Monatsh. Math. 141, 219-235 (2004) Monatshefte fiir
DOI 10.1007/s00605-003-0037-2 Mathematik

Printed in Austria

Jacobi Theta Functions over Number Fields
By
Olav K. Richter' and Howard Skogman’

Umversny of North Texas, Denton, TX, USA
2 State University of New York, Brockport, NY, USA

Received August 26, 2002
Published online August 11, 2003 © Springer-Verlag 2003

Abstract. We use Jacobi theta functions to construct examples of Jacobi forms over number fields.
We determine the behavior under modular transformations by regarding certain coefficients of the
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1. Introduction

Eichler and Zagier [2] develop a theory of holomorphic Jacobi forms and show
that Jacobi theta functions corresponding to positive definite quadratic forms are
examples of such forms. Skoruppa [14] introduces skew-holomorphic Jacobi
forms and presents examples using Jacobi theta functions corresponding to indef-
inite quadratic forms with signature (1,7 — 1). In this paper, we use Jacobi theta
functions to create examples of Jacobi forms and skew holomorphic Jacobi forms
over number fields. More precisely, we define @Q rw(T:2), @ Jacobi theta function
attached to an arbitrary quadratic form defined over a number field K. We present
two different methods to determine the behavior of @(Q ,)”(T z) under modular
transformations.

The first approach is based on Eichler’s “embedding trick™ (see Eichler [1], for
example). Friedberg [3] and Richter [8] prove transformation laws for
19( (’) w, f ) a modified version of the usual symplectic theta function. We

proceed as in [8] and regard certain coefficients of @Q RW(T 7) as specializations
of ¥(Z, ( ) w f) As an immediate consequence, we obtain the transformation

law of @Q R‘W(T, z) under modular transformations. A similar idea has been used in

the literature to construct modular forms over number fields using theta functions
(see for example, Stark [16], Imamoglu [5] and [6], Richter [9], [10], and [11]).

In the second approach, we follow Skogman [12] and [13] and present a
different construction of Jacobi forms over number fields. We show how sums
of @(QIZ){’W(T, z) appear as a single coefficient of ¥(Z, (), w,0), which determines



220 O. K. Richter and H. Skogman

how these sums behave under modular transformations. This is a very natural
construction: In analogy, Jacobi forms (over Q) appear as Fourier coefficients of
Siegel modular forms (see Eichler and Zagier [2]).

2. Notation and Terminology

Let K be an algebraic number field with r; real conjugates and r, pairs of
complex conjugates. The real conjugates of an element a in K are denoted by
a, ..., a\") and the complex conjugates by a1 ... a("*2") where aU+72) =

al) for r; +1 <j < r| + ry. Let 8k be the different of K, and O be the ring of
integers of K, and set I' = SL,(Dk). The Jacobi group of K is given by

IV(K) =T xO%.

Denote the field of complex numbers by C and let H be the usual upper half plane.
Let 2 = {u+ vk|u,v€C, k* = —1, ak = ka, Ya € C} be the full ring of quater-
nions and Hy = {x + yk € 2|xe C,y€ R} be the quaternionic upper half plane
consisting of quaternions with no j-component and positive k-component. Set
¥ =C"2"”. We write a typical element z€ 2 as z = (z1,...,2+n), Where
z€Cflorj=1,...,r,and zj =u; +vkc2forj=r +1,...,r + r. The cor-
responding upper half space is $ = H"H’; and we write a typical element as 7 =

(T, oy Trar) €O Where 73 = x; +y;€Hforj=1,...,r,and 7, = x; + yk € Hy
forj=r+1,...,r +r. We have 7 = (77, ..., 7, 1,,) Where, as usual, 7; = x;—
iy for j=1,...,r1 and 7, =X —yik for j=r +1,...,r1 +r. A matrix

(a ﬂ)EF acts on 7€ 9 by

L 5 o A\ PN
</7 6)07—_((’}/ 6) OT];"’)(,Y (S) oTr1+rz> (1)

o
(& 5) om =l + 9000 + 80y,
An element ((: g),()\,,u)> €IV(K) acts on (1,z7) €9 x Z by
e

(1) (ri+r2)
o @
= <( ﬁ) oT,. .., ( ﬁ) o7',.]+r2,(’y(])7'1—l—6<1))_1zl,...

v 6

where

- (’Y<rl+r2)7—r|+rz + 5(”“2))7]@1 +r2> (2)

and
()\7 /’L) o (Tv Z) = (Tlv R Tr1+r2721 + T1>\(l) + M(]>7 s
<9 Zri4n + 7-rlJrrz)‘(rl ) + :u(rlJrrZ))' <3>
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As in the classical case (see Eichler and Zagier [2]), (2) and (3) jointly define a
group action of I'V(K) on § x Z.
Furthermore, for 7 and 6 in K and 7 in $, we define

I3l ri+n

N +8) =[5 +6") T] IIW'7+69)

j=1 j=r+1

where [|[y07; + 69> = [yWx; + 69> + |7(")|2yj2 is the usual norm of the quater-
nion. In particular,

Il ri+n
N (yr+ 61 = H('Y(])Tj + 5012 H 97 4 69,
J=1 j=r+1

where each of the r; square roots on the right is given by the principal value.

For u+vke2, define |ju+vk||c =u+iv and |ju+ vk||g =u+iv. Let
m="m,...,'my42n,), where my,...,m, 2, are vectors in C! (for some /€ N),
such that mj,,, = m; for j =r; +1,...,r; + r,. Furthermore, set m; = m;m; and
m = ‘mm. For, v, 6, X in K, and (7,z) € 9 x Z, it will be useful to define

Tl 'mz(yr + 5)’lvzm}
7 B 'Y(] Zj
_jzzl T207; + 80
ri+nr
+ ) i+ 5k) (Y75 4 89) ) (g + vk )|
i
+'Zl\|’mj(u/+v7k)( N7+ 69) Y0 (s + vjk)my |z,
J=n+

and

I
Talm(AA +2x2)m] = Y (A 7 +2A0)z)
j=1
ri+n
+ 3 I O759 + 200z)m |
Jj=ri+l
ri+n ) ] )
+ > I + 200 m |

j=ri+1
Note that if K = Q, then

myz*

ponird T m(ATA 4 2X2)m] = m(N*1 + 2)z2).

Tp|mz(yr + 5)7lvzm] =
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We will construct functions f : $ x Z — C which satisfy the following transfor-

g

mation properties: For ((3 6)’0\’”)) eI(K),

(5 D)oy ((; 2) st

x exp{2mi Zy[mz(yr + 8) 'yzml}f(r,2) (4
and

F((A 1) 0 (7,2)) = exp{=27i Zy[m(ATA + 2A2)m]}f (7, 2), (5)
B
)
and (5) generalize the transformation laws for Jacobi forms and skew-holomorphic
Jacobi forms. Hence functions f : $ x & — C satisfying (4) and (5) are general-
izations of Jacobi forms and skew-holomorphic Jacobi forms.

where x is a root of unity, and m as above. Obviously, equations (4)

3. Symplectic Theta Function

It will be useful to define U[V] = VUV for any vector or matrix V and any
matrix U. The symplectic group,

Sp,(R) = {M: (é g) ‘MEMzn,zn(R) such that J[M] =J = <Z —01n>}

where I, is the n X n identity matrix, acts on the Siegel upper half plane
9" ={ZeM,,(C)|Z =Z and Im(Z) > 0}.
The action of M on Z is given by
MoZ=(AZ+B)(CZ+D) "
Let I'™) = Sp, (Z). The theta subgroup

m_J (A B n
- {(e B)er

acts on the symplectic theta function,

q9<z, (:)) = 3" exp{mi(Z[m +s] — 2'mr — s7)}, (6)

meZ"

A'B, C'D have even diagonal entries},

where r and s are column vectors in C". It is well known (see Eichler [1], for

example) that for M = <Ié, g) € ngn),

19<MOZ,M<:>> —X(M){det(CZ—i—D)}l/zﬁ(Z, <Z>> (7)

where x (M) is an eighth root of unity which depends upon the chosen square root
of det(CZ + D), but which is otherwise independent of Z, r, and s. Stark [15]



Jacobi Theta Functions over Number Fields 223

determines x (M) in the important special case that both C and D are nonsingular
and that pD~! is integral for some odd prime p. The main result in [15] is

Ié g) is in ng) where C~' and D™ exist.

Suppose further that for some odd prime p, pD~" is integral. Then (mod p), the sym-
metric matrix pD~'C has rank h where det(D) = +p". Let (pD~'C )(h) be a
nonsingular (mod p) h x h principal submatrix of pD~'C and o be the signature
(the number of positive eigenvalues minus the number of negative eigenvalues) of
C~'D. Then

Theorem 1. Suppose M = (

x(M){det(CZ + D)}/
_ (zhdet[(pplc)<h>]

- ; )ﬁdet(cwz{det[—icl(cz+D)]}'/2,

where e, = 1 forp=1 mod 4, ¢, = i for p=3 mod 4, ([—7) is the Legendre symbol,
|det(C)|'/? is positive and {det[—iC~1(CZ + D)|}"/* is given by analytic continua-
tion from the principal value when Z = —C~'D + iY. Alternatively, if just C~!
exists and pC~" is integral, det(C) = % p", then pC~'D (modp) has rank h and

x(M){det(CZ + D)}'/*
— (_—2>h (M) Idet(C)['{det[—iC~(CZ + D) }/2.

p

For we C", f a nonnegative integer, and Z, r, and s as above, define

o(z.(;) )

= > (wlm+ s)Y exp{mi(Z[m + 5| — 2'mr — 'sr)}. (8)

meZ"

Note that for f = 0 the theta functions in (6) and (8) coincide. Friedberg [3] and
Richter [8] examine the transformation properties of ¥(Z, (*),w, f) under mod-
ular transformations, and Richter [8] shows the following theorem:

Theorem 2. Let M = <é g) 61“1(9”). Then

ﬁ(MoZ,M(Z),’(CZ—i—D)]W,f)

3
TR I
= XD {Ae(CZ 4 DIV S )2
x <<<cz+D>‘1c>[w1>’v9(z, (;),w,f - zz), )

where x(M) is as in (7).
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Remark. Friedberg [3] proves Theorem 2 (phrased slightly differently) in the
special case where ((CZ+ D) 'C)[w] =0, in which case the right hand side

in (9) reduces to y(M){det(CZ + D)}l/zﬁ( Z, ("), w, f).
In the next section, we define 6% OR. W(T 7), a theta function over a number field

K, and we will use Theorem 2 to determine the behavior of H(Q ,)M(T, z) under
modular transformations.

4. Theta Functions of Quadratic Forms

Let K be an algebraic number field with r; real conjugates and r, pairs of
complex conjugates. We use the notation introduced in section 2. Also, we write
U[V] = VUV (as before) and U{V} = VUV for any vector or matrix V and any
matrix U. Let Q be a symmetric n X n matrix with entries in Ok defining the
quadratic form Q[x|, where x € C". If, in addition, Q has diagonal entries which are
divisible by 2, we say that Q is of level 9t (9t an ideal in Ok) whenever the
following two conditions are satisfied:

a) The matrix NO~! has entries in Ok and 2 divides the diagonal entries of
NQ~! for all N e .

b) If M is any integral ideal satisfying a), i.e. MQ~! has entries in Og and 2
divides the diagonal entries of MQ~! for all M € M, then N divides M.

Suppose that all of the real conjugates of Q are of the same type (p, q). Hence
there exist matrices L; in GL,(R) such that

OV ="LE, Lj, j=1,....n (10)

and there exist matrices L; in GL,(C) such that
OV =L, j=r+1,...,n+n, (11)

I . . .
where E, , = ( P I ) and I, and I, are the p X p and g x ¢ identity matrices,
—q

respectively. We set
Ry =,L;. (12)
For all j, R; is a majorant of oY), ie.
ITjQU>71Rj =00 and Rj=R;>0.
We define a theta function corresponding to an arbitrary quadratic form by

Definition 1. Let Q be a symmetric n X n matrix with entries in Ok such that 2
divides the diagonal entries of Q and such that Q is of level 9t (9 an ideal in Ok).
Assume that all of the real conjugates QV) of Q are of the same type (p,q) and set
L; as in (10) and (11) and R; as in (12). Let w="(wy,..., W, 42,), Where
Wi, ..., Wy 42, are vectors in C" such that wj,,, =w; forj=ri +1,...,r + 1.
Let f be a nonnegative rational integer. For an ideal 3 C O and for
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(r,2)€H x Z =H"H; x C" 27, we set

K
Ogns(7:2)
-3 (w0t
ked"
ri+nr ) ) f
+ Z W LigLw|| + |9 LigiLw||
j=ri+1 C C
xexp{m(ZQ(’ N + iR [V]y;
+ Z &0 Lk ‘ + || Lk ‘_ , (13)
j=r+1 C C
where £ = (K1, ..., k,) and KV = (/@&’), ..., &Y. Furthermore, we define:
9Q 1>€,w(7- Z)
@) k)
= 0 W, (T7 Z)
= Z exp{m’(ZQ(’)[ Dx; + iR;[kV]y; 4 26V QVwyz;
keJ" Jj=1
ritnr
+ Z WO LnLisY 4 2%9 Lz Liw,
J=ri+l c
ritn
+ 0 B LD + 2% LigLw, : (14)
j=r+l1 C

Remarks. a) If K = Q, then @Q RW(T z) is the usual Jacobi theta function. If,
in addition, Q is of type (1,n — 1), then @Q R. (7, 2) is a skew-holomorphic Jacobi
form in the sense of Skoruppa [14].

b) The theta function @(QI%W(T, 7) generalizes the theta functions in [12] and
[13].

c) If f is odd, then O(Q R, f<7' z) is identically zero

d) For ne Lk, H(Qlfl)w f(T, z) (and hence also @Q }eW(T, z)) is invariant under
linear transformations, i.e.

Ok (T +1,2) = O (7, 2). (15)
Set
L
L= : (16)
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where L;y,, = fj forj=r; +1,...,r + r;. We generalize and improve the main
results in [12] and [13] by the following theorem:

Theorem 3. Let wy € 3" such that w; = WY) for all j and such that QVw; =

Rw; forj=1,...,r. For <(: g) , (A,m) eTo(F*65xN) ND?( we have

G(Q[fl)?,W<<j ?) o (m, )) —x((j ?),Q)J/(WJr@)P/{A/(W)q/z

x exp{mi T (Lw)z(y7 + 6) ' vzLw]}O 52 (7 2),

(17)
and
O (A1) © (7,2))
= exp{—7i Z[((Lw)(ATA + 2X2)Lw] O3, (7, 2), (18)
where x < <: g) , Q) is an eighth root of unity. If 6 > 0 is a first degree prime
of norm d, then
a B [ (d67127)"det(Q)

where N'(§) =d,and e, = 1 ford=1mod 4 and e, = i for d =3 mod 4 and (3 )
is the quadratic symbol.

Remark. We pointed out that @gf}e‘w(ﬂ z) is invariant under linear transforma-

tions. From (17), it follows that for (a g ) € I‘O(SZ(SK‘JE) and for all algebraic
integers 7, v

(DG DG D) w

Note that (3 'g ) €To(F*6xMN) implies that (v, §) = 1 and by Dirichlet’s primes

in progression theorem for number fields (see Hecke [4], for example) the arith-
metic progression {yn + 6}716& contains infinitely many totally positive first
degree primes. Hence the eighth root of unity is determined explicitly by (20)
after locating a totally positive first degree prime with positive odd norm in the

arithmetic progression {1+ ¢}, c o,-
The following two subsections are devoted to proving (17) and (18).

4.1. The modular transformation. We use the method presented in Richter [11]
(for more details, see also [9] and [10]): We regard 0! ,)e wif (7, z) as a specialization of
19(Z ( ) w f) and then apply Theorem 2, which w111 yield (17).



Jacobi Theta Functions over Number Fields 227

Let ji1, ..., fdeg k b€ an integral basis of the ideal 3 C Ok and define the vector
pt = ( E’), . ,,uge)gk). We define the n x ndeg K matrix

0
M =
0
and the ndegK x ndegK matrix W =/("Wy,..., Wyeok). Note that W' has
entries in 376!

Let 7= (71,...,Tr4n)€H. Forj=1,...,r we set
x _ ( 7ilp
% _( —leq>’ @
and for j =r +1,...,r + ry, we define the n x n matrices X; = x;l,, Y, = Xil,,
and Y; = y;l,. We also define the ndeg K x ndeg K matrix
z{
*
Z; .
Xr1+1 er.—H
VA . (22
X71+r2 inlJrrz
inlJrl Xr1+1
iYFl-‘rrz Xr1+rz
We set
T=LW (23)
and
Z="TZ*T. (24)

It is not difficult to see that Z € $"%2X) (see also [9] and [10]).
With W(z) = W ('W1(2), . . ., Wi 12, (2)) € C"9EK) \yhere

ZjQ(i)Wj forj=1,...,r,
wi(z) = ¢ [ILizLwille forj=ri+1,....rn+nr,
||tlfifrzzj*V2Lj*72Wj*r2HE fOI‘j =r+nrn+l,...,rn+2n,
we have
08y ma =0(z () () (25)
ORwf\ThZ) = o , W(Z af .

In particular, (25) shows that H(QI%W _f(T, z) and hence also @(QIT})LW(T, z) are not

identically zero.
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To determine the behavior of Ggf,l7w_f-(7, z) under modular transformations, we
want to apply Theorem 2 and therefore need a symplectic matrix <Ié, g) which
expresses the action of (3 ﬂ) €I on Z. For (3 B) el set

6 6
alr, s,
A* = D* =
aldegK) sldeeK) .
5(1)Ep7q
B* = IB(FI)EM
gL,
[ldegK)p
and
fy(l)EM
Mg
* Y :
CcC" = P49 7(r,Jrl)In
7<degK>I,,

Furthermore, we set

A B\ [ TA*T' TB*T 26
¢ D) \r'c*T' T'D*T )" (26)

It is easy to check that the diagram

~(; 2
Lo

* *
Z*—><A B > o 7*
C* D*

commutes. Hence

T (: g) oTEY
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corresponds to

A B (ndegK)
Z|—><C D)oZG@ )

Also, it is easy to verify that
(CZ + D) "Ww(z)
=W (v + 6D ey, (P, 80T L),
Hence
(Y7 4+ 6Nz, (D, + 80 T L Ve
corresponds to
(CZ + D) 'w(z) e C"deeX,

The entries of A, B, C and D are rational integers and A’B and C'D have even
diagonal entries if v is in the ideal 326KN (see also [9] and [10]). Hence, for

<‘f; g) €To(F28N),

we have

A B (ndegK)
(& 5)er

Straightforward computation shows that

7'l ri+nr ) -
det(CZ + D) = H(»y(/)Tj + 6D (407 + 60)) H 407 + 60|
J=1 j=ri+1

= N (v + 8 N (yT + 6)7,

and that
(CZ+ D) "' C[W(z)] = Zp[(Lw)z(v7 + 8)~'yzLw].

Hence by equations (9) and (25),
H(K)

(¢ 2)eco)

| 2 21
B =

X (Tl (Lw)z(yr + ) szw]w(Q’f;,wf_zmz), (27)
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where y < (?; g ) , Q) is an eighth root of unity depending on (?; ? > and Q.

As an immediate consequence we obtain (17):

o (2 2)ete)

(2 ]).0)wtmsorraGria
8

A i I (Lw 7+ 8) yvz(Lw))! 2mi)Y X K
" ZZ( Tl )z(vl!+) V2(Lw)]) Ezfzzl)y@(g,l)e,w21(“)

f=0
! -
(2 ]).0)rtmsorPaGriar
Y
x exp{mi Z3[(Lw)z(yr +8) ' 12Lw]}Olg, (7 2).
It remains to determine the eighth root of unity in (27). Suppose that
(3 ?) €To(I*6xMN), where § > 0 is a first degree prime in Ok of norm d.

Then C~! and D! exist, and dD~! is integral. We apply Theorem 1 and we find
that (see section 3.3 of Richter [11] for details)

(3 o) (@)

where e, = 1 ford=1mod 4 and ¢; = i for d =3 mod 4 and (5) is the quadratic
symbol over Ok.

4.2, The elliptic transformation. The elliptic transformation (18) can be proved
as in the classical case (see Eichler and Zagier [2]). Let w = (W, ..., W, 12, ) be as
in Definition 1 and suppose further that w; € 3" such that w; = wi’) for all j and
such that QVw; = Rjw; for j = 1,...,ry. Let (\, 1) € Of. Then it is easy to check
that

exp{mi Z[((Lw)(ATA + 2X2)Lw] O ., (A, 1) © (7, 2))

I
_ ¥ exp{m ( S 000+ R[]y + 24900
1=(k+Iw;) € " Jj=1

ri+nr

2

j=r1+1

t[,(j) ILJTJLJL(]) + 2 IL(j) tLijLJWI .

)i

ri+n

2
j=ri+l1

= O k(T:2),

and this is the elliptic transformation (18).
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5. An Alternate Construction

It is well known that Jacobi forms (over Q) appear as Fourier coefficients of
Siegel modular forms (see Eichler and Zagier [2], and for Jacobi forms of higher
degree, see Krieg [7]). In this section, we follow Skogman [12] and [13] and we
present an example of an analogous situation over K. We show that sums of the
Jacobi theta function ©, RW(T 7) appear as coefficients of the symplectic theta
function 19( ( )) (roughly speaking, a Siegel modular form of weight 1/2). Then
(7) yields another proof that sums of © OR, W(T 7) satisfy the transformation laws (17)
and (18). Note that this method is not sufficient to prove that each theta function
Ok (T, 2) satisfies (17) and (18).

Let 7,7 €9, and 2= (z1,...,24n) €Z, ie. zj€C for j=1,...,r, and
zi=uj+vk€2forj=r +1,...,r +r. Let Z* be as in (22) and let Z"* be
the matrix corresponding to 7. For j = 1,...,r, we set

% zil

ZF=(Yr __ ], 29

! < _Zjlq> @)
and for j = =+ 1,...,r + rp, we define the n X n matrices 17 = u;l,, I/J\J = u;l,,

V = vjl,, V = U]I We also define the ndeg K x ndeg K matrix

Zl
g Ur1+1 in1+1
Z* = (30)
Unir, Vi ir,
in1+1 Ur1+1
Vi r Unir,
Furthermore, we define
>~ _ (z¥ z*
With T as in (23), set
= T 0
T = <0 T) (32)
and
Z =Tz*T. (33)

Note that Z = ’?Eii; 7’, where

= (T &) (34)
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and

" Inr|
ST = Inrz

1 nry

One can check that Im(S'IZ’E ) >0 and hence ImZ >0 and Z € $?%5)_ We find
that

o5(3) - 5 it i

weJ"
ri+nr
+ Y 0V + QU wi)]x] + 2iR;{w! }y,>} (35)
Jj=ri+1
where Q = (), ... w(”+2’2))

The representation in (35) shows that the Jacobi theta functions e RQ(T 2)
arise as Fourier coefficients with respect to the 7’ variables. However, there may be
a number of vectors w in JI" which are all part of the same Fourier coefficient;
In some cases, QV)[w (’)] 0w (’)] and R; [w%”] =R [wgﬁ] for all j, although
wy # wy. Hence, (35) does not allow us to examine transformatlon properties of
the single theta function ®<Q ,)e o(7, 2). In addition, we require, as in Theorem 3, that
QW) = =R, wV) forj=1,...,ry, and we determine transformation properties for
the followmg sums:

Oa(r,z) = > O a(T2). (36)

RE

K E X
OVw]=0V k], 1 <j < ri+2m
Rj[w(’)]=R,[HU)] 1 <j<r+2n
QW) :ij(r), 1<j<n
5.1. The modular transformation. We will show that Oq/(7, z) satisfies (17).
We embed (?; b ) €T into the symplectic group and define

0
A 0 B
(& 5)-|c
c D) |cC
0
where A, B, C, and D are given by (26). If

(O‘ B) €T (FoxMN),

A

(37)

o o
~Nooo

0
D
0

we have

;{ E (2n degK)
~ = I
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The symplectic transformation
(AZ+B)(CZ+D)"
corresponds to the transformations

) — (2 7)o

1

v 0

)72
o oL
J J

_— <7<
70)77+50>, for 1<j<r,

and

71— = W+ (W7 +60) Wy, for n+1<j<n+n

As in section 4.1, we have
det(CZ 4+ D) = N (vr + 8> N (7 + 6)7/2.

The actual Fourier expansion in (35) is only with respect to the x| variables.
However, it is easy to see that one can compare coefficients in (35) after applying
(7) (see also [12]). We find that

(0 )2

=x((05)e)roresyiaarra”

x exp {7 Tp[(Lw)z(yT + 6)7172Lw]}99(7', 2), (38)

where X((: ?),Q) is an eighth root of unity. Theorem 1 guarantees that

X < (3 g) , Q> actually coincides with the root of unity in (28).

5.2. The elliptic transformation. It remains to show that ©q/(7, z) also satisfies
(18). For (A, 1) € O% set

\degK)

and
/’I‘(rl >Ep,q
M(’"l +1)]n

pldeeKp

n
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where T is as in (23). We embed (A, 1) into the symplectic group as

In(deg K) 0 0 M
A Legxy M AM
39
0 0 Lex) A (39)
0 0 0 Li(deg k)
The symplectic transformation
Ly(deg k) 0 74 0 M Lyegx)y  —A -
A In(degK) M AM 0 In(degK)
corresponds to the transformations
75— g+ AV + u(")
7/ + ATAD 2207 + A0 ;.
We apply (7), use Theorem 1, and compare coefficients in (35) to obtain
@Q(()‘a /1') o (Ta Z))
= exp{—m Zp[(Lw)(ATA + 2A2)Lw]}Oq(T, 2), (40)

which is the transformation law (18).

6. Conclusion

We have presented two different ways to construct examples of complex-valued
functions over a number field K which satisfy transformation laws generalizing
those of Jacobi forms (as in Eichler and Zagier [2]) and skew- holomorphic Jacobi
forms (as in Skoruppa [14]) The first method was based on Eichler’s “embed-
ding trick”: We regarded GQ 1>ew #(7.2) (a certain coefficient of G)(Q ,)QW(T z)) as a

specialization of ¥(Z, (7),w, f), a modified version of the usual symplectic theta
function 19( (Y)) The functlonal equation for 19( ( ) w f) then yielded the
transformatlon law of @Q rw(T2) under modular transformatlons In the second
method, we showed how sums of @Q 2. (T:2) appear as coefficients of ¥(Z, ()).
This natural approach has the shght dlsadvantage that one can only determlne
transformation laws for sums of @Q I)QW(T z) and not for each theta function
@(Qﬁ){,_w(T z) directly.

We would like to remark that the first approach suggests a way to construct
examples of vector-valued functions over K which satisfy transformation properties
generalizing (4) and (5). More precisely, one can define o ,)QW J(T z, ( )) and
@(Qlfl)w (T zZ, ( )) generalizations of (13) and (14) that also depend on u =

Cuy, .. tudeg,() and v =""v,...,Vaegk), Where uy, ..., ugegx and vy, ..., Vdegk
are Vectors in C" (see Deﬁmtlon 1 of [11]). A version of our main result (Theorem
3) will also hold for @Q Row (T 2 ( _ )) We omit the details since the argument
follows that in section 4 with the exception that one has to consider a specialization
of ¥(Z, ( . ) W, f) for some vectors r and s instead of19(Z, ( 8 ) W, f). One may then
construct a more general class of Jacobi forms by proceeding as in [11] and applying
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the differential operators in the last section of [11] to equation (17) (of the slightly
generalized version of Theorem 3). In particular, when X is totally complex, one
can create vector-valued Jacobi forms over K, i.e., real analytic functions f :
HY x 27 — C"*! that satisfy transformation laws similar to (4) and (5). The only
difference is that the right hand side of (4) features an extra factor of p(*) (yr +9),
where

M@= Q) ")

1<j<n

and [)(z)(”) is the k-fold symmetric product representation of the quaternion z € 2.
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