A Remark on the Behavior of Theta Series of Degree n under Modular Transformations

Olav K. Richter

1 Introduction

A. Andrianov and G. Maloletkin [3], [4] and Andrianov [1], [2] investigate transformation properties of theta series corresponding to quadratic forms. Let F be a symmetric, integral matrix of rank m with even diagonal entries, and let q be the level of F; that is, qF^{-1} is integral and $q F^{-1}$ has even diagonal entries. Suppose that F is of type (k, l), and let H be a majorant of F ; that is, $\mathrm{HF}^{-1} \mathrm{H}=\mathrm{F}$ and ${ }^{\mathrm{t}} \mathrm{H}=\mathrm{H}>0$.

For Z in the Siegel upper half-plane, $\mathfrak{H}^{(n)}=\left\{Z \in M_{n, n}(\mathbb{C}) \mid Z={ }^{t} Z\right.$ and $\operatorname{Im}(Z)>$ 0 \}, and for $\zeta_{+}, \zeta_{-} \in M_{m, n}(\mathbb{C})($ with $m>n)$, Andrianov and Maloletkin [4] define the theta series

$$
\begin{align*}
& \theta_{F, H, \zeta_{+}, \zeta_{-}}^{(\kappa, \lambda)}(Z) \\
& \quad=\sum_{N \in M_{m, n}(\mathbb{Z})} \operatorname{det}\left({ }^{t} N F \zeta_{+}\right)^{\kappa} \operatorname{det}\left({ }^{t} N F \zeta_{-}\right)^{\lambda} \mathbf{e}\{\sigma(F[N] \operatorname{Re}(Z)+i H[N] \operatorname{Im}(Z))\}, \tag{1}
\end{align*}
$$

where κ, λ are nonnegative integers, $\mathbf{e}\{x\}=\exp (\pi i x), U[V]={ }^{t} V U V$ for any matrices U and V, and $\sigma(W)$ is the trace of the matrix W. Note that $\theta_{F, H, \zeta_{+}, \zeta_{-}}^{(\kappa, \lambda)}(Z)$ is identically zero if both n and $(\kappa+\lambda)$ are odd.

If F is positive definite and if $\mathrm{F}\left[\zeta_{+}\right]=0$, Andrianov and Maloletkin [3] show that $\theta_{F, \zeta_{+}}^{(\kappa)}(Z)=\theta_{F, H, \zeta_{+}, \zeta_{-}}^{(\kappa, 0)}(Z)$ is a Siegel modular form on $\Gamma_{0}^{(n)}(q)$, where $\Gamma^{(n)}=\operatorname{Sp}_{n}(\mathbb{Z})$ and $\Gamma_{0}^{(n)}(q)=\left\{\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma^{(n)}, C \equiv 0 \operatorname{modq}\right\}$. Andrianov and Maloletkin [4] assume that $\mathrm{F} \zeta_{+}=\mathrm{H} \zeta_{+}, \mathrm{F} \zeta_{-}=-\mathrm{H} \zeta_{-}$, and $\mathrm{F}\left[\zeta_{+}\right]=\mathrm{H}\left[\zeta_{-}\right]=0$. They then determine the behavior of $\theta_{F, H, \zeta_{+}, \zeta_{-}}^{(\kappa, \lambda)}(Z)$ under modular transformations. We determine the behavior of $\theta_{F, H, \zeta_{+}, \zeta_{-}}^{(\kappa, \lambda)}(Z)$
in the more general situation when $\mathrm{F}\left[\zeta_{+}\right] \neq 0 \neq \mathrm{H}\left[\zeta_{-}\right]$. In this case, $\theta_{\mathrm{F}, \mathrm{H}, \zeta_{+}, \zeta_{-}}^{(\kappa, \lambda)}(Z)$ is not "modular" but can be used to construct a function $\Theta_{F, H, \zeta_{+}, \zeta_{-}}(Z, X)$, which satisfies a transformation property that generalizes the transformation law of Jacobi-like forms introduced by D. Zagier [10] and P. Cohen, Y. Manin, and Zagier [6]. Furthermore, we see that functions that share the transformation property of $\Theta_{F, H, \zeta_{+}, \zeta_{-}}(Z, X)$ provide a method to construct Siegel modular forms.

Define (for fixed F, H, ζ_{+}, and ζ_{-}) a function of $Z \in \mathfrak{H}^{(n)}$ and $X \in M_{n, n}(\mathbb{C})$ by

$$
\begin{equation*}
\Theta_{\mathrm{F}, \mathrm{H}, \zeta_{+}, \zeta_{-}}(Z, X)=\sum_{\mathrm{K} \geq 0} \sum_{\lambda \geq 0}\left(\frac{2}{n!}\right)^{\kappa+\lambda} \frac{\theta_{\mathrm{F}, H, \zeta_{+} \zeta_{-}}^{(2 \kappa, 2 \lambda)}(Z)}{(2 \kappa)!(2 \lambda)!} \operatorname{det}(2 \pi i X)^{\kappa} \operatorname{det}(2 \pi i \bar{X})^{\lambda} . \tag{2}
\end{equation*}
$$

Note that $\Theta_{\mathrm{F}, \mathrm{H}, \zeta_{+}, \zeta_{-}}(\mathrm{Z}, \mathrm{X})$ does not vanish identically.
Our main result is the following theorem.
Theorem 1. Suppose $F \zeta_{+}=H \zeta_{+}$and $F \zeta_{-}=-H \zeta_{-}$. Let $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{0}^{(n)}(q)$. Choose T integral and symmetric such that, for $D^{*}=C T+D, \operatorname{det} D^{*}= \pm p$ for an odd prime p. Then

$$
\begin{align*}
& \Theta_{\mathrm{F}, \mathrm{H}, \zeta_{+}, \zeta_{-}}\left((\mathrm{AZ}+\mathrm{B})(\mathrm{CZ}+\mathrm{D})^{-1},(\mathrm{CZ}+\mathrm{D})^{-2} \mathrm{X}\right) \\
& \quad=\phi(M, Z) \exp \left\{\frac{\operatorname{det}\left(\mathrm{F}\left[\zeta_{+}\right] \mathrm{CX}\right)}{\operatorname{det}(\mathrm{CZ}+\mathrm{D})}+\frac{\operatorname{det}\left(\mathrm{H}\left[\zeta_{-}\right] \mathrm{C} \bar{X}\right)}{\operatorname{det}(\mathrm{C} \bar{Z}+\mathrm{D})}\right\} \Theta_{\mathrm{F}, \mathrm{H}, \zeta_{+}, \zeta_{-}}(Z, X) \tag{3}
\end{align*}
$$

where

$$
\phi(M, Z)=\chi_{F}(M) \operatorname{det}(C Z+D)^{k / 2} \operatorname{det}(C \bar{Z}+D)^{l / 2}
$$

and where $\chi_{F}(M)$ is an eighth root of unity. More precisely,

$$
\begin{aligned}
\phi(M, Z)= & \varepsilon_{p}^{-m}\left(\frac{2^{m} c^{m} \operatorname{det} F}{p}\right) \mathbf{e}\left\{\frac{(k-l) s}{4}\right\} \\
& \times|\operatorname{det}(C)|^{m / 2}\left\{\operatorname{det}\left[-i C^{-1}(C Z+D)\right]\right\}^{k / 2}\left\{\operatorname{det}\left[i C^{-1}(C \bar{Z}+D)\right]\right\}^{l / 2},
\end{aligned}
$$

where $\varepsilon_{p}=1$ for $p \equiv 1 \bmod 4, \varepsilon_{p}=i$ for $p \equiv 3 \bmod 4,(\dot{\bar{p}})$ is the Legendre symbol, c is any diagonal element of $\left(p D^{*-1} C\right)$ with $(c, p)=1$, and s is the signature of $D^{*-1} C$. If C is singular, then C^{-1} is interpreted as ${ }^{t} D\left(C{ }^{t} D\right)^{-1}$, where $\left(C^{t} D\right)^{-1}$ is the MoorePenrose generalized inverse, and the determinants are interpreted as the product of the nonzero eigenvalues. Furthermore, $|\operatorname{det}(C)|^{1 / 2}$ is positive, and $\left\{\operatorname{det}\left[-i C^{-1}(C Z+D)\right]\right\}^{1 / 2}$ and $\left\{\operatorname{det}\left[i C^{-1}(C \bar{Z}+D)\right]\right\}^{1 / 2}$ are given by analytic continuation from the principal value when $Z=-C^{-1} D+i Y$.

2 The symplectic theta function

The symplectic group

$$
\operatorname{Sp}_{n}(\mathbb{R})=\left\{\left.M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \right\rvert\, M \in M_{2 n, 2 n}(\mathbb{R}) \text { such that } J[M]=J=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)\right\}
$$

where I_{n} is the $(n \times n)$-identity matrix, acts on the Siegel upper half-plane

$$
\mathfrak{H}^{(n)}=\left\{Z \in M_{n, n}(\mathbb{C}) \mid Z={ }^{\mathrm{t}} Z \text { and } \operatorname{Im}(Z)>0\right\} .
$$

The action of M on Z is given by

$$
M \circ Z=(A Z+B)(C Z+D)^{-1}
$$

Let $\Gamma^{(n)}=\operatorname{Sp}_{n}(\mathbb{Z})$. The theta subgroup

$$
\Gamma_{\vartheta}^{(n)}=\left\{\left.\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in \Gamma^{(n)} \right\rvert\, A^{t} B, C^{t} D \text { have even diagonal entries }\right\}
$$

acts on the symplectic theta function

$$
\begin{equation*}
\vartheta\left(Z,\binom{u}{v}\right)=\sum_{m \in \mathbb{Z}^{n}} \mathbf{e}\left\{Z[m+v]-2^{t} m u-{ }^{t} v u\right\} \tag{4}
\end{equation*}
$$

where u and v are column vectors in \mathbb{C}^{n}. It is well known (see, e.g., [7]) that, for

$$
\begin{align*}
& M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \quad \text { in } \Gamma_{\vartheta}^{(n)}, \\
& \vartheta\left(M \circ Z, M\binom{u}{v}\right)=\chi(M)[\operatorname{det}(C Z+D)]^{1 / 2} \vartheta\left(Z,\binom{u}{v}\right), \tag{5}
\end{align*}
$$

where $\chi(M)$ is an eighth root of unity which depends upon the chosen square root of $\operatorname{det}(C Z+D)$ but which is otherwise independent of Z, u, and v. It is also known that $\chi(M)$ can be expressed in terms of Gaussian sums. H. Stark [8] determines $\chi(M)$ in the important special case when both C and D are nonsingular and when $p D^{-1}$ is integral for some odd prime p. R. Styer [9] extends Stark's results and includes the case where C is singular. We use the following theorem of [9] to compute the explicit theta multiplier of $\Theta_{F, H, \zeta_{+}, \zeta_{-}}(Z, X)$.

Theorem 2 (Stark, Styer). Suppose $M=\left(\begin{array}{cc}A & B \\ C & B\end{array}\right)$ is in $\Gamma_{\vartheta}^{(n)}$, where D^{-1} exists. Suppose further that $p D^{-1}$ is integral and that $\operatorname{det} \mathrm{D}= \pm \mathrm{p}^{h}$ for some odd prime p . Then

$$
\begin{align*}
& \chi(M) {[\operatorname{det}(C Z+D)]^{1 / 2} } \\
& \quad=\varepsilon_{p}^{-h}\left(\frac{2^{h} \operatorname{det}\left[\left(p D^{-1} C\right)^{(h)}\right]}{p}\right) \mathbf{e}\left\{\frac{s}{4}\right\}|\operatorname{det}(C)|^{1 / 2}\left\{\operatorname{det}\left[-i C^{-1}(C Z+D)\right]\right\}^{1 / 2}, \tag{6}
\end{align*}
$$

where $\varepsilon_{p}=1$ for $p \equiv 1 \bmod 4, \varepsilon_{p}=i$ for $p \equiv 3 \bmod 4,(\dot{\bar{p}})$ is the Legendre symbol, $\left(p D^{-1} C\right)^{(h)}$ is any $(h \times h)$-principal submatrix of $p D^{-1} C$ which is nonsingular mod p, and s is the signature (the number of positive eigenvalues minus the number of negative eigenvalues) of $\mathrm{D}^{-1} \mathrm{C}$. If C is singular, then C^{-1} is interpreted as ${ }^{t} \mathrm{D}\left(\mathrm{C}^{t} \mathrm{D}\right)^{-1}$, where $\left(\mathrm{C}^{\mathrm{t}} \mathrm{D}\right)^{-1}$ is the Moore-Penrose generalized inverse (see [5]), and the determinants are interpreted as the product of the nonzero eigenvalues. Furthermore, $|\operatorname{det}(\mathrm{C})|^{1 / 2}$ is positive and $\left\{\operatorname{det}\left[-i C^{-1}(C Z+D)\right]\right\}^{1 / 2}$ is given by analytic continuation from the principal value when $Z=-C^{-1} D+i Y$.

3 Proof of Theorem 1

Now we turn to the proof of Theorem 1. Let F be a symmetric, integral matrix of rank m with even diagonal entries, and let q be the level of F; that is, qF^{-1} is integral and qF^{-1} has even diagonal entries. Suppose that F is of type (k, l), and let H be a majorant of F; that is, $\mathrm{HF}^{-1} \mathrm{H}=\mathrm{F}$ and ${ }^{\mathrm{t}} \mathrm{H}=\mathrm{H}>0$.

Andrianov and Maloletkin [4] regard $\theta_{\mathrm{F}, \mathrm{H}}(Z)=\theta_{\mathrm{F}, \mathrm{H}, \zeta_{+}, \zeta_{-}}^{(0,0)}(Z)$ as a symplectic theta function and then apply (5). Let $U \otimes V=\left(u_{i j} V\right)$ denote the Kronecker product of two matrices U and V. For $Z=X+i Y \in \mathfrak{H}^{(n)}$, set $\widetilde{Z}=X \otimes F+i Y \otimes H \in \mathfrak{H}^{(n m)}$. One verifies that $\theta_{\mathrm{F}, \mathrm{H}}(Z)=\vartheta\left(\widetilde{Z},\binom{0}{0}\right)$. Furthermore, if $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{0}^{(n)}(q)$, then $\widetilde{M}=\left(\begin{array}{c}\widetilde{A} \\ \widetilde{C} \\ \widetilde{D}\end{array}\right)=$ $\left(\begin{array}{cc}A \otimes I_{m} & \mathrm{~B} \otimes \mathrm{~F} \\ \mathrm{C} \otimes \mathrm{F}^{-1} & \mathrm{D} \otimes \mathrm{I}_{\mathrm{m}}\end{array}\right) \in \Gamma_{\vartheta}^{(\mathrm{nm})}$, and Andrianov and Maloletkin [4] show that

$$
\begin{equation*}
\theta_{F, H}(M \circ Z)=\chi(\widetilde{M}) \operatorname{det}(\widetilde{C} \widetilde{Z}+\widetilde{D})^{1 / 2} \vartheta\left(\widetilde{Z},\binom{0}{0}\right)=\phi(M, Z) \theta_{F, H}(Z), \tag{7}
\end{equation*}
$$

where $\phi(M, Z)=\chi_{F}(M) \operatorname{det}(C Z+D)^{k / 2} \operatorname{det}(C \bar{Z}+D)^{l / 2}$ and $\chi_{F}(M)$ is an eighth root of unity. Unfortunately, Andrianov and Maloletkin [4] can determine $\chi_{F}(M)$ only when m is even. In the special case where F is positive definite ($F=H$), Styer [9] uses Theorem 2 to determine $\chi_{F}(M)$ for all m. It is easy to see that Styer's method can also be applied to determine $\chi_{F}(M)$ for all m, even if F is indefinite.

Styer [9] shows that if $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma^{(n)}$, then there exists a symmetric, integral matrix T such that $\operatorname{det}(C T+D)= \pm p$ for some arbitrarily large prime p. As in Styer [9], we set $Z^{*}=Z-T, M^{*}=M\left(\begin{array}{cc}I_{n} & T \\ 0 & I_{n}\end{array}\right)$, and we observe that

$$
\begin{equation*}
\theta_{\mathrm{F}, \mathrm{H}}(\mathrm{M} \circ \mathrm{Z})=\chi\left(\widetilde{\mathcal{M}^{*}}\right) \operatorname{det}\left(\widetilde{\mathrm{C}} \widetilde{Z^{*}}+\widetilde{\mathrm{D}^{*}}\right)^{1 / 2} \theta_{\mathrm{F}, \mathrm{H}}(\mathrm{Z}) \tag{8}
\end{equation*}
$$

We apply Theorem 2 and find that

$$
\begin{align*}
& \phi(M, Z)=\varepsilon_{\mathfrak{p}}^{-m}\left(\frac{2^{m} c^{m} \operatorname{det} F}{p}\right) \text { e }\left\{\frac{(k-l) s}{4}\right\} \tag{9}\\
& \quad \times|\operatorname{det}(C)|^{m / 2}\left\{\operatorname{det}\left[-i C^{-1}(C Z+D)\right]\right\}^{k / 2}\left\{\operatorname{det}\left[i C^{-1}(C \bar{Z}+D)\right]\right\}^{1 / 2},
\end{align*}
$$

where $\varepsilon_{\mathfrak{p}}=1$ for $p \equiv 1 \bmod 4, \varepsilon_{\mathfrak{p}}=i$ for $p \equiv 3 \bmod 4,(\dot{\bar{p}})$ is the Legendre symbol, c is any diagonal element of $\left(p^{*-1} \mathrm{C}\right)$ with $(c, p)=1$, and s is the signature of $\mathrm{D}^{*-1} \mathrm{C}$. If C is singular, then C^{-1} is interpreted as ${ }^{t} D\left(C^{t} D\right)^{-1}$, where $\left(C^{t} D\right)^{-1}$ is the MoorePenrose generalized inverse, and the determinants are interpreted as the product of the nonzero eigenvalues. Furthermore, $|\operatorname{det}(\mathrm{C})|^{1 / 2}$ is positive, and $\left\{\operatorname{det}\left[-\mathrm{iC} \mathrm{C}^{-1}(\mathrm{CZ}+\mathrm{D})\right]\right\}^{1 / 2}$ and $\left\{\operatorname{det}\left[i C^{-1}(C \bar{Z}+D)\right]\right\}^{1 / 2}$ are given by analytic continuation from the principal value when $Z=-C^{-1} D+i Y$.

Note that if m is even and if $\operatorname{det} D= \pm p$, formula (9) matches the result from Andrianov and Maloletkin [4], and we have

$$
\begin{equation*}
\phi(M, Z)=(\operatorname{sgn}(\operatorname{det} D))^{(k-l) / 2}\left(\frac{(-1)^{m / 2} \operatorname{det} F}{|\operatorname{det} D|}\right) \operatorname{det}(C Z+D)^{(k-l) / 2}|\operatorname{det}(C \bar{Z}+D)|^{\mathrm{l}} . \tag{10}
\end{equation*}
$$

To prove Theorem 1, we proceed as in Andrianov and Maloletkin [4], and we differentiate (7). For this purpose, we state [3, Lemma 3] in a slightly more general form.

Lemma 1. Let $1 \leq n<m$. Let $P, R \in M_{n, n}(\mathbb{C}),{ }^{t} P=P$, and $Q, \eta \in M_{m, n}(\mathbb{C})$. Denote by $\xi=\left(\xi_{\alpha \beta}\right)$ an $(m \times n)$-variable matrix and by $\partial=\left(\partial / \partial \xi_{\alpha \beta}\right)$ the corresponding matrix of differentiation operators. Set $L=L_{\eta}=\operatorname{det}\left({ }^{t} \eta \partial\right)$. Then, for $v \geq 1$, we have

$$
\begin{equation*}
\mathrm{L}^{v}\left(\mathbf{e}\left\{\sigma\left(\mathrm{P}^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} \mathrm{Q} \xi+\mathrm{R}\right)\right\}\right)=\mathrm{f}_{\mathrm{P}, \mathrm{Q}, \mathfrak{\eta}, v}(\xi) \mathbf{e}\left\{\sigma\left(\mathrm{P}^{\mathrm{t}} \xi \xi+2^{\mathrm{t}} \mathrm{Q} \xi+\mathrm{R}\right)\right\}, \tag{11}
\end{equation*}
$$

where

$$
f_{P, Q, \eta, v}(\xi)=\sum_{j=0}^{[v / 2]} v!\left(\frac{n!}{2}\right)^{j} \frac{\operatorname{det}\left(2 \pi i P^{t} \eta \eta\right)^{j}}{j!} \frac{\operatorname{det}\left(2 \pi i\left(P^{t} \xi+{ }^{t} Q\right) \eta\right)^{v-2 j}}{(v-2 j)!} .
$$

Remark. If in addition ${ }^{t} \mathfrak{\eta} \eta=0$, then $f_{P, Q, \eta, v}(\xi)=\operatorname{det}\left(2 \pi i\left(P^{t} \xi+{ }^{t} Q\right) \eta\right)^{v}$ and our lemma simplifies to [3, Lemma 3].

Proof. Andrianov and Maloletkin [3] point out that

$$
\mathrm{L}\left(\mathbf{e}\left\{\sigma\left(\mathrm{P}^{\mathrm{t}} \xi \xi+2{ }^{\mathrm{t}} \mathrm{Q} \xi+\mathrm{R}\right)\right\}\right)=\operatorname{det}\left(2 \pi \mathrm{i}\left(\mathrm{P}^{\mathrm{t}} \xi+{ }^{\mathrm{t}} \mathrm{Q}\right) \eta\right) \mathbf{e}\left\{\sigma\left(\mathrm{P}^{\mathrm{t}} \xi \xi+2{ }^{\mathrm{t}} \mathrm{Q} \xi+\mathrm{R}\right)\right\}
$$

and that, for indices β, γ, μ, and ι,

$$
\left(\sum_{\alpha=1}^{m} \eta_{\alpha \beta} \frac{\partial}{\partial \xi_{\alpha \gamma}}\right)\left(\sum_{x=1}^{m}(\xi P+Q)_{x \mu} \eta_{x \iota}\right)=P_{\gamma \mu}\left({ }^{t} \eta \eta\right)_{\beta \iota}
$$

Hence

$$
\mathrm{L}\left(\operatorname{det}\left(2 \pi i\left(P^{t} \xi+{ }^{\mathrm{t}} \mathrm{Q}\right) \eta\right)\right)=\operatorname{det}(2 \pi i P) \mathrm{L}\left(\operatorname{det}\left({ }^{\mathrm{t}} \xi \eta\right)\right)
$$

The operator L can be written as follows:

$$
L=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \sum_{\gamma} \prod_{j=1}^{n} \eta_{\gamma(j) j} \frac{\partial}{\partial \xi_{\gamma(j) \sigma(j)}}
$$

where the second summation is over all maps γ from $\{1, \ldots, n\}$ to $\{1, \ldots, m\}$. We find that

$$
\begin{aligned}
\mathrm{L}\left(\operatorname{det}\left({ }^{\mathrm{t}} \xi \eta\right)\right) & =\sum_{\sigma \in \mathrm{S}_{n}} \operatorname{sgn}(\sigma) \sum_{\gamma} \sum_{\tau \in S_{n}} \operatorname{sgn}(\sigma \circ \tau) \prod_{j=1}^{n} \eta_{\gamma(j) j} \eta_{\gamma \circ \tau(j) j} \\
& =\mathrm{n}!\sum_{\tau \in \mathrm{S}_{n}} \operatorname{sgn}(\tau) \sum_{\gamma} \prod_{j=1}^{n} \eta_{\gamma(j) j} \eta_{\gamma(j) \tau(j)} \\
& =\mathrm{n}!\operatorname{det}\left({ }^{\mathrm{t}} \eta \eta\right)
\end{aligned}
$$

and therefore

$$
\mathrm{L}\left(\operatorname{det}\left(2 \pi i\left(P^{t} \xi+{ }^{t} Q\right) \eta\right)\right)=n!\operatorname{det}\left(2 \pi i P^{t} \eta \eta\right)
$$

Induction on v then gives the desired result.
Now we are ready to determine the behavior of $\theta_{\mathrm{F}, \mathrm{H}, \zeta_{+}, \zeta_{-}}^{(\kappa, \lambda)}(Z)$ under modular transformations.

Theorem 3. Suppose $F \zeta_{+}=H \zeta_{+}$and $F \zeta_{-}=-H \zeta_{-}$. Let $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{0}^{(n)}(q)$. Then

$$
\begin{align*}
& \theta_{F, H, \zeta_{+}, \zeta_{-}}^{(\kappa, \lambda)}(M \circ Z) \\
& \quad=\phi(M, Z) \sum_{j=0}^{[\kappa / 2]} \sum_{g=0}^{[\lambda / 2]} k!\lambda!\left(\frac{n!}{2}\right)^{j+g} \frac{\operatorname{det}\left(\frac{F\left[\zeta_{+}\right] C}{2 \pi i}\right)^{j}}{j!} \frac{\operatorname{det}\left(\frac{H\left[\zeta_{-}\right] C}{2 \pi i}\right)^{g}}{g!} \tag{12}\\
& \quad \times \frac{\operatorname{det}(C Z+D)^{\kappa-j}}{(\kappa-2 j)!} \frac{\operatorname{det}(C \bar{Z}+D)^{\lambda-g}}{(\lambda-2 g)!} \theta_{F, H, \zeta_{+} \zeta_{-}}^{(\kappa-2 j, \lambda-2 g)}(Z),
\end{align*}
$$

where $\phi(M, Z)$ is given by (9).

Remark. In the special case when $\mathrm{F}\left[\zeta_{+}\right]=\mathrm{H}\left[\zeta_{-}\right]=0$, our theorem reduces to $[4$, Theorem 2].

Proof. Let $\xi=\binom{\xi_{+}}{\xi_{-}} \in M_{\mathfrak{m}, n}(\mathbb{C})$, where $\xi_{+} \in M_{k, n}(\mathbb{C})$ and $\xi_{-} \in M_{\mathrm{l}, n}(\mathbb{C})$, and let ∂_{+} and ∂_{-}be the corresponding matrices of differential operators. Set $\widetilde{\eta}_{+}=S^{-1} \zeta_{+}$and $\tilde{\eta}_{-}=S^{-1} \zeta_{-}$, where $S \in G L_{n}(\mathbb{R})$ such that $F[S]=E_{k, l}$ and $H[S]=I_{m}$ and where $E_{k, l}=$ $\left({ }^{I_{k}}{ }_{-I_{l}}\right)$. Note that $\tilde{\eta}_{+}=\binom{\eta_{+}}{0}$ and $\tilde{\eta}_{-}=\binom{0}{\eta_{-}}$, for $\eta_{+} \in M_{k, n}$ and $\eta_{-} \in M_{l, n}$, since $(\mathrm{F}-\mathrm{H})\left[\mathrm{S} \mid \tilde{\eta}_{+}=-2\left({ }^{0} \mathrm{I}_{\mathrm{l}}\right) \tilde{\eta}_{+}=0\right.$ and $(\mathrm{F}+\mathrm{H})[\mathrm{S}] \tilde{\eta}_{+}=-2\left({ }^{\mathrm{I}_{\mathrm{k}}}{ }_{0}\right) \tilde{\eta}_{-}=0$. Thus [4, (4.4)] can be stated as follows:

$$
\begin{array}{rl}
\sum_{N} & e\left\{\sigma\left(P_{+}{ }^{\mathrm{t}} \xi_{+} \xi_{+}+2^{\mathrm{t}} \mathrm{Q}_{+} \xi_{+}+\mathrm{R}_{+}\right)\right\} \mathbf{e}\left\{\sigma\left(\mathrm{P}_{-}^{\mathrm{t}} \xi_{-} \xi_{-}+2^{\mathrm{t}} \mathrm{Q}_{-} \xi_{-}+\mathrm{R}_{-}\right)\right\} \\
= & \phi(\mathrm{M}, \mathrm{Z}) \sum_{\mathrm{N}} \mathbf{e}\left\{\sigma\left(\mathrm{P}_{+}^{\prime \mathrm{t}} \xi_{+} \xi_{+}+2^{\mathrm{t}} \mathrm{Q}_{+}^{\prime} \xi_{+}+\mathrm{R}_{+}^{\prime}\right)\right\} \\
& \times \mathbf{e}\left\{\sigma\left(\mathrm{P}_{-}^{\prime \mathrm{t}} \xi_{-} \xi_{-}+2^{\mathrm{t}} \mathrm{Q}_{-}^{\prime} \xi_{-}+\mathrm{R}_{-}^{\prime}\right)\right\},
\end{array}
$$

where

$$
\begin{aligned}
& \mathrm{P}_{+}=\mathrm{Z}(\mathrm{CZ}+\mathrm{D})^{-1} \mathrm{D}, \quad \mathrm{P}_{-}=-\overline{\mathrm{Z}}(\mathrm{C} \overline{\mathrm{Z}}+\mathrm{D})^{-1} \mathrm{D}, \quad \mathrm{P}_{+}^{\prime}=\mathrm{Z}, \quad \mathrm{P}_{-}^{\prime}=-\overline{\mathrm{Z}}, \\
& \mathrm{Q}_{+}={ }^{\mathrm{t}}\left(-\mathrm{Z}(\mathrm{CZ}+\mathrm{D})^{\left.-1 \mathrm{t}^{\mathrm{t}} \mathrm{~N}^{\mathrm{t}} \mathrm{~S}^{-1}\binom{\mathrm{I}_{\mathrm{k}}}{0}\right), \quad \mathrm{Q}_{-}={ }^{\mathrm{t}}\left(\overline{\mathrm{Z}}(\mathrm{C} \overline{\mathrm{Z}}+\mathrm{D})^{-1 \mathrm{t}} \mathrm{~N}^{\mathrm{t}} \mathrm{~S}^{-1}\binom{0}{\mathrm{I}_{\mathrm{l}}}\right),}\right. \\
& \mathrm{Q}_{+}^{\prime}={ }^{\mathrm{t}}\left(-\mathrm{Z}^{\mathrm{t}} \mathrm{~N}^{\mathrm{t}} \mathrm{~S}^{-1}\binom{\mathrm{I}_{\mathrm{k}}}{0}\right), \quad \mathrm{Q}_{-}^{\prime}={ }^{\mathrm{t}}\left(\bar{Z}^{\mathrm{t}} \mathrm{~N}^{\mathrm{t}} \mathrm{~S}^{-1}\binom{0}{\mathrm{I}_{\mathrm{l}}}\right), \\
& \mathrm{R}_{+}=\operatorname{Re}(\mathrm{M} \circ \mathrm{Z}) \mathrm{F}[\mathrm{~N}], \quad \mathrm{R}_{-}=\mathrm{i} \operatorname{Im}(\mathrm{M} \circ \mathrm{Z}) \mathrm{H}[\mathrm{~N}], \\
& \mathrm{R}_{+}^{\prime}=\operatorname{Re}(Z) \mathrm{F}[\mathrm{~N}], \quad \mathrm{R}_{-}^{\prime}=\mathrm{i} \operatorname{Im}(\mathrm{Z}) \mathrm{H}[\mathrm{~N}]
\end{aligned}
$$

and where $\phi(M, Z)$ is defined in (7) and given explicitly in (9). We apply Lemma 1 with $\mathrm{L}=\mathrm{L}_{+} \mathrm{L}_{-}=\operatorname{det}\left({ }^{\mathrm{t}} \eta_{+} \partial_{+}\right)^{\kappa} \operatorname{det}\left({ }^{\mathrm{t}} \eta_{-} \partial_{-}\right)^{\lambda}$, and we set $\xi_{+}=\xi_{-}=0$. Then (12) follows from observing that ${ }^{\mathrm{t}} \widetilde{\eta}_{+} \widetilde{\eta}_{+}={ }^{\mathrm{t}} \eta_{+} \eta_{+}=\mathrm{F}\left[\zeta_{+}\right]$and ${ }^{\mathrm{t}} \widetilde{\eta}_{-} \widetilde{\eta}_{-}={ }^{\mathrm{t}} \eta_{-} \eta_{-}=\mathrm{H}\left[\zeta_{-}\right]$.

The transformation formula (3) is an immediate consequence of Theorem 3:

$$
\begin{align*}
& \Theta_{F, H, \zeta_{+}, \zeta_{-}}\left(M \circ Z,(C Z+D)^{-2} X\right) \\
& \quad=\phi(M, Z) \sum_{\kappa \geq 0} \sum_{j=0}^{\kappa}\left(\frac{2}{n!}\right)^{\kappa-j} \frac{\operatorname{det}(2 \pi i X)^{\kappa-j}}{(2 \kappa-2 j)!} \frac{\left(\frac{\operatorname{det}\left(F\left[\zeta_{+}\right] C X\right)}{\operatorname{det}(C Z+D)}\right)^{j}}{j!} \\
& \quad \times \sum_{\lambda \geq 0} \sum_{g=0}^{\lambda}\left(\frac{2}{n!}\right)^{\lambda-9} \frac{\operatorname{det}(2 \pi i \bar{X})^{\lambda-g}}{(2 \lambda-2 g)!} \frac{\left(\frac{\operatorname{det}\left(H\left[\zeta_{-}\right] C \bar{X}\right)}{\operatorname{det}(C \bar{Z}+D)}\right)^{g}}{g!} \theta_{F, H, \zeta_{+}, \zeta_{-}}^{(2 \kappa-2 j, 2 \lambda-2 g)} \tag{Z}\\
& \quad=\phi(M, Z) \exp \left\{\frac{\operatorname{det}\left(F\left[\zeta_{+}\right] C X\right)}{\operatorname{det}(C Z+D)}+\frac{\operatorname{det}\left(H\left[\zeta_{-}\right] C \bar{X}\right)}{\operatorname{det}(C \bar{Z}+D)}\right\} \Theta_{F, H, \zeta_{+}, \zeta_{-}}(Z, X) .
\end{align*}
$$

4 Conclusion

It would be very interesting to find other examples that satisfy the transformation property (3). We now explain how functions that satisfy a special case of (3) allow us to construct Siegel modular forms.

For $\mathfrak{j}=1,2$, let $f_{j}(Z, X)$ be holomorphic functions on $\mathfrak{H}^{(n)} \times M_{n, n}(\mathbb{C})$ of the form

$$
\begin{equation*}
f_{j}(Z, X)=\sum_{v \geq 0} f_{v}^{(j)}(Z) \operatorname{det}(2 \pi i X)^{v} \tag{13}
\end{equation*}
$$

Suppose that, for $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma^{(n)}$,

$$
\begin{equation*}
f_{j}\left(M \circ Z,(C Z+D)^{-2} X\right)=\chi_{j}(M) \operatorname{det}(C Z+D)^{k_{j}} \exp \left\{\frac{\operatorname{det}(C X)}{\operatorname{det}(C Z+D)}\right\} f_{j}(Z, X) \tag{14}
\end{equation*}
$$

for some nonnegative integers k_{j} and characters χ_{j}. Notice that, when $n=1, f_{j}$ are Jacobi-like forms in the sense of Zagier [10] and Cohen, Manin, and Zagier [6]. Then

$$
F(Z, X)=f_{1}(Z, X) f_{2}\left(Z, e\left\{\frac{1}{n}\right\} X\right)=\sum_{v \geq 0} F_{v}(Z) \operatorname{det}(2 \pi i X)^{v}
$$

where $F_{v}(Z)$ is a Siegel modular form of weight $k_{1}+k_{2}+2 v$ and character $\chi_{1} \chi_{2}$. Hence, as an application of Theorem 3, we have the following corollary.

Corollary 1. Suppose F is positive definite $(F=H)$ such that $\operatorname{det}\left(F\left[\zeta_{+}\right]\right)=1$. Set

$$
\begin{equation*}
\Theta_{\mathrm{F}, \zeta_{+}}(Z, X)=\sum_{\kappa \geq 0}\left(\frac{2}{n!}\right)^{\kappa} \frac{\theta_{\mathrm{F}, H, \zeta_{+} \zeta_{-}}^{(2 \kappa 0)}(Z)}{(2 \kappa)!} \operatorname{det}(2 \pi i X)^{\kappa} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
F(Z, X)=\Theta_{F, \zeta_{+}}(Z, X) \Theta_{F, \zeta_{+}}\left(Z, \mathbf{e}\left\{\frac{1}{n}\right\} X\right)=\sum_{v \geq 0} F_{v}(Z) \operatorname{det}(2 \pi i X)^{v} \tag{16}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{v}(Z)=\left(\frac{2}{n!}\right)^{v} \sum_{\kappa=0}^{v}(-1)^{\kappa} \frac{\theta_{\mathrm{F}, \mathrm{H} \zeta_{+}, \zeta_{-}}^{(2 \kappa, 0)}(Z)}{(2 \kappa)!} \frac{\theta_{\mathrm{F}, \mathrm{H}, \zeta_{+}, \zeta_{-}}^{(2 v-2 \kappa, 0)}(Z)}{(2 v-2 \kappa)!} \tag{17}
\end{equation*}
$$

is a Siegel modular form on $\Gamma_{0}^{(n)}(q)$ of weight $m+2 v$ and character $\left(\chi_{F}(M)\right)^{2}$, with $\chi_{F}(M)$ as in Theorem 1.

References

[1] A. N. Andrianov, Spherical theta-series, Math. USSR-Sb. 62 (1989), 289-304.
[2] - Symmetries of harmonic theta-functions of integral quadratic forms, Russian Math. Surveys 50 (4) (1995), 661-700.
[3] A. N. Andrianov and G. N. Maloletkin, Behavior of theta series of degree N under modular substitutions, Math. USSR-Izvestija 9 (2) (1975), 227-241.
[4] - Behavior of theta series of genus n of indefinite quadratic forms under modular substitutions, Proc. Steklov. Inst. Math. 4 (1980), 1-12.
[5] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, WileyInterscience, New York, 1974.
[6] P. B. Cohen, Y. Manin, and D. Zagier, Automorphic Pseudodifferential Operators, Progr. Nonlinear Differential Equations Appl. 26, Birkhäuser, Boston, 1997, 17-47.
[7] M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions, Pure Appl. Math. 23, Academic Press, New York, 1966.
[8] H. M. Stark, On the transformation formula for the symplectic theta function and applications, J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 29 (1982), 1-12.
[9] R. Styer, Prime determinant matrices and the symplectic theta function, Amer. J. Math. 106 (1984), 645-664.
[10] D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 57-75.

Department of Mathematics, University of California, Santa Cruz, California 95064, USA;
richter@math.ucsc.edu

