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We investigate theta functions attached to quadratic forms over a number field K.
We establish a functional equation by regarding the theta functions as specializations
of symplectic theta functions. By applying a differential operator to the functional
equation, we show how theta functions with harmonic coefficients over K behave
under modular transformations.  © 2002 Elsevier Science (USA)

1. INTRODUCTION

Let O be a positive-definite n x n matrix with integral entries and even
diagonal entries defining the quadratic form Q[x] ='xQOx. Suppose ¢ is a
spherical function of weight v with respect to Q. It is well known that the
theta function

Opp(2) = ¢(g)expiniQlglz},  Imz>0 (1)
geZ"

is a modular form of weight n/2 + v on I'((N), where I' = SL,(Z) and N is
the level of O, i.e., NO~! is integral and NO~! has even diagonal entries. This
was proved by Schoeneberg [13] for even n and by Pfetzer [9] for odd n.
Shimura [14] generalizes their results for arbitrary » and also computes the
theta multiplier explicitly.

Andrianov and Maloletkin [1, 2] generalize (1) and define theta series of
higher degree. In [1], they construct Siegel modular forms by regarding theta
series corresponding to positive-definite quadratic forms as specializations
of symplectic theta functions. In addition, they apply a differential operator
to the functional equation of the theta functions to show that theta series of
higher degree with harmonic coefficients are also Siegel modular forms. In
[2], they obtain analogous results for theta functions corresponding to
indefinite quadratic forms. Stark [15] computes the theta multiplier for the
symplectic theta function. As an application, he explicitly determines the
theta multiplier of Andrianov’s and Maloletkin’s theta functions.
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One can also generalize (1) by considering theta functions of quadratic
forms over number fields. Eichler [4] and Stopple [17] construct modular
forms over real number fields using theta functions corresponding to
positive-definite quadratic forms and indefinite quadratic forms. In [10, 11],
we take the approach described in Andrianov and Maloletkin [1,2] to
construct modular forms over number fields. We define theta functions of
quadratic forms over real number fields and over complex quadratic number
fields, and we regard these theta functions as symplectic theta functions to
determine the behavior under modular transformations. This elegant
method has been used frequently in the literature, see also Friedberg [5],
Imamoglu [7,8], and Stark [15,16].

In [10, 11], we do not consider theta functions with spherical functions. In
this paper we fill that gap. We define theta functions corresponding to
quadratic forms over an arbitrary number field K. We prove a functional
equation for those theta functions by regarding them as symplectic theta
functions and we use the main result of Stark [15] to determine the eighth
root of unity which arises under modular transformations. In particular, we
generalize the main results of [10,11]. Furthermore, we apply a differential
operator to that functional equation. This allows us to show how theta
functions with harmonic coefficients over K behave under modular
transformations.

2. STATEMENT OF THE RESULTS

2.1. Notation. Let K be an algebraic number field with r; real conjugates
and r, pairs of complex conjugates. The real conjugates of an element o in K
are given by o),... a0 and the complex conjugates are given by
oD o+ where oUt) = 40) for 1 4+ 1 < j < r; + . Let 9k be
the different of K and Ok be the ring of integers of K. Denote the field of
complex numbers by C and let H = {ze C,Imz >0} be the usual upper
half-plane. Let Hy = {x + yk|xe C, y e R"} be the quaternionic upper
half-plane consisting of quaternions with no j-component and positive k-

component. Set = H"H’; and write a typical element as z = (z1, ...,z 4,)
€9 where z;=x;+iy;eH for j=1,...,r1 and z; =x;+ y;keHy for
j=nrn+1,...,ri+r. We have z=(Z,...,Z,1,) where, as usual, z; =

x;—iy; for j=1,...,rn and z; =X; — yjk for j=r +1,...,r1 +r2. The

action of a matrix
v B
M= eI = Sh(Dk)
y 0

on z = (Zla LR 7ZI'1+r2) € 53 is glven by
Moz = (M(l)ozl, cee aM(rﬁLrZ)ozrlJrrz)a (2)
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where
Moz, = (62, + BOYGVz; 4 69)~.

Note that Moz € §. Furthermore, for y and ¢ in K and z in &, we define

Il ri+nr
Nz+0) = [T 692+ T 107z + 6711,
Jj=1 J=r+l1

where |}z, + 67|17 = [yVx; + 6V + pPP)? is the usual norm of the
quaternion, and in particular,
| ) ) ri+r . .
N Gz+0)"? =T[ 69z +M TT 1190z + 71,
=1

J Jj=ri+1

where each of the r| square roots on the right is given by the principal value.
We will construct functions f:$ — C which transform in the following

way: For
o
b el
y 0

f(Mo2) = (M) N (yz + 81 N (72 + 6)° £ (2), (©)

where y(M) is a root of unity.

Moreover, if K is totally complex (i.e., if 7; = 0), we will also investigate
vector-valued functions with a more complicated multiplier system. For a
vector (7), set

SK

Sxflt

()
S _ SK72t2
( t> M
A =
c d

be a complex matrix and let s and ¢ be variables such that () = A4(;). We
define the x-fold symmetric product A® to be the (x + 1) x (x + 1) matrix

given by
() (1)
) o=aw( %)
v t

Let
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For a quaternion z; = x; + y;k with x;, y; € C, define the representation

. xXp 1y
.D(Zj) = _J _J
1y Xj

and let ﬁ(K)(zj) = ﬁ(zj)(") be the x-fold symmetric product representation of
the quaternion. Let U ® V = (u,,, V) denote the Kronecker product of two
vectors or matrices U and V. Finally, for z = (zi,...,z,,) where z; = x; + y;k
with x;, y; € C, we define the representation
D= © ).
1<j<nr

For K totally complex, we construct functions f : H} — C?**" which

transform in the following way: For

[(Mo2) = (M) N (72 + 61 p®(yz + 6) ), 4)

where y(M) is a root of unity. Note that if K is totally complex, then
N(yz + ) = N (yz+ 9).

2.2. Theta Functions of Quadratic Forms. It will be useful to define
UlV]="VUV and U{V} ="WUV for any vector or matrix ¥ and any
matrix U. Suppose Q is a symmetric n X n matrix with entries in Og
defining the quadratic form Q[x], where xeC". If, in addition,
QO has diagonal entries which are divisible by 2, we say that Q is of
level 9 (9t an ideal in Og) whenever the following two conditions are
satisfied:

(a) The matrix Q~' has entries in Ok and the diagonal entries of Q™!
are divisible by 2 for all n € 9.
(b) If M is any integral ideal satisfying (a), i.e., uQ~' has entries
in Og and 2 divides the diagonal entries of uQ~' for all ue 9, then N
divides M.
Suppose that all of the real conjugates of O are of the same type (k, /).
Then there exist matrices S; in GL,(R) such that

Q(i) :tSjEkJSj fOI‘jZ 1,...,7"1 (5)
and there exist matrices S; in GL,(C) such that

Q(/) :[Sij forj:r1+1,...,rl+r2y (6)
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I
E.; = s

and [; and I; are the k x k and [/ x [/ identity matrices, respectively.
We set

where

R; ='S;S,. (7)
For all j, R; is a majorant of OV, i.e.,
ROV 'R;=00 and 'R;=R; >0.
We define a theta function corresponding to a quadratic form by

DerFINITION 1. Let Q be a symmetric n x n matrix with entries
in Og such that 2 divides the diagonal entries of Q and such that Q
is of level M. Assume that all of the real conjugates QY7 of O have
the same signature (k,/) and set R; as in (7). Let wuy,...,ugeex and
Ul,...,Udegx be vectors in C" and set u="(uy,..., useex) and
v="(v1,...,'vaeg k). We abuse notation and write u;.,, =#; and
Viyr, = 0; for j=ri+1,...,r1+r. For an ideal 3 < Ox and for
z2=1(21,-»Zn+r) €D, we define

)

8!
= Z exp{ni (Z oY + vlx; + iRj[l(]) +v;ly;

13" j=1

ri+r o )
+ >0 0 + vl + OO + 5155 + 2iR; 1Y) + v}y
Jj=ri+l1
deg K ) . ) (8)
_ Z 24D QWy; +tUjQU)Mj> },
=
where 1 ='(11,...,1,) and 1 =/(\'",...,1%)). We abuse notation again by

writing R; {19 4 v;} = ‘(Y + 0)R;(D + b))

The following theorem gives the transformation law of @gr(z, (;)) under
modular transformations and, furthermore, generalizes the main results of
[10,11].
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THEOREM 1. For

(“ p ) e To(326,),
y 0

we have

(5 55 2)(0))

w((f/‘ §>,Q>M@z+5)"/2m(~/z+5)’/2@Q,R ((’;)) ©)
where

(2 %))

is an eighth root of unity. In particular, if 6 > 0 is a first degree prime of norm

p, then
-1 n
y((‘j ’ >,Q> = (22740, (10)

where N'(0) = p,ande, =1 for p=1mod4ande, =ifor p=3mod4 and
(3) is the quadratic symbol.

Actually, in Section 3.3 we will see that

((:9)2)

can be determined even if J is not a totally positive first degree prime.

Now we will introduce spherical functions over number fields. We would
like to emphasize that the situation is different for real and complex number
fields and, therefore, we treat these cases separately.

Let K be totally real (i.e., » = 0). Suppose w{, .. Swiand wy,...,w, are
vectors in C", such that R;[w/] = R,[w;] =0, OVw; = Rjw/, and QVw; =
—Rjw; for j=1,...,r. We call the function

X)) = p(X1,.... %) = [ [ (07w (x;0"w; Y (11)
j=1

a spherical function of weight (x, A) relative to the pair (Q, R) over K, where
X; e C" are vectors of variables. We generalize the theta function in (1) and
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we define a theta function with harmonic coefficients over a totally real
number field K by

DEerFINITION 2. Let Q be a symmetric » X n matrix with entries in Ok
such that 2 divides the diagonal entries of Q and such that Q is of level .
Assume that all conjugates QY of O have the same signature (k, /) and set R;
asin (7). Let ¢(X) be a harmonic function of weight (x, 1) as in (11). For an

ideal 3 < Ok and for z = (zy,...,z,) € H", we define
Il
O @ =" ¢0) exp{m’ > + iR_,[zU)]y_,}, (12)
1€3" j=1
where 1 ='(1,...,1,) and 1 =/, 1)),

We have the following theorem:

THEOREM 2. For

g
(“ f ) e To(326, ),
y 0

we have

) o f
(0 1)-

- ( ( , §>,Q) Nz + 0 PN GE+ 0P 0 @), (13)

((:3)2)

is the same root of unity as in Theorem 1 and is given explicitly in (10).

where

Now let K be a totally complex number field (i.e., r; = 0). Suppose wy,
...,w,, are vectors in C" such that R;{w;} =0 and QYw; = R;w;, for
j=1,...,m. We call the vector-valued function

X.00w \
) = ¢(X1,... X)) = X < o W’) : (14)

I~ A ——
1<j<mn \ X;00W;
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a spherical function of weight x over K, where X; e C" are vectors of

variables. Again, we generalize the theta function in (1) and we define a

theta function with harmonic coefficients over a totally complex field K by
DEerINITION 3. Let O be a symmetric » X n matrix with entries in Ok

such that 2 divides the diagonal entries of O and such that Q is of level 9.

Set R; as in (7). Let ¢(X) be a spherical function of weight « as in (14). For
an ideal 3 < Ok and for z = (zy, .. .,z,) € H}, we define

@(rz) ¢>( z)

= Z o(1) exp{m Z OV, + QDT + 2iR; {z(])}y]} (15)

13"

where 1 ='(11,...,1,) and 1 =/, . 10)),

Note that Oggy : H} — C2HD,
We have the following theorem:

THEOREM 3. For

(05 ﬁ) € F()(Sz(s](m),
y 0

we have
() o« p
@Q’R,(f) ( ( V 6 ) OZ
04 ﬁ n K p)
- X((V 5>’Q> Nz +0)Pp0z + 000G ). (16)
where

(2 %))

is the same root of unity as in Theorem 1 and is given explicitly in (10).
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3. PROOF OF THEOREM 1

3.1.  Symplectic Theta Functions. We will use the transformation property
of the symplectic theta function to prove Theorem 1. Let us recall some
basic facts. The symplectic group

Sp, (R) = { M = 4B u R)|J[M] =J = 0
pn( )_ - C D € 2n,2n( )l [ ]_ - In 0 5

where I, is the n x n identity matrix, acts on the Siegel upper half-plane,
9" = {ZeM,,(C)|Z="Z and Im(2) > 0}.
The action of M on Z is given by
M<Z = (AZ + B)(CZ + D).

Let I'™ = Sp, (Z). The theta subgroup,
A B
Fg”) = { (C D) e ' | 4'B, C'D have even diagonal entries},

acts on the symplectic theta function,

u : t _t
9(2, <U>> =) exp{mi(Zm + v] — 2'mu —"vu)}, (17)

meZ"

where 1 and v are column vectors in C". It is well known (see, for example in

Eichler [3]) that for
A B (’1)
M = e I'y’,
C D '

u u
9 <MoZ,M < . )) = 7(M)[det(CZ + D)]'/*9 (z, (U > ) , (13)

where y(M) is an eighth root of unity which depends upon the chosen square
root of det(CZ + D) but which is otherwise independent of Z, u, and v. Stark
[15] determines y(M) in the important special case that both C and D are
nonsingular and pD~! is integral for some odd prime p. We will use the
following result of [15] to compute explicitly the theta multipliers of
Oor(z. (). O y(2). and OG} ,(2).
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THEOREM 4 (Stark [15]). Suppose

(1)

is in I’ ‘(9") where C~' and D™ exist. Suppose further that for some odd
prime p, pD~' is integral. Then (mod p), the symmetric matrix
pD~'C has rank h where det(D) = + p". Let (pD~'C)™ be a nonsingular
(mod p) h x h principal submatrix of pD~'C and s be the signature
(the number of positive eigenvalues minus the number of negative eigenvalues)
of C7'D. Then

y(M)[det(CZ + D)]'/?

o <2hdet [(pD~'C)™]
p

) e™/4|det(C)|"/? {det[—iC~1(CZ + D)]}'/2,
p

where &,=1 for p=1mod4, ¢, =i for p=3mod4, () is the
Legendre symbol, |det(C)|l/2 is posmve and {det[ iCc~ 1(CZ+D)]}1/2
is given by analytic continuation from the principal value when
Z=-C"'D+iy.

3.2.  The Modular Transformation. We will proceed as in [10,11] and we
will convert @pr(z, (;)) into a symplectic theta function. Applying (18) then
will prove (9).

Let wy,.. wde§ x be an integral basis of the ideal 3 « Dx and define the
vector o) = wdeg «)- We use the n x ndeg K matrix

I/Vj =
oW

to define the ndeg K x ndeg K matrix W ='('"Wi, ..., Wyee ). Note that ™!
has entries in 370, ".
Letz=(z1,...,241,) €. For j=1,...,r, set

« Zj[p
Zjlq

and for j=r +1,...,r1+r, define the nxn matrices X;=xl,
and X;=x;I,. For all j, set Y;= yj,. Furthermore, define the
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ndeg K x ndeg K matrix

Zl
*
Z,
X1 iY 11
zr =
Xrl-H’z inl +72
Y41 X1
iYi‘l +r Xrl +r
Let
S
S = ,
SdegK

where S;i,, = S; for j=r +1,...,7 + 1, and let T = SW and

t
Z='T7*T = ro oZ*
0o 7! '

It is not difficult to see that Z € $” 42X (see also [10, 11]).

We have
o) oe(2%)

Q(1>

where

Qe
Il

Q(deg K)

We need a symplectic matrix which expresses the action of

(2)
y 0

111

(19)

(20)

€2y

(22)
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on our new variables u, v and Z. For

(3)r
y 0

set
a1, oW,
A* = , D* = ,
oldeg K0 sldee )y
BVE,
5 ﬂ(rl)Ek,l
ﬁ(r1+1)[n
ﬂ(deg K)]n
and
YVEk
. y(rl)EkJ
B y(r1+1)[n
y(deg K)ln

We make the variable change and set

a4 B\ (T o \[4 B\[T 0\
C D - 0o 71! C* D* 0o 7!

t

TA*'T~! "TB*T

= ) (23)
Tttt TolpsT
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It is easy to check that the diagrams

r - ()=
() - G20

! !

"W Qu A4 B\ (['WOu
w1ty - C D w1ty

commute, where the horizontal arrows are linear fractional transformations
in the first diagram and matrix multiplication in the second, and the vertical
arrows are given by the specified variable changes. Hence,

o f
ZHyéoZ

A B
Z— oZ
C D
in g)(n deg K).

The entries of 4, B, C and D are rational integers and 4 ‘B and C'D have
even diagonal entries if y is in the ideal I*0xN (see also [10, 11]). Hence, if

(“ p ) e To(FP0xN),
y 0

4 B el—v(ndegK).
C D s

and

in § corresponds to

then
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Furthermore, we find that
r rit+nr
det(CZ + D) = [[ ¥z + 6N 05+ 00" T[ 19z + o1
=1

Jj= J=r+l1

Thus, Egs. (18) and (21) imply that

o fp o fp u
oo (5 5)=( 2)(0))
:/<<f/‘ ’;),Q>M(yz+5)"/2m(yz+5)1/2@Q,R <z, <Z>> (24)

where

and Q.

3.3.  The Eighth Root of Unity. To complete the proof of Theorem 1, we

have to determine
a
(“ p ) e To(FP0xN),
)

where § > 0is a first degree prime in Ox of norm p. Then C~! and D! exist
and pD~! is integral. We can therefore use Theorem 4 to determine the
eighth root of unity in (24). We find that

|det(c)|l/2{det[—iC*1(CZ + D)} 1/2 gris/4
= Nz + )P Gz + )",

Suppose that

where s is the signature of C~'D, and also that
det(pD~'C)™ = (po~'9)"(v)*" det(Q)™'  (mod ),
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where v € 3715,;1. By Theorem 4 (and since Ok /0 =~ Z/pZ),

a P o ((P67129)" det(Q)
(ot

where ¢, = 1 for p=1mod4 and ¢, =i for p = 3 mod 4.
Note that @gr(z, (;)) is invariant under linear transformations, i.e., for
any algebraic integer u € K,

wlenl ) nlf))

From (24), it follows that for

(“ P ) € To(F5xN)
y 0

and for all algebraic integers p,
o p 1 u B o fp
(GG )AC S)e) e

<°‘ p ) € Io(3265kN)
y 0

implies that (y,d) = 1 and by Dirichlet’s primes in progression theorem for
number fields (see, for example in Hecke [6]), the arithmetic progression
{yt + 0} e0, contains infinitely many totally positive first degree primes.
Hence, the eighth root of unity is determined explicitly by (27) after locating
a totally positive first degree prime with positive odd norm in the arithmetic
progression {yu + 6} ep, -

Note that

4. PROOF OF THEOREMS 2 AND 3

4.1.  Proof of Theorem 2. Now we turn to the proof of Theorem 2.
Suppose K is totally real. We will define a differential operator and apply the
operator to (9).

Lemma 1. Let E;H;eC, F;eC", and n;€C" such that 'nm; =0
for j=1,...,r. Suppose éj:’(f(]),...,él(j))e(:" for j=1,...,r are
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vectors of variables (accounting for a total of nr independent variables)

and suppose
o 0 )
0= —.
J (aé}) aV(/)

are the corresponding vectors of differentiation operators. Define the
differential operator

7 =2, =] "o,
j=1

Then for v > 1,

L7 (exp{niz E;¢¢ +2F¢; +HJ}>

J=1

_ H (Zni(Ej tfj +,Fj)nj)v exp{ﬂiz Ej tfjéj + 2tF)5} +I{j} (28)

J=1 J=1

Proof. 1t is easy to check that

g(exp{mz E; €&+ 2F¢ +H; })

j=1

- (H 2mi(E; ¢, +’Fj)11j> exp{
J

J=1

<

&¢+2F¢ +HJ}
=1

and that

~

Jj=1

=1
which implies (28). 1

Since K is totally real, we let 1 < j < ry. Let

+
(0
<

where .f+ e CF and (€ C', and let 67 and (’5 be the corresponding vectors
of dlfferentlatlon operators Set ;1] =S w and 77; = Sw;, where S; is

defined in (5). Note that
it = )
/ 0
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and

for nf eCt and n; e C', since OVw! = Rywf, and Q(/’wj = —Rw;.
Set u=20 and v=2S5"'¢ in Eq.(9) where S is defined in (19) and
E="(%,....%,):

r
3 (eofwd> eptrg + 202 12}

13" j=1

"l
x exp{m‘Z EPE & +2F7; +HF}>

J=1

— j((a [;),2> Z (exp{m’z];E}L ’576;“ +2tFj+ff —I—ijr}
=

13"
"
xexp{niz E & & 2 L +Hj_}>, (29)
=1
where
5(/) . _5(/)f
E}@ = 42/(]), E,@ = %ZJU), Ef = Zj, E; = —zj,

Fj® - zj 4 I sz(/), Fj@ - -z ' tf0 S,-lm,
YDz; + SO\ 0 Yz + s\ )™
I . 5 o0 A
F =z (0 )S_/’(’)’ F=-z <Il>5ﬂ(’),
0 lg(/') 0 lg(/')
@ _ R P o _; R PG
H} Re((w) 5(/_)> Z,)Q ('], H; zIm((y(/) 0 |7 R;[1Y],

H/+ — ij(i)[l(i)], Hj = iy;Rj[1 [1 (/)]

and where

f((“ ﬁ),z) _X<<“ ﬂ),Q)W'(yz+5)"/2m(yz+5)’/2
y 0 y 0
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(2 %))

as in Theorem 1. Applying Lemma 1 with

L& = H (/0f)" H1 (4;6;)"

and

and setting ¢ = 0 then leads to (13).

4.2.  Proof of Theorem 3. Now, we turn to the proof of Theorem 3.
Suppose K is totally complex. We define another differential operator and
apply the differential operator to (9).

LEmMmA 2. Let Ej, Ej, G;,H;eC, F, Fj e C", and n; € C" such that ',
=0 and yi; =0 for j=1,...,r. Suppose {;eC" for j=1,...,2r are
vectors of independent variables and suppose 0; are the corresponding vectors
of differentiation operators. We abuse notation and write {;,, = &; and 0;,, =

Ojforj=1,...,r. Forv > 1, we define the vector-valued differential operator
)
g(;) g(\r) ® < 17]6 ) '
I<j<r 77_/6]‘
Then

LOEH = @

1<j<r

( 2mi (E; €, +'Fy+ G €,

)
£/ +F fE&8, (0
2mi (B +'Fj + Gjtéj)”_f>

where

S, E) = exp{niz Ejtfjfj JFE;'[E,‘EJ + 2tFjéj + 2th,1'£/‘ + 2G./'%j§j JrHJ}-

=1

Proof. Letl < jo <r.Foralll <j <r, we have
h,0,2ni (Ej, €;, +'Fj, + G, tfjo)ﬂ,@) 0,
91 0,(2mi (Ej0 ’fﬂ) o + Gy gj(,)n_jo) =0
M0,2mi (Ejy €, +'Fy + Gy Eny,) = 0,

’7]6 (27“ (E]n t&jo j() + G]o %Jo)rljn)
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Furthermore, for all 1 < j < r, one checks that

'n.B; ® _ 2mi (B, . +1F, + G, €. ® -
(”’-’> (f(é,é))=< S+ fé”"’) 18,

0, 2ni (E, tﬁ_j +'F;+ G; Com;

and (30) follows. 1

Since K is totally complex, we let 1 < j < r. Let ¢, ¢4, € C" be vectors
of variables, and let 0; and 0,.,, be the corresponding vectors of
differentiation operators. As in Lemma 2, with an abuse of notation we
write ¢, = {; and 04, = 0. Set n; = S;w;, where §; is defined in (5). Note
that %7, = 0 and #,77; = 0.

Set u=0 and v=S"'¢ in Eq.(9), where S is defined in (19)
and & ="(%,,...,%¢,,,"¢,..."¢,). For z; e Hy, we set

O((/) B(/) * *
S g )TN k,

and for a quaternion z; = x; 4 y;k with x;, y; € C, we write for convenience
{zjtc = x; and {z;} , = y;. We find that

Z (eXP{”iZEj%jéj +Ejt<gjf_j}
J=1

~1

1€

xexp{ni ) 2@@,+2¢j5j+2c;j’é,-é_,+flj}>
=1

A 2 s

v 13"

——

j=1

where

E; = 6V{z,0Vz + 69) e, E; = x;,

F = {z/0V2 + 8" oS + i{z)Vz; + 69) 71,5519,

Fy= {02+ 07) 1S + ilz0z 4 07) 7 o5

F}/ = Xijl(/) + ly/S_jm, F; = X_JEE + iijjl(j),
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G = i|(5(i)|2yj*, G} =iy,
Hy = QL) + QOO + 2iR; (19} y!

H} = OV ; + QOO + 2iR 1V},

and where
o o
J Pl:) = P).0) vz +opr
y 0 y 0
and
o B
x . , 0

is as in Theorem 1. Applying Lemma 2 with
L .

- @ (M

1<j<nm tn_jaj

(1)

and setting ¢ = 0 leads to (16).

Remark. In [12], we investigate a generalization of Andrianov’s and
Maloletkin’s theta functions. We construct functions which satisfy a
transformation property that generalizes the transformation law of
Jacobi-like forms. Furthermore, we show how such functions can be used
to construct Siegel modular forms. Theorems 2 and 3 can be extended in the
same way. If one does not require that Rj[wjf] =Rjlw;]1=01in (I11) and
Ri{w;} = 0in (14), i.e., if the functions are not harmonic function over X,
one can generalize (13) and (16). One can create ““Jacobi-like forms over K
which can be used to construct modular forms over K.
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