A Remark on the Behavior of Theta Series of Degree n under Modular Transformations

Olav K. Richter

1 Introduction

A. Andrianov and G. Maloletkin [3], [4] and Andrianov [1], [2] investigate transformation properties of theta series corresponding to quadratic forms. Let F be a symmetric, integral matrix of rank m with even diagonal entries, and let q be the level of F; that is, qF^{-1} is integral and qF^{-1} has even diagonal entries. Suppose that F is of type (k, l), and let H be a majorant of F; that is, $HF^{-1}H = F$ and ${}^{t}H = H > 0$.

For Z in the Siegel upper half-plane, $\mathfrak{H}^{(n)} = \{Z \in M_{n,n}(\mathbb{C}) \mid Z = {}^{t}Z \text{ and } Im(Z) > 0\}$, and for $\zeta_{+}, \zeta_{-} \in M_{m,n}(\mathbb{C})$ (with m > n), Andrianov and Maloletkin [4] define the theta series

$$\theta_{F,H,\zeta_{+},\zeta_{-}}^{(\kappa,\lambda)}(Z) = \sum_{N \in \mathcal{M}_{m,n}(\mathbb{Z})} \det({}^{t}NF\zeta_{+})^{\kappa} \det({}^{t}NF\zeta_{-})^{\lambda} e\Big\{\sigma(F[N]\operatorname{Re}(Z) + iH[N]\operatorname{Im}(Z))\Big\},$$
⁽¹⁾

where κ , λ are nonnegative integers, $\mathbf{e}\{x\} = \exp(\pi i x)$, $U[V] = {}^{t}VUV$ for any matrices U and V, and $\sigma(W)$ is the trace of the matrix W. Note that $\theta_{F,H,\zeta_+,\zeta_-}^{(\kappa,\lambda)}(Z)$ is identically zero if both n and $(\kappa + \lambda)$ are odd.

If F is positive definite and if $F[\zeta_+] = 0$, Andrianov and Maloletkin [3] show that $\theta_{F,\zeta_+}^{(\kappa)}(Z) = \theta_{F,H,\zeta_+,\zeta_-}^{(\kappa,0)}(Z)$ is a Siegel modular form on $\Gamma_0^{(n)}(q)$, where $\Gamma^{(n)} = Sp_n(\mathbb{Z})$ and $\Gamma_0^{(n)}(q) = \{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^{(n)}, C \equiv 0 \mod q \}$. Andrianov and Maloletkin [4] assume that $F\zeta_+ = H\zeta_+, F\zeta_- = -H\zeta_-$, and $F[\zeta_+] = H[\zeta_-] = 0$. They then determine the behavior of $\theta_{F,H,\zeta_+,\zeta_-}^{(\kappa,\lambda)}(Z)$ under modular transformations. We determine the behavior of $\theta_{F,H,\zeta_+,\zeta_-}^{(\kappa,\lambda)}(Z)$

Received 17 August 2000. Communicated by Dennis Hejhal. in the more general situation when $F[\zeta_+] \neq 0 \neq H[\zeta_-]$. In this case, $\theta_{F,H,\zeta_+,\zeta_-}^{(\kappa,\lambda)}(Z)$ is not "modular" but can be used to construct a function $\Theta_{F,H,\zeta_+,\zeta_-}(Z,X)$, which satisfies a transformation property that generalizes the transformation law of Jacobi-like forms introduced by D. Zagier [10] and P. Cohen, Y. Manin, and Zagier [6]. Furthermore, we see that functions that share the transformation property of $\Theta_{F,H,\zeta_+,\zeta_-}(Z,X)$ provide a method to construct Siegel modular forms.

Define (for fixed F, H, ζ_+ , and ζ_-) a function of $Z \in \mathfrak{H}^{(n)}$ and $X \in M_{n,n}(\mathbb{C})$ by

$$\Theta_{F,H,\zeta_{+},\zeta_{-}}(Z,X) = \sum_{\kappa \ge 0} \sum_{\lambda \ge 0} \left(\frac{2}{n!}\right)^{\kappa+\lambda} \frac{\theta_{F,H,\zeta_{+}\zeta_{-}}^{(2\kappa,2\lambda)}(Z)}{(2\kappa)!(2\lambda)!} \det(2\pi i X)^{\kappa} \det(2\pi i \overline{X})^{\lambda}.$$
(2)

Note that $\Theta_{F,H,\zeta_+,\zeta_-}(Z,X)$ does not vanish identically.

Our main result is the following theorem.

Theorem 1. Suppose $F\zeta_+ = H\zeta_+$ and $F\zeta_- = -H\zeta_-$. Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0^{(n)}(q)$. Choose T integral and symmetric such that, for $D^* = CT + D$, det $D^* = \pm p$ for an odd prime p. Then

$$\Theta_{F,H,\zeta_{+},\zeta_{-}}\left((AZ+B)(CZ+D)^{-1},(CZ+D)^{-2}X\right)$$

$$=\phi(M,Z)\exp\left\{\frac{\det(F[\zeta_{+}]CX)}{\det(CZ+D)}+\frac{\det(H[\zeta_{-}]C\overline{X})}{\det(C\overline{Z}+D)}\right\}\Theta_{F,H,\zeta_{+},\zeta_{-}}(Z,X),$$
(3)

where

$$\varphi(M,Z) = \chi_F(M) \det(CZ + D)^{k/2} \det(C\overline{Z} + D)^{1/2}$$

and where $\chi_F(M)$ is an eighth root of unity. More precisely,

$$\begin{split} \varphi(M,Z) &= \epsilon_p^{-m} \left(\frac{2^m c^m \det F}{p} \right) e\left\{ \frac{(k-l)s}{4} \right\} \\ &\times \left| \det(C) \right|^{m/2} \left\{ \det[-iC^{-1}(CZ+D)] \right\}^{k/2} \left\{ \det[iC^{-1}(C\overline{Z}+D)] \right\}^{l/2}, \end{split}$$

where $\varepsilon_p = 1$ for $p \equiv 1 \mod 4$, $\varepsilon_p = i$ for $p \equiv 3 \mod 4$, $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol, c is any diagonal element of $(pD^{*-1}C)$ with (c,p) = 1, and s is the signature of $D^{*-1}C$. If C is singular, then C^{-1} is interpreted as ${}^{t}D(C{}^{t}D)^{-1}$, where $(C{}^{t}D)^{-1}$ is the Moore-Penrose generalized inverse, and the determinants are interpreted as the product of the nonzero eigenvalues. Furthermore, $|\det(C)|^{1/2}$ is positive, and $\{\det[-iC^{-1}(CZ + D)]\}^{1/2}$ and $\{\det[iC^{-1}(C\overline{Z} + D)]\}^{1/2}$ are given by analytic continuation from the principal value when $Z = -C^{-1}D + iY$.

2 The symplectic theta function

The symplectic group

$$\operatorname{Sp}_{n}(\mathbb{R}) = \left\{ M = \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix} \right) \ \middle| \ M \in \operatorname{M}_{2n,2n}(\mathbb{R}) \text{ such that } J[M] = J = \left(\begin{smallmatrix} 0 & -I_{n} \\ I_{n} & 0 \end{smallmatrix} \right) \right\},$$

where I_n is the $(n\times n)\text{-identity}$ matrix, acts on the Siegel upper half-plane

$$\mathfrak{H}^{(\mathfrak{n})}=\big\{Z\in M_{\mathfrak{n},\mathfrak{n}}(\mathbb{C})\mid Z=\ ^{t}Z \ \text{and} \ \mathrm{Im}(Z)>0\big\}.$$

The action of M on Z is given by

$$\mathsf{M} \circ \mathsf{Z} = (\mathsf{A}\mathsf{Z} + \mathsf{B})(\mathsf{C}\mathsf{Z} + \mathsf{D})^{-1}.$$

Let $\Gamma^{(n)} = Sp_n(\mathbb{Z})$. The theta subgroup

$$\Gamma^{(n)}_{\vartheta} = \left\{ \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}\right) \in \Gamma^{(n)} \mid A^{t}B, C^{t}D \text{ have even diagonal entries} \right\}$$

acts on the symplectic theta function

$$\vartheta\left(\mathsf{Z}, \begin{pmatrix} \mathsf{u} \\ \mathsf{v} \end{pmatrix}\right) = \sum_{\mathsf{m} \in \mathbb{Z}^{\mathsf{n}}} \mathbf{e}\{\mathsf{Z}[\mathsf{m} + \mathsf{v}] - 2^{\mathsf{t}}\mathsf{m}\mathsf{u} - {}^{\mathsf{t}}\mathsf{v}\mathsf{u}\},\tag{4}$$

where u and v are column vectors in \mathbb{C}^n . It is well known (see, e.g., [7]) that, for

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \text{ in } \Gamma_{\vartheta}^{(n)},$$

$$\vartheta \left(M \circ Z, M \begin{pmatrix} u \\ v \end{pmatrix} \right) = \chi(M) \left[\det(CZ + D) \right]^{1/2} \vartheta \left(Z, \begin{pmatrix} u \\ v \end{pmatrix} \right),$$
(5)

where $\chi(M)$ is an eighth root of unity which depends upon the chosen square root of det(CZ + D) but which is otherwise independent of Z, u, and v. It is also known that $\chi(M)$ can be expressed in terms of Gaussian sums. H. Stark [8] determines $\chi(M)$ in the important special case when both C and D are nonsingular and when pD^{-1} is integral for some odd prime p. R. Styer [9] extends Stark's results and includes the case where C is singular. We use the following theorem of [9] to compute the explicit theta multiplier of $\Theta_{F,H,\zeta_+,\zeta_-}(Z,X)$.

Theorem 2 (Stark, Styer). Suppose $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is in $\Gamma_{\vartheta}^{(n)}$, where D^{-1} exists. Suppose further that pD^{-1} is integral and that det $D = \pm p^h$ for some odd prime p. Then

374 Olav Richter

$$\chi(M) \left[\det(CZ + D) \right]^{1/2} = \varepsilon_{p}^{-h} \left(\frac{2^{h} \det\left[(pD^{-1}C)^{(h)} \right]}{p} \right) \mathbf{e} \left\{ \frac{s}{4} \right\} \left| \det(C) \right|^{1/2} \left\{ \det\left[-iC^{-1}(CZ + D) \right] \right\}^{1/2},$$
(6)

where $\varepsilon_p = 1$ for $p \equiv 1 \mod 4$, $\varepsilon_p = i$ for $p \equiv 3 \mod 4$, $\left(\frac{i}{p}\right)$ is the Legendre symbol, $(pD^{-1}C)^{(h)}$ is any $(h \times h)$ -principal submatrix of $pD^{-1}C$ which is nonsingular mod p, and s is the signature (the number of positive eigenvalues minus the number of negative eigenvalues) of $D^{-1}C$. If C is singular, then C^{-1} is interpreted as ${}^{t}D(C {}^{t}D)^{-1}$, where $(C {}^{t}D)^{-1}$ is the Moore-Penrose generalized inverse (see [5]), and the determinants are interpreted as the product of the nonzero eigenvalues. Furthermore, $|\det(C)|^{1/2}$ is positive and $\{\det[-iC^{-1}(CZ + D)]\}^{1/2}$ is given by analytic continuation from the principal value when $Z = -C^{-1}D + iY$.

3 Proof of Theorem 1

Now we turn to the proof of Theorem 1. Let F be a symmetric, integral matrix of rank m with even diagonal entries, and let q be the level of F; that is, qF^{-1} is integral and qF^{-1} has even diagonal entries. Suppose that F is of type (k, l), and let H be a majorant of F; that is, $HF^{-1}H = F$ and ${}^{t}H = H > 0$.

Andrianov and Maloletkin [4] regard $\theta_{F,H}(Z) = \theta_{F,H,\zeta_+,\zeta_-}^{(0,0)}(Z)$ as a symplectic theta function and then apply (5). Let $U \otimes V = (u_{ij}V)$ denote the Kronecker product of two matrices U and V. For $Z = X + iY \in \mathfrak{H}^{(n)}$, set $\widetilde{Z} = X \otimes F + iY \otimes H \in \mathfrak{H}^{(nm)}$. One verifies that $\theta_{F,H}(Z) = \vartheta(\widetilde{Z}, \begin{pmatrix} 0 \\ 0 \end{pmatrix})$. Furthermore, if $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0^{(n)}(q)$, then $\widetilde{M} = \begin{pmatrix} \widetilde{A} & \widetilde{B} \\ \widetilde{C} & \widetilde{D} \end{pmatrix} = \begin{pmatrix} A \otimes I_m & B \otimes F \\ C \otimes F^{-1} & D \otimes I_m \end{pmatrix} \in \Gamma_{\vartheta}^{(nm)}$, and Andrianov and Maloletkin [4] show that

$$\theta_{F,H}(M \circ Z) = \chi(\widetilde{M}) \det(\widetilde{C}\widetilde{Z} + \widetilde{D})^{1/2} \vartheta(\widetilde{Z}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}) = \varphi(M, Z) \theta_{F,H}(Z),$$
(7)

where $\phi(M, Z) = \chi_F(M) \det(CZ + D)^{k/2} \det(C\overline{Z} + D)^{1/2}$ and $\chi_F(M)$ is an eighth root of unity. Unfortunately, Andrianov and Maloletkin [4] can determine $\chi_F(M)$ only when m is even. In the special case where F is positive definite (F = H), Styer [9] uses Theorem 2 to determine $\chi_F(M)$ for all m. It is easy to see that Styer's method can also be applied to determine $\chi_F(M)$ for all m, even if F is indefinite.

Styer [9] shows that if $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^{(n)}$, then there exists a symmetric, integral matrix T such that det(CT + D) = $\pm p$ for some arbitrarily large prime p. As in Styer [9], we set $Z^* = Z - T$, $M^* = M\begin{pmatrix} I_n & T \\ 0 & I_n \end{pmatrix}$, and we observe that

$$\theta_{\mathsf{F},\mathsf{H}}(\mathsf{M}\circ\mathsf{Z}) = \chi(\widetilde{\mathsf{M}^*})\det(\widetilde{\mathsf{C}}\widetilde{\mathsf{Z}^*}+\widetilde{\mathsf{D}^*})^{1/2}\theta_{\mathsf{F},\mathsf{H}}(\mathsf{Z}). \tag{8}$$

We apply Theorem 2 and find that

$$\begin{split} \varphi(\mathsf{M},\mathsf{Z}) &= \varepsilon_{p}^{-m} \left(\frac{2^{m} \mathsf{c}^{m} \det \mathsf{F}}{p} \right) \, \mathbf{e} \, \left\{ \frac{(\mathsf{k} - \mathfrak{l}) \mathsf{s}}{4} \right\} \\ &\times \left| \det(\mathsf{C}) \right|^{m/2} \left\{ \det\left[-\mathfrak{i} \mathsf{C}^{-1} (\mathsf{CZ} + \mathsf{D}) \right] \right\}^{k/2} \left\{ \det\left[\mathfrak{i} \mathsf{C}^{-1} (\mathsf{C}\overline{\mathsf{Z}} + \mathsf{D}) \right] \right\}^{1/2}, \end{split}$$
(9)

where $\varepsilon_p = 1$ for $p \equiv 1 \mod 4$, $\varepsilon_p = i$ for $p \equiv 3 \mod 4$, $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol, c is any diagonal element of $(pD^{*-1}C)$ with (c,p) = 1, and s is the signature of $D^{*-1}C$. If C is singular, then C^{-1} is interpreted as ${}^{t}D(C {}^{t}D)^{-1}$, where $(C {}^{t}D)^{-1}$ is the Moore-Penrose generalized inverse, and the determinants are interpreted as the product of the nonzero eigenvalues. Furthermore, $|\det(C)|^{1/2}$ is positive, and $\{\det[-iC^{-1}(CZ + D)]\}^{1/2}$ and $\{\det[iC^{-1}(C\overline{Z} + D)]\}^{1/2}$ are given by analytic continuation from the principal value when $Z = -C^{-1}D + iY$.

Note that if m is even and if det $D = \pm p$, formula (9) matches the result from Andrianov and Maloletkin [4], and we have

$$\phi(\mathsf{M},\mathsf{Z}) = (\operatorname{sgn}(\det \mathsf{D}))^{(k-1)/2} \left(\frac{(-1)^{m/2} \det \mathsf{F}}{|\det \mathsf{D}|} \right) \det(\mathsf{C}\mathsf{Z} + \mathsf{D})^{(k-1)/2} \left| \det(\mathsf{C}\overline{\mathsf{Z}} + \mathsf{D}) \right|^1.$$
(10)

To prove Theorem 1, we proceed as in Andrianov and Maloletkin [4], and we differentiate (7). For this purpose, we state [3, Lemma 3] in a slightly more general form.

Lemma 1. Let $1 \leq n < m$. Let $P, R \in M_{n,n}(\mathbb{C})$, ${}^{t}P = P$, and $Q, \eta \in M_{m,n}(\mathbb{C})$. Denote by $\xi = (\xi_{\alpha\beta})$ an $(m \times n)$ -variable matrix and by $\vartheta = (\vartheta/\vartheta\xi_{\alpha\beta})$ the corresponding matrix of differentiation operators. Set $L = L_{\eta} = det({}^{t}\eta\vartheta)$. Then, for $\nu \geq 1$, we have

$$L^{\nu}\left(\mathbf{e}\left\{\sigma\left(P^{t}\xi\xi+2^{t}Q\xi+R\right)\right\}\right)=f_{P,Q,\eta,\nu}(\xi)\mathbf{e}\left\{\sigma\left(P^{t}\xi\xi+2^{t}Q\xi+R\right)\right\},$$
(11)

where

$$f_{P,Q,\eta,\nu}(\xi) = \sum_{j=0}^{\left[\nu/2\right]} \nu! \left(\frac{n!}{2}\right)^{j} \frac{\det(2\pi i P^{t}\eta\eta)^{j}}{j!} \frac{\det(2\pi i \left(P^{t}\xi + {}^{t}Q\right)\eta\right)^{\nu-2j}}{(\nu-2j)!}.$$

Remark. If in addition ${}^{t}\eta\eta = 0$, then $f_{P,Q,\eta,\nu}(\xi) = det(2\pi i (P {}^{t}\xi + {}^{t}Q)\eta)^{\nu}$ and our lemma simplifies to [3, Lemma 3].

Proof. Andrianov and Maloletkin [3] point out that

376 Olav Richter

$$L(\mathbf{e}\{\sigma(P^{t}\xi\xi+2^{t}Q\xi+R)\}) = \det(2\pi i(P^{t}\xi+{}^{t}Q)\eta)\mathbf{e}\{\sigma(P^{t}\xi\xi+2^{t}Q\xi+R)\}$$

and that, for indices $\beta,\gamma,\mu,$ and $\iota,$

$$\left(\sum_{\alpha=1}^m\eta_{\alpha\beta}\frac{\partial}{\partial\xi_{\alpha\gamma}}\right)\left(\sum_{x=1}^m(\xi P+Q)_{x\mu}\eta_{x\iota}\right)=P_{\gamma\mu}(\,{}^t\eta\eta)_{\beta\iota}.$$

Hence

$$L(det(2\pi i(P^{t}\xi + {}^{t}Q)\eta)) = det(2\pi iP)L(det({}^{t}\xi\eta)).$$

The operator L can be written as follows:

$$L = \sum_{\sigma \in S_n} sgn(\sigma) \sum_{\gamma} \prod_{j=1}^n \eta_{\gamma(j)j} \frac{\partial}{\partial \xi_{\gamma(j)\sigma(j)}},$$

where the second summation is over all maps γ from $\{1, \ldots, n\}$ to $\{1, \ldots, m\}$. We find that

$$\begin{split} L(\det({}^{t}\xi\eta)) &= \sum_{\sigma\in S_{n}} \operatorname{sgn}(\sigma) \sum_{\gamma} \sum_{\tau\in S_{n}} \operatorname{sgn}(\sigma\circ\tau) \prod_{j=1}^{n} \eta_{\gamma(j)j} \eta_{\gamma\circ\tau(j)j} \\ &= n! \sum_{\tau\in S_{n}} \operatorname{sgn}(\tau) \sum_{\gamma} \prod_{j=1}^{n} \eta_{\gamma(j)j} \eta_{\gamma(j)\tau(j)} \\ &= n! \det({}^{t}\eta\eta), \end{split}$$

and therefore

$$L(\det(2\pi i(P^{t}\xi + {}^{t}Q)\eta)) = n! \det(2\pi iP^{t}\eta\eta).$$

Induction on ν then gives the desired result.

Now we are ready to determine the behavior of $\theta_{F,H,\zeta_+,\zeta_-}^{(\kappa,\lambda)}(Z)$ under modular transformations.

Theorem 3. Suppose $F\zeta_+ = H\zeta_+$ and $F\zeta_- = -H\zeta_-$. Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0^{(n)}(q)$. Then

$$\begin{split} \theta_{\mathsf{F},\mathsf{H},\zeta_{+},\zeta_{-}}^{(\kappa,\lambda)}(\mathsf{M}\circ\mathsf{Z}) \\ &= \phi(\mathsf{M},\mathsf{Z}) \sum_{j=0}^{[\kappa/2]} \sum_{g=0}^{[\lambda/2]} \kappa! \lambda! \left(\frac{n!}{2}\right)^{j+g} \frac{\det\left(\frac{\mathsf{F}[\zeta_{+}]C}{2\pi i}\right)^{j}}{j!} \frac{\det\left(\frac{\mathsf{H}[\zeta_{-}]C}{2\pi i}\right)^{g}}{g!} \\ &\times \frac{\det(\mathsf{CZ}+\mathsf{D})^{\kappa-j}}{(\kappa-2j)!} \frac{\det(\mathsf{C}\overline{\mathsf{Z}}+\mathsf{D})^{\lambda-g}}{(\lambda-2g)!} \theta_{\mathsf{F},\mathsf{H},\zeta_{+}\zeta_{-}}^{(\kappa-2j,\lambda-2g)}(\mathsf{Z}), \end{split}$$
(12)

where $\phi(M, Z)$ is given by (9).

3

Remark. In the special case when $F[\zeta_+] = H[\zeta_-] = 0$, our theorem reduces to [4, Theorem 2].

Proof. Let $\xi = \begin{pmatrix} \xi_+ \\ \xi_- \end{pmatrix} \in M_{m,n}(\mathbb{C})$, where $\xi_+ \in M_{k,n}(\mathbb{C})$ and $\xi_- \in M_{l,n}(\mathbb{C})$, and let ∂_+ and ∂_- be the corresponding matrices of differential operators. Set $\tilde{\eta}_+ = S^{-1}\zeta_+$ and $\tilde{\eta}_- = S^{-1}\zeta_-$, where $S \in GL_n(\mathbb{R})$ such that $F[S] = E_{k,l}$ and $H[S] = I_m$ and where $E_{k,l} = \begin{pmatrix} I_k \\ -I_l \end{pmatrix}$. Note that $\tilde{\eta}_+ = \begin{pmatrix} \eta_+ \\ 0 \end{pmatrix}$ and $\tilde{\eta}_- = \begin{pmatrix} 0 \\ \eta_- \end{pmatrix}$, for $\eta_+ \in M_{k,n}$ and $\eta_- \in M_{l,n}$, since $(F - H)[S]\tilde{\eta}_+ = -2\begin{pmatrix} 0 \\ I_l \end{pmatrix}\tilde{\eta}_+ = 0$ and $(F + H)[S]\tilde{\eta}_+ = -2\begin{pmatrix} I_k \\ 0 \end{pmatrix}\tilde{\eta}_- = 0$. Thus [4, (4.4)] can be stated as follows:

$$\begin{split} \sum_{N} \mathbf{e} \Big\{ \sigma \big(P_{+}^{t} \xi_{+} \xi_{+} + 2^{t} Q_{+} \xi_{+} + R_{+} \big) \Big\} \mathbf{e} \Big\{ \sigma \big(P_{-}^{t} \xi_{-} \xi_{-} + 2^{t} Q_{-} \xi_{-} + R_{-} \big) \Big\} \\ &= \varphi (M, Z) \sum_{N} \mathbf{e} \Big\{ \sigma \big(P_{+}'^{t} \xi_{+} \xi_{+} + 2^{t} Q_{+}' \xi_{+} + R_{+}' \big) \Big\} \\ &\times \mathbf{e} \Big\{ \sigma \big(P_{-}'^{t} \xi_{-} \xi_{-} + 2^{t} Q_{-}' \xi_{-} + R_{-}' \big) \Big\}, \end{split}$$

where

$$\begin{split} & P_{+} = Z(CZ + D)^{-1}D, \qquad P_{-} = -\overline{Z}\big(C\overline{Z} + D\big)^{-1}D, \qquad P'_{+} = Z, \qquad P'_{-} = -\overline{Z}, \\ & Q_{+} = \,^{t}\big(-Z(CZ + D)^{-1}\,^{t}N\,^{t}S^{-1}\big(\begin{smallmatrix} I_{k} \\ 0 \end{smallmatrix}\big)\big), \qquad Q_{-} = \,^{t}\big(\overline{Z}(C\overline{Z} + D)^{-1}\,^{t}N\,^{t}S^{-1}\big(\begin{smallmatrix} 0 \\ I_{1} \end{smallmatrix}\big)\big), \\ & Q'_{+} = \,^{t}\big(-Z\,^{t}N\,^{t}S^{-1}\big(\begin{smallmatrix} I_{k} \\ 0 \end{smallmatrix}\big)\big), \qquad Q'_{-} = \,^{t}\big(\overline{Z}\,^{t}N\,^{t}S^{-1}\big(\begin{smallmatrix} 0 \\ I_{1} \end{smallmatrix}\big)\big), \\ & R_{+} = Re\big(M \circ Z\big)F[N], \qquad R_{-} = i\,Im\big(M \circ Z\big)H[N], \\ & R'_{+} = Re(Z)F[N], \qquad R'_{-} = i\,Im(Z)H[N] \end{split}$$

and where $\phi(M, Z)$ is defined in (7) and given explicitly in (9). We apply Lemma 1 with $L = L_+L_- = \det({}^t\eta_+\partial_+)^{\kappa} \det({}^t\eta_-\partial_-)^{\lambda}$, and we set $\xi_+ = \xi_- = 0$. Then (12) follows from observing that ${}^t\widetilde{\eta}_+\widetilde{\eta}_+ = {}^t\eta_+\eta_+ = F[\zeta_+]$ and ${}^t\widetilde{\eta}_-\widetilde{\eta}_- = {}^t\eta_-\eta_- = H[\zeta_-]$.

The transformation formula (3) is an immediate consequence of Theorem 3:

$$\begin{split} \Theta_{F,H,\zeta_{+},\zeta_{-}} & \left(M \circ Z, (CZ+D)^{-2}X \right) \\ &= \varphi(M,Z) \sum_{\kappa \geq 0} \sum_{j=0}^{\kappa} \left(\frac{2}{n!} \right)^{\kappa-j} \frac{\det(2\pi i X)^{\kappa-j}}{(2\kappa-2j)!} \frac{\left(\frac{\det(F[\zeta_{+}]CX)}{\det(CZ+D)} \right)^{j}}{j!} \\ & \times \sum_{\lambda \geq 0} \sum_{g=0}^{\lambda} \left(\frac{2}{n!} \right)^{\lambda-g} \frac{\det(2\pi i \overline{X})^{\lambda-g}}{(2\lambda-2g)!} \frac{\left(\frac{\det(H[\zeta_{-}]C\overline{X})}{\det(C\overline{Z}+D)} \right)^{g}}{g!} \theta_{F,H,\zeta_{+},\zeta_{-}}^{(2\kappa-2j,2\lambda-2g)} (Z) \\ &= \varphi(M,Z) \exp\left\{ \frac{\det(F[\zeta_{+}]CX)}{\det(CZ+D)} + \frac{\det(H[\zeta_{-}]C\overline{X})}{\det(C\overline{Z}+D)} \right\} \Theta_{F,H,\zeta_{+},\zeta_{-}}(Z,X). \end{split}$$

378 Olav Richter

4 Conclusion

It would be very interesting to find other examples that satisfy the transformation property (3). We now explain how functions that satisfy a special case of (3) allow us to construct Siegel modular forms.

For j = 1, 2, let $f_j(Z, X)$ be holomorphic functions on $\mathfrak{H}^{(n)} \times M_{n,n}(\mathbb{C})$ of the form

$$f_{j}(Z,X) = \sum_{\nu \ge 0} f_{\nu}^{(j)}(Z) \det(2\pi i X)^{\nu}.$$
(13)

Suppose that, for $M = \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix} \right) \in \Gamma^{(n)}$,

$$f_{j}(M \circ Z, (CZ + D)^{-2}X) = \chi_{j}(M) \det(CZ + D)^{k_{j}} \exp\left\{\frac{\det(CX)}{\det(CZ + D)}\right\} f_{j}(Z, X) \quad (14)$$

for some nonnegative integers k_j and characters χ_j . Notice that, when n = 1, f_j are Jacobi-like forms in the sense of Zagier [10] and Cohen, Manin, and Zagier [6]. Then

$$F(Z,X) = f_1(Z,X)f_2\left(Z,\mathbf{e}\left\{\frac{1}{n}\right\}X\right) = \sum_{\nu \ge 0} F_{\nu}(Z) \det(2\pi i X)^{\nu},$$

where $F_{\nu}(Z)$ is a Siegel modular form of weight $k_1 + k_2 + 2\nu$ and character $\chi_1\chi_2$. Hence, as an application of Theorem 3, we have the following corollary.

Corollary 1. Suppose F is positive definite (F = H) such that $det(F[\zeta_+]) = 1$. Set

$$\Theta_{\mathsf{F},\zeta_{+}}(\mathsf{Z},\mathsf{X}) = \sum_{\kappa \ge 0} \left(\frac{2}{\mathfrak{n}!}\right)^{\kappa} \frac{\theta_{\mathsf{F},\mathsf{H},\zeta_{+}\zeta_{-}}^{(2\kappa,0)}(\mathsf{Z})}{(2\kappa)!} \det(2\pi \mathfrak{i}\mathsf{X})^{\kappa}$$
(15)

and

$$F(Z,X) = \Theta_{F,\zeta_+}(Z,X)\Theta_{F,\zeta_+}\left(Z,\mathbf{e}\left\{\frac{1}{n}\right\}X\right) = \sum_{\nu \ge 0} F_{\nu}(Z)\det(2\pi i X)^{\nu}.$$
(16)

Then

$$F_{\nu}(Z) = \left(\frac{2}{n!}\right)^{\nu} \sum_{\kappa=0}^{\nu} (-1)^{\kappa} \frac{\theta_{F,H,\zeta_{+},\zeta_{-}}^{(2\kappa,0)}(Z)}{(2\kappa)!} \frac{\theta_{F,H,\zeta_{+},\zeta_{-}}^{(2\nu-2\kappa,0)}(Z)}{(2\nu-2\kappa)!}$$
(17)

is a Siegel modular form on $\Gamma_0^{(n)}(q)$ of weight $m + 2\nu$ and character $(\chi_F(M))^2$, with $\chi_F(M)$ as in Theorem 1.

References

- [1] A. N. Andrianov, Spherical theta-series, Math. USSR-Sb. 62 (1989), 289-304.
- [2] —, Symmetries of harmonic theta-functions of integral quadratic forms, Russian Math. Surveys 50 (4) (1995), 661–700.
- [3] A. N. Andrianov and G. N. Maloletkin, *Behavior of theta series of degree* N under modular substitutions, Math. USSR-Izvestija 9 (2) (1975), 227–241.
- [4] —, Behavior of theta series of genus n of indefinite quadratic forms under modular substitutions, Proc. Steklov. Inst. Math. **4** (1980), 1–12.
- [5] A. Ben-Israel and T. N. E. Greville, *Generalized Inverses: Theory and Applications*, Wiley-Interscience, New York, 1974.
- [6] P. B. Cohen, Y. Manin, and D. Zagier, Automorphic Pseudodifferential Operators, Progr. Nonlinear Differential Equations Appl. 26, Birkhäuser, Boston, 1997, 17–47.
- [7] M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions, Pure Appl. Math.
 23, Academic Press, New York, 1966.
- [8] H. M. Stark, On the transformation formula for the symplectic theta function and applications, J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 29 (1982), 1–12.
- [9] R. Styer, Prime determinant matrices and the symplectic theta function, Amer. J. Math. 106 (1984), 645–664.
- [10] D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 57–75.

Department of Mathematics, University of California, Santa Cruz, California 95064, USA; richter@math.ucsc.edu