
Notes on Borcherds Products

Richard Hill

These are the notes for a short course on Borcherds Products held in Aachen on 1st-
2nd August 2012. The lectures are intended for someone who does not know what a
Borcherds product is, but does know what a modular form is. In preparing these notes
I’ve used the following sources: [1, 2, 3, 4, 5]. All the correct statements in these notes
are taken from those sources, and all the mistakes are my own.
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1 Introduction

“Borcherds products” or the “Borcherds lift” is a method for constructing modular forms
on the orthogonal groups SO+(2, n−). More precisely, we get a map

weakly holomorphic
modular forms

on SL2(Z) with coefficients in Z

 →
{
meromorphic modular
forms on O+(2, n−)

}
f 7→ Ψf .

The form Ψf is called a “Borcherds product”. Unlike other lifts in the theory of modular
forms, this lift is multiplicative, in the sense that

Ψf+g = Ψf ×Ψg.

The weight of Ψf is c(0)/2, where c(0) is the constant coefficient of f , and it is easy to
describe the zeros and poles of Ψf in terms of other Fourier coefficients of f .

Very briefly, a weakly holomorphic modular form is given by an expression of the form

f(τ) =
∞∑

n=−N

c(n)qn, q = e2πiτ , τ ∈ H.

The corresponding Borcherds product is a meromorphic continuation of an expression of
the form

Ψ(w) = e2πi(ρ,w)
∏

λ∈M,(λ,w0)>0

(
1− e2πi(λ,w)

)c(Q(λ))
,

where

• M is a lattice with a symmetric bilinear form (−,−) of signature (1, n−− 1) and Q
is the associated quadratic form.

• w ∈M ⊗ C satisfies Q(=w) > 0.

• w0 ∈M satisfies Q(w0) > 0.

• ρ ∈M ⊗Q depends additively on f .

In particular, if we restrict to vectors w = τw0 for τ in the upper half plane, then we get
a meromorphic modular form on the upper half-plane:

Ψ(τw0) = q(ρ,w0)
∏

λ∈M,(λ,w0)>0

(
1− q(λ,w0)

)c(Q(λ))
, q = e2πiτ .

We can now see that this formula is similar to the definition of the Dedekind η-function

η(τ) = q1/24

∞∏
n=1

(1− qn).

In this first lecture I hope to define the terms “weakly holomorphic modular form”
and “meromorphic modular form on SO+(2, n)”, and then give a definition of Ψf in terms
of f . The definitions and statements given in this lecture are not the most general. I’ll
give more general definitions in the last lecture.
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1.1 Notation

We’ll write Γ for the group SL2(Z) and H for the upper half-plane. The symbol τ will
mean an element of H and we’ll use the notation q = e2πiτ . For an even integer k ≥ 4,
we’ll write Ek for the weight k level 1 Eisenstein series:

Ek(τ) = 1 + const
∞∑
n=1

σk−1(n)qn, const =
(2πi)k

(k − 1)!ζ(k)
∈ Q×.

1.2 Weakly holomorphic modular forms

Let k be an even integer. By a “weakly holomorphic modular form of weight k”, we shall
mean a function f : H → C with the following properties:

• f is holomorphic;

• For all γ = ( a bc d ) ∈ Γ we have

f(γτ) = (cτ + d)kf(τ).

• f has a Fourier expansion of the form

f(τ) =
∞∑

n=−N

c(n)qn, q = exp(2πiτ).

The word “weakly” just means that we are allowed finitely many negative terms in the
Fourier expansion; in other words f is allowed to have a pole at the cusp.

1.2.1 Examples

Any holomorphic form is weakly holomorphic, but there are many more weakly holo-
morphic forms than holomorphic forms. Indeed there are weakly holomorphic forms of
negative weight. For example if we let

∆(τ) = q

∞∏
n=1

(1− qn)24 = (E4(τ)3 − E6(τ)2)/1728.

Then ∆ is a weight 12 cusp form and is nowhere zero on H.
It follows that 1

∆
is a weight −12 weakly modular form. Also note that the j-invariant

j(τ) =
E4(τ)3

∆(τ)
= q−1 + 744 +

∞∑
n=1

c(n)qn

is a weight 0 weakly modular form. More generally, if f is a weight k holomorphic modular
form then f/∆n is a weight k − 12n weakly holomorphic form.

Suppose we have a weakly holomorphic form

f =
∑

anq
n.

3



We define the “principal part” of f to the negative part of the Fourier expansion:∑
n<0

anq
n.

Proposition 1 Let g(q) =
∑−1

n=−N anq
n and let k < 0. There is a weight k weakly

holomorphic form with principal part g if and only if for every weight 2− k holomorphic
cusp form

h(q) =
∞∑
n=1

cnq
n,

we have
N∑
n=1

cna−n = 0.

If such a weakly holomorphic form exists then it is unique, and its constant term is given
by

a0 = −
N∑
n=1

dna−n,

where dn are the coefficients of the weight 2− k holomorphic Eisenstein series E2−k.

The proof is an exercise:

Exercise 1 • Assume there is a weakly holomorphic form f . Prove that f(τ)h(τ)dτ
is a Γ-invariant holomorphic differential form on H.

• Show that the residue of this form at the cusp q = 0 is const ·
∑N

n=1 cna−n. (Hint:

dτ = const · dq/q.) Hence deduce that
∑N

n=1 cna−n = 0.

• Prove the converse to this by Serre duality.

• Prove the formula for a0.

Exercise 2 (Ramanujan’s congruence) Let k > 0. Suppose N ∈ N is chosen so that
NEk = N +

∑
dnq

n has coefficients in Z. Then there is a cusp form f =
∑
cnq

n of
weight k with coefficients in Z, such that for all n,

cn ≡ dn mod N.

(Hint: subtract Ea
4E

b
6 from Ek for suitable a, b).

Exercise 3 Let f =
∑
anq

n be a weakly holomorphic form. Show that if an ∈ Z for
all n < 0 then a0 ∈ Z. (This is equivalent, by the proposition above, to the Ramanujan
congruence).

Exercise 4 Let f =
∑
anq

n be a weakly holomorphic form. Show that if an ∈ Z for all
n < 0 then an ∈ Z for all n. (Hint: by induction on n, multiplying by ∆ at each step).
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1.3 Modular forms on Orthogonal groups

1.3.1 Orthogonal groups

Let L be a lattice with a non-degenerate symmetric bilinear form (−,−) : L × L → Z,
such that (v, v) is even for all v ∈ L. We’ll write Q : L → Z for the corresponding
quadratic form, ie

Q(v) =
(v, v)

2
.

We let V = L ⊗ R, and we’ll extend Q and (−,−) to V in the obvious way. Let n+ be
the dimension of a maximal positive definite subspace of V and n− the dimension of a
maximal negative definite subspace. We’ll call (n+, n−) the signature of L.

The orthogonal group OV is defined to be the group of linear bijections V → V , which
preserve Q (or equivalently, which preserve (−,−)). The group OV is a real Lie group.
Suppose we choose a basis {bi} for V and we let J be the matrix whose (i, j)-entry is
(bi, bj). Then OV consists of matrices α satisfying

αtJα = J.

Every element of OV has determinant ±1. We’ll also write SOV for the special orthogonal
group, which consists only of the bijections with determinant 1. This is a subgroup of
index 2.

If V is positive definite or negative definite, then SOV is connected. If V is indefinite
then SOV has two connected components. More precisely suppose V = V + ⊥ V −, where
V + is positive definite and V − is negative definite. Then O(V +) ⊕ O(V −) is a maximal
compact subgroup of O(V ). Like any real reductive group, OV is homotopic to a maximal
compact subgroup. However O(V +)⊕O(V −) has 4 connected components, and hence so
does OV . It follows that SOV has two connected components. We shall write SO+

V for
the identity component of SOV .

We’ll also write ΓL for the group of elements α ∈ SO+
V , such that αL = L. This is an

arithmetic subgroup of SO+
V .

Exercise 5 Let G ⊂ GLn(R) be a Lie group such that G = Gt. Show that G ∩O(n) is a
maximal compact subgroup of G.

1.3.2 The symmetric space for SO+
V

Let GrV be the set of orthogonal decompositions V = V + ⊥ V −, where V + and V − are
positive definite and negative definite respectively. There is an obvious action of OV on
GrV .

Exercise 6 Prove that OV acts transitively on GrV . Show that the stabiliser of the point
(V +, V −) is isomorphic to OV + ⊕ OV −. Hence show that GrV may be identified with the
quotient

GrV ∼= OV /(OV + ⊕OV −) ∼= SO+
V /(SOV + ⊕ SOV −).

Exercise 7 Let V have signature (1, n−), i.e. dim(V +) = 1. Choose a vector v0 ∈ V
such that Q(v0) > 0. Show that there is a natural bijection

GrV ∼= {v ∈ V : Q(v) = 1, (v, v0) > 0}.
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1.3.3 The symmetric space K

We’ll now consider in more detail the case that V has signature (2, n). This case is of
special interest to us, since Borcherds products are forms on SO+

V in this case. We’ll
introduce a new model of the symmetric space with an obvious complex structure. Let

K̃ = {v ∈ V ⊗ C : (v, v) = 0, (v, v̄) > 0}.

We can also write this as follows:

K̃ = {x+ iy : x, y ∈ V, x ⊥ y, Q(x) = Q(y) > 0}.

Exercise 8 Check that these two definitions of K̃ are equivalent.

Note that if v ∈ K̃ then c · v ∈ K̃ for every c ∈ C×. We may therefore define

K = {[v] ∈ P(V ⊗ C) : v ∈ K̃}.

There is an obvious action of OV on K, and this is compatible with the obvious complex
structure (K is an open subset of a subvariety of P(V ⊗ C)).

One can check that the action of the orthogonal group is transitive and the stabilizer
of a point of K is SO(2)⊕ O(n). Therefore K ∼= OV /(SO(2)⊕ O(n)) has two connected
components. These components are exchanged by complex conjugation.

Exercise 9 Check all this.

Let K+ be one of these components. It follows that K+ is a symmetric space of SO+
V .

We can write down an explicit bijection K+ → GrV as follows:

[v] 7→ (V +, V −), V + = 〈<v,=v〉, V − = (V +)⊥.

1.3.4 Modular forms on SO+(2, n−)

We next fix a non-zero vector λ0 ∈ L such that Q(λ0) = 0.

Lemma 1 For v ∈ K̃ we have (v, λ0) 6= 0.

Exercise 10 Prove the lemma.

We can now introduce a multiplier system as follows:

j(α, [v]) =
(αv, λ0)

(v, λ0)
, α ∈ SO+

V , [v] ∈ K.

Lemma 2 The function j is a multiplier system, i.e. j(αβ, [v]) = j(α, β[v])j(β, [v]).

Exercise 11 Prove the lemma.
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Definition 1 Let k ∈ Z and let Υ be a subgroup of SO+
V commensurable with ΓL. By

a modular form of weight k ∈ Z and level Υ on the orthogonal group, we shall mean a
holomorphic function f : H→ C, such that for each α ∈ Υ we have

f(αv) = χ(α)j(α, v)kf(v),

Where χ : Υ→ C× is a character with values in a finite subgroup of C×. In fact if n− ≥ 3
then every character of Υ takes values in a finite subgroup of C×.

If k is a half-integer, then we choose for each α ∈ Υ a square root j(α, v)k of j(α, v)2k,
and we require the function χ to satisfy the following relation:

χ(αβ) = χ(α)χ(β)
j(α, βv)kj(β, v)k

j(αβ, v)k
.

Again χ is required to have values in a finite subgroup of C×, and again this condition is
redundant if n− ≥ 3.

1.3.5 The symmetric space H

Again assume that the lattice L has signature (2, n−) with n− > 0. We’ll choose an
orthogonal decomposition of the vector space V as follows:

V = W ⊥ 〈λ0, λ1〉,

where Q(λ0) = Q(λ1) = 0 and (λ0, λ1) = 1. Define

H = {w ∈ W ⊗ C : Q(=(w)) > 0, (=(w), w0) > 0}.

Here w0 ∈ W is chosen to satisfy Q(w0) > 0. Without this final inequality, H would
have two connected components, and the final inequality just means “the component
containing iw0”. There is a bijection H→ K+ given by

w 7→ [v], v = w −Q(w)λ0 + λ1.

Exercise 12 Check that this is a bijection between H and K+.

Exercise 13 Let V have signature (2, 1). Show that there is a natural bijection

H ∼= H,

which is compatible with a natural isomorphism

SO+
V
∼= PSL2(R).
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1.3.6 The Fourier expansion of a modular form on H

For simplicity, we’ll assume that our lattice L is unimodular, and we’ll assume that the
orthogonal decomposition of V comes from an orthogonal decomposition of L:

L = M ⊥ 〈λ0, λ1〉, W = M ⊗ R,

where Q(λ0) = Q(λ1) = 0 and (λ0, λ1) = 1.

Lemma 3 For any λ ∈M there is an element α ∈ ΓL whose action on H is given by

αw = w + λ.

We have j(α,w) = 1.

Exercise 14 Prove the lemma.

Suppose now that F : H→ C is a modular form of weight k, level ΓL, and for simplicity
assume that the character χ is trivial. Then we have a Fourier expansion

F (w) =
∑
λ∈M

c(λ)e2πi(λ,w).

In fact we’ll have c(λ) = 0 unless (λ,=w) ≥ 0 for all w ∈ H.

1.4 Borcherds products

Assume now that L is the unimodular lattice of signature (2, n−). We can choose the
orthogonal decomposition of V to be given by one of L:

L = M ⊥ 〈λ0, λ1〉,

where Q(λ0) = Q(λ1) = 0 and (λ0, λ1) = 1. Choose a vector w0 ∈ W with Q(w0) > 0.
Let f =

∑
c(n)qn be a weakly holomorphic form of weight 2−n−

2
with coefficients in

Z. For a vector ρ ∈M ⊗Q, we define the Borcherds product as follows:

Ψf (w) = e2πi(ρ,w)
∏

λ∈M, (λ,w0)>0

(
1− e2πi(λ,w)

)c(Q(λ))

The condition (λ,w0) > 0 should be understood as follows: we choose w0 so that there
are no lattice points λ ∈ M orthogonal to w0 for which c(Q(λ)) 6= 0. This amounts to
saying that [w0] is not in the Heegner set of signature (1, n− − 1) in GrW .

Theorem 1 The product Ψf converges for w ∈ H near i∞w0. It has a meromorphic
continuation to H. There is a unique vector ρ ∈ W depending additively on f , such that
Ψf is a modular form of weight c(0)/2 of level ΓL.

The phrase “near iw0∞” means that Q(=w) is sufficiently large.
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1.4.1 Heegner divisors

As before, let L be the unimodular lattice of signature (2, n−). For a vector λ ∈ L with
Q(λ) < 0 we let

λ⊥ = {(V +, V −) ∈ GrV : λ ⊥ V +} = {(V +, V −) ∈ GrV : λ ∈ V −}.

In the model K, the subset λ⊥ is the orthogonal complement of the vector λ and is
therefore a divisor. (It is the divisor of the function [v] 7→ (v, λ)/(v, λ0).)

For a negative integer m, we define the Heegner divisor H(m) on H as follows:

H(m) =
∑

λ∈L/{1,−1}, Q(λ)=m

λ⊥.

One can check that any compact subset of H intersects only finitely many λ⊥, and so
H(m) is also a divisor on H.

Theorem 2 Let f =
∑
c(n)qn be a weakly holomorphic modular form. The divisor of

Ψf is the finite sum ∑
m<0

c(m)H(m).

In particular, f is holomorphic if and only if c(n) ≥ 0 for all n < 0.
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2 Sketch proof of Theorems 1 and 2

In this lecture I’ll sketch the proofs of theorems 1 and 2. Very briefly, we proceed as
follows. Given a weakly holomorphic modular form f , we define a function Φ on H by

Φ(w) =

∫
Γ\H

f(τ)Θ(τ, w)y
dx dy

y2
.

This integral diverges, but nevertheless we can make sense of it. We show that Φ has sin-
gularities on the Heegner divisors H(m) where c(m) 6= 0, and we calculate the behaviour
of Φ near these divisors.

Next we calculate the Fourier expansion of Φ, and show that Φ(w) = −4 log |Ψ(w)|+
c(0) log(=w,=w). It follows that Ψ has a meromorphic continuation, and |Ψ(w)|(=w,=w)c(0)/4

is ΓL-invariant. From this, it follows that Ψ is modular of weight c(0)/2.

2.1 The theta correspondence

2.1.1 The theta function

Let’s assume from now on that L is a unimodular lattice of arbitrary signature. In
particular, this means that the rank of L is even.

Exercise 15 Show that the rank of L is even. (Hint: consider the bilinear form on
L⊗ F2).

Exercise 16 In fact one can show (see chapter 5 of [6]) that n+ ≡ n− mod 8. Give a
different proof of this fact using Theorem 2. (You will need the fact that holomorphic
modular forms on orthogonal groups have weight ≥ 0, and also that there is no cusp form
on Γ, all of whose coefficients are positive.)

We’ll regard an element p ∈ GrV as being given by two orthogonal projection maps
p+ : V → V +, p− : V → V −. For τ ∈ H and (p+, p−) ∈ GrV we let

Θ(τ, p) =
∑
λ∈L

exp

(
2πi

(
(p+(λ), p+(λ))

2
τ +

(p−(λ), p−(λ))

2
τ̄

))
(1)

=
∑
λ∈L

qQ(λ)|q|−(p−(λ),p−(λ)). (2)

Exercise 17 Show that the two definitions above are equivalent. Show that the sums
converge on H×GrV .

It’s easy to see that for any α ∈ ΓL, we have

Θ(τ, αp) = Θ(τ, p).
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Furthermore, for any γ = ( a bc d ) ∈ Γ,

Θ(γτ, p) = (cτ + d)
n+

2 (cτ̄ + d)
n−
2 Θ(τ, p)

= |cτ + d|
n++n−

2

(
cτ + d

cτ̄ + d

)n+−n−
2

Θ(τ, p).

To prove this formula, it’s sufficient to prove it for the two generators of Γ. For τ 7→ τ + 1
it is trivial, and for τ 7→ −1

τ
it follows from the Poisson summation formula.

2.1.2 Divergent integrals

Let L be a lattice of signature (n+, n−) and let f be a weakly modular form of weight
k = n+−n−

2
. The function

τ 7→ f(τ)Θ(τ, p)yn
+/2

is Γ-invariant, and we define the theta-transform of f as follows:

Φ(p) =

∫
Γ\H

f(τ)Θ(τ, p)yn
+/2dx dy

y2

(The measure dx dy
y2

is SL2(R)-invariant.) If f is a holomorphic cusp form, then this integral
converges. However we’d like to consider the integral when f is weakly holomorphic, and
in this case it diverges.

To get around this problem, we define the value of Φ(p) as follows. Let F(Y ) be the
usual fundamental domain for SL2(Z), truncated at y = Y . For <(s) sufficiently large,
the following limit exists:

Φ(p, s) = lim
Y→∞

∫
F(Y )

f(τ)Θ(τ, p)yn
+/2−sdx dy

y2

This function has a meromorphic continuation to s = 0, and we define Φ(p) to be the
constant term in the Laurent expansion of Φ(p, s) at s = 0. In practice, this means that
we end up with

Φ(p) = lim
Y→∞

∫
F(Y )

(
f(τ)Θ(τ, p)− c(0)

)
yn

+/2dx dy

y2
+ const.

It turns out that Φ has singularities, which we now inventigate. We’ll concentrate
on the case that L has signature (2, n−). If we expand f =

∑
c(m)qm and Θ =∑

q−Q(λ)|q|(p+(λ),p+(λ)), then we obtain terms of the form

c(m)

∫
F
qm−Q(λ)|q|(p+(λ),p+(λ))y1−sdx dy

y2
.

The integral over a truncated domain (=y < 1) converges for all s ∈ C. After subtracting
this analytic term, we are left with

c(m)

∫ ∞
1

∫ 1

0

qm−Q(λ)|q|(p+(λ),p+(λ))y1−sdx dy

y2
.
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The x-integral vanishes unless m = Q(λ), so we shall make this assumption. Then the
integral is

c(Q(λ))

∫ ∞
1

e−2π(p+(λ),p+(λ))yy−s−1dy.

If (p+(λ), p+(λ)) > 0 then the integral converges for all s so there is no problem. We’re
left with the case that p+(λ) = 0. If λ = 0, then this term is independent of p, and is
simply a constant. For other terms, we see that Φ will have singularities on the following
sets

H(m) = {p ∈ Gr : ∃λ ∈ L, p+(λ) = 0, Q(λ) = m},
where c(m) 6= 0. These sets are the Heegner divisors introduced earlier.

We now investigate the behaviour of Φ near a Heegner divisor.

Exercise 18 Show that for ε > 0 we have
∫∞

1
e−εy dy

y
= − log ε+ analytic terms

From the exercise, it follows that as p approaches a component λ⊥ of a Heeger divisor,
we have

Φ(p) = −2c(Q(λ)) log(p+(λ), p+(λ)) + analytic,

if n+ = 2. The factor 2 above comes from the fact that both λ and −λ are lattice points.

Exercise 19 Show that (p+(λ), p+(λ)) = |(λ,v)|2
(=v,=v)

, where (p+, p−) ∈ GrV is identified with

[v] ∈ K+.

From the exercise, we see that as [v] approaches λ⊥ we have

Φ([v]) = −4c(Q(λ)) log

∣∣∣∣ (λ, v)

(λ0, v)

∣∣∣∣+ analytic,

This looks like −4 log |F |+ analytic, where F is a meromorphic function whose divisor is∑
m<0 c(m)H(m).

Exercise 20 Calculate the singularities of Φ for lattices with signature not equal to
(2, n−).

Exercise 21 Show that Φ is real valued. (Hint: use the reflection of F in the line x = 0.)

2.2 The Fourier expansion for lattices of signature (2,n)

We now regard Φ as a function on H. It is clearly invariant under ΓL, and hence under
the map w 7→ w + λ for each λ ∈M . We can therefore write it as a Fourier expansion:

Φ(w) =
∑
λ∈M

c(λ,=w)e(λ,<w).

The Fourier coefficients c(λ,=w) can be written as integrals. To cut a long story short,
this expansion has the following form

Φ(w) = Y Φ̃(p̃)

+2Y
∑
λ∈M

∫
Z\H

f(τ)
∞∑
n=1

exp

(
−πn

2Y 2

y

)
e(n(λ,<w))q−Q(λ)|q|(p̃+(λ),p̃+(λ))y1/2dx dy

y2
.

This needs some explanation.
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• Y =
√
Q(=w).

• The point w ∈ H corresponds to a point p = (p+, p−) in GrV . recall that we
have a decomposition V = W ⊥ 〈λ0, λ1〉. The point p ∈ GrV gives rise to a point
p̃ = (p̃+, p̃−) in GrW . More precisely, p̃+ is the projection onto the subspace spanned
by =w.

• The function Φ̃(p̃) is the integral of f against the theta function for the sublattice
M of L. This is a function on GrW . Using a similar Fourier expansion of Φ̃, we can
show that the first term Y Φ̃(p̃) is a continuous, piecewise linear function of =w.

• The integrals are over a fundamental domain for Z inH, where Z acts by translation.
The integral with λ = 0 needs to be regularized in the same way as before. We define
this integral as the constant term at s = 0 of the meromorphic continuation of the
following:

lim
Y→∞

∫ Y

0

∫ 1

0

(· · · )y−sdx dy
y2

.

The first term Y Φ̃(p̃) is a continuous function of the form

(ρ([=w]),=w), (3)

where ρ is a piecewise constant function on GrW taking values in W ⊗ C.
The term with λ = 0 in the sum above diverges:∫
Z\H

f(τ)
∞∑
n=1

exp

(
−πn

2Y 2

y

)
y1/2dx dy

y2
= c(0)

∫ ∞
0

∞∑
n=1

exp

(
−πn

2Y 2

y

)
y−1/2dy

y

= c(0)
∞∑
n=1

∫ ∞
0

exp (−y)

(
πn2Y 2

y

)−1/2
dy

y

= const ·
∑

n−1.

However, after regularizing the integral we get −c(0) log(Y )+const
Y

, which gives a contribution
to Φ of

−2c(0) log(Y ) + const. (4)

Exercise 22 Show that this regularized integral is −c(0) log(Y )+const
Y

and find the constant.

Now consider a term with λ 6= 0. After expanding f =
∑
c(m)qm, we get integrals of

the following kind:∫ ∞
0

∫ 1

0

qm−Q(λ) exp

(
−πn

2Y 2

y

)
|q|(p̃+(λ),p̃+(λ))y1/2dx dy

y2
.

Again the integral vanishes unless m = Q(λ). When this is the case, we get∫ ∞
0

exp

(
−πn

2Y 2

y
− 2π(p̃+(λ), p̃+(λ))y

)
y−1/2dy

y
.
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Exercise 23 Show that for A,B > 0,∫ ∞
0

exp

(
−A
y
−By

)
y−1/2dy

y
=

√
π

A
e−2
√
AB.

(This can be done by standard integration techniques).

Exercise 24 Show that
√

2(p̃+(λ)p̃+(λ)) = |(λ,=w)|
Y

.

After doing this integral and multiplying by 2Y c(Q(λ))e(n(λ,<w)), we get the follow-
ing contribution to Φ:

2c(Q(λ))
1

n
e
(

((λ,<w) + i|(λ,=w)|)
)n
.

Summing over n we get

−2c(Q(λ)) log
(

1− e ((λ,<w) + i|(λ,=w)|)
)
.

Taking this term together with the term for −λ, we get

−4c(Q(λ)) log |1− exp (2πi(λ+, w))| , (5)

where λ+ is ±λ and has positive inner product with =w.
Adding up all the terms, we get the following:

Φ(w) = (ρ([=w]),=w)− 2c(0) log(Y )

−4
∑

λ̃∈M, (λ,=w)>0

c(Q(λ)) log
∣∣∣1− exp (2πi(λ,w))

∣∣∣
The right hand side is locally away from the singularities of the form −4 log |Ψ(w)| −
2c(0) log(Y ) where Ψ is holomorphic. Furthermore, we’ve calculated the singularities of
Φ. Near λ⊥ the singularity is

−2c(Q(λ)) log(p+(λ), p+(λ)).

A short calculation shows that as a function of [v] ∈ K, this is

−4c(Q(λ)) log

∣∣∣∣ (λ, v)

(λ0, v)

∣∣∣∣+ analytic terms.

It follows that there is a meromorphic function Ψ on all of H such that

Φ(w) = −4 log |Ψ(w)| − 2c(0) log(Y ).

We can read off the divisor of Ψ from the singularities of Φ. For [=w] near [w0], we can
use the formula

Ψ(w) = ei(ρ(w0),w)/4
∏

λ∈M, (λ,w0)>0

(
1− e2πi(λ,w)

)c(Q(λ))

.

To show that Ψ is a meromorphic modular form, we use the following.
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Exercise 25 Let F be a meromorphic modular form on H of weight k and level Γ. Show
that |F (w)|Y k is Γ-invariant.
Conversely, let F be a meromorphic function on H such that |F (w)|Y k is Γ-invariant.
Show that F is a weight k, level Γ meromorphic modular form.

Recall that for λ ∈M , the translations α(w) = w + λ are in ΓL. It follows that

χ(α) = exp(i(ρ(w0), λ)/4).

Since these numbers must all be roots of unity, we find that iρ(w0) ∈M ⊗Q.
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3 Statement of results for more general lattices

Given an even unimodular lattice L of signature (2, n−), we’ve seen that we have a lift{
weakly holomorphic forms on SL2(Z)

}
→ { meromorphic forms on ΓL }.

In this lecture I’ll describe how this theory can be generalized to remove the “unimodular”
condition and also to deal with weakly holomorphic forms of higher level. In fact, rather
than increasing the level, it will be more convenient for us to consider vector valued
modular forms.

3.1 The metaplectic group

We’ll write Mp2(R) for the metaplectic group. That is the group of pairs (M,φ), where
M = ( a bc d ) ∈ SL2(R) and φ : H → C× is a continuous function such that φ(τ)2 = cτ + d.
Multiplication in this group is given by

(M1, φ1)(M2, φ2) = (M1M2, (φ1 ◦M2) · φ2).

If we write
√
z for a complex number z, then the square root will be chosen so that

arg
√
z ∈ (−π/2, π/2]. The group Mp2(R) is a connected Lie group, but it is not the group

of real points in an algebraic group. In fact, and homomorphism Mp2(R)→ GLn(R) will
have the element (I2,−1) in its kernel.

There is an obvious surjective homomorphism Mp2(R) → SL2(R). The kernel has 2
elements, and is in the centre of Mp2(R). We’ll write Mp2(Z) for the preimage of SL2(Z)
in Mp2(R). The group Mp2(Z) is generated by the following elements:

T =

((
1 1
0 1

)
, 1

)
, S =

((
0 −1
1 0

)
,
√
τ

)
.

Exercise 26 Show that the centre of Mp2(R) is a cyclic group of order 4, generated by
Z = (−I2, i). Show that S2 = Z, and hence show that S and T generate Mp2(Z).

Exercise 27 Show that Mp2(R) is connected. (Hint: show that Mp2(R) is not a split
extension of SL2(R) by considering the preimage of the centre of SL2(R).)

3.2 Vector valued forms

Let L be a lattice with a non-degenerate symmetric bilinear form (−,−) : L × L → Z,
such that (v, v) is even for all v ∈ L. As before, we let V = L⊗R and we let (n+, n−) be
the signature. We shall write L′ for the dual lattice:

L′ = {v ∈ V : (v, L) ⊂ Z}.

(We no longer assume that L is unimodular). The quotient L′/L is finite, and we write
C[L′/L] for the group algebra of this finite group. For δ ∈ L′/L, we let [δ] be the
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corresponding element of the group algebra. There is an action of Mp2(Z) on the vector
space C[L′/L] defined as follows:

%(T )[δ] = e2πiQ(δ)[δ], %(S)[δ] =

√
i
n−−n+√
|L′/L|

∑
γ∈L′/L

e−2πi(γ,δ)[γ].

Exercise 28 Show that %(Z)[δ] = in
−−n+

[−δ]. Hence show that if L has even rank then
% reduces to a representation of SL2(Z).

If we regard C[L′/L] as a Hilbert space, in which the elements [δ] form an orthonormal
basis, then the representation % is unitary. We shall write %∗ for the contragredient
representation. In matrix terms, with respect to the orthonormal basis, this is just the
complex conjugate.

Exercise 29 Show that % is unitary.

Exercise 30 Show that if L is unimodular then % is the trivial representation.

Let k ∈ 1
2
Z with k ≡ rankL

2
mod Z. A modular form of weight k, with values in C[L′/L]

is a holomorphic function f : H → C[L′/L], such that

• For all (M,φ) ∈Mp2(Z),

f(Mτ) = φ(τ)2k%(M,φ)f(τ).

• f is “holomorphic at the cusp”, i.e. bounded on {τ ∈ H : =τ > 1}.

Any such function has a Fourier expansion as follows:

f(τ) =
∑
δ∈L′/L

∑
m∈Z−Q(δ)

c(δ,m)e2πimτ [δ],

with c(δ,m) = 0 whenever m < 0. If c(δ, 0) = 0 for all δ then f is called a cusp form. If
we allow finitely many coefficients to be non-zero with m < 0 then f is called a weakly
holomorphic form.

3.3 Borcherds products

Let L be a lattice of signature (2, n−) with n− ≥ 3. In such an L there is always a
primitive vector λ0 with Q(λ0) = 0. We may then choose λ1 ∈ L′ such that (λ1, λ0) = 1.
We let M be the orthogonal complement of 〈λ0, λ1〉. Let (λ0, L) = NZ with N > 0.
Choose ζ ∈ L with (ζ, λ0) = N . We have a unique decomposition

ζ = ζM +Nλ1 +Bλ0, ζM ∈M ′, B ∈ Q.

Define a sublattice:
L′0 = {λ ∈ L′ : (λ, λ0) ≡ 0 mod N}.
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We have a map p : L′0 →M ′ given by

(p(λ), µ) = (λ, µ)− (λ, λ0)

N
(ζM , µ), µ ∈M, λ ∈ L′0.

Let f be a weakly holomorphic modular form with values in C[L′/L] and weight
1− n−/2 and assume that the coefficients c(δ, n) are in Z for all n < 0. To such an f , we
define the corresponding Borcherds product:

Ψ(v) = e2πi(ρ,w)
∏

λ∈M ′, (w0,λ)>0

∏
δ∈L′0/L, p(δ)=λ+M

(
1− e2πi((δ,λ1)+(λ,w))

)c(δ,Q(λ))

Theorem 3 There is a unique choice of ρ ∈M ⊗Q, depending additively of f , such that
the following are true:

• Ψ has a meromorphic continuation to H.

• The divisor of Ψ is ∑
λ∈L′/{±1}, Q(λ)<0

c(λ,Q(λ)) · λ⊥.

• Ψ is a meromorphic modular form of weight c(0, 0)/2 and level Γ(L,L′), where

Γ(L,L′) = {α ∈ ΓL : ∀λ ∈ L′, αλ− λ ∈ L}.

3.4 The vector valued theta function

As before, the theorem is proved using the theta correspondence. In this case, we use a
vector valued theta function:

ΘL(τ, p) =
∑
λ∈L′

e
(

(p+(λ), p+(λ))τ + (p−(λ), p−(λ))τ
)
· [λ].

This is a function H×GrV → C[L′/L]. The theta function is invariant under the action
of Γ(L,L′) on GrV . Under the action of Mp2(Z) on τ it has the following behaviour:

ΘL(γτ, p) = φ(τ)n
+

φ(τ)
n−

%(γ, φ)ΘL(τ, v).

Using this, we can show that the following function

〈f(τ),ΘL(τ, p)〉 · yn+/2

is Γ-invariant. Here f denotes a vector values weakly holomorphic form of weight (n+ −
n−)/2. We may therefore define the theta transform of f :

Φ(p) =

∫
Γ\H
〈f(τ),ΘL(τ, p)〉 · yn+/2dx dy

y2
.

Again this diverges, but we can make sense of it in the same way, and we find that

Φ(p) = −4 log |Ψ(p)| − 2c(0, 0) log(Y ) + const.

Again it follows that Ψ is a weight c(0, 0)/2 modular form.
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