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A Remark on the Behavior of Theta Series of Degree n

under Modular Transformations

Olav K. Richter

1 Introduction

A. Andrianov and G. Maloletkin [3] , [4] and Andrianov [1] , [2] investigate transformation

properties of theta series corresponding to quadratic forms. Let F be a symmetric, inte-

gral matrix of rankm with even diagonal entries, and let q be the level of F; that is, qF−1

is integral and qF−1 has even diagonal entries. Suppose that F is of type (k, l), and let H

be a majorant of F; that is,HF−1H = F and tH = H > 0.

For Z in the Siegel upper half-plane, H(n) = {Z ∈ Mn,n(C) | Z = tZ and Im(Z) >

0}, and for ζ+, ζ− ∈Mm,n(C) (withm > n), Andrianov and Maloletkin [4] define the theta

series

θ
(κ,λ)
F,H,ζ+,ζ−

(Z)

=
∑

N∈Mm,n(Z)

det
(
tNFζ+

)κ
det
(
tNFζ−

)λ
e
{
σ
(
F[N]Re(Z) + iH[N] Im(Z)

)}
,
(1)

where κ, λ are nonnegative integers, e{x} = exp(π i x), U[V ] = tVUV for any matrices U

and V, and σ(W) is the trace of the matrixW. Note that θ(κ,λ)F,H,ζ+,ζ−
(Z) is identically zero

if both n and (κ+ λ) are odd.

If F is positive definite and if F[ζ+] = 0, Andrianov and Maloletkin [3] show

that θ(κ)F,ζ+(Z) = θ
(κ,0)
F,H,ζ+,ζ−

(Z) is a Siegel modular form on Γ (n)0 (q), where Γ (n) = Spn(Z)

and Γ (n)0 (q) =
{(

A B
C D

) ∈ Γ (n) , C ≡ 0 modq
}
. Andrianov and Maloletkin [4] assume that

Fζ+ = Hζ+, Fζ− = −Hζ−, and F[ζ+] = H[ζ−] = 0. They then determine the behavior of

θ
(κ,λ)
F,H,ζ+,ζ−

(Z) undermodular transformations.We determine the behavior of θ(κ,λ)F,H,ζ+,ζ−
(Z)
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in the more general situation when F[ζ+] �= 0 �= H[ζ−]. In this case, θ(κ,λ)F,H,ζ+,ζ−
(Z) is not

“modular” but can be used to construct a function ΘF,H,ζ+,ζ−(Z,X), which satisfies a

transformation property that generalizes the transformation law of Jacobi-like forms

introduced by D. Zagier [10] and P. Cohen, Y. Manin, and Zagier [6]. Furthermore, we

see that functions that share the transformation property of ΘF,H,ζ+,ζ−(Z,X) provide a

method to construct Siegel modular forms.

Define (for fixed F, H, ζ+, and ζ−) a function of Z ∈ H(n) and X ∈Mn,n(C) by

ΘF,H,ζ+,ζ−(Z,X) =
∑
κ≥0

∑
λ≥0

(
2

n!

)κ+λ θ(2κ,2λ)F,H,ζ+ζ−
(Z)

(2κ)!(2λ)!
det(2πiX)κ det(2πiX)λ. (2)

Note that ΘF,H,ζ+,ζ−(Z,X) does not vanish identically.

Our main result is the following theorem.

Theorem 1. Suppose Fζ+ = Hζ+ and Fζ− = −Hζ−. Let M =
(
A B
C D

) ∈ Γ (n)0 (q). Choose T

integral and symmetric such that, forD∗ = CT +D, detD∗ = ±p for an odd prime p. Then

ΘF,H,ζ+,ζ−

(
(AZ+ B)(CZ+D)−1 , (CZ+D)−2X

)
= φ(M,Z) exp

{
det
(
F[ζ+]CX

)
det(CZ+D)

+
det
(
H[ζ−]CX

)
det(CZ+D)

}
ΘF,H,ζ+,ζ−(Z,X),

(3)

where

φ(M,Z) = χF(M)det(CZ+D)
k/2 det(CZ+D)l/2

and where χF(M) is an eighth root of unity. More precisely,

φ(M,Z) = ε−mp

(
2mcm det F

p

)
e

{
(k− l)s

4

}

× ∣∣det(C)∣∣m/2{det[− iC−1(CZ+D)]}k/2{det[iC−1(CZ+D)]}l/2 ,
where εp = 1 for p ≡ 1 mod4, εp = i for p ≡ 3 mod4,

( ·
p

)
is the Legendre symbol,

c is any diagonal element of (pD∗−1C) with (c, p) = 1, and s is the signature of D∗−1C.

If C is singular, then C−1 is interpreted as tD(C tD)−1 , where (C tD)−1 is the Moore-

Penrose generalized inverse, and the determinants are interpreted as the product of the

nonzero eigenvalues. Furthermore, |det(C)|1/2 is positive, and {det[−iC−1(CZ + D)]}1/2

and {det[iC−1(CZ + D)]}1/2 are given by analytic continuation from the principal value

when Z = −C−1D+ iY. �
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2 The symplectic theta function

The symplectic group

Spn(R) =
{
M =

(
A B
C D

) ∣∣M ∈ M2n,2n (R) such that J[M] = J =
(
0 −In
In 0

)}
,

where In is the (n× n)-identity matrix, acts on the Siegel upper half-plane

H(n) =
{
Z ∈ Mn,n(C) | Z = tZ and Im(Z) > 0

}
.

The action ofM on Z is given by

M ◦ Z = (AZ+ B)(CZ+D)−1 .

Let Γ (n) = Spn(Z). The theta subgroup

Γ
(n)
ϑ =

{(
A B
C D

) ∈ Γ (n) | A tB,C tD have even diagonal entries
}

acts on the symplectic theta function

ϑ

(
Z,

(
u

v

))
=

∑
m∈Zn

e
{
Z[m+ v] − 2 tmu− tvu

}
, (4)

where u and v are column vectors in C
n. It is well known (see, e.g., [7]) that, for

M =

(
A B

C D

)
in Γ (n)ϑ ,

ϑ

(
M ◦ Z,M

(
u

v

))
= χ(M)

[
det(CZ+D)

]1/2
ϑ

(
Z,

(
u

v

))
, (5)

where χ(M) is an eighth root of unity which depends upon the chosen square root of

det(CZ + D) but which is otherwise independent of Z, u, and v. It is also known that

χ(M) can be expressed in terms of Gaussian sums. H. Stark [8] determines χ(M) in the

important special case when both C and D are nonsingular and when pD−1 is integral

for some odd prime p. R. Styer [9] extends Stark’s results and includes the case where C

is singular. We use the following theorem of [9] to compute the explicit theta multiplier

of ΘF,H,ζ+,ζ−(Z,X).

Theorem 2 (Stark, Styer). Suppose M =
(
A B
C D

)
is in Γ (n)ϑ , where D−1 exists. Suppose

further that pD−1 is integral and that detD = ±ph for some odd prime p. Then
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χ(M)
[
det(CZ+D)

]1/2
= ε−hp

(
2h det

[
(pD−1C)(h)

]
p

)
e

{
s

4

}∣∣det(C)∣∣1/2{det [− iC−1(CZ+D)]}1/2 ,
(6)

where εp = 1 for p ≡ 1 mod4, εp = i for p ≡ 3 mod4,
( ·
p

)
is the Legendre symbol,

(pD−1C)(h) is any (h × h)-principal submatrix of pD−1C which is nonsingular mod p,

and s is the signature (the number of positive eigenvalues minus the number of nega-

tive eigenvalues) ofD−1C. If C is singular, then C−1 is interpreted as tD(C tD)−1 ,where

(C tD)−1 is the Moore-Penrose generalized inverse (see [5]), and the determinants are in-

terpreted as the product of the nonzero eigenvalues. Furthermore, |det(C)|1/2 is positive

and {det[−iC−1(CZ + D)]}1/2 is given by analytic continuation from the principal value

when Z = −C−1D+ iY. �

3 Proof of Theorem 1

Now we turn to the proof of Theorem 1. Let F be a symmetric, integral matrix of rank m

with even diagonal entries, and let q be the level of F; that is, qF−1 is integral and qF−1

has even diagonal entries. Suppose that F is of type (k, l), and let H be a majorant of F;

that is,HF−1H = F and tH = H > 0.

Andrianov andMaloletkin [4] regard θF,H(Z) = θ
(0,0)
F,H,ζ+,ζ−

(Z) as a symplectic theta

function and then apply (5). Let U ⊗ V = (uijV) denote the Kronecker product of two

matrices U and V . For Z = X + iY ∈ H(n) , set Z̃ = X ⊗ F + iY ⊗ H ∈ H(nm) . One verifies

that θF,H(Z) = ϑ
(
Z̃,
(
0
0

))
. Furthermore, if M =

(
A B
C D

) ∈ Γ
(n)
0 (q), then M̃ =

(
Ã B̃
C̃ D̃

)
=( A⊗Im B⊗F

C⊗F−1 D⊗Im

)
∈ Γ (nm)ϑ , and Andrianov and Maloletkin [4] show that

θF,H(M ◦ Z) = χ(M̃)det(C̃Z̃+ D̃)1/2ϑ(Z̃, ( 00 )) = φ(M,Z)θF,H(Z), (7)

where φ(M,Z) = χF(M)det(CZ + D)k/2 det(CZ + D)l/2 and χF(M) is an eighth root of

unity. Unfortunately, Andrianov and Maloletkin [4] can determine χF(M) only whenm is

even. In the special case where F is positive definite (F = H), Styer [9] uses Theorem 2 to

determine χF(M) for all m. It is easy to see that Styer’s method can also be applied to

determine χF(M) for all m, even if F is indefinite.

Styer [9] shows that if
(
A B
C D

) ∈ Γ (n) , then there exists a symmetric, integralmatrix

T such that det(CT +D) = ±p for some arbitrarily large prime p. As in Styer [9] , we set

Z∗ = Z− T, M∗ =M
(
In T
0 In

)
, and we observe that

θF,H(M ◦ Z) = χ(M̃∗)det(C̃Z̃∗ + D̃∗)1/2θF,H(Z). (8)
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We apply Theorem 2 and find that

φ(M,Z) = ε−mp

(
2mcm det F

p

)
e

{
(k− l)s

4

}

× ∣∣det(C)∣∣m/2{det[− iC−1(CZ+D)]}k/2{det[iC−1(CZ+D)]}l/2 , (9)

where εp = 1 for p ≡ 1 mod4, εp = i for p ≡ 3 mod4,
( ·
p

)
is the Legendre symbol, c

is any diagonal element of (pD∗−1C) with (c, p) = 1, and s is the signature of D∗−1C.

If C is singular, then C−1 is interpreted as tD(C tD)−1 , where (C tD)−1 is the Moore-

Penrose generalized inverse, and the determinants are interpreted as the product of the

nonzero eigenvalues. Furthermore, |det(C)|1/2 is positive, and {det[−iC−1(CZ + D)]}1/2

and {det[iC−1(CZ + D)]}1/2 are given by analytic continuation from the principal value

when Z = −C−1D+ iY.

Note that if m is even and if detD = ±p, formula (9) matches the result from

Andrianov and Maloletkin [4] , and we have

φ(M,Z) = (sgn(detD))(k−l)/2
(
(−1)m/2 det F

|detD|

)
det(CZ+D)(k−l)/2

∣∣det(CZ+D)∣∣l.
(10)

To prove Theorem 1, we proceed as in Andrianov and Maloletkin [4] , and we

differentiate (7). For this purpose, we state [3 , Lemma 3] in a slightly more general form.

Lemma 1. Let 1 ≤ n < m. Let P, R ∈ Mn,n(C),
tP = P, and Q,η ∈ Mm,n(C). Denote by

ξ = (ξαβ) an (m × n)-variable matrix and by ∂ = (∂/∂ξαβ) the corresponding matrix of

differentiation operators. Set L = Lη = det( tη∂). Then, for ν ≥ 1, we have

Lν
(
e
{
σ
(
P tξξ+ 2 tQξ+ R

)})
= fP,Q,η,ν(ξ) e

{
σ
(
P tξξ+ 2 tQξ+ R

)}
, (11)

where

fP,Q,η,ν(ξ) =

[ν/2]∑
j=0

ν!

(
n!

2

)jdet(2πiP tηη)j
j!

det
(
2πi
(
P tξ+ tQ

)
η
)ν−2j

(ν− 2j)!
. �

Remark. If in addition tηη = 0, then fP,Q,η,ν(ξ) = det(2πi(P tξ + tQ)η)ν and our lemma

simplifies to [3 , Lemma 3].

Proof. Andrianov and Maloletkin [3] point out that
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L
(
e
{
σ
(
P tξξ+ 2 tQξ+ R

)})
= det

(
2πi
(
P tξ+ tQ

)
η
)
e
{
σ
(
P tξξ+ 2 tQξ+ R

)}
and that, for indices β, γ, µ, and ι,(

m∑
α=1

ηαβ
∂

∂ξαγ

)(
m∑
x=1

(ξP +Q)xµηxι

)
= Pγµ(

tηη)βι.

Hence

L
(
det
(
2πi
(
P tξ+ tQ

)
η
))
= det

(
2πiP

)
L
(
det
(
tξη
))
.

The operator L can be written as follows:

L =
∑
σ∈Sn

sgn(σ)
∑
γ

n∏
j=1

ηγ(j)j
∂

∂ξγ(j)σ(j)
,

where the second summation is over all maps γ from {1, . . . , n} to {1, . . . ,m}. We find that

L
(
det
(
tξη
))
=

∑
σ∈Sn

sgn(σ)
∑
γ

∑
τ∈Sn

sgn(σ ◦ τ)
n∏
j=1

ηγ(j)j ηγ◦τ(j)j

= n!
∑
τ∈Sn

sgn(τ)
∑
γ

n∏
j=1

ηγ(j)j ηγ(j)τ(j)

= n!det
(
tηη
)
,

and therefore

L
(
det
(
2πi(P tξ+ tQ)η

))
= n!det

(
2πiP tηη

)
.

Induction on ν then gives the desired result. �

Nowweare ready todetermine thebehavior of θ(κ,λ)F,H,ζ+,ζ−
(Z)undermodular trans-

formations.

Theorem 3. Suppose Fζ+ = Hζ+ and Fζ− = −Hζ−. LetM =
(
A B
C D

) ∈ Γ (n)0 (q). Then

θ
(κ,λ)
F,H,ζ+,ζ−

(M ◦ Z)

= φ(M,Z)

[κ/2]∑
j=0

[λ/2]∑
g=0

κ!λ!

(
n!

2

)j+gdet(F[ζ+]C
2πi

)j
j!

det

(
H[ζ−]C

2πi

)g
g!

× det(CZ+D)κ−j

(κ− 2j)!

det(CZ+D)λ−g

(λ− 2g)!
θ
(κ−2j,λ−2g)
F,H,ζ+ζ−

(Z),

(12)

where φ(M,Z) is given by (9). �
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Remark. In the special case when F[ζ+] = H[ζ−] = 0, our theorem reduces to [4 , Theo-

rem 2].

Proof. Let ξ =
( ξ+
ξ−

) ∈ Mm,n(C), where ξ+ ∈ Mk,n(C) and ξ− ∈ Ml,n(C), and let ∂+

and ∂− be the corresponding matrices of differential operators. Set η̃+ = S−1ζ+ and

η̃− = S
−1ζ−, where S ∈ GLn(R) such that F[S] = Ek,l and H[S] = Im and where Ek,l =(

Ik
−Il

)
. Note that η̃+ =

( η+
0

)
and η̃− =

(
0
η−

)
, for η+ ∈ Mk,n and η− ∈ Ml,n, since

(F −H)[S]η̃+ = −2
(
0
Il

)
η̃+ = 0 and (F +H)[S]η̃+ = −2

(
Ik

0

)
η̃− = 0. Thus [4 , (4.4)] can be

stated as follows:∑
N

e
{
σ
(
P+

tξ+ξ+ + 2
tQ+ξ+ + R+

)}
e

{
σ
(
P−

tξ−ξ− + 2
tQ−ξ− + R−

)}
= φ(M,Z)

∑
N

e
{
σ
(
P ′
+
tξ+ξ+ + 2

tQ ′
+ξ+ + R

′
+

)}
× e

{
σ
(
P ′
−
tξ−ξ− + 2

tQ ′
−ξ− + R

′
−

)}
,

where

P+ = Z(CZ+D)
−1D, P− = −Z

(
CZ+D

)−1
D, P ′

+ = Z, P ′
− = −Z,

Q+ =
t
(
− Z(CZ+D)−1 tN tS−1

(
Ik
0

))
, Q− =

t
(
Z(CZ+D)−1 tN tS−1

(
0
Il

))
,

Q ′
+ =

t
(
− Z tN tS−1

(
Ik
0

))
, Q ′

− =
t
(
Z tN tS−1

(
0
Il

))
,

R+ = Re
(
M ◦ Z)F[N], R− = i Im

(
M ◦ Z)H[N],

R ′
+ = Re(Z)F[N], R ′

− = i Im(Z)H[N]

and where φ(M,Z) is defined in (7) and given explicitly in (9). We apply Lemma 1 with

L = L+L− = det( tη+∂+)κ det( tη−∂−)λ, and we set ξ+ = ξ− = 0. Then (12) follows from

observing that tη̃+η̃+ =
tη+η+ = F[ζ+] and tη̃−η̃− =

tη−η− = H[ζ−]. �

The transformation formula (3) is an immediate consequence of Theorem 3:

ΘF,H,ζ+,ζ−
(
M ◦ Z, (CZ+D)−2X)

= φ(M,Z)
∑
κ≥0

κ∑
j=0

(
2

n!

)κ−j
det(2πiX)κ−j(
2κ− 2j

)
!

(
det
(
F[ζ+]CX

)
det(CZ+D)

)j
j!

×
∑
λ≥0

λ∑
g=0

(
2

n!

)λ−gdet(2πiX)λ−g(
2λ− 2g

)
!

(
det
(
H[ζ−]CX

)
det
(
CZ+D

) )g
g!

θ
(2κ−2j,2λ−2g)
F,H,ζ+,ζ−

(Z)

= φ(M,Z) exp

{
det
(
F[ζ+]CX

)
det(CZ+D)

+
det
(
H[ζ−]CX

)
det(CZ+D)

}
ΘF,H,ζ+,ζ−(Z,X).
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4 Conclusion

It would be very interesting to find other examples that satisfy the transformation prop-

erty (3). We now explain how functions that satisfy a special case of (3) allow us to

construct Siegel modular forms.

For j = 1, 2, let fj(Z,X) be holomorphic functions on H(n) ×Mn,n(C) of the form

fj(Z,X) =
∑
ν≥0

f(j)ν (Z)det(2πiX)
ν. (13)

Suppose that, forM =
(
A B
C D

) ∈ Γ (n) ,
fj
(
M ◦ Z, (CZ+D)−2X) = χj(M)det(CZ+D)kj exp

{
det(CX)

det(CZ+D)

}
fj(Z,X) (14)

for some nonnegative integers kj and characters χj. Notice that, when n = 1, fj are

Jacobi-like forms in the sense of Zagier [10] and Cohen, Manin, and Zagier [6]. Then

F(Z,X) = f1(Z,X)f2

(
Z,e

{
1

n

}
X

)
=

∑
ν≥0

Fν(Z)det(2πiX)
ν,

where Fν(Z) is a Siegel modular form of weight k1 + k2 + 2ν and character χ1χ2 . Hence,

as an application of Theorem 3, we have the following corollary.

Corollary 1. Suppose F is positive definite (F = H) such that det(F[ζ+]) = 1. Set

ΘF,ζ+(Z,X) =
∑
κ≥0

(
2

n!

)κ θ(2κ,0)F,H,ζ+ζ−
(Z)

(2κ)!
det(2πiX)κ (15)

and

F(Z,X) = ΘF,ζ+(Z,X)ΘF,ζ+

(
Z,e

{
1

n

}
X

)
=

∑
ν≥0

Fν(Z)det(2πiX)
ν. (16)

Then

Fν(Z) =

(
2

n!

)ν ν∑
κ=0

(−1)κ
θ
(2κ,0)
F,Hζ+,ζ−

(Z)

(2κ)!

θ
(2ν−2κ,0)
F,H,ζ+,ζ−

(Z)

(2ν− 2κ)!
(17)

is a Siegel modular form on Γ (n)0 (q) of weightm+2ν and character (χF(M))2 ,with χF(M)

as in Theorem 1. �
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