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Abstract - The purpose of this paper is to show that for a dense Gy
set of three smooth convex bodies with nowhere vanishing curvature (in the
C* topology, 2 < k < 00), the open billiard obtained from these convex bod-
ies determines a potential (the one that defines the natural escape measure
of this billiard) which is non-lattice. This result generalizes one of the results
obtained in a previous work of A. Lopes and R. Markarian [1].
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1. The open billiard

The open billiard was previously analyzed in [1]. We refer the reader to [1]
for most of the results we will use in the present paper. Most of the theorems
of a dynamical nature mentioned in this paper [1] are stated for the open
billiard defined by three circles with the same radius, but as was mentioned
in [1] (see end of section 1), it can be easily extended to general convex bodies
satisfying Morita’s condition [2]. However, the proof of the result stated in
section 8 [1] about the non-lattice property of the natural potential cannot
be directly adapted from [1] to the general case. The purpose of the present
paper is to eliminate this gap.

We refer the reader to [5] for a general reference for billiards.

We assume that the open billiard is defined by three convex scatterers or
bounded convex domains Oy, O, and O3 in R? each with a class C*,2 < k <
00, (see [4] for definitions) boundary, and each with nonvanishing curvature
everywhere. Let F be the space of all such curves. The space F carries a
natural topology which we call the C* topology under which it is a complete
separable metric space (see [4]). We will assume that the open billiard is
defined by three curves, implicitly given respectively by three C*,2 < k < oo,
expressions

f(z,y) =0,

g(z,y) =0
and

h(z,y) =0,

that is f, g, h € F, where F is the set of C* functions of R? in R.

Let F be the subset of F x F x F consisting such that for (f, g, h) € F, the
three curves 7,72, v3 implicitly defined by the above equations are smooth
Jordan curves and define convex bodies. We also assume all (Oy, Oy, O3)
satisfy Morita’s condition [2]: the convex hull of any two of these bodies do
not intersect the third one. The set F'is a G subset of F x F x F.

For each (01, O,,03) € F, we consider the associated map T(0, 0,05 = T
restricted to the boundary values, i.e., position ¢ and angle ¢, of the billiard
as in [1].

The two-dimensional map 7" associated to the boundary points x = (g, ¢)
is hyperbolic when restricted to the Cantor set II consisting of those x that do



not escape to infinity [1]. The dynamical system 7" will be therefore defined
from II to itself. There is a natural measure or escape measure, u, for this
system. The escape measure y has the following intuitive description. Con-
sider in the plane a certain expanding transformation whose non-wandering
set is a Cantor set with Lebesgue measure zero. A natural generalization of
the Bowen-Ruelle-Sinai measure in this case might be obtained in the fol-
lowing way. Given a set B contained in the Cantor set C', we are going to
define the value u(B). Consider a grid of squares with side € . Denote by
b. the number of squares that intersect B and ¢, the number of squares that
intersect the Cantor set C'. Now, when € goes to zero, if the limit
li b _ B
i P 1(B)

exists and if this limit is independent of the grid for any Borel set B, then
we say that p is a “natural” (or escape) measure. This procedure is quite
natural from the point of view of an experimental observer. Given what is
left after n observations (this will produce a slightly distorted grid with a
value € inversely proportional to n), then one should consider the proportion
of what is left of the set that one wants to measure over the full set that still
remains. The role of the grid is to give a computable approximation of the
Lebesgue measure.

The measure p, we consider here is obtained as a limit of the above
procedure. An important fact is that p is also the unique equilibrium state
of the natural potential, ¢ (see [1]). We will give the expression for ¢ a little
later. But, first let us briefly recall the meaning of equilibrium state. Given
a measurable transformation 7 : M — M on a measurable space (M, F) and
a function ¢ (x) defined on the space M, define the Topological Pressure of

¥ by
P) = sup{h(v) + [ v()dv(x)},

where the sup is taken over all invariant probabilities ». A measure 6 is called
an equilibrium measure for v if

P() = h(0) + [ v(x)do(x).

Let us mention that the potential considered by Morita in [2] is not the
natural potential but rather the ceiling function is considered as the potential
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in that paper. The equilibrium measure generated by the ceiling function is
not the same as the escape measure. Therefore, the questions addressed in
[1] and here are of a different nature than the those considered in [2].

A function © defined on II is called non-lattice if there does not exist a
function v, a constant a and a function G taking only integers values, such
that for all x € II

v(T(z)) —v(z) + aG(z) = O(x).

Non-lattice functions defined on the non-wandering set of a hyperbolic
dynamical system 71" determine nice statistical properties of the dynamical
zeta function associated to the periodic orbits of T' [3].

In [2], Morita shows that the ceiling potential is not lattice. We denote
the ceiling function by #(x) in this note.

One of the results obtained in [1] is that for a dense set of values a >
2, open billiards determined by three circles of radius one centered in the
vertices of an equilateral triangle of side a, satisfy the following property:
the associated natural potential 1) is non-lattice.

In this paper we prove

Theorem 1: For a dense Gy set of parameters (O, 0y,03) € F in the
C* topology, 2 < k < oo, the open billiard defined by (Oy, Oy, 03) is such
that the natural potential ¢ is non-lattice.

Note that the results of [1] do not follow from the above theorem, because
the perturbations allowed here can leave the class of circular billiards.

2. Proof

Let us outline the fundamental ideas of the proof: (1) a lattice potential
must satisfy the condition that its time averages over all periodic orbits are
rationally related, (2) the natural potential on a given periodic orbit depends
only on the dynamics near that orbit, and (3) the scatterers can be deformed
so as to perturb one periodic orbit while leaving another periodic orbit (and
nearby trajectories) unchanged. Now we will prove the main theorem.



Proof of Theorem 1 : Consider periodic orbits of period respectively
2 and 3 for T denoted by ay, as € II and by, by, bg € 1.

The proof proceeds by way of contradiction.

So, suppose that there exist a function v, a constant a € R and an
integer valued function G such that v o T — v + aG = ¥, where 9 is the
natural potential for the escape measure. Then

P(ar) +laz) = Plar) + (T (a)) =

(v(az) —v(ar) + aG(ar)) + (v(ar) — v(az) + aG(az)) = M«

for some my € Z. Similarly, we have

Y(br) + (ba) +1p(b3) = nicx

for some ny € Z. Therefore,

() + (@) = () + 9) + (b)) (1)
my ny
Now we need to use the analytic expression of ¢). Recall from [1] that ¢(x)
denotes the angle with the normal of the trajectory beginning at z = (¢, ¢)
and K (x) = K(q) is the curvature at ¢ of the curve v (one of the components
of the boundary of the billiard) such that ¢ € v. From [5], ¢ is given by

(x) = log |1+ t(z)k(z)],

for x € II, where t(z) = ||q — ¢'|| is the distance between the successive hits
= (q, ) and T(x) = (¢',¢'), and k(x) is given by the continued fraction,

k(ﬂ«") [e1(@), ea(2), e3(), .. ] or

k(z) = ¢ (x) + i
ca(x) + i
c3(x) +

where

2K (x)

cos oI k(@) @ @) =T (@) keN.

C2k+1($) =



Expression (1) can be rewritten as
(1 + t(ar)k(ar)) (1 + t(as)k(az)))™ =

(L4 #(b2) R (b1)) (1 + £ (b2) R (b2)) (1 + £(b3) k(b3)))™ . (2)

We point out that the values ay, ay defining the orbit of period 2 and the val-
ues by, by, by defining the orbit of period 3 depend continuously on (Oy, Os, O3).
Note that t(a;),i € {1,2},t(b;),j € {1,2,3} are continuous functions of
(01,04,0;3). Finally, note also that ¢(a;), #(b;) and K(a;), K(b;) are con-
tinuous functions of (O, Os, O3). Therefore, all these values ¢, K, ¢ and also
¢;,1 € N are continuous functions of (Oy, Oy, O3).

We claim that k(a;),7 € {1,2} and k(b;),j € {1,2, 3} are also continuous
functions of (O1,02,03). In order to prove the claim, note that from the
periodicity of a; and as

k(al) = cl(al) + 1 ,
Cg(al) + 1
03(01) + 1
C4(a1) + W

or k(ay) = [c1(a1), ca(ayr), c3(ar), ca(ar)] is a periodic continued fraction. There-
fore, k(ay) is a solution of a quadratic equation with coefficients in

01(a1), 02(a1), 03(a1), 04(01)-

Similarly, the same property also holds for &(as).
Finally, from the periodicity of by, by, and b3, the value k(b;) is also a
solution of a quadratic equation with coefficients in

Cl(bl), CQ(bl), C3(b1), C4(b1), C5(b1), CG(bl)

since

k(br) = [e1(br), ca(br), €3(b1), ca(br), cs5(br), c6(b1)].

Therefore, the terms in (2) depend in a continuous fashion on (Oy, O, O3).
Thus, for a fixed my, ny, the set By, ,, consisting of all (Oy, O, 03) € F such
that (2) holds is a closed set in F.



We now show that for fixed m,n; this set By, ,, is nowhere dense in
F. In order to do that we will show that for (0,02, O3) € By, 5, oOne can
perturb the three curves in F' changing the value

(1 +#(ar)k(ar))(1 + t(az)k(az)))™

without changing the period three orbit and also without changing
(14 2(b1) k(1)) (1 + t(ba)k(b2)) (1 + #(bs)k(b3))) ™.

Geometrical arguments easily show that one can perturb just the period two
orbit (without changing the period three orbit at all) by changing a little bit
the value t(a;) = t(as) and changing a little bit the values K (a;) and K (a2)
(see fig 1).

Figure 1

We will show that these changes will indeed change the value

(14 #(ar)k(ar)) (1 + t(az)k(az))).
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Denote t = t(ay) = t(az) = t(az) = -+, k1 = k(a1) and ks = k(az). Suppose
that with the above described changes the value (1 + tky)(1 + tky) remains
constant equal to d.

The first equation we consider is

(1 +thy)(1 + thy) = d. (3)

Note that
C1 = 2K(CL1) = cl(al), c5(a1), 09(a1), ey

Cy = 2K(a2) = 03(a1), 07(a1), CH(CLI), e
and, for all k € N
Cof = t.

Note also that c3(a;) = ¢1(az), etc...
Therefore,

CQ(al) + 1 t+ —
cilag) + ————

(a2 + T
and we obtain from this last expression our second equation

tCle +c + kQ - tk‘lk'g - k‘l = 0, (4)

So, ki and ky clearly depend continuously on ¢y, ¢, and ¢.
From (3),
t(k‘l + k'g) + tZkle == d - ]_ (5)

Multiplying (4) by t one obtains
tZCle + Clt + th = tkl + t2k1k2,

and now adding tk, to both members of last expression, one obtains from (5)
that

t2c1ky + et + 2kot = thy + thy + t2kiky = d — 1.



The expression
t(terka +c1 4+ 2ky) =d — 1 (6)

shows that ks depends only on ¢ and ¢;. Note that in changing K(a;) (re-
spectively K (az)) we also change ¢; = ciﬁ&)) = 2K (ay) (respectively cy).
Now, from the periodicity of as

kg = k(CLQ) = Cl(CEQ) +

and finally

k2202+ 1 . (7)
t+ i
€1+
t+

ko +---

The last expression shows that ks depends on ¢y, ¢; and ¢ (in fact is a solution
of a quadratic equation whose coefficients depend on ¢y, ¢,t). Note from (7)
that ks really changes with the value ¢, that is, for ¢, ¢; fixed, k; depends on
co. If (3) is true, then (6) says that ks is constant for ¢, ¢; fixed.

The conclusion is that the assumption (3) with d constant is false. There-
fore we are able to perturb (Oy, Os,03) € By, ,, obtaining that (2) is not
true anymore. Thus, each set B,,, », is nowhere dense, and therefore by the
Baire Category Theorem, for a dense Gs set of (01,09, 03) in F, equation
(1) is not true for any my,n;. Therefore, the potential ) is non-lattice and
the proof of Theorem 1 is complete.
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