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THE ACTION OF THE HEAT OPERATOR ON JACOBI FORMS

OLAV K. RICHTER

(Communicated by Ken Ono)

Abstract. We investigate the action of the heat operator on Jacobi forms.
In particular, we present two explicit characterizations of this action on Jacobi
forms of index 1. Furthermore, we study congruences and filtrations of Jacobi
forms. As an application, we determine when an analog of Atkin’s U-operator
applied to a Jacobi form is nonzero modulo a prime.

1. Introduction

The Ramanujan theta operator Θ := q d
dq = 1

2πi
d
dτ plays an important role in

the theory of modular forms. If f is a modular form of weight k, then it is easy to
see that

(1) Θ(f) =
k

12
fE2 + f̂ ,

where E2 is the “quasimodular” Eisenstein series of weight 2 and f̂ is a modular
form of weight k + 2. In 1916, Ramanujan [14] noticed the identities

(2) Θ(E4) =
1
3
(E4E2 − E6) and Θ(E6) =

1
2
(E6E2 − E8),

where E4, E6, and E8 are the usual (modular) Eisenstein series of weights 4, 6, and
8, respectively. However, for an arbitrary modular form f , an explicit description
of f̂ in Equation (1) was not known until 2004 when Bruiner, Ono, and Kohnen [3]
established an exact formula.

In this paper, we consider an analogous situation for Jacobi forms. The heat
operator Lm := 1

(2πi)2

(
8πim ∂

∂τ − ∂2

∂z2

)
is a natural tool in the study of Jacobi

forms (see, for example, §3 of Eichler and Zagier [7] and Choie [4], [5], among
others). If φ is a Jacobi form of weight k and index m, then a direct computation
reveals that

(3) Lm(φ) =
(2k − 1) m

6
φE2 + φ̂,

where E2 is again the “quasimodular” Eisenstein series of weight 2 and φ̂ is a
Jacobi form of weight k + 2 and index m. This observation justifies the following
two remarks:

a) If p ≥ 5 is a prime, then E2 is a p-adic modular form of weight 2 in the sense
of Serre [15]. Hence Equation (3) implies that if φ is a Jacobi form of weight k and
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index m, then Lm(φ) is a p-adic Jacobi form of weight k + 2 and index m in the
sense of Guerzhoy [9].

b) The Ramanujan theta operator preserves the ring of quasimodular forms (see
Kaneko and Zagier [11]). Equation (3) shows that the heat operator preserves the
ring of quasi-Jacobi forms (in the sense of Kawai and Yoshioka [12]).

In this paper, we take a closer look at the action of L := L1 on Jacobi forms of
weight k and index 1. Section 2 gives two different explicit characterizations of φ̂
in Equation (3) when m = 1. In particular, we have the following generalizations
of the Ramanujan identities (2):

(4) L(E4,1) =
7
6

(E4,1E2 − E6,1) and L(E6,1) =
11
6

(E6,1E2 − E8,1) ,

where E4,1, E6,1, and E8,1 denote the Jacobi Eisenstein series of index 1 and weights
4, 6, and 8, respectively.

In Section 3, we investigate congruences of Jacobi forms. We prove two results
on filtrations of Jacobi forms, which allow us to generalize work of Ahlgren and
Ono [1]. More specifically, we define an analog of Atkin’s U -operator for Jacobi
forms and we determine when that operator applied to a Jacobi form is nonzero
modulo a prime.

2. Explicit description of the action of L

We introduce some standard notation. Let Z and N denote the sets of inte-
gers and nonnegative integers, respectively, and let H ⊂ C be the complex up-
per half plane. Set Γ := SL2(Z), Γ0(N) :=

{(
a b
c d

)
∈ Γ | c ≡ 0 (mod N)

}
, and let

Mk

(
Γ0(N)

)
be the vector space of modular forms of weight k on Γ0(N). If N = 1,

then we write Mk := Mk

(
Γ0(1)

)
. Now let us recall the definition of a Jacobi form

(for more details, see [7]).

Definition 1. A Jacobi form of weight k and index m (k, m ∈ N) on Γ is a
holomorphic function φ : H × C → C satisfying the transformation laws

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k e2πim cz2

cτ+d φ(τ, z), for all
(

a b
c d

)
∈ Γ,

and
φ (τ, z + λτ + µ) = e−2πim(λ2τ+2λz)φ(τ, z), for all (λ, µ) ∈ Z2.

Furthermore, one requires that a Jacobi form has a Fourier expansion of the form

φ(τ, z) =
∑

n,r∈Z

4nm−r2≥0

c(n, r)qnζr,

where here (and in the following) q := e2πiτ and ζ := e2πiz (τ ∈ H, z ∈ C). A
Jacobi form that satisfies the stronger condition c(n, r) �= 0 ⇒ 4nm > r2 is called
a cusp form. We denote the vector space of Jacobi forms of weight k and index m
by Jk,m and the space of Jacobi cusp forms of weight k and index m by Jcusp

k,m .

Basic examples of Jacobi forms are given by the Jacobi-Eisenstein series Ek,m

(see §2 of [7]). In particular, if m = 1, then one has the following Fourier expansions:

E4,1(τ, z) = 1 +
(
ζ2 + 56ζ + 126 + 56ζ−1 + ζ−2

)
q + . . .

E6,1(τ, z) = 1 +
(
ζ2 − 88ζ − 330 − 88ζ−1 + ζ−2

)
q + . . .

E8,1(τ, z) = 1 +
(
ζ2 + 56ζ + 366 + 56ζ−1 + ζ−2

)
q + . . . .
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Apply L to the Fourier expansions of E4,1 and E6,1, observe that

E2(τ ) = 1 − 24q + . . . ,

and note that J6,1 and J8,1 are one-dimensional to verify that the generalizations
of the Ramanujan identities in (4) hold.

Let φ be an arbitrary Jacobi form of weight k and index 1. We seek an ex-
plicit formula for the Jacobi form φ̂ in Equation (3). Note that there exist unique
f ∈ Mk−4 and g ∈ Mk−6 (see Theorem 3.5 in [7]) such that φ = fE4,1 + gE6,1. As
an immediate consequence of the identities in (4), we obtain the following charac-
terization of φ̂ in Equation (3).

Theorem 1. If φ = fE4,1 + gE6,1 ∈ Jk,1 (f ∈ Mk−4, g ∈ Mk−6), then

(5) L(φ) =
2k − 1

6
φE2 +

(
4f̂ − 11

6
gE4

)
E4,1 +

(
4ĝ − 7

6
f

)
E6,1,

where f̂ and ĝ are defined by Equation (1) and explicitly determined in [3].

Alternatively, we can also use the results in Atkinson [2] to describe φ̂ in Equa-
tion (3) in terms of its theta decomposition. We give this description in the next
theorem, after introducing necessary notation. For µ = 0, 1, set

θ1,µ(τ, z) :=
∑
r∈Z

r≡µ (mod 2)

q
r2
4 ζr.

If φ ∈ Jk,1, then

(6) φ(τ, z) = h0(τ )θ1,0(τ, z) + h1(τ )θ1,1(τ, z),

where

(7) h0(τ ) =
∞∑

N=N0

c0(N)qN and h1(τ ) = q−
1
4

∞∑
N=N1

c1(N)qN

are, loosely speaking, modular forms of weights k− 1
2 (for details, see §5 of [7]). Note

that if φ �≡ 0, then there exist minimal N0, N1 ∈ N such that C0(N0) �= 0 �= C1(N1).
Set M := min(4N0, 4N1 − 1) and set

(8) αh0 := −5
6

(
k − 1

2

)
+ 2N0 + 2M, βh0 :=

2
3

(
k − 1

2

)
− 8

3
N0 −

4
3
M,

and

(9) αh1 := −5
6

(
k − 1

2

)
+ 2N1 + 2M, βh1 :=

2
3

(
k − 1

2

)
− 8

3
N1 −

4
3
M.

Finally, let F be a fundamental domain for Γ0(4), let Hτ ′(τ ) be the (meromorphic)
modular form of weight 2 discussed in detail in [2], and let

(10) (hµ)θ :=
∑
τ ′∈F

ordτ ′(hµ)Hτ ′ .

Now we are in a position to characterize φ̂ in Equation (3) in terms of its theta
decomposition.
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Theorem 2. Let φ(τ, z) = h0(τ )θ1,0(τ, z) + h1(τ )θ1,1(τ, z) ∈ Jk,1. Then

(11) L(φ) =
2k − 1

6
φE2 − 4

1∑
µ=0

hµ

(
(hµ)θ + αhµ

E
(2)
2 + βhµ

E
(4)
2

)
θ1,µ ,

where αhµ
and βhµ

are as in (8) and (9), (hµ)θ is as in (10), and E
(2)
2 (τ ) :=

E2(2τ ) − 1
2E2(τ ) ∈ M2

(
Γ0(2)

)
and E

(4)
2 (τ ) := E2(4τ ) − 1

4E2(τ ) ∈ M2

(
Γ0(4)

)
.

Proof. One can proceed exactly as in Atkinson [2]. More precisely, one can modify
the proof of Theorem 3 in [2] to determine the action of the Ramanujan theta
operator on hµ in Equation (7). For brevity, we omit the detailed proof and only
state the final result:

(12)
Θ (hµ)

hµ
(τ ) = −(hµ)θ(τ ) − αhµ

E2(2τ ) − βhµ
E2(4τ ) − γhµ

E2(τ ),

where γh0 := 1
6

(
k − 1

2

)
− 1

3N0 − 2
3M and γh1 := 1

6

(
k − 1

2

)
− 1

3N1 − 2
3M . Now,

L
(
θ1,µ(τ, z)

)
= 0, and hence

(13) L
(
φ(τ, z)

)
= 4Θ

(
h0(τ )

)
θ1,0(τ, z) + 4Θ

(
h1(τ )

)
θ1,1(τ, z).

Thus Equations (12) and (13) imply Equation (11). �

Remark. Choie and Kohnen [6] (following [3]) give an explicit characterization of
z ∂

∂z φ(τ,z)

φ(τ,z) (φ ∈ Jk,m), which also involves the “quasimodular” Eisenstein series E2.
However, our discussion of the action of the heat operator on Jacobi forms seems
quite unrelated to the results in [6].

3. Congruences and reduction mod p

For the remainder of our work, let p ≥ 5 be a prime and (for simplicity) assume
throughout that k is even. For Jacobi forms φ(τ, z) =

∑
c(n, r)qnζr and ψ(τ, z) =∑

c′(n, r)qnζr with p-integral rational coefficients, we write φ ≡ ψ (mod p) when
c(n, r) ≡ c′(n, r) (mod p) for all n, r. Recall the following fundamental fact regard-
ing congruences of Jacobi forms.

Proposition 1 (Sofer [16]). Let φ(τ, z) ∈ Jk,m ∩ Z[[q, ζ]] and ψ(τ, z) ∈ Jk′,m′ ∩
Z[[q, ζ]] such that 0 �≡ φ ≡ ψ (mod p). Then k ≡ k′ (mod p − 1) and m = m′.

Since there are congruences among Jacobi forms of different weights, it is desir-
able to find the smallest weight in which the (coefficient-wise) reduction of a Jacobi
form modulo p exists.

Definition 2. Let M̃k :=
{
f (mod p) : f(τ ) ∈ Mk ∩Z[[q]]

}
. Similarly, let J̃k,m :={

φ (mod p) : φ(τ, z) ∈ Jk,m ∩Z[[q, ζ]]
}
. For modular forms and Jacobi forms with

p-integral rational coefficients, we define the filtrations modulo p by

ω(f) := inf
{

k : f (mod p) ∈ M̃k

}
and

Ω(φ) := inf
{

k : φ (mod p) ∈ J̃k,m

}
.
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Serre [15] and Swinnerton-Dyer [17] thoroughly investigate filtrations of modular
forms. Ono [13] gives a good overview of this theory and, in addition, discusses
many interesting applications. Several of these applications rely on the crucial fact
that if f(τ ) ∈ Mk ∩ Z[[q]], then ω

(
Θ(f)

)
≤ ω(f) + p + 1, with equality if and only

if p � ω(f) (see Lemma 5 of [17]). Our next proposition gives an analogous result
for Jacobi forms.

Proposition 2. If φ(τ, z) ∈ Jk,m ∩ Z[[q, ζ]], then Lm(φ) (mod p) is the reduction
of a Jacobi form modulo p. Moreover, we have

(14) Ω
(
Lm(φ)

)
≤ Ω(φ) + p + 1,

with equality if and only if p � (2Ω(φ) − 1)m.

Proof. Note that Ep−1 ≡ 1 (mod p) and E2 ≡ Ep+1 (mod p). If Ω(φ) = k′ < k,
then k − k′ = l(p − 1) by Proposition 1 and φ ≡ (Ep−1)lψ (mod p), where ψ ∈
Jk′,m with Ω(ψ) = k′. We find that Lm(φ) ≡ Lm(ψ) (mod p), i.e., Ω

(
Lm(φ)

)
=

Ω
(
Lm(ψ)

)
, and hence we may (and do) assume that Ω(φ) = k. Equation (3) shows

that Lm(φ) (mod p) ∈ J̃k+p+1,m, i.e., Ω
(
Lm(φ)

)
≤ k + p + 1.

If p divides (2k − 1)m, then Ω
(
Lm(φ)

)
≤ k + 2 < k + p + 1 by Equation (3).

On the other hand, if Ω
(
Lm(φ)

)
< k + p + 1, then Ω

(
(2k−1) m

6 φE2

)
< k + p + 1

by Equation (3). It remains to show that Ω (φE2) = k + p + 1, which then implies
that p divides (2k − 1)m. Recall that every Jacobi form (of even weight) can be
written as

(15) φ =
m∑

j=0

fj (φ−2,1)
j (φ0,1)

m−j
,

where φ−2,1(τ, z) ∈ Z[[q, ζ]] and φ0,1(τ, z) ∈ Z[[q, ζ]] are weak Jacobi forms of index
1 and weights −2 and 0, respectively, and where each fj ∈ Mk+2j has p-integral
rational coefficients and is uniquely determined (see §8 and §9 of [7] for details and
also for the corresponding result for Jacobi forms of odd weight). Moreover, there
exists an fj such that ω

(
fj

)
= k + 2j, since otherwise Ω(φ) < k. Hence (using

Theorem 2 and Lemma 5 of [17]), ω
(
fjE2

)
= k + 2j + p + 1, and we find that (by

Lemma 2.2 of [16]) Ω (φE2) = k + p + 1, which completes the proof. �

Let us introduce an analog of Atkin’s U -operator for Jacobi forms:

Definition 3. For φ(τ, z) =
∑
n,r

4nm−r2≥0

c(n, r)qnζr ∈ Jk,m, we define

(16) φ(τ, z)
∣∣Up :=

∑
n,r

4nm−r2≥0

p | (4nm−r2)

c(n, r)qnζr.

Remark. Note that the operator in Definition 3 is different from the operator Ul in
§4 of [7].

Our following result generalizes Proposition 6.3 of [1] and provides a useful tool
in studying congruences defined by the action of the operator Up.
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Proposition 3. Let φ(τ, z) =
∑
n,r

4nm−r2≥0
n≥n0

c(n, r)qnζr ∈ Jcusp
k,m ∩ Z[[q, ζ]] such that

p � mn0c(n0, 0). Then for every s ∈ N, we have Ω
(
Ls

m(φ)
)
≥ 12n0 − 2m.

Proof. To see that k ≥ 12n0 − 2m, apply the valence formula to the cusp form
φ(τ, 0) ∈ Mk or to some fj �≡ 0 in the decomposition (15) of φ if φ(τ, 0) ≡ 0 (in
which case f0(τ ) ≡ 0, but fj(τ ) �≡ 0 for some j �= 0). Let ∆(τ ) := q − 24q2 + . . .
be the usual cusp form of weight 12. The Ramanujan identities (2) imply that
Θ(∆) = ∆E2, and a straightforward computation shows that

Ls
m(φ)(τ, z)
∆n0(τ )

= (4mn0)sc(n0, 0) +
∑

(n,r) �=(0,0)

C(n, r)qnζr,

where C(n, r) ∈ Z. In particular, ∆−n0Ls
m(φ) is congruent modulo p to a weak

Jacobi form ψ �≡ 0 (mod p). Note that the weight of a nonzero weak Jacobi form
is at least −2m and hence Ω

(
Ls

m(φ)
)
≥ 12n0 − 2m. �

As an application of Propositions 2 and 3, we now determine when Up applied to
a Jacobi form is nonzero modulo p. Our result is of the same flavor as Theorem 1.7
of Ahlgren and Ono [1] (see Elkies, Ono, and Yang [8] and Guerzhoy [10] for general
discussions of congruences that involve Atkin’s U -operator).

Theorem 3. Let φ(τ, z) =
∑
n,r

4nm−r2≥0
n≥n0

c(n, r)qnζr ∈ Jcusp
k,m ∩ Z[[q, ζ]]. Suppose that

p ≥ max (5, k− 12n0 + 2m) is a prime such that p � mn0c(n0, 0). If 2Ω
(
Lm(φ)

)
≡

3, 5 (mod p), then φ
∣∣ Up �≡ 0 (mod p).

Proof. We proceed as in [1]. Suppose that φ
∣∣ Up ≡ 0 (mod p). Note that φ

∣∣Up ≡
φ − Lp−1

m (φ) (mod p) for any φ and hence

(17) 0 �≡ Lp−1
m (φ) ≡ φ (mod p).

If p �
(
2Ω

(
Lp−2

m (φ)
)
− 1

)
, then Ω

(
Lp−1

m (φ)
)

= Ω
(
Lp−2

m (φ)
)

+ p + 1 by Propo-
sition 2. However, Equation (17) shows that Ω

(
Lp−1

m (φ)
)

≤ k while Proposi-
tion 3 gives Ω

(
Lp−2

m (φ)
)
≥ 12n0 − 2m, which contradicts the assumption that

p ≥ k − 12n0 + 2m.
Consequently, we have that p divides

(
2Ω

(
Lp−2

m (φ)
)
− 1

)
. Let j ≤ p − 3 be

the smallest positive integer such that p divides
(
2Ω

(
Lj+1

m (φ)
)
− 1

)
. Proposition 2

implies that

2Ω
(
Lj+1

m (φ)
)

= 2
(
Ω

(
Lm(φ)

)
+ j(p + 1)

)
≡ 2Ω

(
Lm(φ)

)
+ 2j ≡ 1 (mod p),

which contradicts the assumption that 2Ω
(
Lm(φ)

)
≡ 3, 5 (mod p). We conclude

that φ
∣∣ Up �≡ 0 (mod p). �

For example, if

φ10,1(τ, z) =
(
ζ − 2 + ζ−1

)
q + . . . ∈ Jcusp

10,1 ∩ Z[[q, ζ]]

and p = 17, then 2Ω
(
L(φ10,1)

)
= 56 ≡ 5 (mod 17) and Theorem 3 implies that

φ10,1

∣∣ U17 �≡ 0 (mod 17). Similarly, if

φ12,1(τ, z) =
(
ζ + 10 + ζ−1

)
q + . . . ∈ Jcusp

12,1 ∩ Z[[q, ζ]]
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and p = 7, then 2Ω
(
L(φ12,1)

)
= 40 ≡ 5 (mod 7) and Theorem 3 implies that

φ12,1

∣∣ U7 �≡ 0 (mod 7).
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