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Abstract

The real-analytic Jacobi forms of Zwegers’ PhD thesis play an important role in the study of mock theta
functions and related topics, but have not been part of a rigorous theory yet. In this paper, we introduce
harmonic Maass–Jacobi forms, which include the classical Jacobi forms as well as Zwegers’ functions as
examples. Maass–Jacobi–Poincaré series also provide prime examples. We compute their Fourier expan-
sions, which yield Zagier-type dualities and also yield a lift to skew-holomorphic Jacobi–Poincaré series.
Finally, we link harmonic Maass–Jacobi forms to different kinds of automorphic forms via a commutative
diagram.
© 2010 Elsevier Inc. All rights reserved.

MSC: primary 11F50; secondary 11F30, 11F37

Keywords: Harmonic Maass form; Jacobi form; Mock theta function

✩ The first author was partially supported by NSF grant DMS-0757907 and by the Alfried Krupp prize. The paper
was written while the second author was in residence at RWTH Aachen University and at the Max Planck Institute for
Mathematics in Bonn. He is grateful for the hospitality of each institution and he thanks Aloys Krieg in particular for
providing a stimulating research environment at RWTH Aachen University.

* Corresponding author.
E-mail addresses: kbringma@math.uni-koeln.de (K. Bringmann), richter@unt.edu (O.K. Richter).
0001-8708/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2010.03.033



K. Bringmann, O.K. Richter / Advances in Mathematics 225 (2010) 2298–2315 2299
1. Introduction and statement of results

Ramanujan’s last letter to Hardy in 1920 (see [19]) features a list of 17 functions such as

f (q) := 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

This was the birth of mock theta functions, which have been the source of many important works
since then. However, for a long time, the subject remained quite mysterious, since no rigorous
definition of mock theta functions was known. In 2002, Zwegers [26] succeeded in giving such
a definition by discovering a crucial link between mock theta functions and real-analytic vector-
valued modular forms, which are now part of the theory of harmonic Maass forms. His significant
discovery has led to major applications in different areas of mathematics and physics, such as
Bringmann and Ono’s [9,6] solutions of well-known conjectures in combinatorics and the theory
of q-series.

Zwegers [26] also explored certain real-analytic Jacobi forms, which are valuable tools in
understanding mock theta functions. Coefficients of such Jacobi forms encode combinatorial
statistics such as Dyson’s [12] famous rank of partitions. Moreover, such Jacobi forms are vital
to the theory of higher weight harmonic Maass forms. For example, the functions in Bringmann
and Lovejoy [5], which associate overpartitions to class numbers, may be viewed as derivatives
of Jacobi forms with respect to the Jacobi variable. Bringmann [3] and Bringmann, Garvan, and
Mahlburg [4] examined quasiharmonic Maass forms, i.e., linear combinations of derivatives of
harmonic Maass forms, which are also closely related to derivatives of Jacobi forms. A main
tool in understanding these higher weight Maass forms is a certain partial differential equation
connecting the rank and the crank of partitions (see Atkin and Garvan [1]). This differential
equation may be regarded as the action of the heat operator on Jacobi forms in this context (see
Bringmann and Zwegers [10]). Furthermore, the Jacobi forms in [26] appear also as key players
in the recent paper of Malmendier and Ono [16], where the authors confirmed an important
conjecture by Moore and Witten on SO(3)-Donaldson invariants of CP2.

In this paper, we seek a better understanding of real-analytic Jacobi forms, which should
provide new insight on mock theta functions and related topics. More precisely, we propose
the study of harmonic Maass–Jacobi forms (see Definition 3). In addition to the usual Jacobi
forms, our theory includes the real-analytic Jacobi forms in [26] as well as certain Poincaré
series, the main focus of our work here. We introduce a differential operator ξk,m (see (15)),
whose action on harmonic Maass–Jacobi forms is central to our work. The operator ξk,m is an
analog of Bruinier and Funke’s [11] operator ξk , which maps harmonic Maass forms of weight k

to weakly holomorphic modular forms of weight 2 − k, and which has played a major role in
the development of harmonic Maass forms. However, in contrast to the action of ξk on harmonic
Maass forms, the image of ξk,m does not consist of holomorphic functions. Specifically, we prove
in this paper:

Proposition 1. We have

ξk,m : Ĵk,m → J sk!
3−k,m.

Here Ĵk,m denotes the subspace of harmonic Maass–Jacobi forms of weight k and index m

which are holomorphic in the Jacobi variable z ∈ C (see Section 4 for details), and J sk! stands
k,m



2300 K. Bringmann, O.K. Richter / Advances in Mathematics 225 (2010) 2298–2315
for the space of Skoruppa’s [22,23] (weak) skew-holomorphic Jacobi forms of weight k and
index m, which are reviewed in Section 3. Moreover, we write Ĵ

cusp
k,m for the pre-image of J

sk,cusp
3−k,m

under ξk,m, where J
sk,cusp
k,m denotes the space of cusp forms in J sk!

k,m.

We now turn our attention to Maass–Jacobi–Poincaré series, which are key examples of Ĵ
cusp
k,m .

We consider normalized Maass–Jacobi–Poincaré series P (n,r)
k,m (see (22)), which have Fourier

expansions of the form

P (n,r)
k,m (τ, z) = qnM

s,k− 1
2

(
−πDy

m

)
e

(
iDy

4m

)
ϑ

(r)
k,m(τ, z) + c(τ, z)

+
∑

n′,r ′∈Z

c(k)
n,r

(
n′, r ′)e( iD′y

4m

)
W

s,k− 1
2

(
−πD′y

m

)
qn′

ζ r ′
,

where here and throughout the paper τ = x + iy ∈ H (the usual complex upper half plane),
z = u + iv ∈ C, e(w) := e2πiw , q := e(τ ), ζ := e(z), D := r2 − 4nm, D′ := r ′2 − 4n′m, and
where Ms,κ and Ws,κ are modified Whittaker functions defined in (17) and (19), respectively,
and where s ∈ { k

2 − 1
4 , 5

4 − k
2 }. Moreover, c(τ, z) is a sum over n′, r ′ with D′ = 0 defined in (21)

and ϑ
(r)
k,m is a theta function defined in (10). One finds that (see Corollary 1) the coefficients

c
(k)
n,r (n

′, r ′) decompose as

c(k)
n,r

(
n′, r ′) = b(k)

n,r

(
n′, r ′) + (−1)kb(k)

n,r

(
n′,−r ′). (1)

Zagier [24] established a striking duality for Fourier coefficients of weakly holomorphic mod-
ular forms. Bringmann and Ono [7] generalized Zagier’s results and showed that the duality arises
from properties of Fourier coefficients of Maass–Poincaré series. Such a duality cannot hold for
the coefficients c

(k)
n,r (n

′, r ′) of P (n,r)
k,m due to the appearance of (−1)k in (1) and the fact that the

weights k and 3 − k are “dual” under the action of ξk,m (see Proposition 1). Nevertheless, our
first theorem gives Zagier-type dualities for the coefficients b

(k)
n,r (n

′, r ′). The half-integral weight
Maass–Poincaré series in [7] depend also on some integer and the duality in [7] involves only
such series attached to negative integers. The situation here is much more complicated than in
the modular case: The Maass–Jacobi–Poincaré series P (n,r)

k,m depend on the discriminant D and

one might expect that a duality for P (n,r)
k,m would involve only series corresponding to negative

discriminants. However, this is not the case, and our first theorem shows that the dualities for the
b

(k)
n,r (n

′, r ′) feature Poincaré series with positive and negative discriminants.

Theorem 1. The following dualities hold for the coefficients b
(k)
n,r (n

′, r ′) of P (n,r)
k,m :

(1) If D = r2 − 4nm < 0 and D′ = r ′2 − 4n′m < 0, then

b(k)
n,r

(
n′, r ′) = b

(3−k)

n′,r ′ (n, r).

(2) If D = r2 − 4nm > 0, D′ = r ′2 − 4n′m < 0, and k > 3, then

b(k)
n,r

(
n′, r ′) = b

(3−k)

n′,r ′ (n, r).
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Remark. Statement (1) in Theorem 1 is a duality between holomorphic parts of Jacobi–Poincaré
series analogous to the duality in [7]. However, statement (2) establishes a duality between holo-
morphic and non-holomorphic parts: b

(k)
n,r (n

′, r ′) belongs to the holomorphic part of P (n,r)
k,m , while

b
(3−k)

n′,r ′ (n, r) belongs to the non-holomorphic part of P (n′,r ′)
3−k,m.

Our second theorem asserts that ξk,m maps the Maass–Jacobi–Poincaré series P (n,r)
k,m (with

D > 0) to the skew-holomorphic Jacobi–Poincaré series P
(n,r)sk
3−k,m , which is defined in (8).

Theorem 2. If D = r2 − 4nm > 0, then we have

ξk,m

(
P (n,r)

k,m

) = P
(n,r)sk
3−k,m .

Remark. The skew-holomorphic Jacobi–Poincaré series P
(n,r)sk
k,m form a basis of J

sk,cusp
k,m . With

the help of Theorem 2, we see that the map ξk,m : Ĵ
cusp
k,m → J

sk,cusp
3−k,m is surjective.

Finally, we explore lifts between different spaces of automorphic forms. Let S+
5
2 −k

denote the

usual plus-space of cuspidal holomorphic modular forms of weight 5
2 − k and write Ŝ

+
k− 1

2
for its

pre-image under ξ
k− 1

2
. If k is even, then we prove that the following diagram is commutative:

Ŝ
+
k− 1

2

ξ
k− 1

2

Fθ

S+
5
2 −k

Fθ

Ĵ
cusp
k,1

ξk,1
J

sk,cusp
3−k,1

(2)

where Fθ and Fθ are lifts given in terms of theta functions (see Section 6 for details).
The paper is organized as follows. In Section 2, we recall the notion of harmonic Maass forms.

In Section 3, we briefly discuss skew-holomorphic Jacobi forms. In Section 4, we present har-
monic Maass–Jacobi forms and we prove Proposition 1. In Section 5, we come to the heart of the
paper. Here we determine the Fourier expansions of Maass–Jacobi–Poincaré series, which allow
us to prove Theorem 1 and Theorem 2. In Section 6, we show that diagram (2) is commutative.

2. Harmonic Maass forms

Zwegers showed in his PhD thesis [26] that mock theta functions appear as holomorphic
parts of harmonic Maass forms of weights 1/2, a fact that has inspired many recent results.
We will now introduce some standard notation to briefly review the definition of half-integral
weight harmonic Maass forms. For more details, see Fay [14], Bruinier and Funke [11], and
also Ono [17], who gives a good overview of the recent development of harmonic Maass forms
and its applications to number theory. Throughout the paper we write ∂τ := ∂

∂τ
= 1

2 ( ∂
∂x

− i ∂
∂y

),

∂τ := ∂ = 1 ( ∂ + i ∂ ), ∂z := ∂ = 1 ( ∂ − i ∂ ), and ∂z := ∂ = 1 ( ∂ + i ∂ ). Then

∂τ 2 ∂x ∂y ∂z 2 ∂u ∂v ∂z 2 ∂u ∂v
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k := (τ − τ)2∂ττ + k(τ − τ)∂τ

is the weight k hyperbolic Laplacian. Let Γ0(4) := {( ∗ ∗
c ∗

) ∈ SL2(Z) | c ≡ 0 (mod 4)}.

Definition 1. A harmonic Maass form of weight k ∈ 1
2 + Z on Γ0(4) is a smooth function

g : H → C satisfying the following:

(1) For all
(

a b
c d

) ∈ Γ0(4), we have

g

(
aτ + b

cτ + d

)
=

(
c

d

)2k

ε−2k
d (cτ + d)kg(τ ).

Here ( c
d
) denotes the Jacobi symbol, εd = 1 for d ≡ 1 (mod 4) and εd = i for d ≡ 3 (mod 4),

and
√

τ is the principal branch of the holomorphic square root.
(2) We have that 
k(g) = 0.
(3) The function g has at most linear exponential growth at all the cusps of Γ0(4).

Let M̂k denote the space of harmonic Maass forms of weight k.

The above definition can be extended to other groups in the usual way.
Note that harmonic Maass forms have Fourier expansions of the form

g(τ) = c−
g y1−k +

∑
n	−∞

c+
g (n)qn +

∑
n
∞

c−
g (n)H(2πny)e(nx). (3)

Here c+
g +∑

n	−∞c+
g (n)qn is the holomorphic part of g, c−

g y1−k+∑
n
∞c−

g (n)H(2πny)e(nx)

is the non-holomorphic part of g, and the function H (defined on page 55 of [11]) is a solution
to the second-order linear differential equation

∂2

∂w2
f (w) − f (w) + k

w

(
∂

∂w
f (w) + f (w)

)
= 0.

The function H(t) has the asymptotic behavior

H(t) ∼
{

(2|t |)−ke−|t | for t → −∞,

(−2t)−ket for t → ∞.

Moreover, in the case that t < 0, we have

H(t) = e−tΓ (1 − k,−2t), (4)

where Γ (α, t) := ∫ ∞
t

e−wwα−1 dw is the incomplete Gamma-function. Let M̂
+
k be the plus-

space of harmonic Maass forms, i.e., the space of forms in M̂k whose Fourier expansions in (3)

are only over integers n satisfying (−1)k− 1
2 n ≡ 0,1 (mod 4).

Furthermore, if g ∈ M̂k is holomorphic on H, then g is a weakly holomorphic modular form
of weight k, i.e., a meromorphic modular form of weight k whose poles (if there are any) are
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supported at the cusps. We write M !
k for the space of weakly holomorphic modular forms of

weight k and M !+
k for its plus-space.

Bruinier and Funke [11] introduced the differential operator

ξk := 2i

(
τ − τ

2i

)k

∂τ (5)

and showed that

ξk : M̂k → M !
2−k.

This map plays a significant role in theory of harmonic Maass forms and has led to important
applications; see for example the work of Bringmann and Ono on Maass–Poincaré series [7,8].
Finally, note that if g ∈ Ŝk , the pre-image of S2−k (the space of cusp forms of weight 2 − k)
under ξk , then g has a Fourier expansion of the form

g(τ) =
∑

n	−∞
c+
g (n)qn +

∑
n<0

c−
g (n)Γ

(
1 − k,4π |n|y)

qn. (6)

3. Skew-holomorphic Jacobi forms

In 1985, Eichler and Zagier [13] systematically developed a theory of (holomorphic) Jacobi
forms. Skoruppa [22,23] introduced skew-holomorphic Jacobi forms, which play a crucial role
in understanding liftings of modular forms and Jacobi forms. The theory of Jacobi forms has
grown enormously since then with deep connections to modular forms and many other areas of
mathematics and physics, for example, the theory of Heegner points, the theory of elliptic genera,
string theory, and more recently, mock theta functions.

We will now briefly discuss the definition of skew-holomorphic Jacobi forms. Let Γ J :=
SL2(Z) � Z2 be the Jacobi group. For fixed integers k and m, define the following slash operator
on functions φ : H × C → C:

(
φ|sk

k,mA
)
(τ, z) := φ

(
aτ + b

cτ + d
,
z + λτ + μ

cτ + d

)
(cτ + d)1−k|cτ + d|−1e2πim(− c(z+λτ+μ)2

cτ+d
+λ2τ+2λz)

for all A = [( a b
c d

)
, (λ,μ)] ∈ Γ J . The following definition of weak skew-holomorphic Jacobi

forms (slightly) extends the definitions in [22,23].

Definition 2. A function φ : H × C → C is a weak skew-holomorphic Jacobi form of weight k

and index m if φ is real-analytic in τ ∈ H, is holomorphic in z ∈ C, and satisfies the following
conditions:

(1) For all A ∈ Γ J , (φ|sk
k,mA) = φ.

(2) The Fourier expansion of φ is of the form

φ(τ, z) =
∑

n,r∈Z

D	−∞

c(n, r)e

(
iDy

2m

)
qnζ r . (7)
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If the Fourier expansion in (7) is only over D � 0, then φ is a skew-holomorphic Jacobi form
of weight k and index m as in [22,23]. If the Fourier expansion in (7) is only over D > 0, then
φ is a skew-holomorphic Jacobi cusp form of weight k and index m. We denote the spaces of
weak skew-holomorphic Jacobi forms, skew-holomorphic Jacobi forms, and skew-holomorphic
Jacobi cusp forms, each of weight k and index m, by J sk!

k,m, J sk
k,m, and J

sk,cusp
k,m , respectively.

Remark. Note that the Fourier expansion (7) implies that Lm(φ) = 0, where Lm := 8πim∂τ −∂zz

is the heat operator.

We will next recall the skew-holomorphic Jacobi–Poincaré series in Skoruppa [21]. Let D =
r2 − 4nm > 0 with r, n ∈ Z. Set

Ψ
n,r
k,m(τ, z) := e(nτ + rz)e

(
iDy

2m

)
,

and for k � 3, define

P
(n,r)sk
k,m (τ, z) :=

∑
A∈Γ J∞\Γ J

(
Ψ

n,r
k,m

∣∣sk
k,m

A
)
(τ, z), (8)

where Γ J∞ := {[( 1 η

0 1

)
, (0, n)] | η,n ∈ Z}. The Fourier expansion of P

(n,r)sk
k,m features the Kloost-

erman sum Kc(n, r, n′, r ′) and certain theta series ϑ
(r)
κ,m, which we now define: Let

Kc

(
n, r, n′, r ′) := e2mc

(−rr ′) ∑
d (mod c)∗
λ (mod c)

ec

(
d̄mλ2 + n′d − r ′λ + d̄n + d̄rλ

)
, (9)

where ec(x) := e
2πix

c , the sum over d runs through the primitive residue classes modulo c, and
d̄ is the inverse of d modulo c. Finally, set

ϑ(r)
κ,m(τ, z) :=

∑
λ∈Z

qλ2mζ 2mλ
(
qrλζ r + (−1)κq−rλζ−r

)
. (10)

The following theorem of [21] states that P
(n,r)sk
k,m is a skew-holomorphic Jacobi cusp form of

weight k and index m and, in particular, gives the Fourier expansion of P
(n,r)sk
k,m .

Theorem 3. The Poincaré series P
(n,r)sk
k,m are elements of J

sk,cusp
k,m . Moreover,

P
(n,r)sk
k,m (τ, z) = qne

(
iDy

2m

)
ϑ

(r)
k−1,m(τ, z) +

∑
n′,r ′∈Z

D′>0

c
(
n′, r ′)e( iD′y

2m

)
qn′

ζ r ′

(recall D′ = r ′2 − 4n′m), where

c
(
n′, r ′) := b

(
n′, r ′) + (−1)k+1b

(
n′,−r ′).
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Here

b
(
n′, r ′) = √

2πi−k+1
(

D′

D

) k
2 − 3

4

m− 1
2
∑
c>0

c− 3
2 Kc

(
n, r, n′,−r ′)J

k− 3
2

(
π

√
DD′

mc

)
,

where J is the usual J -Bessel function.

4. Harmonic Maass–Jacobi forms

Maass–Jacobi forms were first introduced by Berndt and Schmidt [2]. Recently, Pitale [18]
has used ideas of [2] to give a new and more thorough approach to Maass–Jacobi forms. Nev-
ertheless, there are important types of real-analytic Jacobi forms — such as the Jacobi forms in
Section 1.4 of Zwegers [26] as well as the Maass–Jacobi–Poincaré series studied in Section 5 —
which have not been part of a theory yet and which do not fit into the framework of [18]. In this
section, we suggest a theory of harmonic Maass–Jacobi forms which includes the holomorphic
Jacobi forms of Eichler and Zagier [13] as well as the real-analytic Jacobi forms in Section 1.4
of [26] and the Poincaré series in Section 5 as explicit examples.

For fixed integers k and m, define the following slash operator on functions φ : H × C → C:

(φ|k,mA)(τ, z) := φ

(
aτ + b

cτ + d
,
z + λτ + μ

cτ + d

)
(cτ + d)−ke2πim(− c(z+λτ+μ)2

cτ+d
+λ2τ+2λz) (11)

for all A = [( a b
c d

)
, (λ,μ)] ∈ Γ J . It is well known that (11) can be extended to an action |Rk,m

of the real Jacobi group on C∞(H × C). The center of the universal enveloping algebra of the
real Jacobi group is generated by a linear element and a cubic element, the Casimir element. The
linear element acts by scalars under |Rk,m and the action of the Casimir element under |Rk,m is given

(up to the constant 5
8 + 3k−k2

2 ) by the following differential operator:

Ck,m := −2(τ − τ)2∂ττ − (2k − 1)(τ − τ)∂τ + (τ − τ)2

4πim
∂τzz

+ k(τ − τ)

4πim
∂zz + (τ − τ)(z − z)

4πim
∂zzz − 2(τ − τ)(z − z)∂τz + k(z − z)∂z

+ (τ − τ)2

4πim
∂τzz +

(
(z − z)2

2
+ k(τ − τ)

4πim

)
∂zz + (τ − τ)(z − z)

4πim
∂zzz.

In particular, Ck,m commutes with the action in (11), i.e., if A ∈ Γ J , then

(
Ck,mφ

)∣∣
k,m

A = Ck,m(φ|k,mA). (12)

Definition 3. A function φ : H × C → C is a harmonic Maass–Jacobi form of weight k and
index m if φ is real-analytic in τ ∈ H and z ∈ C, and satisfies the following conditions:

(1) For all A ∈ Γ J , (φ|k,mA) = φ.
(2) We have that Ck,m(φ) = 0.
(3) We have that φ(τ, z) = O(eaye2πmv2/y) as y → ∞ for some a > 0.
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We are particularly interested in harmonic Maass–Jacobi forms, which are holomorphic in z; we
denote the space of such forms by Ĵk,m.

Remarks. (1) It is not hard to see that every φ ∈ Ĵk,m has a Fourier expansion of the form

y
3
2 −k

∑
n,r∈Z

D=0

c0(n, r)qnζ r +
∑

n,r∈Z

D
∞

c+(n, r)qnζ r

+
∑

n,r∈Z

D	−∞

c−(n, r)H

(
−πDy

2m

)
e

(
iDy

4m

)
qnζ r , (13)

where the H here differs by the H defined on page 55 of [11] in that k is replaced by
k − 1

2 . We call
∑

D	−∞ c−(n, r)H(−πDy
2m

)e(
iDy
2m

)qnζ r the non-holomorphic part of φ and∑
D
∞ c+(n, r)qnζ r the holomorphic part of φ.
(2) If φ is a holomorphic Jacobi form of weight k and index m, then φ ∈ Ĵk,m. The definition

of harmonic Maass–Jacobi forms can easily be extended to forms of half-integral weights and
indices. Each real-analytic Jacobi form μ̂ in Section 1.4 of Zwegers [26] has a decomposition of
the form μ̂ = μ1 + μ̂2, where μ1 is a meromorphic Jacobi form on H × C2 and where μ̂2 is a
real-analytic Jacobi form on H × C (see also the footnote (1) on page 7 of Zagier [25]). It can
be verified using MAPLE that μ̂2 is annihilated by C1/2,−1/2 and hence is a harmonic Maass–
Jacobi form of weight 1/2 and index −1/2. Further examples of harmonic Maass–Jacobi forms
and their properties are discussed in Section 5.

(3) The Maass–Jacobi forms in [18] are real-analytic functions φ : H × C → C which are

eigenfunctions of C̃k,m := yk/2Ck,my−k/2 + 5
8 + 3k−k2

2 , invariant under a slash-operator as in (11),
except that (cτ + d)−k in (11) is replaced by ( cτ+d

|cτ+d| )
−k , and which satisfy the growth condition

φ(τ, z) = O(yN) as y → ∞ for some N > 0. Note that the choice of this growth condition
is somewhat unfortunate, since, in general, even a holomorphic Jacobi form φ does not satisfy
φ(τ, z) = O(yN) as y → ∞ (independently of z) for some N > 0. In fact, the identity (see
Skoruppa [20])

∣∣qnζ r
∣∣e− 2πmv2

y = e
− πy

2m
((r+ 2mv

y
)2−D)

applied to the Fourier expansion of a holomorphic Jacobi form shows that such a Jacobi form
satisfies condition (3) of Definition 3.

A direct computation reveals that

D
(m)
− :=

(
τ − τ

2i

)(
−(τ − τ)∂τ − (z − z)∂z + 1

4πm

(
τ − τ

2i

)
∂zz

)

is a “lowering” operator, i.e., if φ is a smooth function on H × C and if A ∈ Γ J , then

(
D

(m)
− φ

)∣∣ A = D
(m)
− (φ|k,mA). (14)
k−2,m
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In the spirit of the definition of ξk in (5), we introduce the differential operator

ξk,m :=
(

τ − τ

2i

)k−5/2

D
(m)
− . (15)

We will now prove Proposition 1, which gives the action of ξk,m on Ĵk,m. If φ ∈ Ĵk,m, then
(14) implies that (ξk,mφ)|sk

3−k,mA = ξk,mφ for all A ∈ Γ J . Moreover, applying ξk,m to a Fourier
expansion of the form (13) yields a Fourier expansion of a weak skew-holomorphic Jacobi form,
which completes the proof of Proposition 1.

We end this section with two remarks.

Remarks. (1) In the introduction, we define Ĵ
cusp
k,m as the pre-image of J

sk,cusp
3−k,m under ξk,m. Note

that elements in Ĵ
cusp
k,m have a Fourier expansion of the form

φ(τ, z) =
∑

n,r∈Z

D
∞

c+(n, r)qnζ r +
∑

n,r∈Z

D>0

c−(n, r)Γ

(
3

2
− k,

πDy

m

)
qnζ r .

(2) As in (2) of the previous remarks, we write each function μ̂ in [26] as μ̂ = μ1 + μ̂2.
Then μ̂2(τ, z) is a harmonic Maass–Jacobi form of weight 1/2 and index −1/2, which is not
holomorphic in z (where z = u − v with the variables u and v of [26]). Nevertheless, one can
determine its image under ξ 1

2 ,− 1
2
. One finds that

ξ 1
2 ,− 1

2
(μ̂2) =

√
2√
y

e−2πv2/y
∑

n∈ 1
2 +Z

(−1)n− 1
2

(
n + v

y

)
e−πin2τ e2πinz,

which satisfies the transformation law of a skew-holomorphic Jacobi form of weight 5/2 and
index −1/2 and is also in the kernel of the heat operator 4πi∂τ + ∂zz. However, ξ 1

2 ,− 1
2
(μ̂2) is not

holomorphic in z and hence it is not a skew-holomorphic Jacobi form in the sense of Definition 2.

5. Maass–Jacobi–Poincaré series and the proofs of Theorem 1 and Theorem 2

In this section, we present Maass–Jacobi–Poincaré series. We determine their Fourier expan-
sions, which allow us to prove Theorem 1 and Theorem 2.

First, we construct an eigenfunction of the differential operator Ck,m in order to define the
Maass–Jacobi–Poincaré series in (18). Let Mν,μ be the usual M-Whittaker function, which is a
solution to the differential equation

∂2

∂w2
f (w) +

(
−1

4
+ ν

w
+

1
4 − μ2

w2

)
f (w) = 0. (16)

Let D = r2 − 4nm �= 0, and for s ∈ C, κ ∈ 1
2Z, and t ∈ R \ {0}, define

Ms,κ (t) := |t |− κ
2 M κ 1

(|t |) (17)
sgn(t) 2 ,s− 2
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and

φ
(n,r)
k,m,s(τ, z) := M

s,k− 1
2

(
−πDy

m

)
e

(
rz + ir2y

4m
+ nx

)
.

Lemma 1. The function φ
(n,r)
k,m,s is an eigenfunction of the operator Ck,m with eigenvalue

−2s(1 − s) − 1
2 (k2 − 3k + 5

4 ).

Proof. If � is an integer, then one can verify that (see also [7])

ϕk,−�,s(τ ) := Ms,k(−4π�y)e(−�x)

is an eigenfunction of 
k with eigenvalue s(1 − s) + 1
4 (k2 − 2k). It is easy to see that the action

of Ck,m on functions in Ĵk,m agrees with that of

−2(τ − τ)2∂ττ − (2k − 1)(τ − τ)∂τ + (τ − τ)2

4πim
∂τzz = −2 · 


k− 1
2
+ (τ − τ)2

4πim
∂τzz.

We write

φ
(n,r)
k,m,s(τ, z) = e

(
r2

4m
τ + rz

)
ϕ

k,− D
4m

,s
(τ )

to find that

Ck,m
(
φ

(n,r)
k,m,s

) = e

(
r2

4m
τ + rz

)(−2

k− 1

2
(ϕ

k,− D
4 ,s

)
)

=
(

−2s(1 − s) − 1

2

(
k2 − 3k + 5

4

))
φ

(n,r)
k,m,s . �

We consider the Poincaré series

P
(n,r)
k,m,s(τ, z) :=

∑
A∈Γ J∞\Γ J

(
φ

(n,r)
k,m,s

∣∣
k,m

A
)
(τ, z). (18)

The estimate

M
s,k− 1

2
(y) 
 yRe(s)− 2k−1

4 (y → 0)

yields that P
(n,r)
k,m,s is absolutely and uniformly convergent for Re(s) > 5

4 . Of particular interest

there are the cases s ∈ { k
2 − 1

4 , 5
4 − k

2 }, for which the P
(n,r)
k,m,s are annihilated by Ck,m and thus

provide elements of Ĵk,m. We give the Fourier expansion of P
(n,r)
k,m,s in the next theorem after

introducing a modified W -Whittaker function. For s ∈ C, κ ∈ 1
2Z, and t ∈ R \ {0}, set

Ws,κ (t) := |t |− κ
2 W κ 1

(|t |), (19)
sgn(t) 2 ,s− 2
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where Wν,μ denotes the usual W -Whittaker function, which is also a solution to the differential
equation (16).

Theorem 4. We have

P
(n,r)
k,m,s(τ, z) = qnM

s,k− 1
2

(
−πDy

m

)
e

(
iDy

4m

)
ϑ

(r)
k,m(τ, z) +

∑
n′,r ′∈Z

cy,s

(
n′, r ′)qn′

ζ r ′
, (20)

where

cy,s

(
n′, r ′) := by,s

(
n′, r ′) + (−1)kby,s

(
n′,−r ′)

and where by,s(n
′, r ′) is given as follows (recall D′ = r ′2 − 4n′m):

(1) If DD′ > 0, then by,s(n
′, r ′) equals

√
2πi−km− 1

2
Γ (2s)

Γ (s − sgn(D′) 2k−1
4 )

(
D′

D

) k
2 − 3

4

e

(
iD′y
4m

)
W

s,k− 1
2

(
−πD′y

m

)

×
∑
c>0

c− 3
2 Kc

(
n, r, n′, r ′)J2s−1

(
π

√
D′D

mc

)
,

where Γ is the usual Gamma-function.
(2) If D′ = 0, then by,s(n

′, r ′) equals

y
5−2k

4 −s 1

Γ (s + 2k−1
4 )Γ (s − 2k−1

4 )
as

(
n′r ′),

where as(n
′, r ′) is holomorphic for σ > 5

4 .
(3) If DD′ < 0, then by,s(n

′, r ′) equals

√
2πi−km− 1

2
Γ (2s)

Γ (s − sgn(D′) 2k−1
4 )

( |D′|
|D|

) k
2 − 3

4

e

(
iD′y
4m

)
W

s,k− 1
2

(−πD′y
m

)

×
∑
c>0

c− 3
2 Kc

(
n, r, n′, r ′)I2s−1

(
π

√|D′D|
mc

)
,

where I is the usual I -Bessel-function.

Proof. A set of representatives of Γ J∞\Γ J is given by {[( a b
c d

)
, (aλ, bλ)]}, where c, d ∈ Z

with (c, d) = 1, λ ∈ Z, and where for each pair (c, d), the integers a, b are chosen such that
ad − bc = 1. It is easy to see that the contribution from c = 0 yields the first term on the right-
hand side of (20). We now only consider the contribution from c > 0, since the case c < 0 is
similar. We use the identities



2310 K. Bringmann, O.K. Richter / Advances in Mathematics 225 (2010) 2298–2315
aτ + b

cτ + d
= a

c
− 1

c(cτ + d)
,

mλ2 aτ + b

cτ + d
+ 2λmz

cτ + d
− cmz2

cτ + d
= − c

cτ + d
m

(
z − λ

c

)2

+ a

c
mλ2,

z

cτ + d
+ λ

aτ + b

cτ + d
= z − λ

c

cτ + d
+ aλ

c

to verify that the contribution from c > 0 is given by

∑
c>0

d (mod c)∗
λ (mod c)

α,β∈Z

c−k

(
τ + d

c
+ α

)−k

e

(
− 1

τ + d
c

+ α
m

(
z − λ

c
− β

)2

+ a

c
mλ2

)

× φ
(n,r)
k,m,s

(
a

c
− 1

c2(τ + d
c

+ α)
,

z − λ
c

− β

c(τ + d
c

+ α)
+ aλ

c

)
.

The next task is to compute the Fourier expansion of

F(τ, z) :=
∑

α,β∈Z

(τ + α)−ke

(
− 1

τ + α
m(z − β)2

)
φ

(n,r)
k,m,s

(
a

c
− 1

c2(τ + α)
,

z − β

c(τ + α)
+ aλ

c

)
.

Poisson summation shows that

F(τ, z) =
∑

n′,r ′∈Z

ay

(
n′, r ′)e(n′x + r ′z

)

with

ay

(
n′, r ′) =

∫
R2

t−ke

(
−mw2

t

)
φ

(n,r)
k,m,s

(
a

c
− 1

c2t
,
w

ct
+ aλ

c

)
e
(−n′x′ + r ′w

)
dx′ du′,

where w = u′ + iv′ with v′ arbitrary and t = x′ + iy. We employ the identities

Re

(
a

c
− 1

c2t

)
= a

c
− x′

c2|t |2 ,

Im

(
a

c
− 1

c2t

)
= y

c2|t |2

to find that
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ay

(
n′, r ′) = e

(
na

c
+ raλ

c

)∫
R

t−k M
s,k− 1

2

(
− πDy

mc2|t |2
)

e

(
−n′x′ + ir2y

4mc2|t |2 − nx′

c2|t |2
)

×
∫
R

e

(
−r ′w − w2m

t
+ rw

ct

)
du′ dx′

= e

(
na

c
+ raλ

c
− rr ′

2mc

)
m− 1

2 (2i)−
1
2 e

(
ir ′2y

4m

)

×
∫
R

t−(k− 1
2 )M

s,k− 1
2

(
− πDy

mc2|t |2
)

e

(
−D′x′

4m
+ Dx′

4mc2|t |2
)

dx′.

We omit further details and only point out that the evaluations of the Bessel function integral on
page 176 of Fay [14] will finish the proof. �

We now restrict to the cases s ∈ { k
2 − 1

4 , 5
4 − k

2 }. We observe that the Gamma-function has
poles at non-positive integers to see that Theorem 4 reduces to the following corollary.

Corollary 1. For s ∈ { k
2 − 1

4 , 5
4 − k

2 } the functions P
(n,r)
k,m,s are in Ĵk,m and have Fourier expansions

of the form:

P
(n,r)
k,m,s(τ, z) = qnM

s,k− 1
2

(
−πDy

m

)
e

(
iDy

4m

)
ϑ

(r)
k,m(τ, z) + c(τ, z)

+
∑

n′,r ′∈Z

c(k)
n,r

(
n′, r ′)e( iD′y

4m

)
W

s,k− 1
2

(
−πD′y

m

)
qn′

ζ r ′
,

where

c(τ, z) :=
∑

n′,r ′∈Z

D′=0

c(k)
n,r

(
n′, r ′)qn′

ζ r ′
(21)

only occurs for k < 0 and where

c(k)
n,r

(
n′, r ′) := b(k)

n,r

(
n′, r ′) + (−1)kb(k)

n,r

(
n′,−r ′).

We have (recall D′ = r ′2 − 4n′m):

(1) If D > 0 and k > 3, then b
(k)
n,r (n

′, r ′) = 0 unless D′ < 0, in which case it equals

√
2πi−km− 1

2

( |D′|
D

) k
2 − 3

4 ∑
c>0

c− 3
2 Kc

(
n, r, n′, r ′)I

k− 3
2

(
π

√|D′|D
mc

)
.
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(2) If D > 0 and k < 0, then b
(k)
n,r (n

′, r ′) is given by

√
2πi−km− 1

2

(
D′

D

) k
2 − 3

4
(

3

2
− k

)∑
c>0

c− 3
2 Kc

(
n, r, n′, r ′)J 3

2 −k

(
π

√
D′D

mc

)
if D′ > 0,

√
2πi−km− 1

2

( |D′|
D

) k
2 − 3

4

Γ

(
5

2
− k

)∑
c>0

c− 3
2 Kc

(
n, r, n′, r ′)I 3

2 −k

(
π

√|D′|D
mc

)
if D′ < 0.

(3) If D < 0 and k > 3, then b
(k)
n,r (n

′, r ′) = 0 unless D′ < 0, in which case it equals

√
2πi−km− 1

2

(
D′

D

) k
2 − 3

4 ∑
c>0

c− 3
2 Kc

(
n, r, n′, r ′)J

k− 3
2

(
π

√
D′D

mc

)
.

(4) If D < 0 and k < 0, then b
(k)
n,r (n

′, r ′) is given by

√
2πi−km− 1

2

(
D′

|D|
) k

2 − 3
4
(

3

2
− k

)∑
c>0

c− 3
2 Kc

(
n, r, n′, r ′)I 3

2 −k

(
π

√
D′|D|
mc

)
if D′ > 0,

√
2πi−km− 1

2

(
D′

D

) k
2 − 3

4

Γ

(
5

2
− k

)∑
c>0

c− 3
2 Kc

(
n, r, n′, r ′)J 3

2 −k

(
π

√
D′D

mc

)
if D′ < 0.

We normalize the Poincaré series for s ∈ { k
2 − 1

4 , 5
4 − k

2 } as follows:

P (n,r)
k,m (τ, z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

i2k−1( 3
2 − k)P

(n,r)

k,m, k
2 − 1

4
(τ, z) if D > 0, k > 0,

−(πD
m

)k− 3
2 1

k− 3
2
P

(n,r)

k,m, 5
4 − k

2
(τ, z) if D > 0, k < 0,

Γ (k − 1
2 )i2k−1P

(n,r)

k,m, k
2 − 1

4
(τ, z) if D < 0, k > 0,

−P
(n,r)

k,m, 5
4 − k

2
(τ, z) if D < 0, k < 0.

(22)

An inspection of the Fourier expansions of P (n,r)
k,m reveals that Theorem 1 follows from the iden-

tity

Kc

(
n, r, n′, r ′) = Kc

(
n′, r ′, n, r

)
, (23)

which is proved by replacing first d 
→ d̄ and then λ 
→ −λd̄ in (9).
Now we turn to the proof of Theorem 2. Note that the differential operator ξk,m annihilates

meromorphic functions. For k > 0 the Poincaré series are meromorphic and hence we may as-
sume that k < 0. We decompose P (n,r)

k,m (for D > 0) into holomorphic and non-holomorphic parts.
The identities
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W 5
4 − k

2 ,k− 1
2
(y) = W 2k−1

4 ,k− 1
2
(y) = e− y

2 ,

W 5
4 − k

2 ,k− 1
2
(−y) = W 2k−1

4 ,k− 1
2
(−y) = e

y
2 Γ

(
3

2
− k, y

)
,

M 2k−1
4 ,k− 1

2
(−y) = e

y
2 ,

M 5
4 − k

2 ,k− 1
2
(−y) =

(
k − 3

2

)
e

y
2 Γ

(
3

2
− k, y

)
−

(
k − 3

2

)
e

y
2 Γ

(
3

2
− k

)

give that

P (n,r)
k,m (τ, z) = −qn

(
πD

m

)k− 3
2

Γ

(
3

2
− k,

πDy

m

)
ϑ

(r)
k,m(τ, z) +

∑
n′,r ′∈Z

c(k)
n,r

(
n′, r ′)qn′

ζ r ′

− 1

k − 3
2

(
πD

m

)k− 3
2 ∑

n′,r ′∈Z

D′>0

c(k)
n,r

(
n′, r ′)Γ (

3

2
− k,

πD′y
m

)
qn′

ζ r ′
.

It is easy to check that

ξk,m

(
Γ

(
3

2
− k, ay

))
= −a

3
2 −ke−ay, (24)

which yields the Fourier expansion of ξk,m(P (n,r)
k,m ). A comparison with the Fourier expansion of

P
(n,r)sk
3−k,m in Theorem 3 (where we may replace r ′ 
→ −r ′) leads to Theorem 2. Finally, we remark

that Theorem 2 shows that P (n,r)
k,m ∈ Ĵ

cusp
k,m .

6. Lifting maps

In this section, we will show that diagram (2) is commutative if k is even. (Note also that
J

sk,cusp
3−k,1 = {0} if k is odd.) First recall that f ∈ Ŝ

+
k− 1

2
has a Fourier expansion of the form:

f (τ) =
∑

n	−∞
(−1)k−1n≡0,1 (mod 4)

c+(n)qn +
∑
n<0

(−1)k−1n≡0,1 (mod 4)

c−(n)Γ

(
3

2
− k,4π |n|y

)
qn.

A direct computation shows that

h(τ) := ξ
k− 1

2
(f ) = −(4π)

3
2 −k

∑
n>0

(−1)kn≡0,1 (mod 4)

c−(−n)n
3
2 −kqn ∈ S+

5
2 −k

.

Set

h0(τ ) := 1

4

3∑
h

(
τ + j

4

)
, h1(τ ) := 1

4

3∑
(−i)j h

(
τ + j

4

)
,

j=0 j=0
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and for μ = 0,1,

θ1,μ(τ, z) :=
∑
r∈Z

r≡μ (mod 2)

q
r2
4 ζ r .

It is easy to see that

Fθ(τ, z) := h0(τ )θ1,0(τ, z) + h1(τ )θ1,1(τ, z)

has a Fourier series as in (7) with D > 0. Furthermore, Lemma 2.1 of [15] implies that

h0(τ + 1) = h0(τ ),

h1(τ + 1) = −ih1(τ ),

h0

(−1

τ

)
= 1 + i

2
τ

5
2 −k

(
h0(τ ) + h1(τ )

)
,

h1

(−1

τ

)
= 1 + i

2
τ

5
2 −k

(
h0(τ ) − h1(τ )

)
(25)

and (7) and (9) of Section 5 of [13] for m = 1 give

θ1,0(τ + 1, z) = θ1,0(τ, z),

θ1,1(τ + 1, z) = iθ1,1(τ, z),

θ1,0

(−1

τ
,
z

τ

)
= 1 − i

2
τ

1
2 e

2πiz2
τ

(
θ1,0(τ, z) + θ1,1(τ, z)

)
,

θ1,1

(−1

τ
,
z

τ

)
= 1 − i

2
τ

1
2 e

2πiz2
τ

(
θ1,0(τ, z) − θ1,1(τ, z)

)
. (26)

The equations in (25) and (26) show that

Fθ |sk
3−k,1A = Fθ (27)

for A = [( a b
c d

)
, (0,0)] ∈ Γ J , while if A = [( 1 0

0 1

)
, (λ1, λ2)] ∈ Γ J , then (27) follows directly from

the definition of θ1,μ. Hence (27) holds for all A ∈ Γ J and Fθ ∈ J
sk,cusp
3−k,1 .

On the other hand, for f ∈ Ŝ
+
k− 1

2
, set

H0(τ ) := 1

4

3∑
j=0

f

(
τ + j

4

)
and H1(τ ) := 1

4

3∑
j=0

ij f

(
τ + j

4

)
.

Analogous to the proof of Theorem 4.4 of [18] one can show that

Fθ (τ, z) := H0(τ )θ1,0(τ, z) + H1(τ )θ1,1(τ, z) ∈ Ĵ
cusp
k,1 (28)

and (24) then yields that ξk,1(Fθ ) = Fθ . We conclude that diagram (2) is commutative.
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