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Hurwitz class numbers H(D) play a significant role in classical number theory. If
−D < −4 is a negative fundamental discriminant, then h(−D) = H(D) is the class 
number of the imaginary quadratic field Q(

√
−D). Despite intensive studies, divisibility 

properties of these class numbers have remained mysterious.
In this work, we investigate Ramanujan-type congruences for Hurwitz class numbers 

(see Theorem A, B, and C). Furthermore, in Theorem D we connect Ramanujan-type 
congruences for Hurwitz class numbers H(D) to congruences for class numbers h(−D)
in certain families of fundamental discriminants −D.

In [2], we explored Ramanujan-type congruences for Hurwitz class numbers H(D)
such as the following examples:

H(53n + 52) ≡ 0 (mod 5),

H(73n + 3 · 72) ≡ 0 (mod 7),

H(113n + 7 · 112) ≡ 0 (mod 11).

These congruences are of the form H(an + b) ≡ 0 (mod �), where � > 3 is a prime 
and a > 0 and b are integers such that −b is a square modulo a. We refer to such 
congruences as non-holomorphic Ramanujan-type congruences, because the generating 
series for H(an + b) is a mock modular form, i.e., it has a non-holomorphic modular 
completion. In particular, one cannot access such congruences via standard techniques 
from the theory of holomorphic modular forms.

In our earlier work [2] we employed a holomorphic projection argument to prove that 
for such non-holomorphic congruences the divisibility � |a holds. The above examples 
also suggest the divisibility � | b, and in the current paper we use another holomorphic 
projection argument to prove:

Theorem A. Let � > 3 be a prime, a ∈ Z≥1, and b ∈ Z. If −b is a square modulo a and

H(an + b) ≡ 0 (mod �)

for all integers n, then � | b.

There are also holomorphic Ramanujan-type congruences for Hurwitz class numbers, 
i.e., congruences H(an + b) ≡ 0 (mod �) where −b is not a square modulo a:

H(33n + 32) ≡ 0 (mod 5),

H(53n + 2 · 52) ≡ 0 (mod 7),

H(29n + 3 · 26) ≡ 0 (mod 11).

In these examples � does not divide a or b. While such congruences can be studied with 
tools from the theory of holomorphic modular forms, the relation between a and b has 
not yet been resolved, either.
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Our examples of holomorphic and non-holomorphic congruences indicate that
ordp

(
a/ gcd(a, b)

)
≤ 1 for odd primes p and ord2

(
a/ gcd(a, b)

)
≤ 3. To prove these 

phenomena, we first establish the following result on congruences of square classes:

Theorem B. Let � > 3 be a prime, a ∈ Z≥1, and b ∈ Z. Suppose H(an + b) ≡ 0 (mod �)
for all integers n. Then H(an + bu2) ≡ 0 (mod �) for all integers u with gcd(u, a) = 1
and n ∈ Z.

In the case of holomorphic Ramanujan-type congruences, the proof of Theorem B
extends ideas of Radu’s study of partition congruences [9,10]. The proof of Theorem B
in the non-holomorphic case requires a deeper analysis, where Theorem A is an essential 
ingredient.

We give two applications of Theorem B. In our first application, we call a Ramanujan-
type congruence for H(D) modulo � on aZ +b maximal, if H(D) has no Ramanujan-type 
congruence modulo � on any arithmetic progression a′Z + b′ that is properly contained 
in aZ + b.

Theorem C. Let � > 3 be a prime. Suppose that we have a maximal Ramanujan-type 
congruence modulo � for the Hurwitz class numbers on aZ + b. Then for odd primes p,

ordp

(
a/ gcd(a, b)

)
≤ 1 and ord2

(
a/ gcd(a, b)

)
≤ 3.

As a further application of Theorem B, we provide a dichotomy between Ramanu-
jan-type congruences for Hurwitz class numbers and congruences for class numbers of 
imaginary quadratic fields whose discriminant varies in a square class modulo a.

For the next statement, we require the usual Legendre symbol and also the divisor 
sum σ1(b) :=

∑
d | b d. For a prime p and an integer a, we call the largest p-power that 

divides a its p-part.

Theorem D. Let � > 3 be a prime. Suppose that we have a Ramanujan-type congruence 
modulo � for the Hurwitz class numbers on aZ + b. For all odd primes p | a assume 
that ordp

(
a/ gcd(a, b)

)
≥ 1 and if a is even, assume that ord2

(
a/ gcd(a, b)

)
≥ 2. Then 

either:

(i) We have h(−D) ≡ 0 (mod �) for all fundamental discriminants −D < −4 for 
which there is f ∈ Z \ {0} with Df2 ∈ aZ + b.

(ii) There is a prime p dividing a such that

σ1(fp) ≡
(
−D

p

)
σ1(fp/p) (mod �)

for every fundamental discriminant −D < 0 and integer f satisfying Df2 ≡ b (mod a), 
where fp is the p-part of f . Both (−D/p) and fp are uniquely determined by aZ + b. In 
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this case, we have a Ramanujan-type congruence for Hurwitz class numbers on apZ + b, 
where ap is the p-part of a.

Remark.

(1) The assumptions on the orders of a/ gcd(a, b) can always be achieved by replac-
ing a with a suitable multiple of it. They can be removed at the expense of a more 
technical statement involving the factorizations Df2 ∈ aZ + b that appear in case (i).

(2) From the Hurwitz class number formula alone, one could deduce a statement 
similar to case (ii) for some prime p, not necessarily dividing a. To show that one must 
have p | a, we use Theorem B.

(3) One can verify that all congruences given in this introduction fall under case (ii). 
We do not expect that the first case in the theorem ever occurs, i.e., we expect that 
Ramanujan-type congruences for H(D) modulo � on aZ + b occur if and only if there 
is p | a and Df2 ∈ aZ + b satisfying the above condition in (ii). This belief is supported 
by extensive numerical evidence in addition to well-known theorems on the divisibility 
of class numbers, such as [14], which implies that if the first case occurs, we must have 
either 2 � ord2(gcd(a, b)), 2 � ord�(gcd(a, b)), ord2(a/ gcd(a, b)) ≥ 2, ord�(a/ gcd(a, b)) ≥ 1
or p ≡ ±1 (mod �) for some odd p with 2 � ordp(a) - in other words, −Df2 ∈ aZ + b

cannot be equivalent to requirements on the splitting behavior in Q(
√
−D) of primes 

not congruent to ±1 (mod �), other than 2, �.
(4) Theorem D also offers a partial explanation for the pattern in the examples of 

Ramanujan-type congruences given so far that there is always a prime p |a for which 
ordp(a) ≥ 3 and ordp(b) ≥ 2. This comes from the fact that for the congruence in (ii) 
to hold, one must have p|fp, and combined with the assumptions on a, b in Theorem D, 
this implies that 2 ≤ ordp(b) ≤ ordp(a) − 1.

(5) For any congruences for Hurwitz class numbers that do not fall under case (ii), 
Theorem D implies the existence of fundamental discriminants −D ≡ u2b (mod a) for 
which h(−D) ≡ 0 (mod �) for some u co-prime to a.

The proof of Theorem D relies on the Hurwitz class number formula and Theorem B. 
In accordance with Theorem B, the case of holomorphic Ramanujan-type congruences 
is accessible via methods from the classical theory of modular forms, while the non-
holomorphic case is not.

The paper is organized as follows. In Section 1, we review some tools from the theory 
of modular forms needed for our work. In Section 2, we establish Theorem A. In Section 3
we prove Theorem B. Finally, in Section 4 we settle Theorems C and D.
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1. Preliminaries

We introduce necessary notation to discuss modular forms (see for example [3]) and 
quasi-modular forms (see for example [8,16]). For odd D, set

εD =
{

1, if D ≡ 1 (mod 4);
i, if D ≡ 3 (mod 4).

(1.1)

Throughout the paper τ ∈ H (the usual complex upper half plane), y = Im(τ), 
and e(sτ) := exp(2πi sτ) for s ∈ Q. Let Γ0(N), Γ1(N), and Γ(N) be the standard 
congruence subgroups of SL2(Z). Let Mk(Γ) denote the space of modular forms of in-
tegral or half-integral weight k for Γ ⊆ SL2(Z) with respect to the multiplier ν2k

θ if 
k /∈ Z (where νθ is the theta multiplier), and Mk(Γ) the corresponding space of har-
monic Maass forms (satisfying the moderate growth condition at all cusps). We will 
make use of the fact that the space of quasi-modular forms of weight k for Γ is given 
by 

⊕
j≥0 E

j
2 Mk−2j(Γ), where E2(τ) = 1 − 24 

∑∞
n=1

∑
d |n d e(nτ) is the quasi-modular 

Eisenstein series of weight 2.
For γ =

(
a b
c d

)
∈ GL2(Q) with det(γ) > 0, the weight-k slash operator is defined by

(
f
∣∣
k
γ
)
(τ) = (detγ) k

2 (cτ + d)−k f
(aτ + b

cτ + d

)
.

Recall that if f(τ) =
∑

m∈Q≥0
c(f, m)e(mτ) ∈ M2−k(Γ(N)) is a holomorphic modular 

form of level N ∈ Z≥1 with k �= 1, then its non-holomorphic Eichler integral is given by

f∗(τ) := −(2i)k−1
i∞∫

−τ

f(−w)
(w + τ)k dw

= c(f, 0)
1 − k

y1−k − (4π)k−1
∑

m∈ 1
N Z<0

c(f, |m|) |m|k−1Γ(1 − k, 4π|m|y)e(mτ),

(1.2)

where Γ represents the upper incomplete Gamma-function.

1.1. Generating series of Hurwitz class numbers

Zagier [15] investigated the generating series
∑

D H(D)e(Dτ) of Hurwitz class num-
bers, and proved that it has a modular completion:

E 3
2
(τ) :=

∞∑
D=0

H(D)e(Dτ) + 1
16π θ

∗(τ) ∈ M 3
2
(Γ0(4)), (1.3)

where
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θ := θ1,0 ∈ M 1
2
(Γ0(4)) with

θa,b(τ) :=
∑
n∈Z

n≡b (mod a)

e
(
n2τ
a

)
∈ M 1

2
(Γ(4a)), a ∈ Z≥1, b ∈ Z. (1.4)

For a ∈ Z≥1 and b ∈ Z, we recall the operators Ua,b from our earlier work [2], which 
act on Fourier series expansions of non-holomorphic modular forms by:

Ua,b

∑
n∈Z

c(f ; n; y)e(nτ) :=
∑
n∈Z

n≡b (mod a)

c
(
f ; n; y

a

)
e
(
nτ
a

)
. (1.5)

In particular, the holomorphic part of Ua,bE 3
2
(τ) is the generating series of Hurwitz 

class numbers H(an + b) for n ∈ Z, and one finds that (see also [4,7] for the holomorphic 
case)

Ua,b E 3
2
∈ M 3

2
(Γ(4a)). (1.6)

The action of the U-operators on theta series can be described by

Ua,b θ =
∑

β2≡b (mod a)

θa,β and Ua,b θ
∗ =

∑
β2≡−b (mod a)

√
a θ∗a,β . (1.7)

Note that if −b is not a square modulo a, then Ua,b E 3
2

is a holomorphic modular 
form.

1.2. Holomorphic projection

Holomorphic projection plays an important role in our proofs of Theorems A and B. 
We briefly review the holomorphic projection operator from [6] in the scalar-valued case 
(see also [5,13]). Note that [5] treats the case of congruence subgroups Γ0(N), but the 
generalization to Γ(N) that we require here follows from the vector-valued case in [6]
when using the induction of the trivial representation of Γ(N) to SL2(Z). Let k ∈ Z, 
k ≥ 2, N ∈ Z≥1, and f : H → C an N -periodic continuous function with Fourier series 
expansion

f(τ) =
∑

n∈ 1
N Z

c(f ; n; y)e(τn)

satisfying the conditions: (i) For some a > 0 and all γ ∈ SL2(Z), there are coefficients 
c̃(f |k γ; 0) ∈ C, such that (f |k γ)(τ) = c̃(f |k γ; 0) + O(y−a) as y → ∞; (ii) For all 
n ∈ 1 Z>0, we have c(f ; n; y) = O(y2−k) as y → 0. Then
N
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πhol
k (f) := c̃(f ; 0) +

∑
n∈ 1

N Z>0

c
(
πhol
k (f); n

)
e(nτ) with

c
(
πhol
k (f); n

)
:= (4πn)k−1

Γ(k − 1) lim
s→0

∞∫
0

c(f ; n; y) exp(−4πny)ys+k−2 dy.
(1.8)

Recall the following key properties of the holomorphic projection operator in (1.8): 
Proposition 4 of [6] states that if f is holomorphic, then πhol

k (f) = f . Theorem 5 of [6]
asserts that if f transforms like a modular form of weight 2 for the group Γ1(N), 
then πhol

2 (f) is a quasi-modular form of weight 2 for Γ1(N).

1.3. A theorem of Serre

We conclude this Section with a result of Serre, which is required for our proof of 
Theorem A.

Theorem 1.1 (Serre [11,12]). Fix positive integers k and N , and an odd prime number �. 
Then there exist infinitely many primes p ≡ 1 (mod �N) such that for all f ∈ Mk(Γ1(N))
with �-integral Fourier coefficients, we have

c(f ;npr) ≡ (r + 1) c(f ;n) (mod �) (1.9)

for all n ∈ Z coprime to � and all non-negative integers r.

Finally, we recall the extension of Serre’s result to quasi-modular forms.

Corollary 1.2 (Corollary 1.2 of [2]). Fix positive integers k and N , and a prime num-
ber � > 3. Then there exist infinitely many primes p ≡ 1 (mod �N) such that for all 
quasi-modular forms f of weight k for Γ1(N) with �-integral Fourier coefficients, we 
have the congruence (1.9).

2. Conditions on non-holomorphic congruences

We have already proved in [2] that non-holomorphic congruences modulo � for Hurwitz 
class numbers on an arithmetic progression aZ + b include the divisibility � | a. For the 
purpose of this work, we need to extend this result.

We will prove Theorem A by contradiction. Proposition 2.2 provides us with explicit 
congruences for specific Fourier series coefficients, which we then use to derive a contra-
diction. The next lemma allows us to pass from a given arithmetic progression ãZ + b̃ to 
a more convenient one.

Lemma 2.1. Let ã ∈ Z≥1 and b̃ ∈ Z. Then there exist integers a, b, and β such that
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(i) We have ã | a and b ≡ b̃ (mod ã).
(ii) We have −b ≡ β2 (mod a).
(iii) For every prime p | a, writing ap for the p-part of a, we have that gcd(ap, 2β) is 

a proper divisor of ap.
(iv) There is a prime p | a such that 0 < a < p2 and 0 ≤ 2β < p.

Proof. First, we fix any integer β ≥ 0 with −b̃ ≡ β (mod ã). Then we choose an appro-
priate multiple of ã:

a′ :=
∏
p | ã

pmax{ordp(ã), ordp(2β)+1},

where asf is the maximal square-free divisor of ã. We let p > max{a′, 2β}, and set 
a := a′ · p. Then if b is any integer congruent to −β2 modulo a, the four requirements in 
the lemma are met. �
Proposition 2.2. Let a ∈ Z≥1, b ∈ Z, and � > 3 be a prime. Assume that for all n ∈ Z

we have H(an + b) ≡ 0 (mod �). Assume further that b �≡ 0 (mod �) and that a, b, and β

satisfy Conditions (ii)–(iv) in Lemma 2.1. Set a′ = gcd(a, 2β).
Then πhol

2
(
(Ua,b E 3

2
) · (θa,β + θa,−β)

)
is a quasi-modular form for Γ1(4a) and

πhol
2

(
(Ua,b E 3

2
) · (θa,β + θa,−β)

)
=

∞∑
n=0

c(n)e(nτ),

where

c(a′p) ≡ 0 (mod �), c(a′pp′) ≡ −2β (mod �) if 2β �≡ a′ (mod a)

for any primes p, p′ with

a′p ≡ 2β (mod a), p > a/a′, p′ ≡ 1 (mod a), p′ > a′p/a;

And

c(a′) ≡ c(a′p′) ≡ −2β (mod �) if 2β ≡ a′ (mod a)

for any prime p′ with p′ ≡ 1 (mod a).

Remark 2.3. Our Proposition 2.2 is the analogue of Proposition 2.5 of [2]. The assump-
tion � � a was accidentally omitted from Proposition 2.5 of [2]. The analogue to it in our 
current Proposition 2.2 is the condition β �≡ 0 (mod �).

There was another issue in the proof of Proposition 2.5 of [2]. Namely, when arguing 
that we may assume that d1 and d2 are positive (as we will do in the present proof), this 
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is only legitimate when considering the sum over ±β and all β̃, but not on the level of 
individual terms.

Finally, on a related note, we remark that the condition that b ≡ b̃ (mod ã) was 
incorrectly omitted from Lemma 2.3 of [2].

Proof of Proposition 2.2. As in Proposition 2.5 of [2], we compute the holomorphic 
projection of (Ua,b E 3

2
) · (θa,β + θa,−β). We first remark that the conditions required 

for holomorphic projection as stated in Section 1.2 hold for (Ua,bE 3
2
) · (θa,β + θa,−β)

and we can apply Theorem 5 of [6]. Condition (i) is true because E 3
2

has moderate 
growth at cusps and θa,±β is a cusp form, since β �≡ 0 (mod a) by assumption. Condi-
tion (ii) is met because limy→0 Γ(4π|n|y, 12 ) = Γ(1

2 ), which implies that the coefficients 
are O(1) = O(y2−2) as y → 0. Finally, Ua,b E 3

2
· (θa,β + θa,−β) is modular of weight 2 on 

Γ1(4a) (to see this, both factors are modular on Γ(4a) and the Fourier expansion of their 
product is supported on integer exponents; it follows that the product is modular with re-
spect to Γ1(4a)). It then follows from Theorem 5 of [6] that πhol

2
(
(Ua,b E 3

2
) ·(θa,β+θa,−β)

)
is a weight 2 quasi-modular form for Γ1(4a).

While we have remarked that the assumption � � a was incorrectly omitted from Propo-
sition 2.5 of [2], the first part of its proof never makes use of it. The following computation 
is verbatim the one in [2], and we offer additional explanations on subtleties that were 
not mentioned in our previous work. As in that paper, we note that

πhol
2

(
(Ua,b E 3

2
) · (θa,β + θa,−β)

)
≡ 1

16π πhol
2

(
(Ua,b θ

∗) · (θa,β + θa,−β)
)

(mod �). (2.1)

To justify this claim, we first note that the difference between the left and right hand side 
of (2.1) is the holomorphic projection of the product of the holomorphic generating series 
of H(an + b) for n ∈ Z with a sum of theta series, and thus by assumption has Fourier 
coefficients divisible by �. Second, the Fourier coefficients of the right hand side of (2.1)
are �-integral due to (1.8) and the following Equality (2.2), in which each summand 
an/(|m| + |m̃|) on the right hand side of (2.1) is integral. We compute the sum over ±β

and β̃2 ≡ −b (mod a) of

c
(
πhol

2
(√

a θ∗
a,β̃

(τ) · θa,β(τ)
)
; n

)
= −4π an

∑
m≡β (mod a)
m̃≡β̃ (mod a)

m̃	=0
an=m2−m̃2

1
|m| + |m̃| . (2.2)

The term with δβ̃≡0 in Equation [16] of [2] does not appear here for the following reason: 
First, the assumption H(an + b) ≡ 0 (mod �) for all integers n implies � | a by the main 
theorem of [2]. Second, we have β̃ �≡ 0 (mod �), since −β2 ≡ b �≡ 0 (mod �).

We can still proceed as in [2], factoring an = d1d2 to arrive at the analogue of 
Equation [17] of [2]. We treat only the positive case, d1, d2 > 0; the negative case yields 
the same sum, after applying the summation over ±β and all β̃. We account for this 
suppressing the sum over ±β and multiplying with 2. As in [2], we assume that an is 
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not a square, and obtain after taking the factors 1/16π and −4π from our previous 
expressions into account that

c(n) = −1
2

∑
β̃2=−b (mod a)

∑
an=d1d2
d1,d2>0

d1≡β+β̃ (mod a)
d2≡β−β̃ (mod a)

(
d1δd1<d2 + d2δd2<d1

)
. (2.3)

Only now we diverge from [2], where we separated the archimedean and nonar-
chimedean conditions in this sum. This is no longer possible in the present setting, but 
we can still separate all nonarchimedian conditions away from � from the archimedean 
ones. We repeatedly use the fact that � | a, which is the statement of the main theorem 
of [2].

In the following discussion, q will always denote a prime. To ease the discussion, we 
introduce additional notation: Recall from Lemma 2.1 that, given q | a, we denote by aq
the maximal q-power that divides a, and that β �≡ −β (mod aq) by Condition (iii) of 
that lemma. We write Qa for the set of all prime divisors of a. Given a subset Q ⊆ Qa, 
we let aQ be the product of all aq for q ∈ Q, and set a#

Q := a/aQ. Likewise, we define a′q
to be the maximal q power dividing a′, and we define a′Q :=

∏
q∈Q a′q and a′#Q := a′/a′Q.

If β̃2 ≡ β2 (mod a), then for each q ∈ Qa, β̃ ≡ ±β (mod aq). Moreover, by the Chinese 
Remainder Theorem, we can associate to each subset Q ⊆ Qa a residue class β̃Q (mod a)
such that β̃Q ≡ β (mod aq) for each q ∈ Q and β̃Q ≡ −β (mod aq) for each q ∈ Qa\Q. 
Using this correspondence between subsets of Qa and residue classes β̃ (mod a) such that 
β̃2 ≡ −b (mod a), we rewrite our expression for c(n):

c(n) = −1
2

∑
Q⊆Qa

∑
an=d1d2
d1,d2>0

d1≡β+β̃Q (mod a)
d2≡β−β̃Q (mod a)

(
d1δd1<d2 + d2δd2<d1

)
. (2.4)

We examine the inner sum more closely. For each q ∈ Q, the congruence condition on 
d2 tells us that d2 ≡ β − β̃Q ≡ 0 (mod aq). Hence aq | d2. On the other hand, for each 
q ∈ Qa\Q, the congruence condition on d1 implies that d1 ≡ 0 (mod aq). Hence a#

Q | d1.
Recall that a′ = gcd(a, 2β) and hence a′ must be a divisor of both d1 and d2. This 

forces the divisibility requirements a#
Qa

′
Q | d1 and aQa

′#
Q | d2.

We first consider the case 2β �≡ a′ (mod a). We restrict n as in the statement of 
the proposition, by fixing a prime p > a/a′ with a′p ≡ 2β (mod a) and a further 
prime p′ > a′p/a with p′ ≡ 1 (mod a). Our aim is to calculate c(a′p) and c(a′pp′). The 
observations in the previous paragraph imply that any d1, d2 appearing in the sum in 
(2.4) are of the form d1 = a#

Qa
′
Qk1 and d2 = aQa

′#
Q k2, with k1k2 = p if n = a′p and 

k1k2 = pp′ if n = a′pp′.
We must determine which subsets Q ⊆ Qa contribute to the sum in (2.4). If we 

have n = a′p, note that Q = ∅ indeed yields a factorization d1 = a, d2 = a′p that 
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satisfies the given congruence conditions by the assumptions on p as 2β �≡ a′ (mod a). 
Since a′p > a, its contribution −a/2 to c(n) (mod �) vanishes by the main theorem of [2]. 
Similarly Q = Qa yields the same contribution coming from the factorization d1 = a′p, 
d2 = a.

For n = a′pp′, we have two factorizations for Q = ∅ and Q = Qa each that appear. 
The factorizations d1 = ap′, d2 = a′p and d1 = a, d2 = a′pp′ associated with Q = ∅
contribute −a′p/2 and −a/2 to the sum, since p′ > a′p/a and a′pp′ > ap′ > a. For 
Q = Qa, the factorizations d1 = a′p, d2 = ap′ and d1 = a′pp′, d2 = a give the same 
contribution.

We claim that no other Q contributes to the sum for n = a′p or n = a′pp′. To show 
this, we employ the prime qa | a with 0 < a < q2

a and 0 ≤ 2β < qa whose existence is 
asserted by Condition (iv) of Lemma 2.1.

In the case that qa /∈ Q we have β̃Q ≡ −β (mod qa). We examine the condition

d2 ≡ β − β̃ ≡ 2β (mod qa).

Since p′ ≡ 1 (mod qa), we know that d2 ≡ aQa
′#
Q p (mod qa) or d2 ≡ aQa

′#
Q (mod qa). 

In the first case, since a′Qa
′#
Q p = a′p ≡ 2β (mod qa) by our assumptions on p and 

since 2β < qa is a unit modulo qa, this implies the congruence aQ ≡ a′Q (mod qa). Since 
further aQ/a

′
Q ≤ aQ ≤ a/qa < qa and a′Q | aQ, we find that aQ = a′Q, and hence Q = ∅

by Condition (iii) of Lemma 2.1.
Similarly, in the second case aQ ≡ a′Qp (mod qa), that is, aQ/a′Q ≡ p (mod qa). 

We have a′p ≡ 2β (mod a), and since qa � a
′, we find p ≡ 2β/a′ (mod qa). This yields 

the congruence aQ/a
′
Q ≡ 2β/a′ (mod qa). Since aQ/a

′
Q < qa as in the first case and 

further 2β/a′ ≤ 2β < qa, we can strengthen it to the equality aQ/a
′
Q = 2β/a′. We 

conclude that aQ/a
′
Q is co-prime to a, which by Condition (iii) of Lemma 2.1 implies 

that Q = ∅ (hence 2β = a′, which cannot occur in the present case 2β �≡ a′ (mod a)).
Assuming on the other hand that qa ∈ Q, i.e., Q �= ∅. We inspect the condition

d1 ≡ β̃ + β ≡ 2β (mod qa).

Suppose that d1 = a#
Qa

′
Q or d1 = a#

Qa
′
Qp

′ ≡ a#
Qa

′
Q (mod qa). We infer a#

Qa
′
Q = 2β, 

since 0 < a#
Qa

′
Q ≤ a/qa < qa and 0 ≤ 2β < qa. From here we have d1 = a#

Qa
′
Q = 2β

or d1 = 2βp′. Since β �≡ −β (mod aq), this means Q = Qa.
Similarly, if d1 = a#

Qa
′
Qp or d1 = a#

Qa
′
Qpp

′, we obtain a#
Qa

′
Q ≡ 2β/p ≡ a′ (mod qa). 

The same inequalities as above imply a#
Qa

′
Q = a′. By definition we have a′ = a′Qa

′#
Q

so we have a#
Q = a′#Q . Since a′q is a strict divisor of aq for every q ∈ Qa, this implies 

that Q = Qa.
Summarizing our discussion, for 2β �≡ a′ (mod a), only Q = ∅ and Q = Qa contribute 

to c(a′p) and c(a′pp′), and we have

c(a′p) = −a ≡ 0 (mod �),
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c(a′pp′) = −(a′p + a) ≡ −2β (mod �).

The case 2β ≡ a′ (mod a) is a bit simpler, since we do not need p as in the above 
discussion. We can adopt the previous argument to see that the only contributions to 
the sum over Q ⊂ Qa arise from Q = ∅ and Q = Qa. For n = a′ there is one factorization 
each associated with Q = ∅ and Q = Qa. Specifically, the factorizations d1 = a, d2 = a′

and d1 = a′, d2 = a contribute −a′/2 each. For n = a′p′, we have two factorizations each 
associated with Q = ∅ and Q = Qa. The contributions of d1 = ap′, d2 = a′ (associated 
with Q = ∅) and d1 = a′, d2 = ap′ (associated with Q = Qa) equal −a′/2, and those 
of d1 = a, d2 = a′p′ and d1 = a′p′, d2 = a and equal −a/2. In summary, we find that

c(a′p′) = −(a′ + a) ≡ −a′ (mod �),

where in the last congruence we again have invoked the fact that � | a from [2]. �
Proof of Theorem A. We establish the theorem by contradiction. Assume that � � b. We 
have � | a by the main theorem of [2]. Lemma 2.1 allows us to replace a and b in such a 
way that we can apply Proposition 2.2 with an integer β also provided by Lemma 2.1.

We can now proceed as in [2] and apply Corollary 1.2 to deduce a contradiction. 
Let a′ = (2β, a). By assumption, � � a′. First suppose a′ �≡ 2β (mod �). We choose 
a prime p > a/a′ such that a′p ≡ 2β (mod a). Then we choose a prime p′ > a′p/a

with p′ ≡ 1 (mod 4�a). The first part of Proposition 2.2 says that we must have

c(a′p) ≡ 0 (mod �) and c(a′pp′) ≡ −a′ �≡ 0 (mod �),

but Corollary 1.2 leads to

c(a′pp′) ≡ 2c(a′p′) (mod �),

and hence the contradiction c(a′pp′) ≡ 0 (mod �).
Now suppose a′ ≡ 2β (mod a). Let p′ ≡ 1 (mod 4�a) be a prime. Then

c(a′) ≡ c(a′p′) ≡ −a′ �≡ 0 (mod �)

by the second part of Proposition 2.2, but by Corollary 1.2 we have

2c(a′) ≡ c(a′p) (mod �).

Hence c(a′) ≡ 0 (mod �), a contradiction. �
3. Congruences on square-classes

The proof of Theorem B is split into two parts. Both require the following lemma.
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Lemma 3.1. Let a ∈ Z≥1 and b, u ∈ Z with gcd(u, a) = 1. Let

γ =
(

aγ bγ
cγ dγ

)
∈ Γ0(4a) satisfy γ ≡

(
u 0
0 u

)
(mod 4a),

where u (mod 4a) is a multiplicative inverse of u modulo 4a. Then there exists
ω(γ) ∈ {±1, ±i} such that

Ua,b E 3
2

∣∣
3
2
γ = ω(γ) Ua,bu2 E 3

2
and Ua,b θ

∣∣
1
2
γ = ω(γ)Ua,bu2 θ.

Proof. We give the argument only in the case of the Eisenstein series. The case of the 
theta series follows from almost literally the same calculation, where εD from (1.1) that 
appears later needs to be replaced by ε−1

D , since the weight is 1
2 as opposed to 3

2 . We can 
write Ua,b as a double coset operator:

Ua,b E 3
2

= a
3
4−1

∑
λ (mod a)

e
(−λb

a

)
E 3

2

∣∣
3
2

( 1 λ
0 a

)
.

For γ as in the statement of the lemma, we have the following factorization, where the 
two matrices on the right both have integer entries:

(
1 λ
0 a

)
γ =

(
aγ + cγλ

1
a (−λh2aγ + bγ) + λ

a (−cγλu
2 + dγ)

acγ dγ − u2λcγ

)(
1 λu2

0 a

)
.

Combining this with the previous equation, we find that

(
Ua,b E 3

2

)∣∣
3
2
γ = a

3
4−1

∑
λ (mod a)

e
(−λb

a

)
E 3

2

∣∣
3
2

( 1 λ
0 a

)
γ

= a
3
4−1

∑
λ (mod a)

e
(−(λu2)(bu2)

a

)
εdγ−λu2cγ

(
acγ

dγ − λu2cγ

)
E 3

2

∣∣
3
2

(
1 λu2

0 a

)
.

Since cγ is divisible by 4a, we have dγ − λu2cγ ≡ dγ (mod 4), hence

εdγ−λu2cγ = εdγ
.

Let c′γ := cγ/4a. Using quadratic reciprocity and the fact that 4c′γ |λu2cγ , we obtain

(
acγ

dγ − λu2cγ

)
=

(
c′γ

dγ − λu2cγ

)
=

(
c′γ
dγ

)
=

(
acγ

dγ

)
.

Let

ωγ := εdγ

(
acγ

dγ

)
∈ {±1,±i}.
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Then we have

(
Ua,b E 3

2

)∣∣
3
2
γ = a

3
4−1ω(γ)

∑
λ (mod a)

e

(
−(λu2)(bu2)

a

)
E 3

2

∣∣
3
2

(
1 λu2

0 a

)

= ω(γ)Ua,bu2 E 3
2
. �

Part 1 of the proof of Theorem B. We prove the theorem in the case that −b is not a 
square modulo a, which implies that

0 ≡
∑
n∈Z

H(an + b)e
(
(an + b)τ

)
= Ua,b E 3

2
∈ M 3

2

(
Γ(4a)

)
.

Fix u as in the statement. By replacing u by u + a, if needed, we can and will assume 
that gcd(u, 2a) = 1. Let γ ∈ Γ0(4a�) satisfy γ ≡

(
u 0
0 u

)
(mod 4a) where u (mod 4a) is a 

multiplicative inverse of u modulo 4a. Since γ ∈ Γ0(�), we can combine the q-expansion 
principle (see Lemma 2.3, [1]) with Lemma 3.1 to find that

0 ≡
(
Ua,b E 3

2

)∣∣
3
2
γ = ω(γ)Ua,bu2 E 3

2
(mod �), (3.1)

where the congruence is to be understood in the ring of Gaussian integers if ω(γ) does 
not lie in Q. We obtain the statement from the Fourier expansion of the right hand side 
of (3.1). �

The second part of our proof of Theorem B requires two further lemmas.

Lemma 3.2. Fix a prime � > 3. Let a > 0 and β, β′ be integers that are all divisible by �. 
Then we have

√
a

π
πhol

2
(
θ∗
a,β̃

· θa,β
)

≡ 0 (mod �).

In particular, for integers b, b′ that are divisible by �, we have

1
π
πhol

2
(
Ua,b′ θ

∗ · Ua,b θ
)

≡ 0 (mod �)

and

πhol
2

(
Ua,b E 3

2
· Ua,b′ θ

)
≡ Ua,b E

hol
3
2

· Ua,b′ θ (mod �).

Proof. We first note that the Fourier coefficients in the three congruences in the state-
ment of the lemma are �-integral by the same argument as the one following (2.1).

The second part follows from the first part, in light of (1.7). The third part follows 
from the second one and (1.3):
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πhol
2

(
Ua,b E 3

2
· Ua,b′ θ

)
= πhol

2
(
Ua,b

(
Ehol

3
2

+ 1
16π θ

∗) · Ua,b′ θ
)

= πhol
2

(
Ua,b E

hol
3
2

· Ua,b′ θ
)

+ 1
16ππ

hol
2

(
Ua,b θ

∗ · Ua,b′ θ
)
≡ Ua,b E

hol
3
2

· Ua,b′ θ (mod �).

We employ the calculations from the proof of Proposition 2.5 in [2], in the same way 
as we used them in the proof of Proposition 2.2, to establish the first congruence. We 
have (compare Equation [16] of [2])

√
a

π
πhol

2
(
θ∗
a,β̃

(τ) · θa,β(τ)
)

= −4
(
δβ̃≡0 (mod a)

∑
m≡β (mod a)

m	=0

|m|e
(m2τ

a

)
+

∑
m≡β (mod a)
m̃≡β̃ (mod a)

m̃ 	=0

m2 − m̃2

|m| + |m̃|e
( (m2 − m̃2)τ

a

))
.

Since � | a, β, the Fourier coefficients in the first summand are all divisible by �. Consider 
a term in the second sum for fixed m and m̃. The ratio in this term is divisible by 
either m + m̃ or m − m̃. Since � |m, m̃, this proves the lemma. �
Lemma 3.3. Let N be a positive integer and f be a quasi-modular form of weight 2 for a 
finite index subgroup Γ ⊆ SL2(Z) with Fourier expansion

f(τ) =
∞∑

n=0
N �n

c
(
f ; n

N

)
e
(
n
N τ

)
.

Then f is a modular form.

Proof. We decompose f as a sum cE2 + g for a constant c ∈ C and a modular form g

for Γ, where E2 is again the quasi-modular Eisenstein series of weight 2. From the Fourier 
expansion of f , we infer that

0 = 1
N

N∑
m=1

f
∣∣
2

( 1 m
0 1

)
= cE2 + 1

N

N∑
m=1

g
∣∣
2

( 1 m
0 1

)
.

Since the second summand is a modular form for the finite index subgroup

N⋂
m=1

( 1 −m
0 1

)
Γ
( 1 m

0 1

)
⊆ SL2(Z),

we conclude that c = 0 as desired. �
Part 2 of the proof of Theorem B. We now prove the theorem in the case that −b is a 
square modulo a. We start with the congruences
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Ua,b E
hol
3
2

· Ua,b̃ θ ≡ 0 (mod �),

which hold for all integers b̃, since the first factor vanishes modulo � by our assumptions. 
The main theorem of [2] informs us that � | a, and Theorem A asserts that � | b. If a | b, 
there is nothing to show. We assume the opposite. Then there is some integer b′ with � | b′
and b + b′ �≡ 0 (mod a) and b′ is a square modulo a, for instance, b′ = 0. Lemma 3.2 now 
yields the following congruence of quasi-modular forms:

πhol
2

(
Ua,b E 3

2
· Ua,b′ θ

)
≡ 0 (mod �). (3.2)

Let γ ∈ Γ0(4a�) be as in the first part of the proof. By Lemma 3.3, the left hand side is 
modular, so we may apply Lemma 2.3 from [1] as in the first part of the proof to deduce

πhol
2

(
Ua,b E 3

2
· Ua,b′ θ

)∣∣
2 γ ≡ 0 (mod �).

To determine the left hand side of this congruence, recall that the slash action inter-
twines with the holomorphic projection (see [6]). We have

πhol
2

((
Ua,b E 3

2

∣∣
3
2
γ
)
·
(
Ua,b′ θ

∣∣
1
2
γ
))

≡ 0 (mod �).

Lemma 3.1 yields the congruence

πhol
2

(
Ua,bu2 E 3

2
· Ua,b′u2 θ

)
≡ 0 (mod �).

Observe that bu2 and b′u2 are divisible by �, so that we can apply Lemma 3.2 to find 
that

Ua,bu2 Ehol
3
2

· Ua,b′u2 θ ≡ 0 (mod �). (3.3)

Since b′ is a square modulo a by assumption, the second factor on the left hand side 
of (3.3) is not congruent to zero modulo �, and more specifically its first non-zero Fourier 
coefficient equals one or two. From this we infer that Ua,bu2 Ehol

3
2

≡ 0 (mod �). �
4. Proofs of Theorems C and D

Proof of Theorem C. For simplicity, we say that (a, b) is a mod � Hurwitz congruence 
pair if we have the Ramanujan-type congruence H(an + b) ≡ 0 (mod �) for all n ∈ Z. 
Furthermore, we say that a mod � Hurwitz congruence pair (a, b) is maximal if the 
corresponding Ramanujan-type congruence is maximal.

Let p be a prime, let k = ordp(gcd(a, b)) and r = ordp(a/ gcd(a, b)). After replacing b

by b + a, if needed, we then have a = pk+ra′ and b = pkb′ for integers a′ and b′ with 
gcd(a′b′, p) = 1.
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First, we assume that p is odd, that r ≥ 2, and that (a, b) is a Hurwitz congruence pair 
modulo �. We will show that (a, b) is not a maximal Hurwitz congruence pair modulo �. 
If m ≡ b (mod a/p), then pk‖m and m/pk ≡ b′ (mod pr−1). From Hensel’s Lemma, 
there exists u ∈ Z with gcd(u, p) = 1 such that m/pk ≡ b′u2 (mod pr). Using the 
Chinese Remainder Theorem, one can find such a u with u ≡ 1 (mod a′) so that we 
have m ≡ bu2 (mod a). By Theorem B, we have H(m) ≡ 0 (mod �). Hence (a/p, b) is a 
Hurwitz congruence pair modulo �, so (a, b) is not a maximal Hurwitz congruence pair.

The p = 2 case is almost identical. We assume r ≥ 4 and we will show that (a, b)
cannot be a maximal Hurwitz congruence pair modulo �. Suppose m ≡ b (mod a/2). 
Then 2k|m, and using a Hensel’s lemma type argument, one easily checks that there 
exists an integer u which is relatively prime to a such that m ≡ bu2 (mod a) (this is 
where we require r ≥ 4 rather than r ≥ 2). By Theorem B, we have H(m) ≡ 0 (mod �), 
which means (a, b) is not a maximal Hurwitz congruence pair. �
Proof of Theorem D. Assume that (i) of Theorem D does not hold. That is, there is 
a fundamental discriminant −D and a positive integer f such that Df2 ∈ aZ + b

and H(D) �≡ 0 (mod �). Given a prime p | f we write fp for its p-part. We will show 
that there is a prime p | gcd(f, a) such that

σ1(fp) − σ1

(
fp

p

)(−D

p

)
≡ 0 (mod �). (4.1)

We factor f = fau into the product of two positive integers fa and u, where every 
prime dividing fa also divides a and u is co-prime to a. In particular, there is an inverse u
of u modulo a.

Theorem B asserts that we have a Ramanujan-type congruence modulo � for Hurwitz 
class numbers on aZ + u2b � Df2

a . The Hurwitz class number formula asserts that

H(Df2
a ) = H(D) ω(−Df2

a )
ω(−D)

∑
d | fa

d
∏
p | d

(
1 − 1

p

(−D

p

))

= H(D) ω(−Df2
a )

ω(−D)
∏
p | fa

(
σ1(fp) − σ1

(
fp

p

)(−D

p

))
,

where ω(−Df2
a ) is the number of units in the imaginary quadratic order of discrim-

inant −Df2
a . By assumption on D, we have H(D) �≡ 0 (mod �). Further, we note 

that ω(−Df2
a ) �≡ 0 (mod �), since � > 3 and ω(−Df2

a ) | 6. Therefore, we conclude the 
existence of some prime p | gcd(f, a) satisfying (4.1) as desired.

To finish the proof, let −D′ be another fundamental discriminant such that there is an 
integer f ′ with D′f ′ 2 ∈ aZ + b. We will show that we have fp = f ′

p and (−D′

p ) = (−D
p ). 

Case (ii) follows immediately from these two claims and (4.1).
First, assume we know fp = f ′

p, and we will explain why (−D′

p ) = (−D
p ) follows. From

D′f ′ 2 ≡ b ≡ Df2 (mod a),
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we have

D′f ′ 2

f ′ 2
p

≡ Df2

f2
p

(mod a/f2
p ).

Since we have assumed ordp(a/(a, b)) > 1, we have p |(a/f2
p ), and it follows that D′

and D are in the same square class modulo p.
Finally, we will show fp = f ′

p. By assumption ordp(a/ gcd(a, b)) > 0, and hence ap � b

and ordp(b) = ordp(Df2) = ordp(D′f ′ 2). In other words, we have

ordp(D′) + 2 ordp(f ′) = ordp(b) = ordp(D) + 2 ordp(f). (4.2)

Now consider the case of odd p. Since −D′ and −D are fundamental discriminants, 
ordp(D′) ≤ 1 and ordp(D) ≤ 1 are given by the parity of ordp(b) and hence fp = f ′

p as 
required.

Next, consider the case of p = 2. We have ord2(D) ∈ {0, 2, 3}. If ord2(D) = 3 or 
ord2(D′) = 3, the argument for odd p extends. From now on, we assume that ord2(D)
and ord2(D′) are both in {0, 2}. If ord2(D) = 0 and ord2(D′) = 2, then from (4.2) we 
have

2 + 2 ord2(f ′) = ord2(b) = 2 ord2(f).

From D′f ′ 2, Df2 ∈ aZ + b and ord2(a/ gcd(a, b)) ≥ 2, we obtain

D′f ′ 2

4f ′ 2
2

≡ Df2

f2
2

(mod 4),

from which we have D ≡ D′/4 (mod 4). Since −D′ is a fundamental discriminant and 
ord2(D′) = 2, we would have D′/4 ≡ 1 (mod 4). Therefore D ≡ 1 (mod 4). This is a 
contradiction, since −D is a discriminant. The case of ord2(D) = 2 and ord2(D′) = 0 is 
excluded by a symmetric argument. We conclude that we must have ord2(D′) = ord2(D), 
which implies f2 = f ′

2 as desired.
Regarding the last claim in the statement of the theorem, we note that a Ramanu-

jan-type congruence on apZ + b follows from the Hurwitz class number formula, (4.1), 
and the fact just shown, that fp is fixed for all D ∈ aZ + b. �
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