Jacobi form of weight k, index m, and
depth D − 1, and the claim follows by induction. �

Theorem 6.4. Let φ be a completed H-quasi Maass-Jacobi form of weight k, index
m, and depth D. Then

φ =

D−1∑
d=0

Y d
+

(
φd

)
,

where φd ∈ MJΔ,H
k−d,m.
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Proof. First note that for any φ and m < 0, we have
√
−my

−1
exp

(
− 4πm v2

y

)
Y+(φ) = Y sk

−

(√
−my

−1
exp

(
− 4πm v2

y

)
φ
)
.(35)

Similar relations hold also for Y− and Y sk
+ .

Now, set φ̃ :=
√−my

−1
exp

(
− 4πm v2

y

)
Y D
− (φ), and assume that φ̃ �= 0. Then

φ̃ is a completed H-quasi skew-Maass-Jacobi form of weight k + 1−D, index −m,

and depth D (see Remark 6.2 (2)). Using Relation (35), we confirm that φ̃ vanishes

under
(
Y sk
−

)D
. It is easy to extend Lemma 6.3 to completed H-quasi skew-Maass-

Jacobi forms, and we find that

φ̃ =

D−1∑
d=0

(
Y sk
+

)d(
φd

)
,

for some φd ∈ MJsk,Δ,h
k+1−D+d,−m. Proposition 4.2 implies that m < 0. Let φ

[μ]
d ∈

MJΔ,H
k+1−D+d,m denote the preimage of φd under ξHk+1−D+d,m. If

φ[μ] :=
D−1∑
d=0

1

(−2πm)D−d−1(D − d− 1)!
Y D−d−1
+

(
φ
[μ]
d

)
,

then φ− φ[μ] vanishes under Y D
− . Indeed, the image of φ[μ] under Y D

− is given by

D−1∑
d=0

1

(−2πm)D−d−1(D−d−1)!
Y d+1
−

D−d−1∏
d′=1

(
ΔH

m−2πmd′
)(
φ
[μ]
d

)
=

D−1∑
d=0

Y d+1
−

(
φ
[μ]
d

)
.

We obtain(
Y−

)D
(φ) =

√
−my exp

(
4πm v2

y

)
φ̃ =

√
−my exp

(
4πm v2

y

)D−1∑
d=0

(
Y sk
+

)d(
φd

)

=

D−1∑
d=0

Y d
−

(√
−my exp

(
4πm v2

y

)
φd

)
=

D−1∑
d=0

Y d
−

(
Y−

(
φ
[μ]
d

))
,

which proves the theorem after applying Lemma 6.3. �

As an immediate consequence of Theorem 6.4 we record:

Corollary 6.5. The space of all completed H-quasi Maass-Jacobi forms of weight
k and index m equals

∞⊕
d=0

Y d
+

(
MJΔ,H

k−d,m

)
.

We end with a final remark.

Remark 6.6. In [2], Folsom and the first author describe a modular completion
of characters of s�(m|n)̂ highest weight modules. They encounter products of
automorphic forms that are in the spirit of Theorem 6.4.
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many

E-mail address: kbringma@math.uni-koeln.de

Department of Mathematics, ETH Zurich, Rämistrasse 101, CH-8092 Zürich, Switzer-
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