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THETA FUNCTIONS OF INDEFINITE QUADRATIC FORMS
OVER REAL NUMBER FIELDS
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(Communicated by Dennis A. Hejhal)

Abstract. We define theta functions attached to indefinite quadratic forms
over real number fields and prove that these theta functions are Hilbert mod-
ular forms by regarding them as specializations of symplectic theta functions.
The eighth root of unity which arises under modular transformations is deter-
mined explicitly.

1. Introduction

We construct a theta function attached to a quadratic form over a totally real
number field and show that this theta function is a modular form. If the quadratic
form is not totally positive, the usual sum over some ideal in the ring of integers
will not converge. Stopple [8] solves this problem by introducing the analogue of
a spherical harmonic for the theta function to ensure convergence. Furthermore,
he follows Eichler [2] to show that his theta function is a modular form on some
Γ0

0 subgroups. Following Siegel [5] and [6], Friedberg [3] defines a theta function of
indefinite quadratic forms over C by using the majorants of the quadratic forms to
guarantee that the theta function will converge. By converting this theta function
into a symplectic theta function, Friedberg proves that his theta function is indeed
a modular form on some special subgroups of SL2(R). The advantage of his method
is that one can compute the theta multiplier explicitly without too much effort using
the main result of Stark [7]. We will follow his method and obtain results similar
to his over totally real number fields, i.e. we will prove that the theta function we
will construct is a Hilbert modular form on some Γ0 subgroups and also compute
the theta multiplier explicitly using the main result of [7].

2. Symplectic theta functions

The symplectic group, Spn(R), consists of those 2n× 2n real matrices

M =
(

A B
C D

)
(each entry is n× n) such that

tMJM = J =
(

0 −In

In 0

)
.
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The corresponding symmetric space is the Siegel upper half plane H(n) which
consists of n×n symmetric complex matrices Z with Im(Z) > 0 (positive definite).
The action of M on Z is given by

M ◦ Z = (AZ + B)(CZ + D)−1.

Let Γ(n) = Spn(Z). The theta subgroup Γ(n)
ϑ of Γ(n) is the set of all ( A B

C D ) in Γ(n)

such that both A tB and C tD have even diagonal entries. The subgroup acts on
the symplectic theta function,

ϑ

(
Z,

(
u
v

))
=
∑

m∈Zn

exp
{
πi
[

t(m + v)Z(m + v)− 2 tmu− tvu
]}

,

where u and v are column vectors in Cn. It is well known (see Eichler [1], for
example) that for

M =
(

A B
C D

)
in Γ(n)

ϑ ,

ϑ

(
M ◦ Z, M

(
u
v

))
= χ(M) [det(CZ + D)]1/2

ϑ

(
Z,

(
u
v

))
(1)

where χ(M) is an eighth root of unity which depends upon the chosen square root
of det(CZ +D), but which is otherwise independent of Z, u, and v. It is also known
that χ(M) can be expressed in terms of Gaussian sums. Stark [7] determined χ(M)
in the important special case that pD−1 is integral for some odd prime p. The main
result in [7] is

Theorem 1. Suppose M = ( A B
C D ) is in Γ(n)

ϑ where C−1 and D−1 exist. Suppose
further that for some odd prime p, pD−1 is integral. Then (mod p), the symmetric
matrix pD−1C has rank h where det(D) = ±ph. Let

(
pD−1C

)(h) be a nonsingular
(mod p) h×h principal submatrix of pD−1C and let s be the signature (the number
of positive eigenvalues minus the number of negative eigenvalues) of C−1D. Then

χ(M) [det(CZ + D)]1/2

= ε−h
p

2h det
[(

pD−1C
)(h)

]
p

 e
πis
4 | det(C)|1/2{det[−iC−1(CZ + D)]}1/2,

where εp = 1 for p ≡ 1 mod 4, εp = i for p ≡ 3 mod 4,
(
·
p

)
is the Legendre

symbol, | det(C)|1/2 is positive and
{
det
[−iC−1(CZ + D)

]}1/2 is given by analytic
continuation from the principal value when Z = −C−1D+ iY . Alternatively, if just
C−1 exists and pC−1 is integral, det(C) = ±ph, then pC−1D (mod p) has rank h
and

χ(M) [det(CZ + D)]1/2

= ε−h
p

(−2
p

)h
det

[(
pC−1D

)(h)
]

p

 | det(C)|1/2{det[−iC−1(CZ + D)]}1/2.
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3. Theta functions attached to indefinite quadratic forms

Let K be a totally real number field of degree r1. Let ∆K be the discriminant
of K, let δK be the different of K, and let OK be the ring of integers of K. The
algebraic conjugates of an algebraic number α in K are given by α(1), . . . , α(r1).
Furthermore, let Γ = SL2(OK) and as usual, for an integral ideal N, let

Γ0(N) =
{

M =
(

α β
γ δ

)
, M ∈ Γ and γ ∈ N

}
.

We define the upper half plane H = Hr1 , where H = {z ∈ C , Imz > 0} is the
usual upper half plane. The matrix

M =
(

α β
γ δ

)
∈ SL2(K)

acts on z = (z1, . . . , zr1) ∈ H by

M ◦ z =
(
M (1) ◦ z1, . . . , M (r1) ◦ zr1

)
,

where

M (j) =
(

α(j) β(j)

γ(j) δ(j)

)
and

M (j) ◦ zj =
(
α(j)zj + β(j)

)(
γ(j)zj + δ(j)

)−1

.

For γ and δ in K and z in H, we define

N (γz + δ) =
r1∏

j=1

(
γ(j)zj + δ(j)

)
and

N
[
(γz + δ)1/2

]
=

r1∏
j=1

(
γ(j)zj + δ(j)

)1/2

,(2)

where each of the r1 square roots is given by the principal value.
Let Q be a symmetric n × n matrix defining the quadratic form Q[x] = txQx,

where x ∈ Rn. If Q has entries in OK and diagonal entries which are divisible by
2, we say that Q is of level N (N ∈ OK) whenever the following two conditions are
satisfied:

a) The matrix NQ−1 has entries in OK , and 2 divides the diagonal entries of
NQ−1.

b) For any M ∈ OK , N divides M whenever MQ−1 has entries in OK and 2
divides the diagonal entries of MQ−1.

If Q(j) has signature (p, q) for j = 1, . . . , r1, then there exist matrices Lj in
GLn(R) such that Q(j) = tLjEp,qLj , where

Ep,q =
(

Ip

−Iq

)
,

and Ip and Iq are the p× p and q × q identity matrices, respectively.
Set Rj = tLjLj . Then Rj is a majorant of Q(j), i.e.

RjQ
(j)−1

Rj = Q(j) and tRj = Rj > 0.
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For the vector λ = t(λ1, . . . , λn), we set λ(j) = t(λ(j)
1 , . . . , λ

(j)
n ) where λ1, . . . , λn

are in K. We define the theta function ΘQ of an indefinite quadratic form by

Definition 1. Let Q be a symmetric n× n matrix with entries in OK such that 2
divides the diagonal entries of Q and such that Q is of level N . Furthermore, assume
that each Q(j) has the same signature (p, q) for j = 1, . . . , r1. Let u1, . . . , ur1 and
v1, . . . , vr1 be vectors in Cn. For an ideal I ⊂ OK and z = (z1, . . . , zr1) ∈ H set

ΘQ

(
z,

(
u
v

))
=

 r1∏
j=1

yj

q/2 ∑
λ∈In

exp
{

πi

[ r1∑
j=1

Q(j)[λ(j) + vj ]xj

+ iRj [λ(j) + vj ]yj − 2 tλ(j)Q(j)uj − tvjQ
(j)uj

]}
,

(3)

where λ = t(λ1, . . . , λn), u = t( tu1, . . . , tur1) and v = t( tv1, . . . , tvr1).

Note that for any algebraic integer t ∈ K,
r1∑

j=1

Q(j)[λ(j)]t(j) = tr (Q[λ]t) is an

even rational integer, and thus ΘQ(z) is invariant under linear transformations, i.e.

ΘQ

(
z + t,

(
u + tv

v

))
= ΘQ

(
z,

(
u
v

))
.(4)

The first task is to convert ΘQ into a symplectic theta function. Let ω1, . . . , ωr1

be an integral basis of the ideal I ⊂ OK and define the vector ω(j) = (ω(j)
1 , . . . , ω

(j)
r1 ).

We define the n× nr1 matrix

Wj =

ω(j)

. . .
ω(j)


and the nr1 × nr1 matrix W = t( tW1, . . . , tWr1). Note that W−1 has entries in
I−1δ−1

K .
For z = (z1, . . . , zr1) ∈ H, set

Z∗
j =

(
zjIp

−zjIq

)
and

Z∗ =

Z∗
1

. . .
Z∗

r1

 ,

where zj is the complex conjugate of zj . Define

L =

L1

. . .
Lr1


and set

T = LW and Z = tTZ∗T =
(

tT 0
0 T−1

)
◦ Z∗.
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Observe that (
tT 0
0 T−1 ) is in Spnr1(R). Furthermore, Z∗ is in the Siegel upper half

plane H(nr1) and therefore Z is in H(nr1) as well. We have r1∏
j=1

yj

−q/2

ΘQ

(
z,

(
u
v

))
= ϑ

(
Z,

(
tWQ̃u
W−1v

))
,(5)

where

Q̃ =

Q(1)

. . .
Q(r1)

 .

In order to apply Theorem 1, we need a symplectic matrix which expresses the
action of ( α β

γ δ ) ∈ Γ = SL2(Ok) on our new variables u, v and Z. For ( α β
γ δ ) ∈ Γ,

set

(
A∗ B∗

C∗ D∗

)
=



α(1)In

. . .
α(r1)In

β(1)Ep,q

. . .
β(r1)Ep,q

γ(1)Ep,q

. . .
γ(r1)Ep,q

δ(1)In

. . .
δ(r1)In


.(6)

It is easy to check that the diagrams

z −−−−→
(

α β
γ δ

)
◦ zy y

Z∗ −−−−→
(

A∗ B∗

C∗ D∗

)
◦ Z∗

and (
u
v

)
−−−−→

(
α β
γ δ

)(
u
v

)
y y(

tWQ̃u
W−1v

)
−−−−→

(
A B
C D

)(
tWQ̃u
W−1v

)
commute, where(

A B
C D

)
=
(

tT 0
0 T−1

)(
A∗ B∗

C∗ D∗

)(
tT 0
0 T−1

)−1

=
(

tTA∗ tT−1 tTB∗T
T−1C∗ tT−1 T−1D∗T

)
.

(7)

Hence

z 7→
(

α β
γ δ

)
◦ z



706 OLAV K. RICHTER

in H corresponds to

Z 7→
(

A B
C D

)
◦ Z

in H(nr1).
Let us introduce some more notation to show conditions under which the ma-

trix in (7) is in the theta subgroup. Assume that S = (sil)i,l=1,... ,r1 and R =
(rkm)k,m=1,... ,n are matrices with entries in K. We define the matrix R � S =
((tr(rkmsil)i,l=1,... ,r1))k,m=1,... ,n. Note that the entries of R � S are rational num-
bers. Computation shows that A = In � A′, B = Q � B′, C = Q−1 � C′ and
D = In �D′, where A′, B′, C ′ and D′ are given by

A′ =

ω1ν1α · · · ω1νr1α
...

...
ωr1ν1α · · · ωr1νr1α

 ,

B′ =

ω1ω1β · · · ω1ωr1β
...

...
ωr1ω1β · · · ωr1ωr1β

 ,

C ′ =

 ν1ν1γ · · · ν1νr1γ
...

...
νr1ν1γ · · · νr1νr1γ

 ,

D′ =

ω1ν1δ · · · ωr1ν1δ
...

...
ω1νr1δ · · · ωr1νr1δ

 .

Clearly, tAC = tCA, tBD = tDB, and tDA − tBC = Inr1 . Hence ( A B
C D ) ∈

Spnr1
(R). Furthermore, A tB = tTA∗B∗T = Q�(αB′) and C tD = T−1C∗D∗ tT−1

= Q−1�(δC ′). It follows that the entries of A, B, C and D are rational integers and
that A tB and C tD have even diagonal entries if γ is in the ideal I2δKN . Hence
for (

α β
γ δ

)
∈ Γ0

(
I2δKN

)
,

we have (
A B
C D

)
∈ Γ(nr1)

ϑ .

It is easy to verify that

det(CZ + D) = det(C∗Z∗ + D∗) = N (γz + δ)p N (γz + δ)q
,

and therefore by equations (1) and (5),

ΘQ

((
α β
γ δ

)
◦ z,

(
α β
γ δ

)(
u
v

))
= χ

((
α β
γ δ

)
, Q

)
N (γz + δ)(p−q)/2 ΘQ

(
z,

(
u
v

))
,

(8)
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where χ(( α β
γ δ ), Q) is an eighth root of unity depending on ( α β

γ δ ) and Q. Thus,
ΘQ(z, ( u

v )) is a (nonanalytic) Hilbert modular form on Γ0

(
I2δKN

)
of weight

(p− q)/2.

4. The eighth root of unity

Now we determine χ(( α β
γ δ ), Q). Let us assume that δ � 0 is a first degree prime

in Ok of norm d, where d is a positive odd prime in Z. In this case, dD−1 is integral.
Note that det(D) = det(D∗) = dn, and thus by Theorem 1, dD−1C has rank n
(mod d). Hence for Q−1 = (ril)i,l=1,... ,n, we see that

(
dD−1C

)(n)
=

 tr
(
r11ν1ν1dδ−1γ

) · · · tr
(
r1nν1ν1dδ−1γ

)
...

...
tr
(
r1nν1ν1dδ−1γ

) · · · tr
(
rnnν1ν1dδ−1γ

)


and

det
(
dD−1C

)(n) ≡ (dδ−1γ)n(ν1ν1)n det(Q)−1 (mod δ).

Some computation shows that

| det(C)|1/2{det[−iC−1(CZ + D)]}1/2e
πis
4 = N (γz + δ)(p−q)/2 |N (γz + δ)|q .

Hence

χ

((
α β
γ δ

)
, Q

)
= ε−n

d

(
(dδ−12γ)n det(Q)

δ

)
.(9)

We have proved

Theorem 2. Suppose that ( α β
γ δ ) ∈ Γ0

(
I2δKN

)
, where δ is a first degree prime in

OK of norm d (d is a positive odd prime in Z). For z ∈ H, we have

ΘQ

((
α β
γ δ

)
◦ z,

(
α β
γ δ

)(
u
v

))
= ε−n

d

(
(dδ−12γ)n det(Q)

δ

)
N (γz + δ)(p−q)/2 ΘQ

(
z,

(
u
v

))
,

(10)

where εd = 1 for d ≡ 1 mod 4 and εd = i for d ≡ 3 mod 4.

Actually, we have determined the eighth root of unity more explicitly than it
seems. In (4), we showed that for all algebraic integers t,

ΘQ

((
1 t
0 1

)
◦ z,

(
1 t
0 1

)(
u
v

))
= ΘQ

(
z,

(
u
v

))
.

Together with (8) this implies that for ( α β
γ δ ) ∈ Γ0

(
I2δKN

)
and for all algebraic

integers t,

χ

((
α β
γ δ

)(
1 t
0 1

)
, Q

)
= χ

((
α β
γ δ

)
, Q

)
.(11)

Furthermore, Hecke [4] gives a proof of Dirichlet’s primes in progression theorem for
number fields. Hence for algebraic integers γ and δ with (γ, δ) = 1, the arithmetic
progression {γt + δ}t∈Ok

contains infinitely many primes π � 0 such that N (π)
is a positive odd prime in Z. Hence the theta multiplier is determined explicitly
after locating a totally positive first degree prime in the arithmetic progression
{γt + δ}t∈Ok

.
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There is a special case which also should be mentioned. Let δ � 0 be a prime in
OK with N (δ) = dr1 , where d is a positive odd prime in Z. As before, we observe
that dD−1 has rational integers as entries and hence D is of level d. We see that
det(D) = det(D∗) = dnr1 and by Theorem 1, dD−1C has rank nr1 (mod d). Thus,

det
(
dD−1C

)
= (N (det(Q)))−1

(
∆K (N (I)2)

)−n

(N (γn)) .

Hence

χ

((
α β
γ δ

)
, Q

)
= ε−nr1

d

(
(∆K)nN ((2γ)n det(Q))

d

)
.(12)

In the case that n is even, we should see that (9) and (12) yield the same result.
For an odd rational prime d, an element a is a square in Fdr1 (the field of dr1

elements) iff NFdr1 /Fd
(a) is a square in Fd (the field of d elements). This can be seen

by observing that the mapping N : F∗
dr1 → Fd

∗ given by a → N(a) := NFdr1 /Fd
(a)

is an epimorphism. Hence in the special case that n is even, (9) becomes

χ

((
α β
γ δ

)
, Q

)
=
(

(−1)n/2 det(Q)
δ

)
(13)

and (12) becomes

χ

((
α β
γ δ

)
, Q

)
=

(
N ((−1)n/2 det(Q)

)
d

)
,(14)

and the result from (9) coincides with the result from (12).
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