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ABSTRACT. We introduce a new space of Hermitian Jacobi forms, and we
determine its structure. Moreover, we characterize U(p) congruences of Her-
mitian Jacobi forms, and we discuss an explicit example.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Jacobi forms appear naturally in various areas of mathematics and physics, and
they connect different types of automorphic forms. In particular, they occur as
Fourier-Jacobi coefficients of Siegel modular forms of degree 2, a fact that figured
prominently in the solution of the Saito-Kurokawa conjecture (see [2L8LI5HI7,29]).

Hermitian modular forms are generalizations of Siegel modular forms, and Her-
mitian Jacobi forms occur as Fourier-Jacobi coefficients of Hermitian modular forms
of degree 2. Haverkamp [TO,[IT] systematically studied Hermitian Jacobi forms, and
[BHTL23] contributed further to the theory of such forms.

The usual heat operator is an important device in the study of classical Jacobi
forms (see, for example, [Bl4]]), and its action on Jacobi forms can be “corrected”
so that Jacobi forms of weight k are mapped to Jacobi forms of weight k + 2 (see
[22]). The heat operator

2
(1.1) Ly = grim2 — 42 )

! 4
(27i)? ( or owdz
is a natural tool in the theory of Hermitian Jacobi forms, and it plays a vital role
in Section B of this paper. Equation (3.7) of [I4] implicitly gives an action of L,
on Hermitian Jacobi forms, but unfortunately, (3.7) of [14] is not quite correct.
In fact, the action of L,, on the Hermitian Jacobi forms in [5L6LI0,23] cannot be
“corrected” as in the case of classical Jacobi forms, and one needs a different notion
of Hermitian Jacobi form.

In this paper, we introduce the more general space J,‘;m of Hermitian Jacobi
forms over Q(i) of weight k, index m, and parity 6 = +, and we set Ji,, =
J,j"m ®Jem (see Definition ZXT]). A direct computation shows that if ¢ € J;;m, then

k—1)m ~
LN
3
where FEs is the usual quasimodular Eisenstein series, and where (E € J. fz m- The
fact that ¢ and ¢ in ([2) are Hermitian Jacobi forms of different parities explains
the need for our Definition 211
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We now introduce notation necessary to state our main results. Throughout, &
is an even integer, and M} and Sj are the weight k spaces of elliptic modular forms
and cusp forms, respectively. We denote the Taylor coefficients of a Hermitian
Jacobi form of parity J by Xz,u (see Section [Z3]), and Cﬁ,v are the combinations
of Taylor coefficients in Proposition 2771 Our first result gives the structure of
Hermitian Jacobi forms over Q(¢) of index 1. More specifically, it asserts that Jj 1
is a free module of rank 4 over the ring of modular forms, where a set of generators
is given by the Hermitian Jacobi forms gzﬁil, D615 ¢q 1, and qﬁro'ﬁ“ *P (defined in (23]
and Lemma 2:4)). ’

Theorem 1.1. If k =0 (mod4), then both linear maps
C:Jp1 — My @ Skt @ Spq2 D Skta,
¢~ (Xé’:ov Cfla X2,05 C;:Q - 12XI0)

and
N:My_a®My_6® Mi_s® Mi_10 = Ji1,

(e, f,9.h) = (edf1 + fog1 + 9081, hoisTP)

are isomorphisms.
If k = 2 (mod 4), then both linear maps

C:Jp1 — My @ Skta2 ® Spt2 D Skta,
¢ = (XOiO7 <1_71a X;:Oa 42_72 - 12X;O)
and
N:My_a®Mp_6® Mi_s® Mi_10 = Ji1,
(e, f,9,h) = (hlg 3™, edis + [dgy + 9ds)
are isomorphisms.

Theorem [I1] allows us to investigate congruences and filtrations of Hermitian
Jacobi forms of index 1. We introduce more necessary notation. Throughout,
p > 5is a prime. Let Z(,) := Z,NQ be the local ring of p-integral rational numbers,
ng(Z(p)) the space of forms in J,‘il that have p-integral rational coefficients, €2 the

filtration of a Hermitian Jacobi form in ng(Z(p)) (see Definition B4, and U(p)
the following analog of Atkin’s U-operator:

(X cnnac@r) = ¥ dnnrd@r

nezZ, re 0% nezZ, re 0%
n—|r[*>0 n—|r|*>0
pl4(n—|r?)
. . . o .
where here (and in the following) g := e>™i7, ( := 2™ (' := 2™ and OF :=

%Z[z] is the inverse different of O := Z[i]. Finally, for convenience, we write L := L;.
Our next theorem provides a criterion for the existence of U(p) congruences of
Hermitian Jacobi forms of index 1.

Theorem 1.2. Let ¢ € J,‘;l(Z(p)) such that ¢ # 0 (modp). If p >k , then

BN

vio—k, ) 20+4—k, if ¢|U(p)# 0 (modp),
Q<L+ (¢)){p+5—k, if ¢|U(p)=0 (modp).
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Recall that U(p) congruences of elliptic modular forms have applications in the
context of traces of singular moduli and class equations (see [ILOA8]). It would be
interesting to see if U(p) congruences for Hermitian Jacobi forms also find further
applications.

The paper is organized as follows. In Section 2], we give a new definition of Her-
mitian Jacobi forms over Q(7). In Section 22l we discuss the theta decomposition
of Hermitian Jacobi forms. In Section 23] we prove Theorem [l In Section Bl
we explore congruences of Hermitian Jacobi forms of index 1, and we provide the
ingredients to prove Theorem Finally, in Section B2 we present an explicit
example to illustrate Theorem

Many of the results here have also been reported in the second author’s University
of North Texas doctoral dissertation [24].

2. HERMITIAN JACOBI FORMS OVER Q(7)

Hermitian Jacobi forms appear as Fourier-Jacobi coefficients of Hermitian mod-
ular forms of degree 2 over a complex quadratic field (see [7L[I0]). In this paper,
we restrict ourselves to the case where the complex quadratic field is the Gaussian
number field Q(¢). Throughout, k& and m are nonnegative integers, and if s € C,
then 5 denotes its complex conjugate.

2.1. A new definition. Recall from the introduction that O := Z[i] is the ring
of Gaussian integers with inverse different O% := 17Z[i]. Let O* := {1,-1,i,—i}
be the group of units of O and I'(O) := {eM | e € O, M € SLy(Z)} be the
Hermitian modular group.

Our following extension of Haverkamp’s [I0] notion of a Hermitian Jacobi form
depends on a parity 6 = +.

Definition 2.1. A holomorphic function ¢ : H x C? — C is a Hermitian Jacobi
form of weight k, index m, and parity ¢ if it satisfies the transformation laws

ar +b ez e tw
o

cr+d er+d er+d

k 2wimczw

)za(e)ek(CT—Fd) e e+l P(T,2,w),
for all e(2%) eT(0),

where o(€) := { 12 g ng and

€

H(Ty 2+ AT+ pw + AT+ ) = e%im(’\XT"’ZL“\w)gb(T, z,w), forall [\, pu] € 02

Furthermore, one requires that ¢ has a Fourier series expansion of the form

o0

o(7, 2,w) = Z c(n, T)QHCF(C/)T'
n=0 rco#
nm—|r|?2>0

A Hermitian Jacobi form is called a cusp form if ¢(n,r) = 0 unless mn — |r|* > 0.
We denote the space of Hermitian Jacobi forms of weight k, index m, and parity §
by J,‘;m, and the space of cusp forms in J,‘;m by JO“P_ Finally, the space of

k,m
Hermitian Jacobi forms of weight k£ and index m is defined by

T = T ® Ji 0 = {(¢+,¢—) |6t e, ¢ € J,;m}.
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Remark 2.2. The space of Hermitian Jacobi forms in [5L6LI0,23] coincides with the
space of Hermitian Jacobi forms of positive parity, i.e., with J,:' m

The next proposition follows exactly as Propositions 1.3 and 1.4 of [I0] (see also
Lemma 1 of [23]). We omit the proof, which is contained in [24].

Proposition 2.3. Let ¢(1,z,w) = Y c(n,r)g"¢"(¢')" € J,f’m, Then we have the
following:

(i) The coefficient c(n,r) depends only on nm — |r|?
(ii) If e € O, then o(e)efc(n,r) = c(n,er).
(iii) If m =1, k =0 (mod 4), and § = +, then c(n,r) depends only on n — |r|?.
(iv) If m =1, k=2 (mod4), and § = —, then c(n,r) depends only on n — |r|?.
(v) If m =1 and k is odd, then ¢ = 0.

2.2. The theta decomposition. Haverkamp [I0] establishes the so-called theta
decomposition for Hermitian Jacobi forms of positive parity. Set

O (rzw)= Y g

reo*
r=s (mod mO)

Exactly as in [I0], one finds that ¢ = 3, c(n,7)q"("(¢')" € J]‘(:;,m has the theta

decomposition

(2.1) o(r, z,w) = Z hs(T)HgS(T,z,w),

seO# /mO

and on r (mod mQO).

where hg are certain vector-valued modular forms of weight k& — 1 (for more prop-
erties of hg, see [24]). Note that we suppress the dependence on d and we write hy
instead of hJ.

For the remainder, we are only interested in Hermitian Jacobi forms of index 1.

Observe that if m = 1, then {0, 2 3 é, 1;”} is a set of representatives for the set of

cosets O /m@. We now recall the theta decompositions for important examples
of Hermitian Jacobi forms of positive parity. Consider the Jacobi theta function

(2.2) Oap(r,2) i= Y _ emilarmira2milnta)c+b) (g p € R),
neL

and its following specializations (theta constants):

x —900(7’ O)—l"f'QanT

n=1

(2.3) ::9%7'0—14—22 g

1 n(n+1)
z::9%,0(7,0)22q8 Zq 2.
n=0

It is well known (see, for example, [12]) that
o=yt ot
(2.4) Ey= (2% 4+ 48+ 28),
Fo = bt +yh) (@t + 2" — ),

N= N[
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where Ej(1) :=1— 2537, (Ed‘n dkil) q" denotes the usual Eisenstein series.

Sasaki [23] provides the theta decomposition of several Hermitian Jacobi forms of
index 1. In particular, he considers (up to normalization) the following Hermitian
Jacobi forms ¢, € J;7| for k = 4,8,12 and qudff‘Sp € Jff)ﬁ"w:

¢Il = (2% + 96)950 +32° (Gf% + 9}{%‘) +5(2°% — Z/G)af%a
+ .1 14 14\pH 1_14 H H 1 14 14\pnH
(2.5) oy = 3@ +y 00 + 521 (001 +01,) + 5 (@ =y 0y,
o = M+ P00+ 42200, +00) 4 46 0
T = g0 (0 — o).

Hermitian Jacobi forms of negative parity have not been studied rigorously in the
literature, but they do arise via Fourier-Jacobi coefficients of Hermitian modular
forms of degree 2 with certain characters (see [7]). Hermitian Eisenstein series
are examples of such Hermitian modular forms of degree 2. In particular, there
exists such a Hermitian Eisenstein series of weight 6, whose first Fourier-Jacobi
coefficient ¢g ; is a Hermitian Jacobi form of negative parity, weight 6, and index 1.
It is somewhat demanding to explicitly compute the Fourier series coefficients of
the Hermitian Eisenstein series. We determined ¢g, via a different approach. We
used SAGE [27] and the SAGE code written by Martin Raum to calculate some
Fourier series coefficients of ¢g ;, which allowed us to guess (and then prove) the

correct theta decomposition of ¢g ;.
Lemma 2.4. Set
o1 = hobilo + hy 0Ty + 0 + hiwi0]T 1,

1,=5

where
ho == =5 (2® + ) (2® — 2%® — 2'y" —2®y° + %),
hy = 128(2* — 22%),
hy = 120(2* — 22%),
hiv = —L(@? — ?)(@® + 22 — 2y + 2% + o),

2

and where x, y, and z are as in Z3). Then ¢g, € Jg ;.
Proof. Consider ¢1, | := —2E3¢}, + Y Es¢d, — 3¢5, € Jih,1, and let

Wiy = hobilo + hy 0y + 0, + hisi 071

v 2

be its theta decomposition. Then using (Z4]) and (23H]), one finds that

ho = Egho,
il% = EGh%,
hy = Eh,,

hivi = Eghyyi.
2 2

Hence 1/112’1 = Eg¢g 1. Observe that the modular Eisenstein series Eg can also be
viewed as a weight 6 and index 0 Hermitian Jacobi form of negative parity. We
conclude that ¢g € Jg ;. O
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We end this subsection with the initial Fourier series expansions of the Hermitian
Jacobi forms ¢, ¢4, ¢, and ¢7;4"" (for more coefficients of these forms, see

24]).

Remark 2.5. We have the following initial Fourier series expansions:

65 =1+a(60+32(CH(C)E + ¢ HE) T+ RO+ ) )
+ (G + T T H )+ )T

FI(CE O T RO CT O T ()

—+ .- ,
d5a = 1+a(—204-64(CH(C)E +CTHC) T +CTHOE + () TH)
F(EH T O T

“R(CE )T O T HCT O F T (O)T)

+ sy
o8 = 1+a(364+ (¢ + ¢ +CTHE) + (T

+28(CF ()T 4T

i 144 —1-4

)T+ T T (O T))

+ BRI
ot = a(CHO+ I TE - RO - e)E)

+a? (= 18(CHE + ¢ = RO - )
+ C1+22i (CI)IE% n <712+2i (C/) —12—2i + 417221 (CI)# n C#(é‘/)#
SRR OF T O RO )

2.3. Proof of Theorem [I.T1 We proceed as in [23] (see also §3 of [8]) to prove
Theorem [l Consider the Taylor series of a Hermitian Jacobi form ¢ € .J ,‘;1 around
(z,w) = (0,0):

$(rzw) = Y X (r) .

=0

Then X/iw = 0 unless p — v is even, and if € (2 %) € I'(O), then one finds that

s (a7’—|—b)
Xuw cr+d
2mic
— k—p+v k+p+v 0 S
= o) T e+ )T (X (1) + N ()

+i(2m’0)25 () + )
20\ er +d Xp=2,0-2\T) e )

The two following propositions on the Taylor coefficients be,u are easy to verify,
and we omit their proofs (see also [24]).

Proposition 2.6. Let ¢(7,z,w) = > 7, _ Xi’y(T)Z”’LUV € J}f,r
If k=0 (mod4) and 6 = +, then xi,(7) = x3,(7) = 0.
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If k = 0 (mod4) and 6 = —, then xqo(7) = X1,
XQ,Q(T) =0.
If k=2 (mod4) and 6 = —, then X (T) = X3,0(7) = 0.
Ik =2 (modd) and § = +, then x{o(r) — xt1(r) = xio(r) = xdalr) =
+ —
X2,2(7') =0.

Proposition 2.7. Let ¢(7,z,w) = ZZOUZO Xz’U(T)ZMU)V € J,f)l. Then

(1) = Xzz,o(T) = Xou(7) =

XS,O(T) € Mk;
Xg,o(T)ng,z(T) € Sky2,

Xi,o(T)v Xg,4(7) € Skt4,

211
Ga(r) =02 (1) = () (7) € Shsa,

27, 5 ., (27i)2
X (@ F 2(k+1)(k +2)
Remember the definition of the Jacobi theta function 6, in [22) to verify the

factorization

(2.6) Hflﬂ (1,2,w) = 0s 0(27,2 + w)ﬁg’o(%', i(w — 2)).

(3 5() = X3 5(7) (x8.0)"(7) € Ska-

Let ¢ € J;‘;l. Expand the theta decomposition

¢(Tasz) = Z h%(T)eflM (Tasz)
a,be{0,1} 2

= Y hags (T)85 027, 2 + )8 (27, i(w — 2))
a,be{0,1}

into a Taylor series, and compare its coefficients with the coefficients of the Taylor
series

O, 2,w) = x0,0(7) + X1 (T)2w + (X0 2(7) + X3,0(7)) (2 + w?) + X3 5(7) 2w

+ (X8,4(7) -+ Xio(T Y+ wh) + -

A direct calculation reveals that (see [24] for more details)

2

(2'7) (Xg,Oa X(l;,l’ Xg,Oa %(Xg,Q - 12)(2,0)) = (hO’ h%v h% ) h%)Av
where
To? 2T To 0 >
LTy TV +T0'Ty (VT — TWTY') 2T,'TY
(2.8) A= / / { / / I
o T/ +To'Ty —5 (1T —ThTo') 2T0'Th

7,2 o T, 0 T,

with
2

d d
Tho = 04,0(27), Ty == 271'1'%9&70(27'), Ty, = (271'1')2 0a,0(27),

dr?
and where Ty, Toy', and Thy” are defined analogously. Moreover, one finds that
det A= —3(TWT,' — ToTV)* (W Ty')? — AT T, Th Tv') # 0.

Now we are in a position to prove Theorem [ We only consider the case
k =0 (mod4), since the proof of the case k = 2 (mod4) is completely analogous.
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Note that Proposition 27 shows that the map ( is well-defined. First, we demon-
strate that ¢ is injective. Let ¢ = (¢7,¢7) € Ji1 such that ((¢) = 0. Then
Xg,o = <1+,1 = Xa0 = C{z — 12)(I0 = 0. Proposition 27 implies that X1+,1 =0,
C;Q = XIQ, and hence %(XIQ — 12XIO) = 0. Furthermore, Proposition gives
that Xio =0and x50 = X711 = X22 = Xg0 = 0. Thus, for § = + we have

5 8 8 5 b
(0,0,0,0) = (X0,0, X1,1> X2,0- %(Xz,z — 12x4,)) (]EZI) (ho,h%,h%,h%)A,

where A is as in ([28)). Since det A # 0, we obtain ¢ = 0.
Next we show the injectivity of . Let (e, f,g,h) € My_4®My_c¢DMi_sDMy_10
such that e¢} | + fog, + 9o, + h¢f001"3p = 0. Observe the theta decompositions

of ¢, ¢3 1, and ¢;5? in @H) and of ¢, in Lemma P to discover that

(e>f>g= h)H = (070a070)7

where
3@ +y%) 3 3%° 3(2° —9°)
I ho h% h% Risi
o— 2
= l(x14 +y'h) 1,14 1,14 l(:c14 —yl)
2 2 2 2
0 L 1 7646,6 614 2:64/6 2 0

with hyg, h%, h%, and h% as in Lemma4l One finds that (note that z# = y* +2*)

detH—— 1641616 £

28 %

which shows that e = f =g =h =0.
Finally,

dim M}, + dim Sk12 + dim Sj 2 + dim Sy 44
= dim Mj_4 + dim Mj,_¢ + dim Mj,_g + dim M}, _10,

and we conclude that ( and n are isomorphisms.

Remark 2.8. The proof of Lemma 24l reveals that Egpg, = —2EZ¢11 + 12—5E4¢§1 —
%gbfm. Thus, the restriction of the maps 1 and ¢ in Theorem [l to the case of
positive parity yields the structure of J,', in [23].

3. HERMITIAN JACOBI FORMS MODULO p

1. Congruences and filtrations. In this section, we explore congruences and
filtrations of Hermitian Jacobi forms. In particular, we establish the necessary tools
to prove Theorem

For Hermitian Jacobi forms ¢(7,z,w) = > ¢(n,r)g"¢"(¢)" and w(T zZ,w) =
S (n,r)g"¢"(¢")" with p-integral rational coefficients, we write ¢ = 1 (mod p)
whenever c¢(n,r) = ¢'(n,r) (modp) for all n,r.

Proposition 3.1. If ¢ € JJ | (Z,)) such that ¢ = ed]| + fog, + god, (resp.
o= h(]bfocmp) then the elliptic modular forms e, f, and g (resp. h) have p-integral

rational coejﬁcients.
Moreover, if $ =0 (modp), thene= f=g=0 (modp) (resp. h=0 (modp)).



HERMITIAN JACOBI FORMS AND U(p) CONGRUENCES 9

Proof. The initial Fourier series expansions in Remark 2.5 imply that the generators
qﬁil, $g.1> d5q, and qﬁfdi" P are linearly independent over the field Z / pZ (see [24]
for more details).

Suppose that ¢ = e@tl +f 61 +9¢§,1 (the case ¢ = h(bfdffsl) is analogous). Note
that the elliptic modular forms e, f, and g have bounded denominators. If e, f, or
g do not have p-integral rational coefficients, then there exists some integer ¢t > 1
such that 0 = pl¢ = pteqbzl +p' foe, + ptgqﬁ;l (modp). This yields a nontrivial
linear dependence relation for @tl, $6,1, and ¢§71, which contradicts the above.

Similarly, if ¢ = 0 (mod p) such that e, f, or g do not vanish modulo p, then one
also obtains a nontrivial linear dependence relation for ngIl, ¢g.1, and ¢§1, which
is again a contradiction. 0

An argument as in the proof of Lemma 2.1 of Sofer [26] shows that if two Her-
mitian Jacobi forms of indices m and m’ are congruent modulo p, then m = m’.
We now give an analog of Sofer’s Lemma 2.1 in the case m = 1.

Corollary 3.2. Let ¢ € J),(Z,)) and ¢ € Jg,/71(Z(p)) such that 0 # ¢ =
¥ (modp). Then k =k (mod (p—1)).
Proof. Recall that if two elliptic modular forms f; € My, (i = 1,2) have p-integral

rational coefficients such that 0 # f; = fo (mod p), then k1 = ko (mod (p— 1)) (see
[251[28]). This fact in combination with Proposition Bl implies the claim. O

We also record the following consequence of Theorem [[LT] and Proposition Bl
Corollary 3.3. Let ¢ € J£71(Z(p)) and ) € J‘;:’l(Z(p)) such that ¢ = ¢ (modp).
If 6 #¢" and k = k' (mod4), then ¢ =1 =0 (modp).

Corollary B2 shows that there are congruences among Hermitian Jacobi forms of
different weights, and one wishes to find the smallest weight in which the (coefficient-
wise) reduction of a Hermitian Jacobi form modulo p exists.

Definition 3.4. Set (]A,fl/l = {gb (modp) : ¢ € J,f}l(Z(p))}. For Hermitian Jacobi

forms with p-integral rational coefficients, we define the filtration modulo p by
Q(¢) := inf {k : ¢ (modp) € jé:}

Next we generalize Proposition 2 of [22] (see also Proposition 2.15 of [20]) to the
case of Hermitian Jacobi forms of index 1.

Proposition 3.5. If ¢ € J,‘il(Z(p)), then L(¢) (modp) is the reduction of a Her-
mitian Jacobi form modulo p. Moreover, we have

Q(L(9)) <o) +p+1,
with equality if and only if pt Q(¢) — 1.

Proof. Tt is easy to adapt the proofs in [20,22] to the case of Hermitian Jacobi forms.
Specifically, one employs ([[L2]), Proposition Bl Corollary B2l and Theorem 2 and
Lemma 5 of [28]. We omit further details, which are contained in [24]. O

Tate’s theory of theta cycles (see §7 of [13]) was extended to Jacobi forms (see
[21]) and Jacobi forms of higher degree (see [20]). The arguments in [20L21] apply
also to Hermitian Jacobi forms, and Corollary and Proposition are the key
ingredients in proving Theorem We omit the detailed proof of Theorem [L2]
which is contained in [24].
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3.2. An example. As in the case of elliptic modular forms, one does not know if
a given Hermitian Jacobi form has U(p) congruences for only finitely many primes.
In the following example, we consider primes 5 < p < 100, and we show that
E3¢{37°" € Jis, has U(p) congruences for p = 5,7,13,23,79, and for no other
primes 5 < p < 100 (see [24] for more examples). If p # 5,7,13,23,79, then the
table of Fourier series coefficients of E? gb;roclu *P in the Appendix of [24] guarantees
that B3¢ |U(p) # 0 (modp).

Recall the Ramanujan theta operator © := qd% = 271m -, and Ramanujan’s [19]

identities (up to a factor of 4)
L(Ey) = 40(Fs) =
(3.1) L(Ey) = 40(Ey) = 4(By By — Eg),
L(Eg) = 40(Es) = 2(E2Es — EX).
Moreover, ([[2)) together with Theorem [T and Remark yields the following
identities
L(¢I1) E2¢4 1~ P61
L(¢g1) = E2¢6,1 u §E4¢Il + ¢§,17
L(¢g,1) = 5EB208, — 5 E6¢i1 — §Ead 1,
L(9{g7"™") = 3B20{5"".
We employ (B1]) and 3:2]) in combination with the well-known congruences E,_1 =
1 (modp) and Ey41 = E2 (mod p) to establish (with the help of Mathematica) the

U(p) congruences for Efqbfo’)cf“p for p=15,7,13,23,79.

Let p = 5, 7, or 13. We cannot apply Theorem [[L2Z] since p < 18. How-

ever, straightforward calculations show that LP~!(E3¢y;7""F) = E3¢{;7"*" (modp),

which implies the desired U(p) congruences.

If p =23 or 79, then we apply Theorem [[.2

Let p = 23. One finds that Fyy = 10E{Es + 14E4E3 = 1 (mod 23). Moreover,
p+2—18 =7, and a direct calculation reveals that

LT(E;6139"°F) = (20B{Es + 5E4E) 139" = 2E20¢737"" = 2¢{37"°F (mod 23).
Hence Q(L7(E3¢755"7)) =10 = p+ 5 — 18, and E3¢{37""" |U(23) = 0 (mod 23).
Let p = 79. One finds that
E7s = 26E,°Eg + 10E{°E} + T3E{Eg + 33 E{ + A1ESE] + T2EEg' + 62E4°
=1 (mod79).
Moreover, p + 2 — 18 = 63, and a direct calculation shows that
Lo (B3 655°7)
= (73E22E6 +46EPEg + T0E3SES + 12E3El + 57TEXEy + T5E}"E!

(3.2)

+61EMESR + 9ENEP + 16 ESELT + 39ESEY + 31E§E§1>¢fdff‘s”
= Ers(18E}* + TE}'E§ + TLEJE§ + 3TEJE§ + 40E; E§) 61357
= (18E}* + TE} E2 + TLESE¢ + 3TEJES + 40E3ES) 61357 (mod 79).
Hence Q(L%(E3¢1;5°7)) = 66 = 79+ 5— 18, and E3¢/;5"7 |U(79) = 0 (mod 79).
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