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ON RANKIN-COHEN BRACKETS
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(Communicated by David E. Rohrlich)

Abstract. We determine an explicit formula for a Rankin-Cohen bracket for
Siegel modular forms of degree n on a certain subgroup of the symplectic
group. Moreover, we lift that bracket via a Poincaré series to a Siegel cusp
form on the full symplectic group.

1. Introduction

In 1956, Rankin [10] showed that certain polynomials in the derivatives of mod-
ular forms are again modular forms. In 1977, Cohen [6] defined for each ν ≥ 0 an
operator which assigns to two modular forms f and g of weight k and l a modular
form [f, g]ν of weight k + l + 2ν. This operator is known as the Rankin-Cohen
bracket, and operators similar in nature are called Rankin-Cohen-type brackets.

Explicit formulas for Rankin-Cohen brackets have been found for Jacobi forms
([1] and [2]), Siegel modular forms of degree 2 ([3] and [4]), and for Jacobi forms (of
higher degree) on H × Cn ([5]). Eholzer and Ibukiyama [7] prove that there exists
a unique Rankin-Cohen bracket for Siegel modular forms of arbitrary degree n. A
closed formula for the Rankin-Cohen bracket is known only for n = 1 and 2, even
though a system of recursion relations is given for any degree n in [7].

In this paper, we consider Fourier-Jacobi expansions of Siegel modular forms.
We demonstrate how a Rankin-Cohen bracket for Jacobi forms on H × C

n−1 can
be lifted to a Rankin-Cohen bracket for Siegel modular forms of degree n. In
particular, for a certain subgroup of the symplectic group, we determine a closed
formula for the Rankin-Cohen bracket. When n = 2, that formula holds for the full
symplectic group and our result coincides with Theorem 1.4 in [4], but if n > 2,
then our formula is valid only for the subgroup. However, in Theorem 3, we use
our result to define a Poincaré series on the full symplectic group, which yields (for
any ν ≥ 0) an operator that sends two Siegel modular forms (degree n) of weight
k1 and k2 and a modular cusp form (degree 1) of weight k3 to a Siegel cusp form
(degree n) of weight k1 + k2 + k3 + 2ν.
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2. Jacobi forms of higher degree

Let A be a commutative ring with unity and let Mm,n(A) be the set of m × n
matrices with entries in A. If U ∈ Mn,n(A), let tr(U) be the trace of U and let
|U | be the determinant of U . We denote the symplectic group over the integers
of degree m by Γm = Spm(Z). Let Γm,j be the subgroup of Γm that consists of
matrices ( A B

C D ) where A =
(

A1 0
A3 A4

)
, B =

(
B1 B2
B3 B4

)
, C =

(
C1 0
0 0

)
, and D =

(
D1 D2
0 D4

)
,

where A1, B1, C1, D1 ∈ Mj,j(Z), B2, D2 ∈ Mj,m−j(Z), A3, B3 ∈ Mm−j,j(Z), and
A4, B4, D4 ∈ Mm−j,m−j(Z). The subgroup Γm,j plays an important role in the
theory of Siegel modular forms. For more details, see Freitag [9], chapter I, §5 and
chapter II, §2. Let Hm be the Siegel upper half plane of degree m, G : Hm → C,
and let Γ be a subgroup of Γm. As usual, for M = ( A B

C D ) ∈ Γ and for a positive
integer k, we define the slash operator

G
∣∣∣
k
M = G

(
(AZ + B)(CZ + D)−1

)
|CZ + D|−k.

Let F be a Siegel modular form of weight k and degree j + n − 1 on Γj+n−1, i.e.,
F is holomorphic and F

∣∣
k
M = F for all M ∈ Γj+n−1. We write Z ∈ Hj+n−1 as

Z = ( τ z
tz W ), where τ ∈ Hj , z ∈ Mj, n−1(C), and W ∈ Hn−1. The Fourier-Jacobi

expansion of F is given by

(1) F (Z) = F (τ, z, W ) =
∑

M= tM≥0
M even

ΦM(τ, z)eπi tr(MW ),

where the sum is over symmetric, semi-positive definite, integral, and even
(n−1)× (n−1) matrices M. Note that ΦM is a Jacobi form of weight k and index
M in the sense of Ziegler [11], and that if j = 1 and n = 2, then ΦM is a Jacobi
form in the sense of Eichler and Zagier [8]. Of particular interest is the case where
j = 1 and n ≥ 2 is arbitrary. We denote the vector space of such Jacobi forms by
Jk,M(Γ1).

Choie and Kim [5] provide an explicit formula for the Rankin-Cohen bracket for
Jacobi forms on Jk,M(Γ1). We need the following definition to state their main
result.

Definition 1. Let τ ∈ H1 and z = (z1, . . . , zn−1) ∈ Cn−1. Suppose M = (ms t) is
a symmetric, positive definite, integral, and even (n − 1) × (n − 1) matrix, where
Ms t is the cofactor of the entry ms t. The heat operator LM is defined by

(2) LM = 4πi |M|∂τ −
∑

1≤s, t≤n−1

Ms t∂zs
∂zt

,

where ∂x = ∂
∂x .

Theorem 1 (Choie, Kim). Let φ1 ∈ Jk1,M1(Γ1) and φ2 ∈ Jk2,M2(Γ1). For each
nonnegative integer ν and Y ∈ C, set

[[φ1, φ2]]Y, ν

=
∑

r+s+p=ν

Cr, s, p(k1, k2)Dr, s(M1, M2, Y )Lp
M1+M2

(
Lr
M1

(φ1)Ls
M2

(φ2)
)
,(3)

where

Cr, s, p(k1, k2) = (−1)p (γ + 2ν − p − 2)!
r! s! p! (α + r − 1)! (β + s − 1)! (γ + 2ν − 2)!

,
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Dr, s(M1, M2, Y )

=
(

|M1 + M2|
|M1| + |M2|

+ |M2|Y
)r (

|M1 + M2|
|M1| + |M2|

− |M1|Y
)s

,

and where α = k1− n−1
2 , β = k2− n−1

2 , and γ = k1+k2− n−1
2 . Then, [[φ1, φ2]]Y, ν ∈

Jk1+k2+2ν,M1+M2(Γ1).

Remark. Choie and Kim [5] also construct bilinear operators of the form Jk1,M1(Γ1)
×Jk2,M2(Γ1) → Jk1+k2+2ν+1,M1+M2(Γ1), and they determine multilinear opera-
tors on Jk,M(Γ1).

3. Rankin-Cohen type brackets for Siegel modular forms

We will demonstrate how Theorem 1 can be used to construct an explicit formula
for Rankin-Cohen brackets of holomorphic functions F : Hn → C that satisfy
F

∣∣
k
M = F for all M ∈ Γn,1 for arbitrary n ≥ 2.

As before, Z = ( τ z
tz W ) ∈ Hn, where τ ∈ H1, z = (z1, . . . , zn−1) ∈ Cn−1, and

W = (wij) ∈ Hn−1. Set

D =
∣∣∣ 2∂τ ∂z

t∂z ∂W

∣∣∣ ,

where ∂z = (∂z1, . . . , ∂zn−1) and ∂W = (1 + δij) ∂
∂ wij

. Furthermore, let |∂W |−1 be
the inverse to the operator |∂W | on the space of analytic functions of the form

(4) G(W ) =
∑

M= tM>0
M even

a(M) eπi tr(MW ).

More precisely, if l ∈ Z, then

(5) |∂W |l G(W ) = (2πi)(n−1)l
∑

M= tM>0
M even

|M|la(M) eπi tr(MW ).

Note that |∂W | |∂W |−1 G(W ) = |∂W |−1 |∂W |G(W ) = G(W ). We have the following
theorem.

Theorem 2. Let Fl : Hn → C be holomorphic such that Fl

∣∣
kl

M = Fl for all
M ∈ Γn,1 where l = 1, 2. For each nonnegative integer ν, set

F = [F1, F2]ν

=
∑

r+s+p=ν

Cr, s, p(k1, k2) D
p

(
|∂W |−p

p∑
l=0

( p
l ) D

r(|∂W |lF1) D
s(|∂W |p−lF2)

)
,

(6)

where Cr, s, p(k1, k2) is as in Theorem 1. Then F
∣∣
k1+k2+2ν

M = F for all M ∈ Γn,1.
Moreover, if ν > 0, then F is in the kernel of the Siegel φ-operator.

Proof. We begin by noting that
p∑

l=0

( p
l ) D

r(|∂W |lF1(Z)) D
s(|∂W |p−lF2(Z))

has a Fourier series as in (4). Hence applying |∂W |−p in (6) is well defined. If ν = 0,
then [F1, F2]0 = F1F2. From now on we assume that ν > 0. For l = 1, 2 let

Fl(Z) =
∑

T= tT≥0
T even

al(T )eπi tr(TZ) =
∑

M= tM≥0
M even

Φ(l)
M(τ, z)eπi tr(MW ).
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It is crucial to realize that if φ : H × Cn−1 → C is analytic, then

(7) D

(
φ eπi tr(MW )

)
= (2πi)n−2LM(φ) eπi tr(MW ),

where LM is the heat operator in (2). The key step in our proof is to use (7) to
express F = [F1, F2]ν as

(8) F (Z) =
∑

M1=
tM1≥0,

M2=
tM2≥0,

M1,M2 even
M1+M2>0

φM1 ,M2(τ, z) eπi tr((M1+M2)W ),

where

φM1 ,M2(τ, z) = (2πi)(n−2)ν

(
|M1| + |M2|
|M1 + M2|

)ν

[[φ(1)
M1

(τ, z), φ(2)
M2

(τ, z)]]0, ν .

To verify that F (Z) is indeed a modular form of weight k1 + k2 + 2ν on Γn,1, it
suffices to check the behavior under modular transformations for a set of generators
of Γn,1: For γ =

(
a b
c d

)
∈ SL2(Z), set

(9) γ =
(

A B
C D

)
=

⎛
⎜⎜⎝

a 0 b 0
0 In−1 0 0
c 0 d 0
0 0 0 In−1

⎞
⎟⎟⎠ ∈ Γn,1

and for λ = (λ1, . . . , λn−1), µ = (µ1, . . . , µn−1) ∈ Zn−1 set

(10)
(

A′ B′

C ′ D′

)
=

⎛
⎜⎜⎝

1 0 0 µ
tλ In−1

tµ 0
0 0 1 −λ
0 0 0 In−1

⎞
⎟⎟⎠ ∈ Γn,1.

By Theorem 1, [[φ(1)
M1

(τ, z), φ(2)
M2

(τ, z)]]0, ν ∈ Jk1+k2+2ν,M1+M2(Γ1). This im-
plies that F

∣∣
k1+k2+2ν

( A B
C D ) = F and also that F

∣∣
k1+k2+2ν

(
A′ B′

C′ D′

)
= F .

Observe that Γn is generated by{(
tX tXS
0 X−1

) ∣∣∣∣∣ X ∈ GLn(Z), S = tS ∈ Mn,n(Z)

}
∪ {γ | γ ∈ SL2(Z)}

and that GLn(Z) is generated by matrices of the following type:
1. {(1 + rδij)In | 1 ≤ i < j ≤ n, r ∈ Z}.
2. {Pσ =

(
δjσ(j)

)
| σ ∈ Sn}.

3.
{( ε

In−1

) ∣∣ ε = ±1
}
.

One can check that Γn,1 is generated by{(
tX tXS
0 X−1

) ∣∣∣∣∣ X ∈ GL′
n(Z), S = tS ∈ Mn,n(Z)

}
∪ {γ | γ ∈ SL2(Z)},

where GL′
n(Z) is generated by matrices of the following type:

1. {(1 + rδij)In | 1 ≤ i < j ≤ n, r ∈ Z}.
2′. {Pσ =

(
δjσ(j)

)
| σ ∈ Sn, σ(1) = 1}.

3.
{( ε

In−1

) ∣∣ ε = ±1
}
.
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A straightforward computation reveals that

(11) F (Z) = (2πi)nν
∑

r+s+p=ν

Cr, s, p(k1, k2)
∑

T= tT>0
Teven

Cr, s, p(T )eπi tr(TZ),

where

Cr, s, p(T ) =
∑

T1+T2=T,

T1= tT1≥0,

T2= tT2≥0,
T1, T2 even

a1(T1)a2(T2)|T1|r|T2|s|T1 + T2|p
(
|T ∗

1 | + |T ∗
2 |

|T ∗
1 + T ∗

2 |

)p

,

and where Tl =
( ∗ ∗
∗ T∗

l

)
with T ∗

l = tT ∗
l ∈ Mn−1,n−1(Z). Consequently, F (Z + S) =

F (Z) for all symmetric S ∈ Mn,n(Z).
Note that if X is a generator of GL′

n(Z), then |(X−1T tX−1)∗| = |T ∗| for all
symmetric T ∈ Mn,n(Z). Since

a1(X−1T1
tX−1)a2(X−1T2

tX−1) = |X|k1+k2a1(T1)a2(T2),

we find that Cr, s, p(X−1T tX−1) = |X|k1+k2Cr, s, p(T ). Hence by equation (11),

(12) F ( tXZX) = |X|k1+k2+2νF (Z).

We conclude that F
∣∣
k1+k2+2ν

M = F for all M ∈ Γn,1. Moreover, equation (11)
shows that F (Z) is in the kernel of the φ-operator. �

Remarks. 1) If n = 2, then |T∗
1 |+|T∗

2 |
|T∗

1 +T∗
2 | = 1 in equation (11), which yields that

equation (12) is valid for all X ∈ GL2(Z). Hence F
∣∣
k1+k2+2ν

M = F for all M ∈ Γ2,
F differs only by a constant from the Rankin-Cohen bracket in [4], and Theorem 2
reduces to Theorem 1.4 of [4].

2) If n > 2, then [F1, F2]ν is not necessarily a Siegel modular form on the full
symplectic group Γn. For example, if F1 = F2 is the theta function associated
to an even unimodular lattice, then [F1, F2]ν is a theta function with polynomial
coefficients. However, equation (11) implies that the polynomial is not harmonic,
and hence [F1, F2]ν is not a Siegel modular form on Γn.

3) Choie and Kim [5] also determine multilinear operators on Jk,M(Γ1). One
can use their result to construct multilinear operators on Siegel modular forms of
degree n. This allows one to generalize the main result in Choie [3] to the case
where n > 2.

Next we proceed as in Freitag [9] to lift [F1, F2]ν to a Siegel modular form on
Γn. If Z = X + iY ∈ Hn, then let z1 and y1 be the (1, 1)-entries of Z and Y ,
respectively.

Theorem 3. Let Fl be Siegel modular forms of weight kl and degree n on Γn for
l = 1, 2, and let f3 be a modular cusp form of weight k3 and degree 1 on Γ1.
For each nonnegative integer ν, set F (Z) = [F1, F2]ν and F3(Z) = f3(z1). If
k1 + k2 + k3 + 2ν > 2n2 − n + 6, then

(13) PF1, F2, f3(Z) =
∑

M∈Γn,1\Γn

(FF3)
∣∣∣
k1+k2+k3+2ν

M

is a Siegel modular form of weight k1 + k2 + k3 + 2ν on Γn. Moreover, if ν > 0,
then PF1, F2, f3(Z) is a Siegel cusp form on Γn.
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Remarks. 1) If n = 2, F
∣∣
k1+k2+2ν

M = F for all M ∈ Γ2 and F differs only by
a constant from the Rankin-Cohen bracket in [4]. Furthermore, PF1, F2, f3(Z) =

F (Z)Ef3(Z), where Ef3(Z) =
∑

M∈Γ2,1\Γ2

F3

∣∣∣
k3

M is the Klingen-Eisenstein series

attached to the cusp form f3. For n > 2, as in the classical case of Poincaré series,
it seems difficult to determine when the series in equation (13) vanishes identically.

2) If n > 2, then Theorem 3 does not coincide with the Rankin-Cohen bracket in
[7]. However, it gives a construction of a Siegel cusp form of weight k1+k2 +k3 +2ν
attached to two Siegel cusp forms of weight k1 and k2 and an elliptic cusp form of
weight k3.

Proof. We have F
∣∣
k1+k2+2ν

M = F and F3

∣∣
k3

M = F3 for all M ∈ Γn,1. Hence
PF1, F2, f3(Z) transforms like a Siegel modular form of weight k = k1 + k2 + k3 + 2ν
on Γn. It remains to show that PF1, F2, f3(Z) converges.

If ν = 0, then PF1, F2, f3(Z) = F1(Z)F2(Z)Ef3(Z) converges whenever k3 >

n + 2 (see I. 5.4 in [9]). For ν > 0, set G(Z) = y
( k

2−N)
1 |Y |N‖F (Z)‖, where

(n − 1)2 + 1 < N < k/2, and where ‖ · ‖ denotes the absolute value. We will show
that G(Z) is bounded on Hn, which then yields the convergence of PF1, F2, f3(Z).

Note that G
∣∣∣
k
M = G for all M ∈ Γn,1. There exists u > 1 such that Fn,1[u] is a

fundamental set for Γn,1 (for details see I. §5 in [9]). Let Z = X + iY ∈ Fn,1[u].

Hence Y =
(

1 0
tb In−1

) (
y1 0
0 Y2

) (
1 b
0 In−1

)
, where y1 ≥ 1

u , b tb ≤ u, and Y2 = tY2 =(
y22 ··· y2n

...
...

y2n ··· ynn

)
> 0 with yjj ≤ uyj+1 j+1 (2 ≤ j ≤ n−1), ‖yij‖ ≤ uyjj (2 ≤ i, j ≤ n),

and y22 · · · ynn ≤ u|Y2|.
We apply a standard estimate (Lemma 2.6 of [11]) to the Jacobi cusp form

φM1 ,M2(τ, z) in equation (8) and find

(14) G(Z) ≤ Cy
k3
2

1 ‖f3(τ )‖ |Y2|N
∑

M= tM>0
M even

e−π tr(MY2),

for some C > 0. The right-hand side of (14) clearly vanishes when y1 → ∞ (f3

is a cusp form) or when ynn → ∞. It remains to show that G(Z) vanishes when

y22 → 0. Let Ỹ2 =

( y22

. . .
ynn

)
. It is not difficult to see that there exists δn > 0

such that δnỸ2 ≤ Y2 ≤ δn
−1Ỹ2. Let

σ(n, l) = #{M|M ∈ Mn−1,n−1(Z), tM = M > 0,M even , tr(M) = l}.
Then

|Y2|N
∑

M= tM>0
M even

e−π tr(MY2)

≤ (δ−n
n y22 · · · ynn)N

∑
M= tM>0
M even

e−π δn y22 tr(M),

= (δ−n
n y22 · · · ynn)N

∑
l>0

σ(n, l)e−π δn y22 l,

≤ (δ−n
n y22 · · · ynn)N

∑
l>0

l(n−1)2
(
e−π δn y22

)l
.

(15)
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If N > (n − 1)2 + 1, then the right side vanishes when y22 → 0. Hence G(Z) is
bounded on Fn,1[u] and consequently also on Hn (see also I. 3.11 in [9]).

Let h(Z) = y
−( k

2−N)
1 and H(Z) = |Y |−N . Then

EhH(Z) =
∑

M∈Γn,1\Γn

∥∥∥(hH)
∣∣∣
k
M

∥∥∥ = H(Z)
∑

M∈Γn,1\Γn

∥∥∥∥h
∣∣∣
k−2N

M

∥∥∥∥
converges absolutely (see I. 5.41 in [9]) if k − 2N > n + 2. Hence PF1, F2, f3(Z)
converges if k > 2n2 − n + 6. Finally, if ν > 0, then it is easy to check that
PF1, F2, f3(Z) is in the kernel of the φ-operator (compare with p. 72 in [9]), i.e.,
PF1, F2, f3(Z) is a Siegel cusp form. �
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