Differential operators on Hilbert modular forms

YoungJu Choie ${ }^{\text {a, }, ~}$, Haesuk Kim ${ }^{\text {a }}$, Olav K. Richter ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics, University of North Texas, Denton, TX 76203, USA

Received 20 October 2001; revised 23 December 2005
Available online 27 April 2006
Communicated by D. Zagier

Abstract

We investigate differential operators and their compatibility with subgroups of $\mathrm{SL}_{2}(\mathbb{R})^{n}$. In particular, we construct Rankin-Cohen brackets for Hilbert modular forms, and more generally, multilinear differential operators on the space of Hilbert modular forms. As an application, we explicitly determine the RankinCohen bracket of a Hilbert-Eisenstein series and an arbitrary Hilbert modular form. We use this result to compute the Petersson inner product of such a bracket and a Hilbert modular cusp form.

© 2006 Elsevier Inc. All rights reserved.
MSC: primary 11F55; secondary 11F41, 11F60

1. Introduction

It is well known how to obtain modular forms from the derivative of N modular forms. In 1956, Rankin [14] discussed this in detail for $N=1$ and in 1975, Cohen [7] explored the case $N=2$ and he constructed a bilinear operator to obtain modular forms. Later, Zagier [19] investigated algebraic properties of this operator and called it the Rankin-Cohen bracket. Rankin-Cohen brackets have been studied for elliptic modular forms, Jacobi forms, and Siegel modular forms. For more details, see [1-5,10,19].

In this paper, we use differential operators to construct various maps between spaces of holomorphic functions which are equivariant under the action of subgroups of $\mathrm{SL}_{2}(\mathbb{R})^{n}$. Our results

[^0]include a construction of Hilbert modular forms, which then allows us to define Rankin-Cohen brackets for Hilbert modular forms, and furthermore, multilinear differential operators on the space of Hilbert modular forms. In the last section, we give an explicit application: We compute the Petersson inner product of a Rankin-Cohen bracket against a Hilbert modular cusp form. We proceed as in Zagier [18] and Choie and Kohnen [6], where such an application is presented for elliptic modular forms and Jacobi forms, respectively.

2. Hilbert modular forms and Jacobi-like forms of several variables

In this section, we briefly discuss modular forms and Jacobi-like forms of several variables. Let $\mathbb{H} \subset \mathbb{C}$ be the usual complex upper half plane. For variables $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right) \in \mathbb{H}^{n}$, $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, and for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right), \ldots,\left(\begin{array}{ll}a_{n} & b_{n} \\ c_{n} & d_{n}\end{array}\right)\right) \in \operatorname{SL}_{2}(\mathbb{R})^{n}$, define the actions

$$
\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right) \circ \tau=\left(\frac{a_{1} \tau_{1}+b_{1}}{c_{1} \tau_{1}+d_{1}}, \ldots, \frac{a_{n} \tau_{n}+b_{n}}{c_{n} \tau_{n}+d_{n}}\right)
$$

and

$$
\left(\begin{array}{ll}
a & b \tag{2}\\
c & d
\end{array}\right) \circ(\tau, z)=\left(\frac{a_{1} \tau_{1}+b_{1}}{c_{1} \tau_{1}+d_{1}}, \ldots, \frac{a_{n} \tau_{n}+b_{n}}{c_{n} \tau_{n}+d_{n}}, \frac{z_{1}}{c_{1} \tau_{1}+d_{1}}, \ldots, \frac{z_{n}}{c_{n} \tau_{n}+d_{n}}\right)
$$

The trace and the norm of an element $\alpha \in \mathbb{C}^{n}$ are given by the sum and by the product of its components, respectively. More generally, if $c=\left(c_{1}, \ldots, c_{n}\right), d=\left(d_{1}, \ldots, d_{n}\right), \mathfrak{k}=\left(k_{1}, \ldots, k_{n}\right)$, and $\mathfrak{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{R}^{n}$, then the norm and trace are given by

$$
\begin{equation*}
\mathcal{N}(c \tau+d)^{\mathfrak{k}}=\prod_{j=1}^{n}\left(c_{j} \tau_{j}+d_{j}\right)^{k_{j}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(\mathfrak{m} \frac{c z^{2}}{c \tau+c}\right)=\sum_{j=1}^{n} m_{j} \frac{c_{j} z_{j}^{2}}{c_{j} \tau_{j}+d_{j}} \tag{4}
\end{equation*}
$$

We define the following two slash operators. For functions $f: \mathbb{H}^{n} \rightarrow \mathbb{C}$, for fixed $\mathfrak{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}_{0}^{n}$, and for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{R})^{n}$, set

$$
\left(\left.f\right|_{\mathfrak{k}}\left(\begin{array}{ll}
a & b \tag{5}\\
c & d
\end{array}\right)\right)(\tau)=\mathcal{N}(c \tau+d)^{-\mathfrak{k}} f\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \circ \tau\right)
$$

Furthermore, for functions $\phi: \mathbb{H}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$, for fixed $\mathfrak{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}_{0}^{n}$ and $\mathfrak{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}_{0}^{n}$, and for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{R})^{n}$, set

$$
\begin{align*}
& \left(\left.\phi\right|_{\mathfrak{k}, \mathfrak{m}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)(\tau, z) \\
& \quad=\mathcal{N}(c \tau+d)^{-\mathfrak{k}} \exp \left\{-2 \pi i \operatorname{tr}\left(\mathfrak{m} \frac{\gamma z^{2}}{c \tau+d}\right)\right\} \phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \circ(\tau, z)\right) . \tag{6}
\end{align*}
$$

The slash operators (5) and (6) define (for each $\mathfrak{k}, \mathfrak{m} \in \mathbb{N}_{0}^{n}$) a group action of $\mathrm{SL}_{2}(\mathbb{R})^{n}$ on the set of functions $f: \mathbb{H}^{n} \rightarrow \mathbb{C}$ and on the set of functions $\phi: \mathbb{H}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$, respectively. We write $\mathcal{M}_{\mathfrak{k}}=\left\{f: \mathbb{H}^{n} \rightarrow \mathbb{C}\right.$ holomorphic $\}$ and $\mathcal{J}_{\mathfrak{k}, \mathfrak{m}}=\left\{\phi: \mathbb{H}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}\right.$ holomorphic $\}$ to indicate the specific group actions given in (5) and (6), which depend on fixed $\mathfrak{k}, \mathfrak{m} \in \mathbb{N}_{0}^{n}$.

Special consideration belongs to the invariant elements of $\mathcal{M}_{\mathfrak{k}}$ and $\mathcal{J}_{\mathfrak{k}, \mathfrak{m}}$. Let Γ be a subgroup of $\mathrm{SL}_{2}(\mathbb{R})^{n}$. A modular form $f: \mathbb{H}^{n} \rightarrow \mathbb{C}$ of weight $\mathfrak{k} \in \mathbb{N}_{0}^{n}$ with respect to Γ is an element of $\mathcal{M}_{\mathfrak{k}}$ invariant under the action of Γ, i.e., for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$,

$$
\left(\left.f\right|_{\mathfrak{k}}\left(\begin{array}{ll}
a & b \tag{7}\\
c & d
\end{array}\right)\right)(\tau)=f(\tau)
$$

A Jacobi-like form $\phi: \mathbb{H}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ of weight $\mathfrak{k} \in \mathbb{N}_{0}^{n}$ and index $\mathfrak{m} \in \mathbb{N}_{0}^{n}$ on Γ is an element of $\mathcal{J}_{\mathfrak{k}, \mathfrak{m}}$ invariant under the action of Γ, i.e., for $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma$

$$
\left(\left.\phi\right|_{\mathfrak{k}, \mathfrak{m}}\left(\begin{array}{ll}
a & b \tag{8}\\
c & d
\end{array}\right)\right)(\tau, z)=\phi(\tau, z)
$$

Jacobi-like forms where $n=1$ were introduced by Zagier [19] and Cohen, Manin, and Zagier [9]. Note that Jacobi forms satisfy (8) and also an elliptic transformation law (see [10,17]). For our purposes, it will suffice to consider only Jacobi-like forms.

We denote the vector space of holomorphic modular forms of weight \mathfrak{k} on Γ by $\mathcal{M}_{\mathfrak{k}}(\Gamma)$ and the vector space of holomorphic Jacobi-like forms of weight \mathfrak{k} and index \mathfrak{m} on Γ by $\mathcal{J}_{\mathfrak{k}, \mathfrak{m}}(\Gamma)$. Of particular interest is the case when Γ is a subgroup of finite index of $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$, where \mathcal{O}_{K} is the ring of integers of a totally real number field K of degree n, and where $\operatorname{SL}_{2}\left(\mathcal{O}_{K}\right)$ is embedded into $\mathrm{SL}_{2}(\mathbb{R})^{n}$ using the n different embeddings of K into \mathbb{R}. In that case, the elements of $\mathcal{M}_{\mathfrak{k}}(\Gamma)$ are called Hilbert modular forms (see [11,12]).

3. Taylor expansions of Jacobi-like forms

In this section we investigate Taylor coefficients of functions $\phi(\tau, z)$ around $z=0$ using ideas from $\S 3$ of Eichler and Zagier [10]. We use linear combinations of these Taylor coefficients to define an equivariant map from $\mathcal{J}_{\mathfrak{k}, \mathfrak{m}}$ to $\mathcal{M}_{\mathfrak{k}+\mathfrak{v}}$, which provides a construction of Hilbert modular forms. In addition, we construct equivariant maps which yield (see Section 4) Rankin-Cohen brackets and multilinear operators on the space of Hilbert modular forms.

As before, let Γ be a subgroup of $\mathrm{SL}_{2}(\mathbb{R})^{n}$. We use standard notation with multi-indices: If $\mathfrak{v}=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{N}_{0}^{n}$ and $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, then

$$
|\mathfrak{v}|=\sum_{j=1}^{n} v_{j}, \quad \mathfrak{v}!=\prod_{j=1}^{n} v_{j}!\quad \text { and } \quad z^{\mathfrak{v}}=\prod_{j=1}^{n} z_{j}^{v_{j}} .
$$

Furthermore, for an integer $x \in \mathbb{N}_{0}$, we set $\vec{x}=(x, \ldots, x) \in \mathbb{N}_{0}^{n}$ and with a slight abuse of notation, we write $\chi^{(\mathfrak{l})}(\tau)=\frac{\partial^{|I|}}{\partial \tau_{1}^{l_{1} \ldots \partial \tau_{n}^{l_{n}}}} \chi(\tau)$, where $\chi: \mathbb{H}^{n} \rightarrow \mathbb{C}$ is holomorphic. We have the following theorem:

Theorem 1. Let $\phi(\tau, z)=\sum_{|\mathfrak{v}| \geqslant 0} \chi_{\mathfrak{v}}(\tau) z^{\mathfrak{v}}$ be holomorphic and set

$$
\begin{equation*}
\xi_{\mathfrak{v}}[\phi](\tau)=\sum_{\substack{\mathfrak{l} \\ 0 \leqslant l_{j} \leqslant \frac{v_{j}}{2}}} \frac{(-2 \pi i \mathfrak{m})^{\mathfrak{l}}(\mathfrak{k}+\mathfrak{v}-\overrightarrow{2}-\mathfrak{l})!}{\mathfrak{l}!(\mathfrak{k}+\mathfrak{v}-\overrightarrow{2})!} \chi_{\mathfrak{v}-2 \mathfrak{l}}^{(\mathfrak{l})}(\tau), \tag{9}
\end{equation*}
$$

where the sum on the right side is over all vectors $\mathfrak{l}=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}$ such that $0 \leqslant l_{j} \leqslant v_{j} / 2$ for $j=1, \ldots, n$. Then for all $M \in \mathrm{SL}_{2}(\mathbb{R})^{n}$,

$$
\left.\xi_{\mathfrak{v}}[\phi]\right|_{\mathfrak{k}+\mathfrak{v}} M=\xi_{\mathfrak{v}}\left[\left.\phi\right|_{\mathfrak{k}, \mathfrak{m}} M\right],
$$

i.e., the map $\xi_{\mathfrak{v}}: \mathcal{J}_{\mathfrak{k}, \mathfrak{m}} \rightarrow \mathcal{M}_{\mathfrak{k}+\mathfrak{v}}$ is equivariant. In particular, if $\phi \in \mathcal{J}_{\mathfrak{k}, \mathfrak{m}}(\Gamma)$, then $\xi_{\mathfrak{v}}[\phi] \in \mathcal{M}_{\mathfrak{k}+\mathfrak{v}}(\Gamma)$.

Proof. We follow the proof of Theorem 3.2 in Eichler and Zagier [10]. Let $\mathcal{J}_{\mathfrak{k}, \mathfrak{m}}=\mathcal{J}_{\mathfrak{k}, \mathfrak{m}}^{+} \oplus \mathcal{J}_{\mathfrak{k}, \mathfrak{m}}^{-}$, where $\mathcal{J}_{\mathfrak{k}, \mathfrak{m}}^{+}$is the subset of $\mathcal{J}_{\mathfrak{k}, \mathfrak{m}}$ consisting of all functions $\phi(\tau, z)$ whose Taylor series expansion around $z=0$ is only over multi-indices of the form $2 \mathfrak{v}$. If $\phi^{-}(\tau, z) \in \mathcal{J}_{\mathfrak{k}, \mathfrak{m}}^{-}$, then $\phi^{-}(\tau, z)=z^{\mathfrak{h}} \phi_{1}(\tau, z)$, where $\mathfrak{h} \neq 0$ is a vector of zeros and ones and $\phi_{1}(\tau, z) \in \mathcal{J}_{\mathfrak{k}+\mathfrak{h}, \mathfrak{m}}^{+}$. Note that the corresponding functions $\chi_{\mathfrak{v}}(\tau)$ and $\xi_{\mathfrak{v}}[\phi](\tau)$ for $\phi^{-}(\tau, z)$ and $\phi_{1}(\tau, z)$ are the same except for the shift $\mathfrak{k} \rightarrow \mathfrak{k}+\mathfrak{h}$ and $\mathfrak{v} \rightarrow \mathfrak{v}-\mathfrak{h}$. Thus, it will suffice to consider $\mathcal{J}_{\mathfrak{k}, \mathfrak{m}}^{+}$and deduce that $\left.\xi_{2 \mathfrak{v}}[\phi]\right|_{\mathfrak{k}+2 \mathfrak{v}} M=\xi_{2 \mathfrak{v}}\left[\left.\phi\right|_{\mathfrak{k}, \mathfrak{m}} M\right]$.

For $1 \leqslant j \leqslant n$, set $e_{j}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{N}_{0}^{n}$ and define the differential operator

$$
L_{k_{j}, \mathfrak{m}^{(j)}}^{(j)}=8 \pi i \mathfrak{m}^{(j)} \frac{\partial}{\partial \tau_{j}}-\frac{\partial^{2}}{\partial z_{j}^{2}}-\frac{2 k_{j}-1}{z_{j}} \frac{\partial}{\partial z_{j}}
$$

where $\mathfrak{k}=\left(k_{1}, \ldots, k_{n}\right)$. Then (as in [10])

$$
\begin{equation*}
L_{k_{j}, \mathfrak{m}^{(j)}}^{(j)}\left(\left.\phi\right|_{\mathfrak{k}, \mathfrak{m}} M\right)=\left.L_{k_{j}, \mathfrak{m}^{(j)}}^{(j)}(\phi)\right|_{\mathfrak{k}+2 e_{j}, \mathfrak{m}} M \tag{10}
\end{equation*}
$$

for all $M \in \mathrm{SL}_{2}(\mathbb{R})^{n}$, which shows that $L_{k_{j}, \mathfrak{m}}^{(j)}: \mathcal{J}_{\mathfrak{k}, \mathfrak{m}}^{+} \rightarrow \mathcal{J}_{\mathfrak{k}+2 e_{j}, \mathfrak{m}}^{+}$.
Note that $\mathfrak{v}=\left(v_{1}, \ldots, v_{n}\right)=\sum_{j=1}^{n} v_{j} e_{j}$. As in [10], one can construct a map $L_{\mathfrak{k}, \mathfrak{m}, \mathfrak{v}}: \mathcal{J}_{\mathfrak{k}, \mathfrak{m}}^{+} \rightarrow \mathcal{J}_{\mathfrak{k}+2 \mathfrak{v}, \mathfrak{m}}^{+}$that sends

$$
\sum_{|\mathfrak{w}| \geqslant 0} \chi_{\mathfrak{w}}(\tau) z^{2 \mathfrak{w}}
$$

to

$$
\sum_{|\mathfrak{w}| \geqslant 0}\left(\sum_{0 \leqslant l_{j} \leqslant v_{j}}(8 \pi i \mathfrak{m})^{\mathfrak{l}}(-4)^{|\mathfrak{v}-\mathfrak{l}|}\binom{\mathfrak{v}}{\mathfrak{l}} \frac{(\mathfrak{w}+\mathfrak{v}-\mathfrak{l})!}{\mathfrak{w}!} \frac{(\mathfrak{w}+\mathfrak{k}+2 \mathfrak{v}-\overrightarrow{2}-\mathfrak{l})!}{(\mathfrak{w}+\mathfrak{k}+\mathfrak{v}-\overrightarrow{2})!} \chi_{\mathfrak{w}+\mathfrak{v}-\mathfrak{l}}^{(\mathfrak{l})}(\tau)\right) z^{2 \mathfrak{w}} .
$$

Composing with the map $\phi(\tau, z) \rightarrow \phi(\tau, 0)$ yields

$$
\left.\xi_{2 \mathfrak{v}}[\phi]\right|_{\mathfrak{k}+2 \mathfrak{v}} M=\xi_{2 \mathfrak{v}}\left[\left.\phi\right|_{\mathfrak{k}, \mathfrak{m}} M\right],
$$

which completes the proof.

Remark. In [10, §7], Eichler and Zagier show that Jacobi theta functions are Jacobi forms. The " $2 v$ th development coefficient" is (up to a constant factor) the analog of the $\xi_{2 \mathfrak{v}}[\phi](\tau)$. In the case of a Jacobi theta function, one can show that this coefficient is given by a theta function with harmonic coefficients. In [16], the authors use Jacobi theta functions over a number field K to construct Jacobi forms over K. When K is totally real, then one finds that the corresponding $\xi_{2 \mathfrak{v}}[\phi](\tau)$ are (up to a constant factor) given by theta functions with harmonic coefficients over K, which are indeed Hilbert modular forms (see [15] for more details).

Note that (9) can be inverted. We find that

$$
\begin{equation*}
\chi_{\mathfrak{v}}(\tau)=\sum_{\substack{\mathfrak{l} \\ 0 \leqslant l_{j} \leqslant \frac{v_{j}}{2}}} \frac{(2 \pi i \mathfrak{m})^{\mathfrak{l}}(\mathfrak{k}+\mathfrak{v}-\overrightarrow{1}-2 \mathfrak{l})!}{\mathfrak{l}!(\mathfrak{k}+\mathfrak{v}-\overrightarrow{1}-\mathfrak{l})!} \xi_{\mathfrak{v}-2 \mathfrak{l}[\phi]^{(\mathfrak{l})}(\tau)} . \tag{11}
\end{equation*}
$$

We choose $\xi_{0}[\phi](\tau)=f(\tau)$ and $\xi_{\mathfrak{v}}[\phi](\tau)=0$ for $\mathfrak{v} \neq 0$, and we extend a result by Cohen and Kuznetsov (see, for example, [10, Theorem 3.3]):

Theorem 2. For a holomorphic function $f: \mathbb{H}^{n} \rightarrow \mathbb{C}$ and for $\mathfrak{k}, \mathfrak{m} \in \mathbb{N}_{0}^{n}$, set

$$
\begin{equation*}
\tilde{f}(\tau, z)=\tilde{f}(\mathfrak{k}, \mathfrak{m}, \tau, z)=\sum_{|\mathfrak{v}| \geqslant 0} \frac{(2 \pi i \mathfrak{m})^{\mathfrak{v}}(\mathfrak{k}-\overrightarrow{1})!}{\mathfrak{v}!(\mathfrak{k}+\mathfrak{v}-\overrightarrow{1})!} f^{(\mathfrak{v})}(\tau) z^{2 \mathfrak{v}} . \tag{12}
\end{equation*}
$$

Then for all $M \in \mathrm{SL}_{2}(\mathbb{R})^{n}$,

$$
\begin{equation*}
\widetilde{\left(\left.f\right|_{\mathfrak{k}} M\right)}=\left.\tilde{f}\right|_{\mathfrak{k}, \mathfrak{m}} M \tag{13}
\end{equation*}
$$

i.e., the map $\sim: \mathcal{M}_{\mathfrak{k}} \rightarrow \mathcal{J}_{\mathfrak{k}, \mathfrak{m}}$ is equivariant. In particular, if $f \in \mathcal{M}_{\mathfrak{k}}(\Gamma)$, then $\tilde{f} \in \mathcal{J}_{\mathfrak{k}, \mathfrak{m}}(\Gamma)$.

Remarks.

(a) Note that Theorem 2 also follows directly from the following identity:

$$
\left.f^{(\mathfrak{v})}\right|_{\mathfrak{k}+2 \mathfrak{v}}\left(\begin{array}{ll}
a & b \tag{14}\\
c & d
\end{array}\right)=\sum_{0 \leqslant l_{j}^{\mathfrak{l}} \leqslant v_{j}}\binom{\mathfrak{v}}{\mathfrak{l}}\left(\frac{c}{c \tau+d}\right)^{\mathfrak{v}-\mathfrak{l}} \frac{(\mathfrak{k}+\mathfrak{v}-\overrightarrow{1})!}{(\mathfrak{k}+\mathfrak{l}-\overrightarrow{1})!}\left(\left.f\right|_{\mathfrak{k}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)^{(\mathfrak{l})},
$$

which is easily proved by an induction on $|\mathfrak{v}|$ (as before, $\mathfrak{v}=\left(v_{1}, \ldots, v_{n}\right)$).
(b) We should also point out that both Theorems 1 and 2 can be deduced from the classical $n=1$ case (see [10, Theorems 3.2 and 3.3]): Write an arbitrary $M=\left(M_{1}, \ldots, M_{n}\right) \in \mathrm{SL}_{2}(\mathbb{R})^{n}$ as a product of the (commutative) elements ($1, \ldots, 1, M_{j}, 1, \ldots, 1$) and apply the $n=1$ case to each pair of variables $\left(\tau_{j}, z_{j}\right)$ separately.

4. Generalized Rankin-Cohen brackets

Theorems 1 and 2 can be combined to give various types of brackets of Hilbert modular forms. The first one is a direct generalization of the classical Rankin-Cohen bracket to the Hilbert modular case.

Corollary 1. Let $f_{r}: \mathbb{H}^{n} \rightarrow \mathbb{C}$ be holomorphic and $\mathfrak{k}_{r} \in \mathbb{N}_{0}^{n}$ for $r=1,2$. For all $\mathfrak{v}=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{N}_{0}^{n}$, define the Rankin-Cohen bracket

$$
\begin{equation*}
\left[f_{1}, f_{2}\right]_{\mathfrak{v}}=\sum_{0 \leqslant l_{j} \leqslant v_{j}}(-1)^{|\mathfrak{l}|}\binom{\mathfrak{k}_{1}+\mathfrak{v}-\overrightarrow{\mathfrak{l}}}{\mathfrak{v}-\mathfrak{l}}\binom{\mathfrak{k}_{2}+\mathfrak{v}-\overrightarrow{\mathfrak{l}}}{\mathfrak{l}} f_{1}^{(\mathfrak{l})}(\tau) f_{2}^{(\mathfrak{v}-\mathfrak{l})}(\tau) . \tag{15}
\end{equation*}
$$

Then for all $M \in \mathrm{SL}_{2}(\mathbb{R})^{n}$,

$$
\begin{equation*}
\left[\left(\left.f_{1}\right|_{\mathfrak{k}_{1}} M\right),\left(\left.f_{2}\right|_{\mathfrak{k}_{2}} M\right)\right]_{\mathfrak{v}}=\left.\left[f_{1}, f_{2}\right]_{\mathfrak{v}}\right|_{\mathfrak{k}_{1}+\mathfrak{k}_{2}+2 \mathfrak{v}} M \tag{16}
\end{equation*}
$$

i.e., the map $[\cdot, \cdot]_{\mathfrak{v}}: \mathcal{M}_{\mathfrak{k}_{1}} \otimes \mathcal{M}_{\mathfrak{k}_{2}} \rightarrow \mathcal{M}_{\mathfrak{k}_{1}+\mathfrak{k}_{2}+2 \mathfrak{v}}$ is equivariant. In particular, if Γ is a subgroup of $\mathrm{SL}_{2}(\mathbb{R})^{n}$ and $f_{r} \in \mathcal{M}_{\mathfrak{k}_{r}}(\Gamma)$ for $r=1,2$, then $\left[f_{1}, f_{2}\right]_{\mathfrak{v}} \in \mathcal{M}_{\mathfrak{k}_{1}+\mathfrak{k}_{2}+2 \mathfrak{v}}(\Gamma)$.

Proof. Compute the coefficient of $z^{2 \mathfrak{v}}$ in $\tilde{f}_{1}\left(\mathfrak{k}_{1}, \mathfrak{m}, \tau, z\right) \tilde{f}_{2}\left(\mathfrak{k}_{2}, \mathfrak{m}, \tau, i z\right)$.

Remarks.

(a) As examples, if $n=2, \mathfrak{k}_{1}=\left(k_{1}, \bar{k}_{1}\right)$, and $\mathfrak{k}_{2}=\left(k_{2}, \bar{k}_{2}\right)$, then we have

$$
\begin{aligned}
& {\left[f_{1}, f_{2}\right]_{(0,0)}=f_{1} f_{2}, \quad\left[f_{1}, f_{2}\right]_{(1,0)}=k_{1} f_{1} \frac{\partial f_{2}}{\partial \tau_{1}}-k_{2} \frac{\partial f_{1}}{\partial \tau_{1}} f_{2}} \\
& {\left[f_{1}, f_{2}\right]_{(0,1)}=\bar{k}_{1} f_{1} \frac{\partial f_{2}}{\partial \tau_{2}}-\bar{k}_{2} \frac{\partial f_{1}}{\partial \tau_{2}} f_{2}} \\
& {\left[f_{1}, f_{2}\right]_{(1,1)}=k_{1} \bar{k}_{1} f_{1} \frac{\partial^{2} f_{2}}{\partial \tau_{1} \partial \tau_{2}}-k_{1} \bar{k}_{2} \frac{\partial f_{1}}{\partial \tau_{2}} \frac{\partial f_{2}}{\partial \tau_{1}}-\bar{k}_{1} k_{2} \frac{\partial f_{1}}{\partial \tau_{1}} \frac{\partial f_{2}}{\partial \tau_{2}}+k_{2} \bar{k}_{2} \frac{\partial^{2} f_{1}}{\partial \tau_{1} \partial \tau_{2}} f_{2}, \quad \text { etc. }}
\end{aligned}
$$

(b) It is well known that the vector space of Hilbert modular forms has the structure of a commutative graded ring, which corresponds to the 0 th bracket. Note that $[\cdot, \cdot]_{e_{j}}$, where $e_{j}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{N}_{0}^{n}$ satisfies the Jacobi identity, which gives the vector space of Hilbert modular forms the structure of a graded Lie algebra in n different ways (but with the grading shifted by a different amount for each structure).
(c) Note that Lee [13] discovered Corollary 1 independently in the case where Γ is a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{R})^{n}$ and $f_{r} \in \mathcal{M}_{\mathfrak{k}_{r}}(\Gamma)$ for $r=1,2$.

The next corollary, which is more general than Corollary 1, is an application of Theorems 1 and 2 and shows how to construct multilinear operators on the space of Hilbert modular forms, depending on a number of auxiliary parameters. It seems to be new even if $n=1$.

Corollary 2. Let $\mathfrak{a}=\left(a_{1}, \ldots, a_{s}\right) \in \mathbb{C}^{s}, \mathfrak{k}_{r} \in \mathbb{N}_{0}^{n}, f_{r} \in \mathcal{M}_{\mathfrak{k}_{r}}$ for $r=1, \ldots, s$ and set $\mathfrak{k}=\sum_{r=1}^{s} \mathfrak{k}_{r}$. For all $\mathfrak{v} \in \mathbb{N}_{0}^{n}$ define

$$
\begin{align*}
{\left[f_{1}, \ldots, f_{s}\right]_{\mathfrak{v}}^{[\mathfrak{a}]}=} & \sum_{\mathfrak{l}_{1}+\cdots+\mathfrak{l}_{s}+\mathfrak{l}=\mathfrak{v}} \frac{(-|\mathfrak{a}|)^{|\mathfrak{l}|}(\mathfrak{k}+2 \mathfrak{v}-\overrightarrow{2}-\mathfrak{l})!}{\mathfrak{l}!(\mathfrak{k}+2 \mathfrak{v}-\overrightarrow{2})!}\left(\prod_{r=1}^{s} \frac{\left(\mathfrak{k}_{r}-\overrightarrow{1}\right)!a_{r}^{\left|\mathfrak{l}_{r}\right|}}{\mathfrak{l}_{r}!\left(\mathfrak{k}_{r}-\overrightarrow{1}+\mathfrak{l}_{r}\right)!}\right) \\
& \times\left(f_{1}^{\left(\mathfrak{l}_{1}\right)} \cdots f_{s}^{\left(\mathfrak{l}_{s}\right)}\right)^{(\mathfrak{l})}, \tag{17}
\end{align*}
$$

where the sum is over all vectors $\mathfrak{l}_{1}, \ldots, \mathfrak{l}_{s}, \mathfrak{l} \in \mathbb{N}_{0}^{n}$ with $\mathfrak{l}_{1}+\cdots+\mathfrak{l}_{s}+\mathfrak{l}=\mathfrak{v}$. Then for all $M \in \mathrm{SL}_{2}(\mathbb{R})^{n}$,

$$
\begin{equation*}
\left[\left(\left.f_{1}\right|_{\mathfrak{k}_{1}} M\right), \ldots,\left(\left.f_{s}\right|_{\mathfrak{k}_{s}} M\right)\right]_{\mathfrak{v}}^{[\mathfrak{a}]}=\left.\left[f_{1}, \ldots, f_{s}\right]_{\mathfrak{v}}^{[\mathfrak{a}]}\right|_{\mathfrak{k}+2 \mathfrak{v}} M \tag{18}
\end{equation*}
$$

i.e., the map $[\cdot, \ldots, \cdot]_{\mathfrak{v}}^{[\mathfrak{a}]}: \mathcal{M}_{\mathfrak{k}_{1}} \otimes \cdots \otimes \mathcal{M}_{\mathfrak{k}_{s}} \rightarrow \mathcal{M}_{\mathfrak{k}+2 \mathfrak{v}}$ is equivariant. In particular, if Γ is a subgroup of $\operatorname{SL}_{2}(\mathbb{R})^{n}$ and $f_{r} \in \mathcal{M}_{\mathfrak{e}_{r}}(\Gamma)$ for $r=1, \ldots, s$, then $\left[f_{1}, \ldots, f_{s}\right]_{\mathfrak{v}}^{[\mathfrak{a}]} \in \mathcal{M}_{\mathfrak{k}+2 \mathfrak{v}}(\Gamma)$.

Proof. Note that Theorems 1 and 2 hold actually for all $\mathfrak{m} \in \mathbb{C}^{n}$ (using (6) for $\mathfrak{m} \in \mathbb{C}^{n}$) and not just for $\mathfrak{m} \in \mathbb{N}_{0}^{n}$. Set

$$
\begin{equation*}
\phi\left[f_{1}, \ldots, f_{s}\right]=\prod_{r=1}^{s} \tilde{f}_{r}\left(\mathfrak{k}_{r}, a_{r} \overrightarrow{1}, \tau, z\right)=\sum_{|\mathfrak{v}| \geqslant 0} \chi_{2 \mathfrak{v}}(\tau) z^{2 \mathfrak{v}}, \tag{19}
\end{equation*}
$$

where $\tilde{f}_{r}\left(\mathfrak{k}_{r}, a_{r} \overrightarrow{1}, \tau, z\right)$ (for $\left.r=1, \ldots, s\right)$ is as in Theorem 2. One finds that

$$
\chi_{2 \mathfrak{v}}(\tau)=(2 \pi i)^{|\mathfrak{v}|} \sum_{\mathfrak{l}_{1}+\cdots+\mathfrak{l}_{s}=\mathfrak{v}} \prod_{r=1}^{s} \frac{\left(\mathfrak{k}_{r}-\overrightarrow{1}\right)!}{\mathfrak{l}_{r}!\left(\mathfrak{k}_{r}-\overrightarrow{1}+\mathfrak{l}_{r}\right)!} a_{r}^{\left|\mathfrak{l}_{r}\right|} f_{r}^{\left(\mathfrak{l}_{r}\right)}(\tau) .
$$

Theorem 2 implies

$$
\phi\left[\left(\left.f_{1}\right|_{\mathfrak{k}_{1}} M\right), \ldots,\left(\left.f_{s}\right|_{\mathfrak{k}_{s}} M\right)\right]=\left.\phi\left[f_{1}, \ldots, f_{s}\right]\right|_{\mathfrak{k},(|\mathfrak{a}|, \ldots,|\mathfrak{a}|)} M
$$

and our claim then follows from Theorem 1.

Remark. If $s=2$ and $|\mathfrak{a}|=0$, then the multilinear bracket (17) reduces by definition to the Rankin-Cohen bracket (15).

The fact that the classical Rankin-Cohen brackets are the unique differential operators compatible with modularity implies that the generalized brackets (17) can be expressed (in many ways!) in terms of the standard 2 -variable brackets $[\cdot, \cdot]_{\mathfrak{v}}$. In particular, there is a formula

$$
\begin{align*}
{\left[f_{1}, \ldots, f_{s}\right]_{\mathfrak{v}}^{[\mathfrak{a}]}=} & \sum_{\mathfrak{v}_{1}+\cdots+\mathfrak{v}_{s-1}=\mathfrak{v}} c\left(\mathfrak{a} ; \mathfrak{v}_{1}, \ldots, \mathfrak{v}_{s-1} ; \mathfrak{k}_{1}, \ldots, \mathfrak{k}_{s}\right) \\
& \times\left[\left[\ldots,\left[\left[f_{1}, f_{2}\right]_{\mathfrak{v}_{1}}, f_{3}\right]_{\mathfrak{v}_{2}}, \ldots\right]_{\mathfrak{v}_{s-2}}, f_{s}\right]_{\mathfrak{v}_{s-1}} \tag{20}
\end{align*}
$$

expressing $\left[f_{1}, \ldots, f_{s}\right]_{\mathfrak{v}}^{[\mathfrak{a}]}$ for any s and any $\mathfrak{a}=\left(a_{1}, \ldots, a_{s}\right)$ as a linear combination of iterated 2 -argument Rankin-Cohen brackets. It might be of interest to compute the coefficients $c\left(\mathfrak{a} ; \mathfrak{v}_{1}, \ldots, \mathfrak{v}_{s-1} ; \mathfrak{k}_{1}, \ldots, \mathfrak{k}_{s}\right)$ and study their combinatorial structure explicitly.

In the special case where $s=2$, (20) simply says that the bracket $[f, g]_{\mathfrak{v}}^{[(a, b)]}$ (where $(f, g) \in \mathcal{M}_{\mathfrak{k}} \times \mathcal{M}_{\mathfrak{l}}$ and $\left.(a, b) \in \mathbb{C}^{2}\right)$ is a scalar-multiple of the bracket $[f, g]_{\mathfrak{v}}$. More specifically, we find that

$$
\begin{equation*}
[f, g]_{\mathfrak{v}}^{[(a, b)]}=\frac{H_{\mathfrak{v}}(\mathfrak{k}, \mathfrak{l} ; a, b)}{(\mathfrak{k})_{\mathfrak{v}}(\mathfrak{l})_{\mathfrak{v}}(\mathfrak{k}+\mathfrak{l}+\mathfrak{v}-\overrightarrow{1})_{\mathfrak{v}}}[f, g]_{\mathfrak{v}}, \tag{21}
\end{equation*}
$$

where

$$
H_{\mathfrak{v}}(\mathfrak{k}, \mathfrak{l} ; a, b)=\sum_{0 \leqslant l_{j} \leqslant v_{j}}(-1)^{|\mathfrak{l}|}\binom{\mathfrak{k}+\mathfrak{v}-\overrightarrow{\mathfrak{l}}}{\mathfrak{v}-\mathfrak{l}}\binom{\mathfrak{l}+\mathfrak{v}-\overrightarrow{\mathrm{l}}}{\mathfrak{l}} a^{|\mathfrak{l}|} b^{|\mathfrak{v}-\mathfrak{l}|}
$$

is the Rankin-Cohen polynomial and

$$
(\mathfrak{k})_{\mathfrak{v}}=\frac{(\mathfrak{k}+\mathfrak{v}-\overrightarrow{1})!}{(\mathfrak{k}-\overrightarrow{1})!}
$$

is the ascending Pochhammer symbol. Note that if $n=1$, then (21) is given implicitly in [19, §3].
Equation (20) yields $s!/ 2$ ways of writing $\left[f_{1}, \ldots, f_{s}\right]_{\mathfrak{v}}^{[\mathfrak{a}]}$ as a linear combination of iterated 2 -argument Rankin-Cohen brackets (permute the functions f_{1}, \ldots, f_{s} in any way, except that the order of the first two functions does not matter). However, there are other expressions in terms of 2 -argument brackets. If $1 \leqslant r<s$, then $\phi\left[f_{1}, \ldots, f_{s}\right]=\phi\left[f_{1}, \ldots, f_{r}\right] \phi\left[f_{r+1}, \ldots, f_{s}\right]$, where ϕ is as in (19), and applying Theorems 2 and 1 implies that

$$
\begin{align*}
& {\left[f_{1}, \ldots, f_{s}\right]_{\mathfrak{v}}^{[\mathfrak{a}]}} \\
& \quad=\sum_{\mathfrak{v}_{1}+\mathfrak{v}_{2}+\mathfrak{v}_{3}=\mathfrak{v}} C\left(\mathfrak{a} ; \mathfrak{v}_{1}, \mathfrak{v}_{2}, \mathfrak{v}_{3} ; \mathfrak{k}_{1}, \ldots, \mathfrak{k}_{s}\right) \\
& \quad \times\left[\left[f_{1}, \ldots, f_{r}\right]_{\mathfrak{v}_{1}}^{\left[\left(a_{1}, \ldots, a_{r}\right)\right]},\left[f_{r+1}, \ldots, f_{s}\right]_{\mathfrak{v}_{2}}^{\left[\left(a_{r+1}, \ldots, a_{s}\right)\right]}\right]_{\mathfrak{v}_{3}}^{\left[\left(a_{1}+\cdots+a_{r}, a_{r+1}+\cdots+a_{s}\right)\right]} \tag{22}
\end{align*}
$$

where the coefficients $C\left(\mathfrak{a} ; \mathfrak{v}_{1}, \mathfrak{v}_{2}, \mathfrak{v}_{3} ; \mathfrak{k}_{1}, \ldots, \mathfrak{k}_{s}\right)$ can be computed explicitly. Iterating (22) yields a large variety of expressions in terms of 2-argument brackets. In particular, iterating the special case $r=s-1$ in (22) gives (20).

We conclude this section with a slight generalization of Corollaries 1 and 2. This gives in particular maps from Hilbert modular forms over L to Hilbert modular forms over K, where L is a totally real extension field of a totally real number field K.

Corollary 3. Let $\mathfrak{a}=\left(a_{1}, \ldots, a_{s}\right) \in \mathbb{C}^{s}$ and $\mathfrak{k}=\sum_{r=1}^{s} \mathfrak{k}_{r}$ where $\mathfrak{k}_{r} \in \mathbb{N}_{0}^{n}$. For a holomorphic function $f: \mathbb{H}^{s n} \rightarrow \mathbb{C}$ and for $\mathfrak{v} \in \mathbb{N}_{0}^{n}$, define

$$
\begin{equation*}
\Phi_{\mathfrak{v}}^{[\mathfrak{a}]}[f](\tau)=\left.\sum_{\mathfrak{l}_{1}+\cdots+\mathfrak{l}_{s}+\mathfrak{l}=\mathfrak{v}} c\left(\mathfrak{l}_{1}, \ldots, \mathfrak{l}_{s}, \mathfrak{l}\right)\left(\sum_{r=1}^{s} \frac{\partial}{\partial \mathfrak{t}_{r}}\right)^{\mathfrak{l}} \frac{\partial^{|\mathfrak{v}-\mathfrak{l}|}}{\partial \mathfrak{t}_{1}^{\mathfrak{l}_{1}} \cdots \partial \mathfrak{t}_{s}^{\mathfrak{l}_{\mathfrak{s}}}} f\left(\mathfrak{t}_{1}, \ldots, \mathfrak{t}_{s}\right)\right|_{\tau=\mathfrak{t}_{1}=\cdots=\mathfrak{t}_{s}}, \tag{23}
\end{equation*}
$$

where $\tau, \mathfrak{t}_{1}, \ldots, \mathfrak{t}_{s}$ are variables in \mathbb{H}^{n} and where

$$
c\left(\mathfrak{l}_{1}, \ldots, \mathfrak{l}_{s}, \mathfrak{l}\right)=\frac{(-|\mathfrak{a}|)^{|\mathfrak{l}|}(\mathfrak{k}+2 \mathfrak{v}-\overrightarrow{2}-\mathfrak{l})!}{\mathfrak{l}!(\mathfrak{k}+2 \mathfrak{v}-\overrightarrow{2})!} \prod_{r=1}^{s} \frac{\left(\mathfrak{k}_{r}-\overrightarrow{1}\right)!a_{r}^{\left|\mathfrak{l}_{r}\right|}}{\mathfrak{l}_{r}!\left(\mathfrak{k}_{r}-\overrightarrow{1}+\mathfrak{l}_{r}\right)!} .
$$

Then for all $M \in \mathrm{SL}_{2}(\mathbb{R})^{n}$,

$$
\Phi_{\mathfrak{v}}^{[\mathfrak{a}]}\left[\left.f\right|_{\left(\mathfrak{k}_{1}, \ldots, \mathfrak{k}_{s}\right)}(M, \ldots, M)\right]=\left.\Phi_{\mathfrak{v}}^{[\mathfrak{a}]}[f]\right|_{\mathfrak{k}+2 \mathfrak{v}} M
$$

i.e., the map $\Phi_{\mathfrak{b}}^{[\mathfrak{a}]}: \mathcal{M}_{\left(\mathfrak{k}_{1}, \ldots, \mathfrak{k}_{s}\right)} \rightarrow \mathcal{M}_{\mathfrak{k}+2 \mathfrak{v}}$ is equivariant. In particular, if Γ is a subgroup of $\mathrm{SL}_{2}(\mathbb{R})^{n}$ and $f \in \mathcal{M}_{\left(\mathfrak{k}_{1}, \ldots, \mathfrak{k}_{s}\right)}(\Delta(\Gamma))$, where $\Delta: \mathrm{SL}_{2}(\mathbb{R})^{n} \rightarrow\left(\mathrm{SL}_{2}(\mathbb{R})^{n}\right)^{s}$ is the diagonal map, then $\Phi_{\mathfrak{v}}^{[\mathfrak{a}]}[f] \in \mathcal{M}_{\mathfrak{k}+2 \mathfrak{v}}(\Gamma)$.

Proof. We apply Theorems 1 and 2. Let $\mathfrak{t}=\left(\mathfrak{t}_{1}, \ldots, \mathfrak{t}_{s}\right) \in \mathbb{H}^{s n}$ and $\mathcal{Z}=\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{s}\right) \in \mathbb{C}^{s n}$ be variables. Set

$$
\begin{equation*}
\phi[f]=\left.\tilde{f}(\mathcal{K}, \mathcal{A}, \mathfrak{t}, \mathcal{Z})\right|_{\substack{\tau=\mathfrak{t}_{1}=\cdots=\mathfrak{t}_{s} \\ z=\mathcal{Z}_{1}=\cdots=\mathcal{Z}_{s}}}=\sum_{|\mathfrak{v}| \geqslant 0} \chi_{2 \mathfrak{v}}(\tau) z^{2 \mathfrak{v}}, \tag{24}
\end{equation*}
$$

where $\mathcal{K}=\left(\mathfrak{k}_{1}, \ldots, \mathfrak{k}_{s}\right), \mathcal{A}=\left(a_{1} \overrightarrow{1}, \ldots, a_{s} \overrightarrow{1}\right)$, and where \tilde{f} is as in Theorem 2. Then (compare the proof of Corollary 2)

$$
\chi_{2 \mathfrak{v}}(\tau)=\left.(2 \pi i)^{|\mathfrak{v}|} \sum_{\mathfrak{l}_{1}+\cdots+\mathfrak{l}_{s}=\mathfrak{v}} \prod_{r=1}^{s} \frac{\left(\mathfrak{k}_{r}-\overrightarrow{1}\right)!}{\mathfrak{r}_{r}!\left(\mathfrak{k}_{r}-\overrightarrow{1}+\mathfrak{l}_{r}\right)!} a_{r}^{\left|\mathfrak{l}_{r}\right|} \frac{\partial^{\left|\mathfrak{l}_{r}\right|}}{\partial \mathfrak{t}_{r}^{\mathfrak{l}_{r}}} f(\mathfrak{t})\right|_{\tau=\mathfrak{t}_{1}=\cdots=\mathfrak{t}_{s}} .
$$

Theorem 2 implies

$$
\phi\left[\left.f\right|_{\left(\mathfrak{k}_{1}, \ldots, \mathfrak{k}_{s}\right)}(M, \ldots, M)\right]=\left.\phi[f]\right|_{\mathfrak{k},(|\mathfrak{a}|, \ldots,|\mathfrak{a}|)} M
$$

and Theorem 1 then yields (23).

Corollary 3 can be specialized in many ways. If $n=1, s=2$, and $|\mathfrak{a}|=0$, then Corollary 3 reduces to Theorem 2.2(a) in [8]. If $f=\prod_{j=1}^{s} f_{r}$ where $f_{r} \in \mathcal{M}_{\mathfrak{k}_{r}}$, then (23) coincides with the multilinear bracket (17). At the other extreme, we can take f to be a Hilbert modular form of multiweight $\left(\mathfrak{k}_{1}, \ldots, \mathfrak{k}_{s}\right)$ on a totally real field extension L of K of degree s, where $[K: \mathbb{Q}]=n$; then Corollary 3 gives a collection of maps

$$
\mathcal{M}_{\left(\mathfrak{k}_{1}, \ldots, \mathfrak{k}_{s}\right)}\left(\mathrm{SL}_{2}\left(\mathcal{O}_{L}\right)\right) \rightarrow \mathcal{M}_{\mathfrak{k}_{1}+\cdots+\mathfrak{k}_{s}+2 \mathfrak{v}}\left(\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)\right) .
$$

More generally, we also get multilinear maps from tensor products of Hilbert modular forms on L_{1}, \ldots, L_{r} to Hilbert modular forms on K, where L_{1}, \ldots, L_{r} are totally real extensions of K with $\sum_{i=1}^{r}\left[L_{i}: K\right]=s$.

5. Rankin-Cohen brackets and the Petersson inner product

In this section we present an application of Corollary 1 . We explicitly determine the RankinCohen bracket of a Hilbert-Eisenstein series and an arbitrary Hilbert modular form. Furthermore, we compute the Petersson inner product of such a bracket and a Hilbert modular cusp form. We follow Zagier [18] and Choie and Kohnen [6], where a similar computation is shown for elliptic modular forms and Jacobi forms, respectively.

Throughout this section, let Γ be a subgroup of finite index of $\operatorname{SL}_{2}\left(\mathcal{O}_{K}\right)$, where \mathcal{O}_{K} is the ring of integers of a totally real number field K of degree n. Let \mathfrak{d}_{K} be the different of K. If $\alpha \in \mathcal{O}_{K}$, then $\alpha \succcurlyeq 0$ denotes that $\alpha=0$ or α is totally positive, and $\alpha \gg 0$ means that α is totally positive. The trace and the norm of an element $\alpha \in K$ are given by the sum and by the product of its conjugates $\alpha^{(1)}, \ldots, \alpha^{(n)}$, respectively. We also use the more general definitions of the trace and norm in (3) and (4) by identifying $\alpha \in K$ with ($\alpha^{(1)}, \ldots, \alpha^{(n)}$). Finally, $\mathcal{M}_{\mathfrak{k}}^{\text {cusp }}(\Gamma)$ is the vector space of Hilbert modular cusp forms of weight \mathfrak{k} on Γ (for more details see $[11,12])$.

Set $\Gamma_{\infty}=\left\{\left.\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right) \in \Gamma \right\rvert\, t \in \mathcal{O}_{K}\right\}$. Let $k \in \mathbb{N}_{0}$, then

$$
E_{k}(\tau)=\sum_{M \in \Gamma_{\infty} \backslash \Gamma}\left(\left.1\right|_{\vec{k}} M\right)(\tau)=\sum_{M=\left(\begin{array}{c}
* \tag{25}\\
\gamma \\
\gamma
\end{array}\right) \in \Gamma_{\infty} \backslash \Gamma} \mathcal{N}(\gamma \tau+\delta)^{-\vec{k}}
$$

is the Hilbert-Eisenstein series of weight \vec{k} on Γ. It is well known that $E_{k}(\tau) \in \mathcal{M}_{\vec{k}}(\Gamma)$ if $k>2$ (see, for example, Freitag [11]). For $v \in \mathcal{O}_{K}, v \succcurlyeq 0$, set $p_{\nu}(\tau)=\exp \{2 \pi i \operatorname{tr}(\nu \tau)\}$. Let $\mathfrak{l}=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}$. Then

$$
\begin{align*}
\mathcal{P}_{\mathfrak{l}, v}(\tau) & =\sum_{M \in \Gamma_{\infty} \backslash \Gamma}\left(\left.p_{v}\right|_{\mathfrak{l}} M\right)(\tau) \\
& =\sum_{M=\left(\begin{array}{c}
* * \\
\gamma \\
\gamma
\end{array}\right) \in \Gamma_{\infty} \backslash \Gamma} \mathcal{N}(\gamma \tau+\delta)^{-\mathfrak{l}} \exp \{2 \pi i \operatorname{tr}(\nu(M \circ \tau))\} \tag{26}
\end{align*}
$$

is the ν th Hilbert-Poincare series of weight \mathfrak{l} with respect to Γ. It is well known that $\mathcal{P}_{\mathfrak{l}, v}(\tau) \in \mathcal{M}_{\mathfrak{l}}^{\text {cusp }}(\Gamma)$ if $v \gg 0$ and $l_{j}>2$ for $j=1, \ldots, n$ (see, for example, Garrett [12]). Note that if $l \in \mathbb{N}_{0}$, then $\mathcal{P}_{\vec{l}, 0}(\tau)=E_{l}(\tau)$.

Let $f, g \in \mathcal{M}_{\mathfrak{k}}(\Gamma)$ such that $f g$ is cuspidal. Then the Petersson inner product is given by

$$
\begin{equation*}
\langle f, g\rangle=\int_{\Gamma \backslash \mathbb{H}^{n}} f(\tau) \overline{g(\tau)} y^{\mathfrak{k}-\overrightarrow{2}} d x d y \tag{27}
\end{equation*}
$$

where $\tau=x+i y, d x=d x_{1} \cdots d x_{n}$, and $d y=d y_{1} \cdots d y_{n}$. Note that the space $\left(\mathcal{M}_{\mathfrak{k}}^{\text {cusp }}(\Gamma),\langle\rangle,\right)$ is a finite-dimensional Hilbert space. It is also well known (see, for example, Garrett [12]) that if

$$
f(\tau)=\sum_{\substack{\mathfrak{n} \in \mathfrak{d}_{K}^{-1} \\ \mathfrak{n} \gg 0}} a_{\mathfrak{n}} \exp \{2 \pi i \operatorname{tr}(\mathfrak{n} \tau)\} \in \mathcal{M}_{\mathfrak{l}}^{\text {cusp }}(\Gamma)
$$

then

$$
\begin{equation*}
\left\langle f, \mathcal{P}_{\mathfrak{l}, v}\right\rangle=a_{v} \operatorname{vol}\left(\Lambda \backslash \mathbb{R}^{n}\right)(4 \pi v)^{\overrightarrow{1}-\mathfrak{l}}(\mathfrak{l}-\overrightarrow{2})! \tag{28}
\end{equation*}
$$

where $\left.\Lambda=\left\{\mathfrak{t} \in \mathbb{R}^{n} \left\lvert\, \begin{array}{ll}1 & t \\ 0 & 1\end{array}\right.\right) \in \Gamma\right\}$.
We will use the following lemma to compute the Rankin-Cohen bracket of a HilbertEisenstein series and an arbitrary Hilbert modular form.

Lemma 1. For \vec{k} and $\mathfrak{r} \in \mathbb{N}_{0}^{n}$, we have

$$
\begin{equation*}
E_{k}^{(\mathfrak{r})}(\tau)=\sum_{M=\binom{*}{\gamma^{*} \delta} \in \Gamma_{\infty} \backslash \Gamma}\left((-\gamma)^{\mathfrak{r}} \frac{(\vec{k}-\overrightarrow{1}+\mathfrak{r})!}{(\vec{k}-\overrightarrow{1})!}\right)\left(\left.1\right|_{\vec{k}+\mathfrak{r}} M\right)(\tau) . \tag{29}
\end{equation*}
$$

Proof. Direct computation.
The following proposition is an application of Corollary 1 and gives an explicit formula for the Rankin-Cohen bracket of a Hilbert-Eisenstein series and an arbitrary Hilbert modular form.

Proposition 1. Let $E_{k}(\tau)$ be the Hilbert-Eisenstein series in (25) and let

$$
g_{\mathfrak{l}}(\tau)=\sum_{\substack{\mathfrak{n} \in \mathfrak{d}_{K}^{-1} \\ \mathfrak{n} \succcurlyeq 0}} b_{\mathfrak{n}} \exp \{2 \pi i \operatorname{tr}(\mathfrak{n} \tau)\} \in \mathcal{M}_{\mathfrak{l}}(\Gamma)
$$

Then, for all $\mathfrak{v} \in \mathbb{N}_{0}^{n}$, we have

$$
\begin{equation*}
\left[E_{k}, g_{\mathfrak{l}}\right]_{\mathfrak{v}}=\binom{\vec{k}+\mathfrak{v}-\overrightarrow{1}}{\mathfrak{v}} \sum_{v \succcurlyeq 0}(2 \pi i v)^{\mathfrak{v}} b_{\nu} \mathcal{P}_{\vec{k}+\mathfrak{l}+2 \mathfrak{v}, v}(\tau) \tag{30}
\end{equation*}
$$

Proof. One can check that

$$
\begin{aligned}
\sum_{v} & (2 \pi i v)^{\mathfrak{v}} b_{v} \mathcal{P}_{\vec{k}+\mathfrak{l}+2 \mathfrak{v}, v}(\tau) \\
& =\sum_{M \in \Gamma_{\infty} \backslash \Gamma} \sum_{v \succcurlyeq 0}(2 \pi i v)^{\mathfrak{v}}\left(\left.1\right|_{\vec{k}+\mathfrak{l}+2 \mathfrak{v}} M\right)(\tau) b_{v} \exp \{2 \pi i \operatorname{tr}(\nu(M \circ \tau))\} \\
& =\sum_{M \in \Gamma_{\infty} \backslash \Gamma}\left(\left.1\right|_{\vec{k}} M\right)(\tau)\left(\left.g_{\mathfrak{l}}^{(\mathfrak{v})}\right|_{\mathfrak{l}+2 \mathfrak{v}} M\right)(\tau) \\
& =\frac{(\vec{k}-\overrightarrow{1})!\mathfrak{v}!}{(\vec{k}+\mathfrak{v}-\overrightarrow{1})!}\left[E_{k}, g_{\mathfrak{l}}\right]_{\mathfrak{v}} .
\end{aligned}
$$

Note that Lemma 1 and Eq. (14) justify the last equation.

As an immediate consequence of Theorem 1 and Eq. (28), we record:

Theorem 3. Let $\mathfrak{w}=\vec{k}+\mathfrak{l}+2 \mathfrak{v}$, where $k>2$ and $\mathfrak{l}, \mathfrak{v} \in \mathbb{N}_{0}^{n}$. Suppose that

$$
f_{\mathfrak{w}}(\tau)=\sum_{\substack{\mathfrak{n} \in \mathfrak{d}_{K}^{-1} \\ \mathfrak{n} \gg 0}} a_{\mathfrak{n}} \exp \{2 \pi i \operatorname{tr}(\mathfrak{n} \tau)\} \in \mathcal{M}_{\mathfrak{w}}^{\text {cusp }}(\Gamma)
$$

and

$$
g_{\mathfrak{l}}(\tau)=\sum_{\substack{\mathfrak{n} \in \mathfrak{d}_{K}^{-1} \\ \mathfrak{n} \succcurlyeq 0}} b_{\mathfrak{n}} \exp \{2 \pi i \operatorname{tr}(\mathfrak{n} \tau)\} \in \mathcal{M}_{\mathfrak{l}}(\Gamma)
$$

Then

$$
\begin{equation*}
\left\langle f_{\mathfrak{w}},\left[E_{k}, g_{\mathfrak{l}}\right]_{\mathfrak{v}}\right\rangle=\operatorname{vol}\left(\Lambda \backslash \mathbb{R}^{n}\right)(2 \pi i)^{|\mathfrak{v}|}(4 \pi)^{|\overrightarrow{1}-\mathfrak{w}|} \frac{(\mathfrak{w}-\overrightarrow{2})!(\vec{k}+\mathfrak{v}-\overrightarrow{1})!}{(\vec{k}-\overrightarrow{1})!\mathfrak{v}!} \sum_{\nu \gg 0} \frac{a_{v} \overline{b_{v}}}{v^{\vec{k}+\mathfrak{l}+\mathfrak{v}-\overrightarrow{1}}} . \tag{31}
\end{equation*}
$$

Acknowledgment

The authors thank Don Zagier for many valuable suggestions.

References

[1] Y. Choie, Jacobi forms and the heat operator, Math. Z. 225 (1997) 95-101.
[2] Y. Choie, Jacobi forms and the heat operator II, Illinois J. Math. 42 (2) (1998) 179-186.
[3] Y. Choie, Multilinear operators on Siegel modular forms of genus 1 and 2, J. Math. Anal. Appl. 232 (1999) 34-44.
[4] Y. Choie, W. Eholzer, Rankin-Cohen operators for Jacobi and Siegel forms, J. Number Theory 68 (1998) 160-177.
[5] Y. Choie, H. Kim, Differential operators on Jacobi forms of several variables, J. Number Theory 82 (2000) 140-163.
[6] Y. Choie, W. Kohnen, Rankin's method and Jacobi forms, Abh. Math. Sem. Univ. Hamburg 67 (1997) 307-314.
[7] H. Cohen, Sums involving the values at negative integers of L-functions and quadratic characters, Math. Ann. 217 (1975) 271-285.
[8] H. Cohen, A lifting of modular forms in one variable to Hilbert modular forms in two variables, in: Modular Functions of One Variable VI, in: Lecture Notes in Math., vol. 627, Springer, 1977, pp. 175-196.
[9] P. Cohen, Y. Manin, D. Zagier, Automorphic pseudodifferential operators, Progr. Nonlinear Differential Equations Appl. 26 (1995) 17-47.
[10] M. Eichler, D. Zagier, The Theory of Jacobi Forms, Birkhäuser, Boston, 1985.
[11] E. Freitag, Hilbert Modular Forms, Springer, Berlin, 1990.
[12] P. Garrett, Holomorphic Hilbert Modular Forms, Wadsworth and Brooks/Cole Math. Ser., 1990.
[13] M. Lee, Hilbert modular pseudodifferential operators, Proc. Amer. Math. Soc. 129 (11) (2001) 3151-3160.
[14] R. Rankin, The construction of automorphic forms from the derivatives of a given form, J. Indian Math. Soc. 20 (1956) 103-116.
[15] O. Richter, Theta functions with harmonic coefficients over number fields, J. Number Theory 95 (1) (2002) 101121.
[16] O. Richter, H. Skogman, Jacobi theta functions over number fields, Monatsh. Math. 141 (3) (2004) 219-235.
[17] H. Skogman, Jacobi forms over totally real number fields, Results Math. 39 (1-2) (2001) 169-182.
[18] D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, in: Modular Functions of One Variable VI, in: Lecture Notes in Math., vol. 627, Springer, 1977, pp. 105-169.
[19] D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104 (1) (1994) 57-75.

[^0]: * Corresponding author.

 E-mail addresses: yjc@ postech.ac.kr (Y.J. Choie), kimhs@future.co.kr (H. Kim), richter@unt.edu (O.K. Richter).
 1 The author was partially supported by KOSEF R01-2003-00011596-0 and ITRC.

