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A Remark on the Behavior of Theta Series of Degree n
under Modular Transformations

Olav K. Richter

1 Introduction

A. Andrianov and G. Maloletkin [3], [4] and Andrianov [1], [2] investigate transformation
properties of theta series corresponding to quadratic forms. Let F be a symmetric, inte-
gral matrix of rank m with even diagonal entries, and let q be the level of F; that is, gF !
is integral and qF ! has even diagonal entries. Suppose that F is of type (k,1), and let H
be a majorant of F; that is, HF 'H = Fand *H =H > 0.

For Z in the Siegel upper half-plane, $™ ={Z € M, ,(C) | Z = *Z and Im(Z) >
0}, and for ¢4, € My, n(C) (with m > n), Andrianov and Maloletkin [4] define the theta

series

O, ¢ (2)
= Y det(NF¢,)"det(*NFC) e{U(F[N] Re(Z) + iH[N] Im(Z))}, (1)
NEMm n(Z)
where k, A are nonnegative integers, e{x} = exp(nix), U[V] = *VUV for any matrices U
and V, and o(W) is the trace of the matrix W. Note that G(FKH)‘ )Q‘ ¢ (Z) is identically zero
if both n and (x +A) are odd.
If F is positive definite and if F[¢;] = 0, Andrianov and Maloletkin [3] show
that 9$2+(Z) = G(FT??,)Q,L (2) is a Siegel modular form on "™ (q), where ™ = Sp_(Z)
and I{™ (q) = {(2B) € T™,C = 0 mod q}. Andrianov and Maloletkin [4] assume that

F(. = H{4, FC_ = —H{_, and F[{;] = H[{_] = 0. They then determine the behavior of
pleN (Z) under modular transformations. We determine the behavior of pleN (2)
FH, Gy, C— FH, Gy,
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in the more general situation when F[C;] # 0 # H[{_]. In this case, e(F"(H)\,)Q,C, (Z) is not
“modular” but can be used to construct a function O ¢, ¢ (Z,X), which satisfies a
transformation property that generalizes the transformation law of Jacobi-like forms
introduced by D. Zagier [10] and P. Cohen, Y. Manin, and Zagier [6]. Furthermore, we
see that functions that share the transformation property of ©¢n ¢, ¢ (Z,X) provide a
method to construct Siegel modular forms.

Define (for fixed F, H, ¢;, and {_) a function of Z € $™ and X € M,, »(C) by

2 O, (@) )

Orrc. ¢ (ZX)=) Y ('> W det(27iX)" det(2miX)". (2)
S\ ! !
Note that O ¢, ¢ (Z,X) does not vanish identically.

Our main result is the following theorem.

Theorem 1. Suppose F(; = H(; and F(_ = —H{_. Let M = (2 B) ¢ I’é“) (q). Choose T
integral and symmetric such that, for D* = CT+ D, det D* = +p for an odd prime p. Then

Or ... ((AZ+B)(CZ+D)™",(CZ+D)2X)

det(F[¢,]CX)  det(H[¢]CX) (3)

det(CZ+D) = det(CZ+D)

= (M, Z) exp { } OrH,c, ¢ (Z,X),
where

®(M, Z) = xr(M) det(CZ + D)*/2 det(CZ + D)"/?

and where x¢(M) is an eighth root of unity. More precisely,

oM, 2) = 8pm<2mcﬂ];detF> . {(k4l)s}

X |det(C)|m/2 {det[ —ic(CZ + D)] }k/z {det[iC*I (CZ+D) }1/2)

where ¢, = 1 for p = 1 mod4, ¢, = i for p = 3 mod4, (5) is the Legendre symbol,
c is any diagonal element of (pD*~!C) with (c,p) = 1, and s is the signature of D*~!C.
If C is singular, then C~! is interpreted as '‘D(C'D)~!, where (C'D)"! is the Moore-
Penrose generalized inverse, and the determinants are interpreted as the product of the
nonzero eigenvalues. Furthermore, |det(C)|'/? is positive, and {det[-iC~!(CZ + D)]}'/2
and {det[iC~!(CZ + D)]}!/? are given by analytic continuation from the principal value
when Z = —C~1D +1Y. O
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2 The symplectic theta function
The symplectic group

SP,(R) = {M = (2B) | M € My o0 (R) such that J[M] =] = (. "3},
where [, is the (n x n)-identity matrix, acts on the Siegel upper half-plane

9™ ={Z €M n(C)| Z="'Zand Im(Z) > 0}.
The action of M on Z is given by

MoZ=(AZ+B)(CZ+D) .
Let '™ =Sp, (Z). The theta subgroup

r™ = {(2B)er™ |A'B,C'D have even diagonal entries}

acts on the symplectic theta function

8<Z, (u)) = Z e{Z[m+v]—2'mu— ‘vu}, (4)

mezn

where u and v are column vectors in C™. It is well known (see, e.g., [7]) that, for

M = (é g) in (™|
a(moz,M(‘v‘D :X(M)[det(cz+D)]”29<z, (:‘)) (5)

where x(M) is an eighth root of unity which depends upon the chosen square root of
det(CZ + D) but which is otherwise independent of Z, u, and v. It is also known that
X(M) can be expressed in terms of Gaussian sums. H. Stark [8] determines x(M) in the
important special case when both C and D are nonsingular and when pD~! is integral
for some odd prime p. R. Styer [9] extends Stark’s results and includes the case where C
is singular. We use the following theorem of [9] to compute the explicit theta multiplier
of Orn.c, ¢ (Z,X).

Theorem 2 (Stark, Styer). Suppose M = (2 B) is in I“{gn), where D! exists. Suppose
further that pD~! is integral and that det D = +p" for some odd prime p. Then
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x(M)[det(CZ + D)] "

Y <2h det[(pD1C)M]

=¢
P p

) e {Z}!det(C)|1/2{det [—ic'(cz+D)|}?,
(6)

where ¢, = 1 for p = 1 mod4, ¢, = ifor p = 3 mod4, (5) is the Legendre symbol,
(pD~1C)M is any (h x h)-principal submatrix of pD~!C which is nonsingular mod p,
and s is the signature (the number of positive eigenvalues minus the number of nega-
tive eigenvalues) of D! C. If C is singular, then C™! is interpreted as 'D(C*D)~!, where
(C*D)! is the Moore-Penrose generalized inverse (see [5]), and the determinants are in-
terpreted as the product of the nonzero eigenvalues. Furthermore, | det(C)|'/? is positive
and {det[-iC~!(CZ + D)]}!/? is given by analytic continuation from the principal value
when Z = —C71D +1Y. O

3 Proof of Theorem 1

Now we turn to the proof of Theorem 1. Let F be a symmetric, integral matrix of rank m
with even diagonal entries, and let q be the level of F; that is, qF ! is integral and qF !
has even diagonal entries. Suppose that F is of type (k,1), and let H be a majorant of F;
thatis, HF'H=TFand *H=H > 0.

Andrianov and Maloletkin [4] regard O 1 (Z) = 69,‘2?&+ ¢_(Z) as asymplectic theta
function and then apply (5). Let U® V = (u4;V) denote the Kronecker product of two
matrices U and V. For Z = X +1iY € $™ , set Z =X @ F4+1Y @ H € $(™) | One verifies

that O (Z) = ¥(Z,(§)). Furthermore, if M = (2 B) € Fén) (q), then M = (7\ E) =

CD
( ég’gﬂ DB@?;) e I{"™  and Andrianov and Maloletkin [4] show that
Or,1(M o Z) = x(M) det (CZ + D) *9(Z, (3)) = &(M, 2)0r 1 (2), (7)

where $(M, Z) = xr(M)det(CZ + D)*/2 det(CZ + D)2 and x¢(M) is an eighth root of
unity. Unfortunately, Andrianov and Maloletkin [4] can determine xr(M) only when m is
even. In the special case where F is positive definite (F = H), Styer [9] uses Theorem 2 to
determine xr(M) for all m. It is easy to see that Styer’s method can also be applied to
determine xr(M) for all m, even if F is indefinite.

Styer [9] shows that if ( AR ) € '™ then there exists a symmetric, integral matrix
T such that det(CT + D) = +p for some arbitrarily large prime p. As in Styer [9], we set
Zr=Z-TM =M(} ITn ), and we observe that

1/2

0r (Mo Z) = x(M*) det(CZ* + D*) " 0 (2). (8)
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We apply Theorem 2 and find that

H(M. 2) = £;m<2mcn;detF> . {(k;l)s} o

x |det(C)|™*{det[ —ic ' (CZ + D)]}*'*{det[ic (CZ+ D)]}

1/2
)

where ¢, = 1 for p = 1 mod4, ¢, = ifor p = 3 mod4, (5) is the Legendre symbol, ¢
is any diagonal element of (pD*~!C) with (c,p) = 1, and s is the signature of D*~!C.
If C is singular, then C™! is interpreted as '*D(C'D)~!, where (C*D)"! is the Moore-
Penrose generalized inverse, and the determinants are interpreted as the product of the
nonzero eigenvalues. Furthermore, |det(C)|'/? is positive, and {det[-iC~!(CZ + D)]}'/?
and {det[iC~!(CZ + D)]}}/? are given by analytic continuation from the principal value
when Z = —C71D +1Y.

Note that if m is even and if detD = +p, formula (9) matches the result from

Andrianov and Maloletkin [4], and we have

—1)™/2 detF

o [ ( - -
®(M, Z) = (sgn(det D))* ”/2( 3etD] )det(CZ—kD)“‘ V/2|det(CZ + D)|".

(10)
To prove Theorem 1, we proceed as in Andrianov and Maloletkin [4], and we

differentiate (7). For this purpose, we state [3, Lemma 3] in a slightly more general form.

Lemma 1. Let 1 <n < m. Let PR € M;; »(C), *P = P, and Q,n € My, n(C). Denote by
& = (§xp) an (m x n)-variable matrix and by 0 = (0/9&4) the corresponding matrix of
differentiation operators. Set L = L,; = det('nd). Then, for v > 1, we have

¥ (e{o(P et +2'Qe +R)}) = frqn () e{o(P et +2'Qe +R)}, (11)

where

2

[v/2] 3 Y St t v—2j
n!\’ det(27iP ')’ det(27i(P &+ *Q)n)
fronw (&) = Z V!( ) il (v —2j)!

j=0

Remark. If in addition 'nn = 0, then fp g (&) = det(2mi(P &+ *Q)n)™ and our lemma

simplifies to [3, Lemma 3].

Proof. Andrianov and Maloletkin [3] point out that
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L(e{o(P'e&+2'QE+R)}) =det(27mi(P'E+ 'Q)n)e{o(P'EE+2'QE+R)}

and that, for indices B, v, 4, and ¢,

<Z Nap a‘iocy) (Z(E.P + Q)xuﬂxt) = PYH(tnn)BL

x=1

Hence
L(det(27i(P'&+ *Q)n)) = det(2niP)L(det(‘&n)).

The operator L can be written as follows:

L= X sento) X [T Ly

0ES, Y j=1

where the second summation is over all maps y from {1,...,n}to{1,..., m}. We find that

L(det(‘&n)) = > sgn(o) ) Y sgn(ooT) an(J i Myot (i)

oeSn Y TESH

=nl Z sgn(T) ZH‘W(J’)J‘ My G)T()

T€eSH Y j=1

=nl!det(‘'nn),
and therefore
L(det(27i(P ' +'Q)n)) = n!det(2miP ‘nn).
Induction on v then gives the desired result. [ |

Now we are ready to determine the behavior of G(FKHA)C+ ¢_(Z)under modular trans-

formations.

Theorem 3. Suppose F(; =H(; and F(_ =—H{_.Let M= (2 §) € F )(q). Then
K,A
eg,H,)c+,z, (Mo 2)

FleJC)' (RO
K i+ d t s — d t e
oM, Z [2/2] [AE/Z K'A'( ') 0o ( ?m ) © ( 2mi ) (12)

j=0 g=0

det(CZ + D)~ det(CZ+ D) 9 _(«_2j r—2)
(x— 2))! (A—2g)l  PHee

where $(M, Z) is given by (9). O
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Remark. In the special case when F[(;] = H[{_] = 0, our theorem reduces to [4, Theo-
rem 2].

Proof. Let £ = (§') € Mumn(C), where & € My, (C) and £ € M (C), and let 3,
and 0_ be the corresponding matrices of differential operators. Set 7, = S™1(, and
N- = S71¢_, where S € GL,(R) such that F[S] = Ex 1 and H[S] = [,, and where Ey; =
(T _1,)- Note that ;. = ("y ) and - = () ), forny € My, and n- € My, since
(F—H)[S]n+ =—2(° 1, )7+ =0 and (F+ H)[S]n, = —2( " ,)7— = 0. Thus [4, (4.4)] can be
stated as follows:

Ze{G(P+ Y E, 1 2Q, 8, + R+)} e {o(P, te £ 12'Q & + R,)}

N

— oM, 2) Y e{cy(P/+ LB, +2'QLE + R;)}

N
e{o(P/ e & +2'Q e +R")},
where

S -1

P, =Z(CZ+D)'D, P_:—Z(CZ+D) D, P.=z P =-Z
Qi ="(—Z(CZ+D) ' 'N'S (), =Y(Z(CZ+D) ' 'N'sTI(D),
Qi ="(=Z'N'sTI (),  QL=YZ'N'sTI(f)),

Ri =Re(MoZ)F[N], R_=1iIm(Mo Z)H[N],

R}, =Re(Z)F[N], R’ =1iIm(Z)H[N]

and where ¢(M, Z) is defined in (7) and given explicitly in (9). We apply Lemma 1 with
L=L,L =det('n d,)<det(*n_0_)* and we set &, = & = 0. Then (12) follows from
observing that ‘1 = "yny =F[¢]and ‘-1 = 'n-n_ =H[C]. u

The transformation formula (3) is an immediate consequence of Theorem 3:
Orh,c, ¢ (MoZ, (CZ+D) ?X)
det(F[¢.]CX) >"

=d(M, 2) Z i <j‘> " det(2miX)*< (det(cz+13)

=5 (2x — 2j)! j!

det(H[¢_]CX)\*
A A—g 3\ A9 =
2 ) det(27iX) det(CZ+ D) (2k—2) 2A—29)
X — 0y o (2)
A; g; (n! (22 —2g)! g! R4, 6-

det(F[¢+]CX)  det(H[(-]CX)
det(CZ+D) = det(CZ+D)

=¢(M,Z)exp { } Orn,c, ¢ (£,X).
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4 Conclusion

It would be very interesting to find other examples that satisfy the transformation prop-
erty (3). We now explain how functions that satisfy a special case of (3) allow us to
construct Siegel modular forms.

Forj = 1,2, let f;(Z,X) be holomorphic functions on §™ x M,, (C) of the form

=) 0 (2)det(2miX)". (13)

v>0

Suppose that, for M = (2 5) e 1™,

f;(M o Z,(CZ 4+ D)~2X) = x;(M) det(CZ + D)* exp {M}fj (Z2,X) (14)

for some nonnegative integers k; and characters x;. Notice that, when n = 1, fj are

Jacobi-like forms in the sense of Zagier [10] and Cohen, Manin, and Zagier [6]. Then
F(Z,X) = f1(Z,X)f2 (z e{ } ) Y Fy(Z) det(2miX)",
v>0

where F, (Z) is a Siegel modular form of weight k; + k; + 2v and character x;x2. Hence,

as an application of Theorem 3, we have the following corollary.

Corollary 1. Suppose F is positive definite (F = H) such that det(F[(.]) = 1. Set

k n(2k,0)
2\"0F 1, . (2) ok
O (2X) =Y <m> S detzix) (15)
k>0
and
F(Z,X) = Ok, (Z,X)OF.c, <z,e{111}x) = ) Fyv(Z)det(2miX)". (16)
v>0
Then
v v (2k,0) (2v—2x,0)
Fo( Z GFHC O (Z) GF,H,Q,L(Z) (17)
i = 2k)! (2v — 2k)!

is a Siegel modular form on Fé“) (q) of weight m+ 2v and character (xf(M))?, with xr(M)

as in Theorem 1. O
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