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ABSTRACT. We determine an explicit formula for a Rankin-Cohen bracket for
Siegel modular forms of degree n on a certain subgroup of the symplectic
group. Moreover, we lift that bracket via a Poincaré series to a Siegel cusp
form on the full symplectic group.

1. INTRODUCTION

In 1956, Rankin [I0] showed that certain polynomials in the derivatives of mod-
ular forms are again modular forms. In 1977, Cohen [6] defined for each v > 0 an
operator which assigns to two modular forms f and g of weight k£ and [ a modular
form [f,g], of weight k + [ + 2v. This operator is known as the Rankin-Cohen
bracket, and operators similar in nature are called Rankin-Cohen-type brackets.

Explicit formulas for Rankin-Cohen brackets have been found for Jacobi forms
([ and [2]), Siegel modular forms of degree 2 (|3] and [4]), and for Jacobi forms (of
higher degree) on H x C™ ([5]). Eholzer and Ibukiyama [7] prove that there exists
a unique Rankin-Cohen bracket for Siegel modular forms of arbitrary degree n. A
closed formula for the Rankin-Cohen bracket is known only for n = 1 and 2, even
though a system of recursion relations is given for any degree n in [7].

In this paper, we consider Fourier-Jacobi expansions of Siegel modular forms.
We demonstrate how a Rankin-Cohen bracket for Jacobi forms on H x C*~! can
be lifted to a Rankin-Cohen bracket for Siegel modular forms of degree n. In
particular, for a certain subgroup of the symplectic group, we determine a closed
formula for the Rankin-Cohen bracket. When n = 2, that formula holds for the full
symplectic group and our result coincides with Theorem 1.4 in [4], but if n > 2,
then our formula is valid only for the subgroup. However, in Theorem [3] we use
our result to define a Poincaré series on the full symplectic group, which yields (for
any v > 0) an operator that sends two Siegel modular forms (degree n) of weight
k1 and ks and a modular cusp form (degree 1) of weight k3 to a Siegel cusp form
(degree n) of weight k1 + ko + k3 + 2v.
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2. JACOBI FORMS OF HIGHER DEGREE

Let A be a commutative ring with unity and let M,, ,(A) be the set of m x n
matrices with entries in A. If U € M, ,,(A), let tr(U) be the trace of U and let
|U| be the determinant of U. We denote the symplectic group over the integers
of degree m by TI'y, = Sp,,(Z). Let I'y,, ; be the subgroup of I, that consists of
matrices (4 B) where A = (f‘; £4), B= (g; gj), C=(%0),and D= (% gj),
where Al,Bl,Cl,Dl S MjJ(Z), BQ,DQ S Mj,m—j(Z); Ag,Bg S Mm—j,j(Z)a and
Ay, By, Dy € Myy—jm—;(Z). The subgroup I'y, ; plays an important role in the
theory of Siegel modular forms. For more details, see Freitag [9], chapter I, §5 and
chapter II, §2. Let H,, be the Siegel upper half plane of degree m, G : H,,, — C,
and let T’ be a subgroup of I';,,. As usual, for M = (4 B) € I' and for a positive
integer k, we define the slash operator

G }k M =G ((AZ + B)(CZ + D)) |CZ + D|*.

Let F be a Siegel modular form of weight k£ and degree j +n —1 on I'j4,,_1, i.e.,
F' is holomorphic and F ‘k M = F forall M € I'jy,,_1. We write Z € H;;,,—; as
Z = (1, w), where 7 € Hj;, z € Mj ,—1(C), and W € H,_y. The Fourier-Jacobi
expansion of F' is given by

(1) F(Z)=F(r,2,W)= Y ®p(r,2)em "MV,

M=TM>0
M even

where the sum is over symmetric, semi-positive definite, integral, and even
(n—1) x (n—1) matrices M. Note that ®,, is a Jacobi form of weight k and index
M in the sense of Ziegler [11], and that if j = 1 and n = 2, then @, is a Jacobi
form in the sense of Eichler and Zagier [§]. Of particular interest is the case where
7 =1 and n > 2 is arbitrary. We denote the vector space of such Jacobi forms by
T, m(L'1).

Choie and Kim [5] provide an explicit formula for the Rankin-Cohen bracket for
Jacobi forms on Ji, m(T'1). We need the following definition to state their main
result.

Definition 1. Let 7 € H; and 2z = (21,...,2,_1) € C"" 1. Suppose M = (my;) is
a symmetric, positive definite, integral, and even (n — 1) x (n — 1) matrix, where
M is the cofactor of the entry ms;. The heat operator L4 is defined by

(2) Ly =4mi|M|0, — Y My0.,0.,,

1<s,t<n—1
where 9, = a%.

Theorem 1 (Choie, Kim). Let ¢1 € Ti,, m,(T'1) and ¢2 € T, pm,(T'1). For each
nonnegative integer v and 'Y € C, set

(o1, d2]ly, v

B) = 3 Gy plbr, ka) Dr (Mo, Mo, Y)IR v (L, (61) L, (62))
r+s+p=v

where

(y+2v—p—2)!
rlsipl(a+r—D(B+s— 1) (y+2v—2)"

CT,S,p(k17 k2) = (_l)p
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Dr,s(Mlv MQ, Y)
|M1 +M2| >T < ‘M1+M2| )S
=(——FF—"—"F +|Ms|Y —= _ IM|Y ] ,
(Wt im *1MY) (s vty 1M
and where o = ky — 51, B = ko— "5 and v = ki +ko — 5L, Then, [[¢1, d2]ly, v €
jk1+k2+2u,M1+M2 (Fl)

Remark. Choie and Kim [5] also construct bilinear operators of the form J, a1, (I'1)
X Tky, Mz (T1) = Tk +kot+20+1, My+M, (T'1), and they determine multilinear opera-
tors on Ji, m(T'1)-

3. RANKIN-COHEN TYPE BRACKETS FOR SIEGEL MODULAR FORMS

We will demonstrate how Theorem[Ilcan be used to construct an explicit formula
for Rankin-Cohen brackets of holomorphic functions F' : H, — C that satisfy
F‘kM = F for all M € I', ; for arbitrary n > 2.

As before, Z = (7, ;;) € H,,, where 7 € Hy, 2 = (21,...,2,-1) € C"71, and
W = (w”) € H,,_q. Set

20, 0,
D= 0. ow |
where 0, = (0z1,...,02p—1) and dy = (1 + 5”)3%74' Furthermore, let [dy/|~! be
the inverse to the operator |0y | on the space of analytic functions of the form
(4) GW)= > a(M)em MW,
M="M>0
M even
More precisely, if | € Z, then
(5) ow ' GW) = 2ri) =Dt 3" (M a(M) e MW,
M= M>0
M even

Note that |9y | |Ow ]|~ G(W) = |0w ]|~ |0w| G(W) = G(W). We have the following
theorem.

Theorem 2. Let F; : H,, — C be holomorphic such that Fl|klM = F; for all
M €T, 1 wherel =1, 2. For each nonnegative integer v, set
F =[F, ),

R C’r»m““’“”””('3W|"’Z<7>D’“<|6wZF1>DS<|8W|1’-ZF2>>,
=0

r4+s+p=v
where Cy. s p(k1, k2) is as in Theorem [l Then F|k1+k2+2VM =F forall M €T, ;.
Moreover, if v > 0, then F is in the kernel of the Siegel ¢p-operator.

Proof. We begin by noting that
P

> (D (0wl Fi(2)) D (10w [P~ Fa(2))
=0

has a Fourier series as in ({l). Hence applying |Ow |2 in (@) is well defined. If v = 0,
then [F, Fs]o = F1 Fy. From now on we assume that v > 0. For [ =1, 2 let
E(Z) _ Z al(T)e” tr(TZ) _ Z @Sf/)l (,7_7 Z)em' tr(MW).

T=1'T>0 M= M>0
T even M even
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It is crucial to realize that if ¢ : H x C*~! — C is analytic, then
(7) D (¢ eﬂ'itT(MW)) — (2,/TZ')7172LM (¢) eﬂ'itr(MW),

where Ly, is the heat operator in ([2]). The key step in our proof is to use (@) to
express F' = [Fy, Fy], as

(8) F(Z)= Y om . mylr,z) e rMtM)W),
Mi="M1>0,
Ma="M3>0,
M1, Mz even
Mi4+M2>0
where

M Mo\
W#) [#504,(7:2), 63, (7, o,

To verify that F(Z) is indeed a modular form of weight k1 + k2 +2v on Ty, 1, it
suffices to check the behavior under modular transformations for a set of generators
of Ty 1t For v = (9Y) € SLy(Z), set

Orts wta (1 2) = (2m0) 2 (

a 0 b 0
(A BY_|0 Ly 0 o0
©) 7_(0 D>_ c 0 d o |[Shw
0 0 0 I,

and for A = ()\17 e '7>‘n—1)7u = (:ula .. -a,ufn—l) e 7" ! set

1 0 0 I

A B\ [N I,y w0

10 (& o)={o 5 14
0 0 0 I,

o~

S le.

By Theorem [T} [[qﬁs\l,l)l (T, z),¢5\2/l)2(7, o v € Tky+kotav, My+m,(L1). This im-
plies that F|k1+k2+2u (A B)=F and also that F|k1+k2+2y (4 B)=F.
Observe that I';, is generated by

{(tg( ;f—“;) ‘ X €GL,(Z),S="1'S ¢ MW(Z)} U{7 | v € SLa(Z)}

and that GL,,(Z) is generated by matrices of the following type:
L {1 +ré)l, |1<i<j<n,relZ}
2. {Pg = (6JG'(J)) ‘ (S Sn}
3{(“r._,) | e==1}.
One can check that I',, 1 is generated by

{(g( ) ‘ X €GL,(z), 5= s Mn,n(Z)} U7 |7 € SLa(@)},

where GL!, (Z) is generated by matrices of the following type:
2. {Ps = (00(j)) | 0 €Sn, o(1) =1},
3.{(“1..,) | e==+1}.
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A straightforward computation reveals that

(11)  F(2)=@ri)™ Y Craplhik) Y Crsp(T)e™ T,

r+s+p=v ='T>0
Teven
where
T* + T* p
Cran(@ = Y aBaamPnin+ 1 (TN
T\ +T>=T, | 1t 2|
Ty="T1>0,
To="T5>0,

Ty, T> even

and where T; = (§ 7+ ) with T = "I} € M,,_1,,,—1(Z). Consequently, F(Z + S) =
F(Z) for all symmetric S € M, ,,(Z).
Note that if X is a generator of GL (Z), then [(X'T!X~1)*| = |T*| for all
symmetric T € M, ,(Z). Since
ar (X' X T Nap (XML XY = [ X2 (Th)aa (T),
we find that C, s ,(X 1T!X~1) = | X|F1+k2C,  (T). Hence by equation (),

(12) F(!XZX) = |X|rtket2vp (7).
We conclude that F|k1+k2+2UM = F for all M €T, ;. Moreover, equation (I
shows that F'(Z) is in the kernel of the ¢-operator. O

Remarks. 1) If n = 2, then % = 1 in equation (IIJ), which yields that
equation (I2)) is valid for all X € GLo(Z). Hence F|k1+k2+2VM = Fforall M € I'y,
F differs only by a constant from the Rankin-Cohen bracket in [4], and Theorem
reduces to Theorem 1.4 of [4].

2) If n > 2, then [F, Fb], is not necessarily a Siegel modular form on the full
symplectic group I',,. For example, if F} = F5 is the theta function associated
to an even unimodular lattice, then [Fy, Fy], is a theta function with polynomial
coefficients. However, equation (1) implies that the polynomial is not harmonic,
and hence [F}, F»], is not a Siegel modular form on T,,.

3) Choie and Kim [5] also determine multilinear operators on Ji, a¢(I'1). One
can use their result to construct multilinear operators on Siegel modular forms of
degree n. This allows one to generalize the main result in Choie [3] to the case
where n > 2.

Next we proceed as in Freitag [9] to lift [Fy, F5], to a Siegel modular form on
r,. If Z=X+1iY € H,, then let z; and y; be the (1,1)-entries of Z and Y,
respectively.

Theorem 3. Let F; be Siegel modular forms of weight k; and degree n on 'y, for
I = 1,2, and let f3 be a modular cusp form of weight ks and degree 1 on T'y.
For each nonnegative integer v, set F(Z) = [F1, Fy], and F5(Z) = f3(z1). If
ki + ko + ks +2v > 2n% —n + 6, then

(13) PF17F2’f3(Z> = Z (FF?))
Mel, 1 \I'n

M
ki+ko+ks+2v

is a Siegel modular form of weight ki + ko + ks + 2v on I'y,. Moreover, if v > 0,
then Pp, g, 1,(Z) is a Siegel cusp form on T,,.
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Remarks. 1) If n = 2, F’k1+k2+2uM = F for all M € I'y and F differs only by
a constant from the Rankin-Cohen bracket in [4]. Furthermore, Pp, r,, ,(Z) =
F(Z)E,(Z), where Ey,(Z) = Z Fg‘ M is the Klingen-Eisenstein series
MeTly 1\TI'2 ks
attached to the cusp form f5. For n > 2, as in the classical case of Poincaré series,
it seems difficult to determine when the series in equation ([I3]) vanishes identically.
2) If n > 2, then Theorem Bl does not coincide with the Rankin-Cohen bracket in
[7]. However, it gives a construction of a Siegel cusp form of weight k1 + ko + k3 +2v
attached to two Siegel cusp forms of weight k; and ks and an elliptic cusp form of
weight k3.
Proof. We have F’k1+k2+2VM = F and F3’k3M = F3 for all M € I',, ;. Hence
Pr, 7y, 1,(Z) transforms like a Siegel modular form of weight k = ki + ko + k3 + 2v

on I',,. It remains to show that P, g, 5, (Z) converges.
If v =0, then Pr, p, ,(Z) = Fi(Z)F(Z)Ey¢,(Z) converges whenever ks >

E_
n+ 2 (see I. 5.4 in [9]). For v > 0, set G(Z) = yEZ N)|Y|NHF(Z)H, where
(n—1)2+1< N < k/2, and where | - || denotes the absolute value. We will show
that G(Z) is bounded on H,,, which then yields the convergence of Pr, g, ,(Z2).

Note that G ’k M =G for all M €T, ;. There exists u > 1 such that F, 1[u] is a
fundamental set for I'), 1 (for details see I. §5 in [9]). Let Z = X +13Y € F,, 1[u].
Hence Y = (317 1n0_1> (%1 )92) ((I)Inb_l), where 1, > %, bth < u, and Yo = V5 =

Y22 Y2n

( : D] > 0with yyy Swuyjprien (2<7 <n—1), lyyll <uyj; (2 <4, <n),
Yon  Ynn

and Y22 **Ynn S U‘Y2|

We apply a standard estimate (Lemma 2.6 of [II]) to the Jacobi cusp form
dM, , M, (T, 2) in equation (§) and find
k
(14) G(2) < Oy @Y 30 e,

M= M>0
M even

for some C' > 0. The right-hand side of (4] clearly vanishes when y; — oo (/f3
is a cusp form) or when y,, — oco. It remains to show that G(Z) vanishes when

Y22
Yoo — 0. Let Yy = ( . It is not difficult to see that there exists §,, > 0
Ynn

such that 6,Ys < Ys < 6, 1Ys. Let
o(n,l) =#{M|M € M1, 1(Z), "M =M>0,M even ,tr(M) =1}.
Then
‘1/2|N Z e*ﬁt’l“(MYg)

Mo
< (6, Yoz Ynn)™ Z e n vz tr (M)
19) Moo
= (0, Y22 Ynn)™ Zo’(n7l)e—ﬂ'5n vzl
>0

S (5;7L Y22+ ynn)N Z l(n_l)z (e_ﬂ‘sn 3122)1 .
>0



ON RANKIN-COHEN BRACKETS FOR SIEGEL MODULAR FORMS 1001

If N > (n—1)2+ 1, then the right side vanishes when 325 — 0. Hence G(Z) is

bounded on F, 1[u] and consequently also on H,, (see also I. 3.11 in [9]).

Let h(Z) =y, F ™) and H(Z) = [¥|-V. Then
Eu(z)= Y |em| M| =mz) Y

k—2N
Mer, 1\ MeD, 1\I'n

e

converges absolutely (see I. 5.4; in [9]) if ¥ — 2N > n + 2. Hence Pp, g, 1,(2)
converges if k > 2n? —n + 6. Finally, if v > 0, then it is easy to check that
Pr, p,, 1,(Z) is in the kernel of the ¢-operator (compare with p. 72 in [9]), i.e.,
Pr, r,, 1,(2Z) is a Siegel cusp form. O
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