Monatsh. Math. 141, 219-235 (2004) Monatshefte fiir
DOI 10.1007/s00605-003-0037-2 Mathematik

Printed in Austria

Jacobi Theta Functions over Number Fields
By
Olav K. Richter' and Howard Skogman’

Umversny of North Texas, Denton, TX, USA
2 State University of New York, Brockport, NY, USA

Received August 26, 2002
Published online August 11, 2003 © Springer-Verlag 2003

Abstract. We use Jacobi theta functions to construct examples of Jacobi forms over number fields.
We determine the behavior under modular transformations by regarding certain coefficients of the
Jacobi theta functions as specializations of symplectic theta functions. In addition, we show how sums
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1. Introduction

Eichler and Zagier [2] develop a theory of holomorphic Jacobi forms and show
that Jacobi theta functions corresponding to positive definite quadratic forms are
examples of such forms. Skoruppa [14] introduces skew-holomorphic Jacobi
forms and presents examples using Jacobi theta functions corresponding to indef-
inite quadratic forms with signature (1,7 — 1). In this paper, we use Jacobi theta
functions to create examples of Jacobi forms and skew holomorphic Jacobi forms
over number fields. More precisely, we define @Q rw(T:2), @ Jacobi theta function
attached to an arbitrary quadratic form defined over a number field K. We present
two different methods to determine the behavior of @(Q ,)”(T z) under modular
transformations.

The first approach is based on Eichler’s “embedding trick™ (see Eichler [1], for
example). Friedberg [3] and Richter [8] prove transformation laws for
19( (’) w, f ) a modified version of the usual symplectic theta function. We

proceed as in [8] and regard certain coefficients of @Q RW(T 7) as specializations
of ¥(Z, ( ) w f) As an immediate consequence, we obtain the transformation

law of @Q R‘W(T, z) under modular transformations. A similar idea has been used in

the literature to construct modular forms over number fields using theta functions
(see for example, Stark [16], Imamoglu [5] and [6], Richter [9], [10], and [11]).

In the second approach, we follow Skogman [12] and [13] and present a
different construction of Jacobi forms over number fields. We show how sums
of @(QIZ){’W(T, z) appear as a single coefficient of ¥(Z, (), w,0), which determines



220 O. K. Richter and H. Skogman

how these sums behave under modular transformations. This is a very natural
construction: In analogy, Jacobi forms (over Q) appear as Fourier coefficients of
Siegel modular forms (see Eichler and Zagier [2]).

2. Notation and Terminology

Let K be an algebraic number field with r; real conjugates and r, pairs of
complex conjugates. The real conjugates of an element a in K are denoted by
a, ..., a\") and the complex conjugates by a1 ... a("*2") where aU+72) =

al) for r; +1 <j < r| + ry. Let 8k be the different of K, and O be the ring of
integers of K, and set I' = SL,(Dk). The Jacobi group of K is given by

IV(K) =T xO%.

Denote the field of complex numbers by C and let H be the usual upper half plane.
Let 2 = {u+ vk|u,v€C, k* = —1, ak = ka, Ya € C} be the full ring of quater-
nions and Hy = {x + yk € 2|xe C,y€ R} be the quaternionic upper half plane
consisting of quaternions with no j-component and positive k-component. Set
¥ =C"2"”. We write a typical element z€ 2 as z = (z1,...,2+n), Where
z€Cflorj=1,...,r,and zj =u; +vkc2forj=r +1,...,r + r. The cor-
responding upper half space is $ = H"H’; and we write a typical element as 7 =

(T, oy Trar) €O Where 73 = x; +y;€Hforj=1,...,r,and 7, = x; + yk € Hy
forj=r+1,...,r +r. We have 7 = (77, ..., 7, 1,,) Where, as usual, 7; = x;—
iy for j=1,...,r1 and 7, =X —yik for j=r +1,...,r1 +r. A matrix

(a ﬂ)EF acts on 7€ 9 by

L 5 o A\ PN
</7 6)07—_((’}/ 6) OT];"’)(,Y (S) oTr1+rz> (1)

o
(& 5) om =l + 9000 + 80y,
An element ((: g),()\,,u)> €IV(K) acts on (1,z7) €9 x Z by
e

(1) (ri+r2)
o @
= <( ﬁ) oT,. .., ( ﬁ) o7',.]+r2,(’y(])7'1—l—6<1))_1zl,...

v 6

where

- (’Y<rl+r2)7—r|+rz + 5(”“2))7]@1 +r2> (2)

and
()\7 /’L) o (Tv Z) = (Tlv R Tr1+r2721 + T1>\(l) + M(]>7 s
<9 Zri4n + 7-rlJrrz)‘(rl ) + :u(rlJrrZ))' <3>
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As in the classical case (see Eichler and Zagier [2]), (2) and (3) jointly define a
group action of I'V(K) on § x Z.
Furthermore, for 7 and 6 in K and 7 in $, we define

I3l ri+n

N +8) =[5 +6") T] IIW'7+69)

j=1 j=r+1

where [|[y07; + 69> = [yWx; + 69> + |7(")|2yj2 is the usual norm of the quater-
nion. In particular,

Il ri+n
N (yr+ 61 = H('Y(])Tj + 5012 H 97 4 69,
J=1 j=r+1

where each of the r; square roots on the right is given by the principal value.

For u+vke2, define |ju+vk||c =u+iv and |ju+ vk||g =u+iv. Let
m="m,...,'my42n,), where my,...,m, 2, are vectors in C! (for some /€ N),
such that mj,,, = m; for j =r; +1,...,r; + r,. Furthermore, set m; = m;m; and
m = ‘mm. For, v, 6, X in K, and (7,z) € 9 x Z, it will be useful to define

Tl 'mz(yr + 5)’lvzm}
7 B 'Y(] Zj
_jzzl T207; + 80
ri+nr
+ ) i+ 5k) (Y75 4 89) ) (g + vk )|
i
+'Zl\|’mj(u/+v7k)( N7+ 69) Y0 (s + vjk)my |z,
J=n+

and

I
Talm(AA +2x2)m] = Y (A 7 +2A0)z)
j=1
ri+n
+ 3 I O759 + 200z)m |
Jj=ri+l
ri+n ) ] )
+ > I + 200 m |

j=ri+1
Note that if K = Q, then

myz*

ponird T m(ATA 4 2X2)m] = m(N*1 + 2)z2).

Tp|mz(yr + 5)7lvzm] =
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We will construct functions f : $ x Z — C which satisfy the following transfor-

g

mation properties: For ((3 6)’0\’”)) eI(K),

(5 D)oy ((; 2) st

x exp{2mi Zy[mz(yr + 8) 'yzml}f(r,2) (4
and

F((A 1) 0 (7,2)) = exp{=27i Zy[m(ATA + 2A2)m]}f (7, 2), (5)
B
)
and (5) generalize the transformation laws for Jacobi forms and skew-holomorphic
Jacobi forms. Hence functions f : $ x & — C satisfying (4) and (5) are general-
izations of Jacobi forms and skew-holomorphic Jacobi forms.

where x is a root of unity, and m as above. Obviously, equations (4)

3. Symplectic Theta Function

It will be useful to define U[V] = VUV for any vector or matrix V and any
matrix U. The symplectic group,

Sp,(R) = {M: (é g) ‘MEMzn,zn(R) such that J[M] =J = <Z —01n>}

where I, is the n X n identity matrix, acts on the Siegel upper half plane
9" ={ZeM,,(C)|Z =Z and Im(Z) > 0}.
The action of M on Z is given by
MoZ=(AZ+B)(CZ+D) "
Let I'™) = Sp, (Z). The theta subgroup

m_J (A B n
- {(e B)er

acts on the symplectic theta function,

q9<z, (:)) = 3" exp{mi(Z[m +s] — 2'mr — s7)}, (6)

meZ"

A'B, C'D have even diagonal entries},

where r and s are column vectors in C". It is well known (see Eichler [1], for

example) that for M = <Ié, g) € ngn),

19<MOZ,M<:>> —X(M){det(CZ—i—D)}l/zﬁ(Z, <Z>> (7)

where x (M) is an eighth root of unity which depends upon the chosen square root
of det(CZ + D), but which is otherwise independent of Z, r, and s. Stark [15]



Jacobi Theta Functions over Number Fields 223

determines x (M) in the important special case that both C and D are nonsingular
and that pD~! is integral for some odd prime p. The main result in [15] is

Ié g) is in ng) where C~' and D™ exist.

Suppose further that for some odd prime p, pD~" is integral. Then (mod p), the sym-
metric matrix pD~'C has rank h where det(D) = +p". Let (pD~'C )(h) be a
nonsingular (mod p) h x h principal submatrix of pD~'C and o be the signature
(the number of positive eigenvalues minus the number of negative eigenvalues) of
C~'D. Then

Theorem 1. Suppose M = (

x(M){det(CZ + D)}/
_ (zhdet[(pplc)<h>]

- ; )ﬁdet(cwz{det[—icl(cz+D)]}'/2,

where e, = 1 forp=1 mod 4, ¢, = i for p=3 mod 4, ([—7) is the Legendre symbol,
|det(C)|'/? is positive and {det[—iC~1(CZ + D)|}"/* is given by analytic continua-
tion from the principal value when Z = —C~'D + iY. Alternatively, if just C~!
exists and pC~" is integral, det(C) = % p", then pC~'D (modp) has rank h and

x(M){det(CZ + D)}'/*
— (_—2>h (M) Idet(C)['{det[—iC~(CZ + D) }/2.

p

For we C", f a nonnegative integer, and Z, r, and s as above, define

o(z.(;) )

= > (wlm+ s)Y exp{mi(Z[m + 5| — 2'mr — 'sr)}. (8)

meZ"

Note that for f = 0 the theta functions in (6) and (8) coincide. Friedberg [3] and
Richter [8] examine the transformation properties of ¥(Z, (*),w, f) under mod-
ular transformations, and Richter [8] shows the following theorem:

Theorem 2. Let M = <é g) 61“1(9”). Then

ﬁ(MoZ,M(Z),’(CZ—i—D)]W,f)

3
TR I
= XD {Ae(CZ 4 DIV S )2
x <<<cz+D>‘1c>[w1>’v9(z, (;),w,f - zz), )

where x(M) is as in (7).
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Remark. Friedberg [3] proves Theorem 2 (phrased slightly differently) in the
special case where ((CZ+ D) 'C)[w] =0, in which case the right hand side

in (9) reduces to y(M){det(CZ + D)}l/zﬁ( Z, ("), w, f).
In the next section, we define 6% OR. W(T 7), a theta function over a number field

K, and we will use Theorem 2 to determine the behavior of H(Q ,)M(T, z) under
modular transformations.

4. Theta Functions of Quadratic Forms

Let K be an algebraic number field with r; real conjugates and r, pairs of
complex conjugates. We use the notation introduced in section 2. Also, we write
U[V] = VUV (as before) and U{V} = VUV for any vector or matrix V and any
matrix U. Let Q be a symmetric n X n matrix with entries in Ok defining the
quadratic form Q[x|, where x € C". If, in addition, Q has diagonal entries which are
divisible by 2, we say that Q is of level 9t (9t an ideal in Ok) whenever the
following two conditions are satisfied:

a) The matrix NO~! has entries in Ok and 2 divides the diagonal entries of
NQ~! for all N e .

b) If M is any integral ideal satisfying a), i.e. MQ~! has entries in Og and 2
divides the diagonal entries of MQ~! for all M € M, then N divides M.

Suppose that all of the real conjugates of Q are of the same type (p, q). Hence
there exist matrices L; in GL,(R) such that

OV ="LE, Lj, j=1,....n (10)

and there exist matrices L; in GL,(C) such that
OV =L, j=r+1,...,n+n, (11)

I . . .
where E, , = ( P I ) and I, and I, are the p X p and g x ¢ identity matrices,
—q

respectively. We set
Ry =,L;. (12)
For all j, R; is a majorant of oY), ie.
ITjQU>71Rj =00 and Rj=R;>0.
We define a theta function corresponding to an arbitrary quadratic form by

Definition 1. Let Q be a symmetric n X n matrix with entries in Ok such that 2
divides the diagonal entries of Q and such that Q is of level 9t (9 an ideal in Ok).
Assume that all of the real conjugates QV) of Q are of the same type (p,q) and set
L; as in (10) and (11) and R; as in (12). Let w="(wy,..., W, 42,), Where
Wi, ..., Wy 42, are vectors in C" such that wj,,, =w; forj=ri +1,...,r + 1.
Let f be a nonnegative rational integer. For an ideal 3 C O and for
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(r,2)€H x Z =H"H; x C" 27, we set

K
Ogns(7:2)
-3 (w0t
ked"
ri+nr ) ) f
+ Z W LigLw|| + |9 LigiLw||
j=ri+1 C C
xexp{m(ZQ(’ N + iR [V]y;
+ Z &0 Lk ‘ + || Lk ‘_ , (13)
j=r+1 C C
where £ = (K1, ..., k,) and KV = (/@&’), ..., &Y. Furthermore, we define:
9Q 1>€,w(7- Z)
@) k)
= 0 W, (T7 Z)
= Z exp{m’(ZQ(’)[ Dx; + iR;[kV]y; 4 26V QVwyz;
keJ" Jj=1
ritnr
+ Z WO LnLisY 4 2%9 Lz Liw,
J=ri+l c
ritn
+ 0 B LD + 2% LigLw, : (14)
j=r+l1 C

Remarks. a) If K = Q, then @Q RW(T z) is the usual Jacobi theta function. If,
in addition, Q is of type (1,n — 1), then @Q R. (7, 2) is a skew-holomorphic Jacobi
form in the sense of Skoruppa [14].

b) The theta function @(QI%W(T, 7) generalizes the theta functions in [12] and
[13].

c) If f is odd, then O(Q R, f<7' z) is identically zero

d) For ne Lk, H(Qlfl)w f(T, z) (and hence also @Q }eW(T, z)) is invariant under
linear transformations, i.e.

Ok (T +1,2) = O (7, 2). (15)
Set
L
L= : (16)
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where L;y,, = fj forj=r; +1,...,r + r;. We generalize and improve the main
results in [12] and [13] by the following theorem:

Theorem 3. Let wy € 3" such that w; = WY) for all j and such that QVw; =

Rw; forj=1,...,r. For <(: g) , (A,m) eTo(F*65xN) ND?( we have

G(Q[fl)?,W<<j ?) o (m, )) —x((j ?),Q)J/(WJr@)P/{A/(W)q/z

x exp{mi T (Lw)z(y7 + 6) ' vzLw]}O 52 (7 2),

(17)
and
O (A1) © (7,2))
= exp{—7i Z[((Lw)(ATA + 2X2)Lw] O3, (7, 2), (18)
where x < <: g) , Q) is an eighth root of unity. If 6 > 0 is a first degree prime
of norm d, then
a B [ (d67127)"det(Q)

where N'(§) =d,and e, = 1 ford=1mod 4 and e, = i for d =3 mod 4 and (3 )
is the quadratic symbol.

Remark. We pointed out that @gf}e‘w(ﬂ z) is invariant under linear transforma-

tions. From (17), it follows that for (a g ) € I‘O(SZ(SK‘JE) and for all algebraic
integers 7, v

(DG DG D) w

Note that (3 'g ) €To(F*6xMN) implies that (v, §) = 1 and by Dirichlet’s primes

in progression theorem for number fields (see Hecke [4], for example) the arith-
metic progression {yn + 6}716& contains infinitely many totally positive first
degree primes. Hence the eighth root of unity is determined explicitly by (20)
after locating a totally positive first degree prime with positive odd norm in the

arithmetic progression {1+ ¢}, c o,-
The following two subsections are devoted to proving (17) and (18).

4.1. The modular transformation. We use the method presented in Richter [11]
(for more details, see also [9] and [10]): We regard 0! ,)e wif (7, z) as a specialization of
19(Z ( ) w f) and then apply Theorem 2, which w111 yield (17).



Jacobi Theta Functions over Number Fields 227

Let ji1, ..., fdeg k b€ an integral basis of the ideal 3 C Ok and define the vector
pt = ( E’), . ,,uge)gk). We define the n x ndeg K matrix

0
M =
0
and the ndegK x ndegK matrix W =/("Wy,..., Wyeok). Note that W' has
entries in 376!

Let 7= (71,...,Tr4n)€H. Forj=1,...,r we set
x _ ( 7ilp
% _( —leq>’ @
and for j =r +1,...,r + ry, we define the n x n matrices X; = x;l,, Y, = Xil,,
and Y; = y;l,. We also define the ndeg K x ndeg K matrix
z{
*
Z; .
Xr1+1 er.—H
VA . (22
X71+r2 inlJrrz
inlJrl Xr1+1
iYFl-‘rrz Xr1+rz
We set
T=LW (23)
and
Z="TZ*T. (24)

It is not difficult to see that Z € $"%2X) (see also [9] and [10]).
With W(z) = W ('W1(2), . . ., Wi 12, (2)) € C"9EK) \yhere

ZjQ(i)Wj forj=1,...,r,
wi(z) = ¢ [ILizLwille forj=ri+1,....rn+nr,
||tlfifrzzj*V2Lj*72Wj*r2HE fOI‘j =r+nrn+l,...,rn+2n,
we have
08y ma =0(z () () (25)
ORwf\ThZ) = o , W(Z af .

In particular, (25) shows that H(QI%W _f(T, z) and hence also @(QIT})LW(T, z) are not

identically zero.
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To determine the behavior of Ggf,l7w_f-(7, z) under modular transformations, we
want to apply Theorem 2 and therefore need a symplectic matrix <Ié, g) which
expresses the action of (3 ﬂ) €I on Z. For (3 B) el set

6 6
alr, s,
A* = D* =
aldegK) sldeeK) .
5(1)Ep7q
B* = IB(FI)EM
gL,
[ldegK)p
and
fy(l)EM
Mg
* Y :
CcC" = P49 7(r,Jrl)In
7<degK>I,,

Furthermore, we set

A B\ [ TA*T' TB*T 26
¢ D) \r'c*T' T'D*T )" (26)

It is easy to check that the diagram

~(; 2
Lo

* *
Z*—><A B > o 7*
C* D*

commutes. Hence

T (: g) oTEY
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corresponds to

A B (ndegK)
Z|—><C D)oZG@ )

Also, it is easy to verify that
(CZ + D) "Ww(z)
=W (v + 6D ey, (P, 80T L),
Hence
(Y7 4+ 6Nz, (D, + 80 T L Ve
corresponds to
(CZ + D) 'w(z) e C"deeX,

The entries of A, B, C and D are rational integers and A’B and C'D have even
diagonal entries if v is in the ideal 326KN (see also [9] and [10]). Hence, for

<‘f; g) €To(F28N),

we have

A B (ndegK)
(& 5)er

Straightforward computation shows that

7'l ri+nr ) -
det(CZ + D) = H(»y(/)Tj + 6D (407 + 60)) H 407 + 60|
J=1 j=ri+1

= N (v + 8 N (yT + 6)7,

and that
(CZ+ D) "' C[W(z)] = Zp[(Lw)z(v7 + 8)~'yzLw].

Hence by equations (9) and (25),
H(K)

(¢ 2)eco)

| 2 21
B =

X (Tl (Lw)z(yr + ) szw]w(Q’f;,wf_zmz), (27)
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where y < (?; g ) , Q) is an eighth root of unity depending on (?; ? > and Q.

As an immediate consequence we obtain (17):

o (2 2)ete)

(2 ]).0)wtmsorraGria
8

A i I (Lw 7+ 8) yvz(Lw))! 2mi)Y X K
" ZZ( Tl )z(vl!+) V2(Lw)]) Ezfzzl)y@(g,l)e,w21(“)

f=0
! -
(2 ]).0)rtmsorPaGriar
Y
x exp{mi Z3[(Lw)z(yr +8) ' 12Lw]}Olg, (7 2).
It remains to determine the eighth root of unity in (27). Suppose that
(3 ?) €To(I*6xMN), where § > 0 is a first degree prime in Ok of norm d.

Then C~! and D! exist, and dD~! is integral. We apply Theorem 1 and we find
that (see section 3.3 of Richter [11] for details)

(3 o) (@)

where e, = 1 ford=1mod 4 and ¢; = i for d =3 mod 4 and (5) is the quadratic
symbol over Ok.

4.2, The elliptic transformation. The elliptic transformation (18) can be proved
as in the classical case (see Eichler and Zagier [2]). Let w = (W, ..., W, 12, ) be as
in Definition 1 and suppose further that w; € 3" such that w; = wi’) for all j and
such that QVw; = Rjw; for j = 1,...,ry. Let (\, 1) € Of. Then it is easy to check
that

exp{mi Z[((Lw)(ATA + 2X2)Lw] O ., (A, 1) © (7, 2))

I
_ ¥ exp{m ( S 000+ R[]y + 24900
1=(k+Iw;) € " Jj=1

ri+nr

2

j=r1+1

t[,(j) ILJTJLJL(]) + 2 IL(j) tLijLJWI .

)i

ri+n

2
j=ri+l1

= O k(T:2),

and this is the elliptic transformation (18).
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5. An Alternate Construction

It is well known that Jacobi forms (over Q) appear as Fourier coefficients of
Siegel modular forms (see Eichler and Zagier [2], and for Jacobi forms of higher
degree, see Krieg [7]). In this section, we follow Skogman [12] and [13] and we
present an example of an analogous situation over K. We show that sums of the
Jacobi theta function ©, RW(T 7) appear as coefficients of the symplectic theta
function 19( ( )) (roughly speaking, a Siegel modular form of weight 1/2). Then
(7) yields another proof that sums of © OR, W(T 7) satisfy the transformation laws (17)
and (18). Note that this method is not sufficient to prove that each theta function
Ok (T, 2) satisfies (17) and (18).

Let 7,7 €9, and 2= (z1,...,24n) €Z, ie. zj€C for j=1,...,r, and
zi=uj+vk€2forj=r +1,...,r +r. Let Z* be as in (22) and let Z"* be
the matrix corresponding to 7. For j = 1,...,r, we set

% zil

ZF=(Yr __ ], 29

! < _Zjlq> @)
and for j = =+ 1,...,r + rp, we define the n X n matrices 17 = u;l,, I/J\J = u;l,,

V = vjl,, V = U]I We also define the ndeg K x ndeg K matrix

Zl
g Ur1+1 in1+1
Z* = (30)
Unir, Vi ir,
in1+1 Ur1+1
Vi r Unir,
Furthermore, we define
>~ _ (z¥ z*
With T as in (23), set
= T 0
T = <0 T) (32)
and
Z =Tz*T. (33)

Note that Z = ’?Eii; 7’, where

= (T &) (34)
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and

" Inr|
ST = Inrz

1 nry

One can check that Im(S'IZ’E ) >0 and hence ImZ >0 and Z € $?%5)_ We find
that

o5(3) - 5 it i

weJ"
ri+nr
+ Y 0V + QU wi)]x] + 2iR;{w! }y,>} (35)
Jj=ri+1
where Q = (), ... w(”+2’2))

The representation in (35) shows that the Jacobi theta functions e RQ(T 2)
arise as Fourier coefficients with respect to the 7’ variables. However, there may be
a number of vectors w in JI" which are all part of the same Fourier coefficient;
In some cases, QV)[w (’)] 0w (’)] and R; [w%”] =R [wgﬁ] for all j, although
wy # wy. Hence, (35) does not allow us to examine transformatlon properties of
the single theta function ®<Q ,)e o(7, 2). In addition, we require, as in Theorem 3, that
QW) = =R, wV) forj=1,...,ry, and we determine transformation properties for
the followmg sums:

Oa(r,z) = > O a(T2). (36)

RE

K E X
OVw]=0V k], 1 <j < ri+2m
Rj[w(’)]=R,[HU)] 1 <j<r+2n
QW) :ij(r), 1<j<n
5.1. The modular transformation. We will show that Oq/(7, z) satisfies (17).
We embed (?; b ) €T into the symplectic group and define

0
A 0 B
(& 5)-|c
c D) |cC
0
where A, B, C, and D are given by (26). If

(O‘ B) €T (FoxMN),

A

(37)

o o
~Nooo

0
D
0

we have

;{ E (2n degK)
~ = I
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The symplectic transformation
(AZ+B)(CZ+D)"
corresponds to the transformations

) — (2 7)o

1

v 0

)72
o oL
J J

_— <7<
70)77+50>, for 1<j<r,

and

71— = W+ (W7 +60) Wy, for n+1<j<n+n

As in section 4.1, we have
det(CZ 4+ D) = N (vr + 8> N (7 + 6)7/2.

The actual Fourier expansion in (35) is only with respect to the x| variables.
However, it is easy to see that one can compare coefficients in (35) after applying
(7) (see also [12]). We find that

(0 )2

=x((05)e)roresyiaarra”

x exp {7 Tp[(Lw)z(yT + 6)7172Lw]}99(7', 2), (38)

where X((: ?),Q) is an eighth root of unity. Theorem 1 guarantees that

X < (3 g) , Q> actually coincides with the root of unity in (28).

5.2. The elliptic transformation. It remains to show that ©q/(7, z) also satisfies
(18). For (A, 1) € O% set

\degK)

and
/’I‘(rl >Ep,q
M(’"l +1)]n

pldeeKp

n
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where T is as in (23). We embed (A, 1) into the symplectic group as

In(deg K) 0 0 M
A Legxy M AM
39
0 0 Lex) A (39)
0 0 0 Li(deg k)
The symplectic transformation
Ly(deg k) 0 74 0 M Lyegx)y  —A -
A In(degK) M AM 0 In(degK)
corresponds to the transformations
75— g+ AV + u(")
7/ + ATAD 2207 + A0 ;.
We apply (7), use Theorem 1, and compare coefficients in (35) to obtain
@Q(()‘a /1') o (Ta Z))
= exp{—m Zp[(Lw)(ATA + 2A2)Lw]}Oq(T, 2), (40)

which is the transformation law (18).

6. Conclusion

We have presented two different ways to construct examples of complex-valued
functions over a number field K which satisfy transformation laws generalizing
those of Jacobi forms (as in Eichler and Zagier [2]) and skew- holomorphic Jacobi
forms (as in Skoruppa [14]) The first method was based on Eichler’s “embed-
ding trick”: We regarded GQ 1>ew #(7.2) (a certain coefficient of G)(Q ,)QW(T z)) as a

specialization of ¥(Z, (7),w, f), a modified version of the usual symplectic theta
function 19( (Y)) The functlonal equation for 19( ( ) w f) then yielded the
transformatlon law of @Q rw(T2) under modular transformatlons In the second
method, we showed how sums of @Q 2. (T:2) appear as coefficients of ¥(Z, ()).
This natural approach has the shght dlsadvantage that one can only determlne
transformation laws for sums of @Q I)QW(T z) and not for each theta function
@(Qﬁ){,_w(T z) directly.

We would like to remark that the first approach suggests a way to construct
examples of vector-valued functions over K which satisfy transformation properties
generalizing (4) and (5). More precisely, one can define o ,)QW J(T z, ( )) and
@(Qlfl)w (T zZ, ( )) generalizations of (13) and (14) that also depend on u =

Cuy, .. tudeg,() and v =""v,...,Vaegk), Where uy, ..., ugegx and vy, ..., Vdegk
are Vectors in C" (see Deﬁmtlon 1 of [11]). A version of our main result (Theorem
3) will also hold for @Q Row (T 2 ( _ )) We omit the details since the argument
follows that in section 4 with the exception that one has to consider a specialization
of ¥(Z, ( . ) W, f) for some vectors r and s instead of19(Z, ( 8 ) W, f). One may then
construct a more general class of Jacobi forms by proceeding as in [11] and applying
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the differential operators in the last section of [11] to equation (17) (of the slightly
generalized version of Theorem 3). In particular, when X is totally complex, one
can create vector-valued Jacobi forms over K, i.e., real analytic functions f :
HY x 27 — C"*! that satisfy transformation laws similar to (4) and (5). The only
difference is that the right hand side of (4) features an extra factor of p(*) (yr +9),
where

M@= Q) ")

1<j<n

and [)(z)(”) is the k-fold symmetric product representation of the quaternion z € 2.
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