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We use spectral methods of automorphic forms to establish
a holomorphic projection operator for tensor products of
vector-valued harmonic weak Maass forms and vector-valued
modular forms. We apply this operator to discover simple
recursions for Fourier series coefficients of Ramanujan’s mock
theta functions.

Mock theta functions have a long history but recent work
establishes surprising connections with different areas of
mathematics and physics. For example, they impact the theory of
Donaldson invariants of CP? that are related to gauge theory
(for example, refs. 1-3), they are intimately linked to the
Mathieu and umbral moonshine conjectures (4, 5), and they play
an important role in the study of quantum black holes and mock
modular forms (6). For a good overview of mock theta functions,
see refs. 7 and 8.

A highlight in the theory of mock theta functions is Zwegers’s
(9, 10) “completion” of mock theta functions to real-analytic
vector-valued modular forms. That completion of mock theta
functions has led to several applications such as the solution
of the Andrews—-Dragonette conjecture in ref. 11, which pro-
vides an explicit formula for the Fourier series coefficients of
the third-order mock theta function
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The formula for the coefficients c(f;n) in ref. 11 is given as
an infinite series of Kloosterman sums and I-Bessel functions
and closely resembles Rademacher’s series representation of
the partition function. In particular, the terms that occur are
transcendental.

In this paper, we determine simple finite recursions for
Fourier series coefficients of mock theta functions that depend
only on divisor sums and where all occurring terms are rational.
Our results are in the spirit of Hurwitz’s (12) class number
relations (see also ref. 13),

1+q)

> H(AN-m’)=26(N)— > min(a,b), [1]

mez a,beZ
m2<4N a,b>0
N=ab

where H(N) is the class number of positive definite binary qua-
dratic forms of discriminant —N and o(n):=3,_y,d- Specifi-
cally, we prove the following relations for the Fourier series
coefficient c¢(f;n) of f(q), where we use the conventions that
o(n)=0, if n ¢ Z, and where we write sgn*(n):=sgn(n) for n #0,
sgn*(0):=1, and

d(N,N,,T):==sgn" (N)sgn*(N) (I[N +¢| - [N +1]).  [2]

Theorem 1. Fix O<n €Z, and for a,b€Z set N:

=1(-3a+b-1)
and N:==%(3a+b-1).

www.pnas.org/cgi/doi/10.1073/pnas.1311621111

Then
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meZ
3m?+m<2n
4 16 11 3]
n ~
256(71)—?6(5)—2 E d<N7N76,6>,
a,bel

2n=ab

where the sum on the right-hand side runs over a,b for which
N,N€eZ.

In Theorem 9 we give a similar formula if n€1Z and also
relations for the Fourier series coefficients of the mock theta
function w(g).

Remark 1:

i) Observe that all sums in Theorems 1 and 9 are finite and that
only a few terms are needed to find the actual Fourier series
coefficients of f. For example, [3] implies that

e(f:0) 4l
=§6(1)—13—6(;G) —2(d(—171 % )+d(0 ~1 %

1 [using that c(f;0) =1].

ii) Jeremy Lovejoy pointed out to us that simple finite
recursions for Fourier series coefficients of mock theta
functions that depend only on divisor sums can some-
times also be furnished by Appell sums, because these are
typically expressible in terms of divisors. However, it is not
clear whether Theorems 1 and 9 could be obtained using
this idea.

O\IH
O\lH

)

showing that c(f;1) =

iii) Let 1 <M be an odd integer. Ken Ono indicated to us that
Theorem 1 implies that

n)#0 (mod M)} >>£. [4]

#{n<X : c(f; logX

Significance

Mock theta functions were introduced by Ramanujan in 1920.
They have become a vivid area of research, and they continue to
play important roles in different parts of mathematics and
physics. In this paper, we extend the concept of holomorphic
projection, which allows us to prove identities for the Fourier
series coefficients of Ramanujan’s mock theta functions.
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The case M =2, which we have excluded, can be deduced from
work of ref. 14. Scott Ahlgren mentioned to us that it could
also be derived from ref. 15, because f(g) is congruent modulo
2 to the generating function for the partition function. For odd
M, one can apply Theorem 1 as follows: If n > 7 is prime, then it
is easy to verify that the right-hand side of [3] equals § (n +4).
With the help of Dirichlet’s prlme number theorem one finds
that asymptotically (1 —¢(M)™") X /logX primes n <X to give
a nonvanishing right-hand side of [3], where ¢ is the Euler
¢-function. At most v/X of such primes are contained in the

progression n —3m? —1m, which yields the desired bound.

The Proofs of Theorems 1 and 9 are based on Zwegers’s idea of
using holomorphic projection of scalar-valued functions to study
mock modular forms (see ref. 16 for another application of this
idea). We start by extending the concept of holomorphic pro-
jection to tensor products of vector-valued harmonic weak Maass
forms of weight k and vector-valued modular forms of weight /
(Theorems 5 and 6), where k+1>2. The case k+[=2 is subtle
and features vector-valued quasimodular forms. Our proof relies
on the spectral theory of automorphic forms and is quite dif-
ferent from the proof of the scalar-valued case in ref. 17. We
apply our results to the mock theta functions f(g) and w(q) (in
which case k=1 and /=32) to obtain the explicit recursions for
their Fourier series coefficients in Theorems 1 and 9.

Finally, as already hinted by the similarity of the relations in
[1] and [3], our method also allows one to recover the Hurwitz
class number relations in [1]. It is conceivable that the method
applies to even further classes of automorphic forms, but in this
paper we focus only on Ramanujan’s mock theta functions.

The Metaplectic Cover and Quasimodular Forms
We briefly introduce some standard notation needed for the

2

definition of vector-valued automorphic forms. Let {,:=e™"
H:={r=x+iyeC:y>0} be the Poincaré upper half plane, and
q:=e*"*, The Fourier series coefficients of a periodic function F
on H are always denoted by c(F;n;y). If this coefficient is con-
stant, then we suppress the dependence on y and write ¢(F; n).
Recall that the metaplectic cover Mp,(Z) of SL,(Z) is the group

of pairs (g,w), where g= (LCZ Z)ESLz(Z) and w:H—-C, 7
Vet +d for a holomorphic choice of the square root, with group

law (g1, 1) (g2, @2) = (8182, (w1-&2) - @2). We usually write y for
elements in Mp,(Z). Standard generators of Mp,(Z) are

(3 ) = s=(( 7))

where /7 is the principle branch mapping i to {s.

Throughout this paper, p denotes a finite dimensional, unitary
representation of Mp,(Z). If +p(S)* is the identity, then p fac-
tors through SL,(Z). Let V' (p) be the representation space of p
and (-,-), be the scalar product for which p is unitary. For fixed

<<Z Z),\/cr+d) €Mp,(Z) de-
fine the weight k slash operator of type p on functions

F:H-V(p):

(Fle, 7) @) =)™ (Ver+d) o (Z:Z)

half-integer k and for all y=

The space Mg (p) of modular forms of weight k and type p con-
sists of |, invariant and holomorphic functions H— V' (p) that
are bounded at infinity. Quasimodular forms are important gen-
eralizations of modular forms that were introduced in ref. 18. A
crucial example is the weight 2 Eisenstein series

3962 | www.pnas.org/cgi/doi/10.1073/pnas.1311621111
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whose completion Ej(7):=E(z) -3 is a real- -analytic modular
form of weight 2. We now extend the definition in ref. 18 to
the case of vector-valued forms.

Definition 1: Let F : HH— V' (p) be a holomorphic function. Then
F is a quasimodular form of weight k and type p, if there is a fi-
nite collection F,, : H—V(p) (0<n€Z) of holomorphic func-
tions such that the following holds:

i) (F+ 3y "Fa)l,, v=(F+3,y™"F,) forall y€Mp,(Z).
ii)F(r)=0(1) and F,(7)

Let My (p) be the space of quasimodular forms of weight k and
type p.
ypThe maximal n with F,, # 0 in Definition I is called the depth of
F. One can show that for this choice of n, F), is a modular form of
weight k—2n, so that the depth is bounded for fixed k. We
conclude this section with two propositions on quasimodular
forms of weight 2.

=0(1) and for all y - .

Proposition 2. Suppose that p is irreducible. If p is the trivial rep-

resentation, then My (p) = (E2). Otherwise, My (p) =Mz (p).

Proof: The first part was proved in ref. 18. Suppose that p is not
the trivial representation. Let F € My(p) and consider its com-
pletion F*(z)=F(z)+y 'F,(z) €M;(p). Then F,€M(p), and
F,=0, because p is nontrivial. Hence F*=F € Mz(p).

O

For any vector space V, we write P(V):=(VV\{0})/C* for its

projectivization. We call weP(V(p)) a cusp of p, if any lift of w
to V(p) is a fixed vector of p(T).

Proposition 3. Suppose that p is nontrivial and irreducible. If
p<_01 _01> is the identity, then for each cusp weP(V (p)) of p,

there is an Eisenstein series E».,,, € M (p) with (c(E2,:0),w) o F 0

and (c(El,,,,,;0),w > =0 for all w € P(V (p)) with (w, w') ,=0.
Proof: We use “Hecke s trick” to construct a quasimodular

form Ej,, with constant coefficient w+O(y~!). This will

yield the desired result, because M(p)=M,(p). More pre-
cisely, set

et +d| ™

EZ,E;/),W = Z

7€l'w\SLa(Z)

w|2,p }/>

and Ey.,, :=1lim. _, oE2 .. It is €asy to see that the Fourier series
expansion of £, ,,, is given by

(o) (0

Consider the Fourier series expansion of the inner sum over a.
As in the classical case, one finds that it converges and decays as
y— oo. Thus, its Fourier series expansion contains neither the
M-Whittaker function nor the function z — % and is of the form
w' oy 172 + O(e™®) for some §> 0 and w'. € V(p). Performing the
limit € — 0 shows that

w2y Py T+ +a
>0 €l
d(mod ¢)*

Eypw(t)=w+wy™ ' + O(e‘z’W)
for some w’ €V (p), and E»,,,,, € Ma(p). This completes the proof.

O
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Holomorphic Projections
The classical holomorphic projection operator maps continuous
functions with certain growth and modular behavior to hol-
omorphic modular forms (for example, refs. 17 and 19). In this
section, we extend the holomorphic projection operator to vector-
valued forms.

Definition 2: Let I be a (finite dimensional) complex vector space.
Suppose that F : H — V' is continuous with Fourier expansion

F(r)=Y_c(F;my)q"

meQ

and assume that F satisfies the following:

i)F(zr)=co+O(y™¢) for some €>0, cp€V, and as y - oo.
i) c(F;m;y) =0(y**) as y—0 for all m>0.
Define

=co+ Z

0<meQ
o [6]
4 1
with  ¢c(m):= #m) /c (Fym;y) e ™yk=2 dy,
0

Thol (F ) ﬂhul

where I' is the Gamma function.
Exactly as in the scalar-valued case, 7o preserves holomorphic
functions that satisfy the conditions i and i in Definition 2.

Proposition 4. Let V be a (finite dimensional) complex vector space.
Suppose that F : H—V is holomorphic with Fourier expansion

F(r)= c(F;m) q™.
0<meQ
Then n\")(F) =F.
Proof: The Fourier series coefficients c(F;m;y) of F in Defini-
tion 2 are constants in V, and the claim follows immediately from
the integral representation

oo

e~y k=2 dy = (4am)' F T(k—1).

O

The next theorem on holomorphic projections generalizes

Proposition 5.1 on p. 288 and Proposition 6.2 on p. 295 of ref. 17

to vector-valued modular forms of weight k. The case k=2 is

delicate. The proofs in ref. 17 rely on Poincaré series (and Hecke’s
trick if k =2), whereas our proof is based on spectral methods.

Theorem 5. Fix 2<k €17 and a representation p of Mp,(Z). Let
F :H-V(p) be a continuous function that satisfies the following:

i)F|k7py=F for all y e Mp,(Z).
ii)F(r)=co+O@y ) for some €>0, co€V(p), and as y—> .

Ifk>2, then mnol(F) € My (p), and if k =2, then mip (F) € Ma(p).

Proof: By decomposing p into a direct sum of irreducible rep-
resentations, we assume without loss of generality that p is ir-
reducible. Moreover, we may (and do) assume that ¢y =0; i.e.,
F=0(y™) asy — oo: If p is trivial, then replace F by F —¢oE;. If
p is not trivial, then replace F by F—-E,, where E. is an
Eisenstein series whose constant coefficient equals ¢y, which exists
by Proposition 3.

Conditions i and ii yield that for every linear functional
§: V(p) - C, the evaluation f(F) belongs to L?(T"\H), where T is
the kernel of p and hence a congruence subgroup of Mp,(Z). Let
(-,-) denote the Petersson scalar product, which we extend to

Imamoglu et al.

vector-valued modular forms by applying it componentwise. We
have the following spectral decomposition (for example, ref. 20),

F= Z<gj,F>gj+ Z<u]~,F u
j j

+ Z: / <Ec,k,%+ir7F> Ec,k,%+ir dr’

where {gj} is a complete orthonormal system of holomorphic
modular forms, {u;} is a complete orthonormal system of proper
Maass cusp forms and residual contributions, E ;1 is the
Eisenstein series for the cusp c¢ of weight k with spectral param-
eter 1+ir, and the last sum runs over cusps ¢ of I'\H. We show
that holomorphic projection simply picks the holomorphic com-
ponents in the spectral expansion:

”hol(F)z Z<gij>g] [8]

J

[7]

This will prove Theorem 5, because modular transformations
preserve each of the three sums in [7].

The spectral expansion converges pointwise absolutely and
uniformly on compact sets, and we find that

> (& F)gi+ Y (u F )y ()

J

+ Z / <Ec,k,%+ir7F> Thol (Ec,k,%ﬂ'r)dr'

Write 2=s(1-s)=(s—%)(1-5-s)+5(1
ues under the weight k Laplace operator

Thol (F) =

—&) for the eigenval-

d a0 .0
Api= =& o0& = —4y*— e J+2kl)’% [9]

(p- 29 of ref. 21), where the operator & := 2iyk% was intro-
duced in ref. 22. Because the operator A, is nonnegative, we
have either s=1+ir (r€R) or 0<s<1. The latter case does
not occur for the third sum in [7], and for the second sum it
actually is 0<s<1: If s€{0,1}, then A=0, and Maass cusp
forms of weight k>2 and eigenvalue 0 are holomorphic, be-
cause they are in the kernel of &, whose image consists of
a holomorphic cusp form of weight 2 —k. Fix a Maass form
u of weight k and eigenvalue s(1 —s).

Then

u(t)= > cluimy)q",
meQ

2;rmy Wk

1 for m>0,
2572

clusmiy) =c(u;m) y= (4zmy)

where c(u;m) is a constant and W, , stands for the usual Whit-
taker-W function. We apply Definition 2 to find that for m >0,
¢(mnol(u);m) equals

)k—l

(4zm

ko —2am
~ 7 2 4 Ty X 1
r-1) /y W%S_%( mmy)e dy [10]

0

If k>2 and s ¢ {0,1}, then Me(s) —1+5>0 and & — Re(s) >
and [10] vanishes due to (7.621.11) of ref. 23 [oéservmg that

Re(v+ixu)>0]:

PNAS | March 18,2014 | vol. 111 | no. 11 | 3963
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1 1
o F(u+§—y)r(u+§+ﬂ>
/ e P! Wieu(x) dx= .
0

Hence ﬂ'hol(uj) = TThol (Ec,k,%-#ir) = 0, which 1mphes [8]

Next we recall the definition of (harmonic) weak Maass forms
from ref. 22, which involves the weight k Laplace operator given
in [9].

Definition 3: Let k €17 and let p be a unitary, finite dimensional
representation of Mpz( ). A smooth function F: H—V(p) is
called a harmonic weak Maass form of weight k and type p if

i) Fl, y=F for all yeMp,(Z).
ii) AF=0.
iii) F(z)=0(e?) as y > oo for some a>0.

Let Mi(p) denote the space of harmonic Maass forms of
weight k and type p, and denote its subspace of weakly hol-
omorphic modular forms by M; (p) € My (p).

Recall that Proposition 3.2 of ref. 22 asserts that & : My (p) —
M) _, (7). The space of forms F € My (p) with & (F ) €S>4(p) (the
space of cusp forms of weight 2—k and type p) is denoted by
Sk(p). If F € Si(p), then we write F =F* + F~, where

Ft(z)= ) ¢*(F;m)q",
Fo(z):= = (42) " Y~ e (Fym)lm [ T(1 =k, 4alm|y) ¢"
m<0

[11]

and T'(s,y f°° el dt is the incomplete Gamma func-
tion. A stralghtforward computation shows that & (F)=
> 0emC~ (F; —m) q™. The nonholomorphic Eichler integral pro-
vides a partial inverse to &,.. More precisely, if G €S,_«(p), then
&(G*) =G, where

G*

— (4n)*! Z (G m])|m [ T(1 =k, 4z|mly) ¢
<0

In particular, if Fe€Sk(p) and F~:= &(f)", then Fr:==F—F~
is holomorphic.

‘With an abuse of notation, we often write FG instead of F ® G
for the tensor product of F and G. Finally, we give the Fourier
series coefficients of zho(F~G), which feature the hypergeo-

o (a),(b

metric series 2F1 (@, b, ¢;2) =32 51 L2 where (p),=p(p+1)
(p+2)---(p+n—-1) is the Pochhammer symbol.

Theorem 6. Let F €Si(p) and G eM;(o) with k+1>2, k+#1. If
n>0, then c¢(mno(F~G);n) equals

—(4x k-1 i ~ i
100 5 (camaa()

m+m=n

m<0 [12]

-2 Fy (1,l,k+l,l:l>>.
m

Proof: Let G(z) =Y 5.,c(G;) ¢™ and F~(z) as in [11]. We
find that ¢(F~G;n;y) equals

3964 | www.pnas.org/cgi/doi/10.1073/pnas.1311621111

—@4n) " > m[ e (Fim)e(Gym)D(1 -k, 4xlmly)q"
meo "

and converges absolutely, because c¢(F~;m) and c(G;m) are of
polynomial growth and because

(1 =k, 4x|mly)=(4z|mly) Fe " as y - oo.
If n> 0, then according to Definition 2 we obtain the following
expression for ¢(zwno (F~G);n),

4xn k+l-1 A k-1 o )
_%/ Z im[cle (Fym)c(G;m)
0 m+m=n
m<0

L(1 -k, 4z|mly)e= 4wy *+=2 gy,

where the integral converges, because k+/>2 by assump-
tion. A standard argument justifies the interchange of inte-
gration and summation, and [12] follows from (6.455) on
p. 657 of ref. 23 (observing that />0 and k+/—1>0), which
shows that

/ (1 -k, dalmly)e=4myk+-2 gy
0

(4alm))' T (0) n
) (k+l—1)(4ﬂﬁ1)12F1 (1’l’k+l’%)'

O

Ramanujan’s Mock Theta Functions f and »
Zwegers suggested holomorphic projection of scalar-valued
functions as a tool to investigate mock modular forms, and he
applied this idea in his recent joint work (16). In this section, we
extend Zwegers’s suggestion to vector-valued forms. More spe-
cifically, we apply holomorphic projection to the (tensor) prod-
uct of a harmonic weak Maass form F =F* + F~ and a modular
form G. If the holomorphic projections converge, then mp (FG)
is equal to

ﬁ'hol(F_G) +ﬂh01(F+G)=7rh01(F_G)+F+G. [13]
The left-hand side of [13] is modular or quasimodular by Theo-
rem 5, and the right-hand side can be described by Theorem 6. If
the left-hand side can be identified, say in terms of Eisenstein
series, then [13] yields relations for the coefficients of F*. We
apply this idea to find relations for the Fourier coefficients of the
mock theta functions f(g) and

© o q2n2+2n
= 2 clmd=2 o

n=0 n:O 1 —-q )

(1 _q2n+1)27

which will prove Theorems I and 9.
First we recall Zwegers’s (10) completion of f and . As be-
fore, g:=e*™". Set

Fr(2) = (a7 (@), 2% (),

and F~ (7)== —2/6G* (1)

2o (-¢t)).

with G(z) defined as

Imamoglu et al.
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[14]
_ Z(" +1)e3ﬂi(n +%)zf>‘
nez 3
Theorem 3.6 of ref. 10 implies that
F=F"+F €Si(p;), [15]
2

where p; is determined by

& 00 01 0
ps(T)=1 0 0 ¢ |, pS)=¢ {1 0 0|
0 & 0 00 -1

Moreover, ref. 10 gives the transformation laws of G, showing
that G € 53(p3). We now explore [13] with F in [15] and G in [14].
We begin with the left-hand side.

Proposition 7. Let F and G be as in [15] and [14]. Then

ol (FG) €M, (,;3 ®p_3).

Proof: Note that FG satisfies the hypotheses of Theorem 5 with
k=2, and hence 7101(FG) € Mz (p3 @ p3)-

|

The following two lemmas provide the necessary tools to
determine 7o (FG) more explicitly. First, we decompose the
tensor product p; ® p3 into irreducible components. Second,
we determine the corresponding spaces of quasimodular forms.
Finally, we express mh0)(FG) as a concrete quasimodular Eisen-
stein series.

Lemma 1. The representation p; @ p3 is isomorphic to o1@o2®Dos,
where o1, o3, and o are irreducible subrepresentations
whose representation spaces are spanned by the columns of the
matrices

0 1
0 0
1 000 0 0 0
0 00 1 100 0 0
0 0 0 -1 10 0 0 0
0 1 0 01 1 0 0
1,]Y 31,0 00 0 o of,
0 0 000 0 1 1
0 001 -1 00
0 0 0 0 00 0 -1 1
1 0 0 000 0 0 0
1
-1 -=
2

respectively.
Proof: The claim follows easily after forming the Kronecker
products of the representation matrices for 7" and S.

O
Letting E, be as in [5], E[zz] (7) is defined as

Imamoglu et al.

25 (2E5(27) - Ex (7)) =1—12 (1 +24> o(n)(q" —2q2")> , and

O<n

E,(c)= t(6 (BP0 -EY @) 12EF ().

Lemma 2. We have My (o1) = (E,) and My(02) = (E,,). The space
M, (o) has dimension 1 and is spanned by an Eisenstein series.

Proof: Note that o is the trivial representation, and M(o1) =
{0} and M;(61) = (E>) by Proposition 2.

We next find the dimensions of M;(62) and Mz (o¢). Observe
that o, and o4 are unitary as subrepresentations of the unitary
representation p; ® p; (however, the bases given in Lemma I do
not form an orthonormal basis). The dimension formula on
p- 228 of ref. 24 may be extended to the weight 2 case to apply to
o, and o (Theorem 6 of ref. 25). For a matrix M that is di-
agonalizable over a cyclotomic field, set a(M):=>_b;, where
e*™ (0 <b; < 1) are the eigenvalues of M. If p is a unitary, finite

dimensional representation of Mp,(Z) with p(S)* the identity,
the dimension formula on p. 228 of ref. 24 for weight 2 states that

dim M () =d + 29— a(~p($)) ~a(p(ST) ™) = alo(T)
We have
aoAT) =y  al-oxS)=y a(G'esTI") =5,
alosT)=3  al=oeS) =2 a(GosT)™) =2
which shows that
dimMa(o2) =1 and ~ dim Ms(og) =1.
2 4

Now, 62(S)= <2
1

2
Lemma 1, and E5) (71) = —12ES (3), which yields that E,, |, , S =

E,, and E,, € My(07). Hence My (02) = (E,, ). Finally, it is easy to

1) with respect to the basis given in

_01 _01 is the identity and Proposition 3 implies
that M (o) is spanned by an Eisenstein series.

see that o¢

0]

Lemmas 1 and 2 allow us to write z,,(FG) as a specific
quasimodular form.

Corollary 8. We have

1
7hol (FG) =—6E, [16]

where
E(t):=¢ (%Ez(‘;) + 8E[22] (r)) +e5 (%Ez(r) - 4E[22] (%) )

1
+ e (552 (1)~ 8E5 (1) +4E5 @ )

and where ¢1,. .. ey stands for the standard basis of R®.

Proof: We apply Lemmas 1 and 2 to find that E is the unique
quasimodular form in M, (p; ® p3) with constant Fourier series
coefficient e¢;. Furthermore, the constant Fourier series co-
efficient of 0 (F~G) vanishes (F~G decays rapidly toward in-
finity) and the constant Fourier series coefficient of F*G
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equals _6 . Thus, the constant Fourier series coefficients
of ﬂ'hgl(FG) and —{E coincide, and the claim follows from
Proposition 7 and the uniqueness of E.

O
Corollary 8 permits us to restate [13] as

1
—F*G =mo(F~G) +6E, [17]

where 7poi(F~G) is determined by Theorem 6. Comparing the
Fourier series expansions of both sides of [17] yields explicit
relations for the components of F*, i.e., for the mock theta
functions f and w. We now demonstrate this to prove Theorem 1.
Proof: [Proof of Theorem 1] Write G="'Gy,G1,G2) and
G*='(G, G}, G3). Consider the first component of [17],

4

(q)= —2V6 mpol (GE‘,GO) +iEz(r) +§

T EY(2),

1

-4 (q9)Go
and Theorem 1 follows immediately after inserting the Fourier
series expansions of f, Gy, E», E[zz], and 701 (G Go), which is given
by the following lemma.

O
Lemma 3. Let a,b€Z, and set N:=1(-3a+b-1) and N:=
L(3a+b-1). We have
« 1 1
e(m(GiGo)in) = ¥ d( 5 6)
a,be’
2n=ab

where the sum runs over a,b for which N,N € Z.
Proof: We apply Theorem 6 with k=4 and /=3
¢(7not (GyGo); n) is equal to

n\? 3. n
o X GG (%) (152

to find that

m+m=n
m<0
-1 Vi —/Im]| IMI
== > cGoslm|)c(Go;m) ¥— ==
2 m+m=n m|m|
m<0

where the second equality follows from the hypergeometric
series identity (15.4.18) of ref. 26. The theta series Gy is sup-

2 B
ported on —m =%(N+%)2 and m=3(N+L) with N,N €Z. Thus,
c(mnoi (G§Go); n) equals

‘N+ ‘ ‘N+ '

(i)

and we obtain the desired result after setting a:==N —N and
b:=3(N+N)+1.

N.,N€eZ

Fagllvegl
2n=(N-N)(3(N+N)+1)

Considering different components of [17] yields the relations
in the following theorem, where o(n) =c(f;n) =0, if n ¢ Z, and
cp(w;n)=c(w;n), if n=h (mod 2), and 0 otherwise, and where
d(N,N,t,1) is given in [2].
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Theorem 9. Fix ne; 1z, and for a,beZ with 8n+1=ab set
N:=L03Ba-b-2) andN (3a+b 4). Then

T
-2 ¥ ( %) [18]

3m*+2m<2n
a,be’
Sn+1=ab
where the sum on the right-hand side runs over a,b for which
N,NeZ.
Fix he{0,1} and neZ+h For a,beZ with 8n+3=ab set
N:==L(3a—b-4) and N:= (3a +b-2). Then

O\I»—

> (m+%)ch(a);2n—3m2—m)

meZ

3m%+m<2n
[19]
=(-n"" 3" d(NN L
) 737 6 )
a,be’
8n+3=ab

where the sum on the right-hand side runs over a,b for which
N,N eZ.

Fix he{0,1} and nelZ. For a,beZ with 2n=ab set N:=
L(@a-3b-2) and N: —1(a +3b —2). Define

$(og) o). ¥ nez
3 (0(2) = 20(n),

R,:= )
] €EZ+=.
if n + >

Then

Z (m+%)ch(w;2n—3m2—2m—1)

mez

3m?+2m+1<2n
11 (201
_ h 1+h 22
=(-1)"R,+ (- Zd(NN33),
abeZ
2n=ab

where the sum on the right-hand side runs over a,b for which
NeZ,and Ne2Z+1ifh=0and N€2Z if h=1.

Proof: The Proof is completely analogous to the Proof of The-
orem 1. Write F* ='(F{,F},FZ) and again G ='(Gy, G1,G>). It
is easy to extend Lemma 3 in each of the cases below:

i) Relation [18] follows from considering the second and third
components of [17] and more precisely from considering
F{(G1-G,) (for n€Z) and F{ (-G, - G,) (for n€Z+1).

ii) Relation [19] follows from considering the fourth and seventh
components of [17] and more precisely from considering
(Ff +F3)Gy (for h=0) and (F} —F3)Gy (for h=1).

iii) Relation [20] follows from considering the fifth, sixth,
eighth, and ninth components of [17] and more precisely
from considering (Ff +F3)(G1 —G,) (for h=0, n€Z+}),
(Ff —=F3)(G1—G,) (for h=1, neZ), (F{ +F5)(—-G1—-G>)
(for h=0, neZ), and (Ff-F5)(-G1—-G,) (for h=1,
nez+i).

O
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