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1. INTRODUCTION

During the past several years, a new type of geometric measure and dimension
have been introduced, the packing measure and dimension, see [Su], [Tr| and [TT1].
These notions are playing an increasingly prevalent role in various aspects of dy-
namics and measure theory. Packing measure is a sort of dual of Hausdorff measure
in that it is defined in terms of packings rather than coverings. However, in contrast
to Hausdorff measure, the usual definition of packing measure requires two limiting
procedures, first the construction of a premeasure and then a second standard limit-
ing process to obtain the measure. This makes packing measure somewhat delicate
to deal with. The question arises as to whether there is some simpler method for
defining packing measure and dimension. In this paper, we find a basic limitation
on this possibility. We do this by determining the descriptive set theoretic com-
plexity of the packing functions. Whereas the Hausdorff dimension function on the
space of compact sets is Borel measurable, the packing dimension function is not.
On the other hand, we show that the packing measure and dimension functions are
measurable with respect to the o-algebra generated by the analytic sets. Thus, the
usual sorts of measurability properties used in connection with Hausdorff measure,
e.g., measures of sections and projections, remain true for packing measure.

We now give a somewhat more detailed description of our results and we intro-
duce some notation. Throughout this paper (X, d) will be a Polish space, that is, a
complete separable metric space. We equip the space (X)) of non-empty compact
subsets of X with the Hausdorff distance p;

o(K, L) = sup{dist(z, L), dist(y, K) : x € K,y € L}.

Then (K(X), 0) is a complete separable metric space, see e.g., [R]. We denote by
Hy and P, the Hausdorff and packing measures generated by a non-negative non-
decreasing function g on the positive reals; their definitions will be given later. We
shall study the measurability properties of the functions H, and P, on IC(X). The
Hausdorff measure #H, is rather simple in this respect; it is in Baire’s class 2, and
in particular a Borel function. The packing measure is much more complicated,
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as can be expected from its definition. Assuming that g satisfies the doubling
condition; g(2r) < kg(r), we show that P, is measurable with respect to the o-
algebra generated by the analytic sets, but it is not Borel measurable even when X
is the unit interval.

From these results on measures we obtain that on K(X) the Hausdorff dimension
is a Borel function and the packing dimension is measurable with respect to the
o-algebra generated by the analytic sets. Again, the packing dimension is not a
Borel function. We shall actually prove the measurability of the packing dimension
in two ways: via the packing measures and via the box counting dimension (also
known as the Minkowski dimension).

We shall mainly work with packing measures whose definition is based on the
radii of balls. In Section 5 we briefly discuss the measurability questions related to
diameter-based packing measures.

By composing suitable functions, we can use the above results to deduce mea-
surability of various functions. For example, we show in Section 6 that if K is a
compact subset of a product space T' x X, where T is another Polish space, then
the Hausdorff measures and dimensions of the sections {z € X : (t,z) € K} are
Borel functions of ¢, and their packing measures and dimensions are measurable
with respect to the o-algebra generated by analytic sets. Our example in Section 7
shows that these latter functions need not be Borel measurable.

The last section is independent of the others. There we study the lower density

. Pg(AﬂB($,r))
dg(A,z) = hgi}lglf e

where ¢ satisfies the doubling condition. For packing measures this is more natural
than the corresponding upper density because even for compact subsets K of R"
with positive and finite P® measure the upper density may be infinite everywhere
in K. For the lower density it was shown in [TT2] and [ST]| that if A C R™ and
P?(A) < oo, then dy(A,z) = 1 for P° almost all z € A. In Example 8.9 we shall
show that this does not extend to any infinite-dimensional inner product space.
However, we shall prove for g(r) = r* the optimal inequalities 27° < d4(A,z) < 1
for P, almost © € A if A is a subset of an arbitrary Polish space with Py(A) < oo,
see Theorem 8.3. We shall also prove in Theorem 8.5 that dy(A, ) does equal one
almost everywhere in A, but almost everywhere with respect to #, and not P,. This
has the following consequence: if A C X with P,(A) < oo, then Hy(A) = Py(A) if
and only if

(1.1) lim My (AN B(z,7) =1 for P, almost z € A.

r—0 g(2r)
In R™ this has been proved in [TT2] and [ST] (see also [M]) with the help of the
aforementioned fact that dy(A,z) = 1 for P, almost all z € A. Still in R”, for
g(r) = r® (1) implies that s must be an integer and A rather regular, i.e. rectifiable
with respect to P,. This gives for sets A C R* with g(r) = r® and P,4(A4) < oo that
H4(A) = Py(A) if and only if A is such a rectifiable set, see [ST] or [M]. We shall
extend this result to separable Hilbert spaces in Theorem 8.8.
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We shall denote by R the set of real numbers, by R” the Euclidean n-space, by
Q the set of rational numbers, and by N the set of positive integers. For A C X,
the closure of A will be A. The o-algebra generated by analytic sets will be denoted
by B(A). In a product space, proj; stands for the projection onto the first factor.

Finally, we wish to thank Lars Olsen and Jouni Luukkainen for their corrections
and comments during the preparation of this manuscript.

2. HAUSDORFF MEASURE AND DIMENSION FUNCTIONS

Here and later g: [0, 00) — [0, 00) will be a non-decreasing function with g(0) =
0. We denote by d(A) the diameter of a set A C X with d()) = 0. Let 0 < 0 < o0
and A C X. The approximating Hausdorff g-measure #, 5(A) of A is defined by

Hg.5(A) = inf { Zg(d(Ui)) t A C U U;, each U; is open with d(U;) < 5}
i=1

i=1
and the Hausdorff g-measure H,(A) by

Hy(A) = lim Hy o(4).

We write Hy 5 = H5 and Hy = H® when 0 < s < 0o and g(r) = r® for r > 0. The
Hausdorff dimension dimg A of A is defined by

dimg A = inf{s : #*(A) = 0}.

We shall use the usual notion of Baire’s classes for functions between metric
spaces. Thus Baire’s class 0 consists of all continuous functions and Baire’s class
n + 1 consists of all pointwise limits of sequences of functions in Baire’s class n.
In particular, the upper and lower semicontinuous functions belong to the Baire’s
class 1.

2.1. Theorem. a) For 0 < § < oo, the function
Hgs5: K(X) — [0, 00]

1S upper semicontinuous.
b) The functions
Hy and dimpg: K(X) — [0, o0

are of Baire’s class 2. Moreover, in general, these functions are not of Baire’s class
1.

Proof. Let V be a countable basis for the topology of X and let {W,}72 be an
enumeration of all finite unions of the sets of V. Let ¢ € R and K € K(X). Using
the definition of H, s and the compactness of K, we see that H, 5(K) < c if and
only if there are finitely many open sets Uy, ..., U such that

k k
> g(d(Uy) <e, K| JUi and d(U;) <6 fori=1,...,k.
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This holds if and only if there are ny,...,n, € N such that

(2.1) > g d(Wa,)) <, K C|JWy, and d(W,,) <6 fori=1,...,m.

i

Since the set of K € K(X) for which there exist ni,...,n,, satisfying (2.1) is
clearly open in the exponential or Vietoris topology[K2], we conclude that the set
{K € K(X) : Hgs5(K) < ¢} is open, and a) follows. Letting Q" be the set of
positive rationals, it then follows that for each «,

(2.2) {FeK(X):dimgF<a}= () [[{F:Hu(F) <1}
o "

is a Gs-set. From this we get {F : f < dimpyg F < a} is a Gs,-set, for all 0 < § < a.
Thus, dimg is a Baire class 2 function. As Hy = limy, o Hg,1/n, Part a) completes
the proof of the first part of b).

The following example shows that, in general #, is not a Baire class one function.
Consider X = [0,1] x [0,1] and H! : K£(X) — [0, +0o0]. Since H(F) = 0 for all
finite F', H! has value 0 on a dense subset of K(X). On the other hand, it is easy
to show that each open set of the form

PU,....U) ={F:F CUU;jand FNU; #0,i=1,...,n},

where each U; is a nonempty open subset of X contains an element F' such that
H(F) = 1. Since these sets form a basis for the topology of K(X), H! has value 1
on a dense set. Thus, H' cannot have a point of continuity, whereas a Baire class
one function has a dense set of points of continuity. This also shows that dimg has
value 0 on a dense set and also has value 1 on a dense set and is therefore also not
a Baire class 1 function.

3. PACKING AND BOX DIMENSION FUNCTIONS

The packing dimension can be defined either via the upper box counting (i.e.,
Minkowski) dimension or via the packing measures. In this section we use the first
approach and in the next section the second.

We begin with the definitions and simple measurability properties of the box
counting dimensions. Let K € K(X). For 6 > 0 let N5(K) be the smallest number
of open balls of radius 0 that are needed to cover K. The upper and lower box
counting dimensions dimpK and dimp K of K are defined by

dimpK = limsuplog N5(K)/(—log )
6—0

= limsuplog N»-i (K)/(jlog2),

J—00
and
dimp K = liminflog Ns(K) /(- log )
§—0
= lim inflog Ny, (K) /(5 log 2),

J—00
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where the second equalities are easily seen to hold.

Instead of covering with §-balls we can also use packings with d-balls. Let Py(K)
be the largest integer k such that there are points z1, ...,z € K with d(z;,z;) > 9§
for i # j. Then one verifies easily (or see [F] or [M]) that

dimp K = limsup Ps(K)/(— logd)
§—0

= limsup P, (K)/(jlog2),

j—oo
and similarly for dimp K.

3.1. Lemma. The functions dimg and dimp: K(X) — [0,00] are of Baire’s
class 2.

Proof. Evidently {K € K(X) : N5(K) < ¢} is open for ¢ € R and § > 0, whence
N5 is upper semicontinuous. Thus the functions g; : K + log No—; (K)/(jlog?2)
and hy = inf;>y g; are also upper semicontinuous. Hence dimp = limy_, o, Ay is of
Baire’s class 2.

For the upper box counting dimension we use the packing function Pj. It is easy
to verify that it is lower semicontinuous. Hence it follows as above that dimpg is of
Baire’s class 2.

We define the packing dimension dim, A for A C X by

dim, A = inf { supdimpK; : A C U K;, K, ¢ IC(X)}.
‘ i=1
Then the packing dimension has the countable stability property, which the box
counting dimension lacks:

dim,, < U Ai> =supdim, 4; for 4; C X.
i=1 ¢
This leads to the following lemma. It was also essentially proved by Falconer and
Howroyd in [FH].

3.2. Lemma. Suppose d € R, K € K(X) and dim, K > d. Then there is a
non-empty compact set M C K such that dim,(M N'V) > d for all open sets V
with M NV # (.

Proof. Let My = K. Define a transfinite sequence of compact subsets of K by
recursion as follows. For each ordinal «, let My = {z € M, : dimp(M,NV) >
d, for all neighborhoods V of x}. For each limit ordinal A, let My = NgcaMsp.
Since (My)acora is a descending transfinite sequence of compact sets, there is a
countable ordinal v such that M., = M. ;. Note that for each ordinal v, dimy, (M, \
My41) < d. We claim that for each countable ordinal «, dim,M, > d. This is
certainly true for & = 0. Suppose this claim holds for all § < a. If « = 7+ 1,
then since M, = M, U (M; \ M;41), dimyM,11 = dim,M, > d. If o is a
countable limit ordinal, then since My = Ug<o(Mp \ Mp4+1) U M, again we have
dimpMy > d. Set M = M.,. Then M # (. If there were some open set V such that
dim,(MNV) <dand M NV # 0, then M, 1 # M,, a contradiction.
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3.3. Lemma. Letc€ R and K € K(X). Then dim, K > c if and only if for every
d < c there is a non-empty compact set M C K such that dimg(M NV) > d for all
open sets V with M NV # (.

Proof. The “only if” part follows immediately from Lemma 3.2. To verify the “if”
part suppose that the stated condition holds and dim, K < ¢, contrary to what
is asserted. Choose d < ¢ for which dim, K < d. Then there are compact sets
Ki,K>,... such that K C (J;2, K; and dimpK; < d for all i. Let M C K be
non-empty, compact and such that dimg(M NV) > d, for all open sets V with
M NV #0. Since M = |J;2,(M N K;), the Baire category theorem implies that
M N K; has non-empty interior relative to M, for some ¢ . Thus there is an open
set Vwith) A#MNV CcMNV C MnN K;, whence

di—mB(MﬂV) < di—l’nB(MﬂKi) <d,
which is a contradiction and completes the proof of the lemma.
3.4. Theorem. Forc € R the set
A={K € K(X):dim, K > c}
is analytic. In particular, the function dim,: K(X) — [0,00] is measurable with
respect to B(A).
Proof. Let {V1,Va,...} be a basis for the topology of X. For m, n € N define
Bpn={(K,M) e K(X)xK(X): M C K and either MNV,, =0
or dimg(M NV,) >c—1/m}.
Then by Lemma 3.3,
A= m pI‘Ojl ( ﬂ Bm,n)-
m=1 n=1

Thus it suffices to show that each B,, , is a Borel set.

The sets {(K,M): M C K} and {M : M NV,, = 0} are closed. The function
M — N_(;(M N Vnﬁs easily seen to be upper semicontinuous for all 4 > 0, whence
M — dimp(M NV,) is Borel measurable. Thus every B, ,, is a Borel set.

4. PACKING MEASURE FUNCTION

Let A C X and § > 0. We say that {(z;,r;)} is a d-packing of A if z; € A,
d > 2r; >0and r; +r; <d(z;,z;) fori, j=1,...,n,i7# j. Then the closed balls
B(zj,r;) are disjoint. We first define the prepacking measures P, 5 and P, by

P, 5(A) =sup { Zg(%i) :{(x;, i)}y is a d-packing of A},
i=1
P,(A) = lim P, 5(A).
a(A) ey 9,6(A)
If g is continuous we can replace the condition r; + r; < d(z;,x;) by r; +r; <

d(z;, zj) without changing the definitions of P, s and P,. The following simple
lemma is given only for completeness; it will not be needed later on.
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4.1. Lemma. The function Py s5: K(X) — [0, 00] is lower semicontinuous and the
function Py: IC(X) — [0,00] is of Baire’s class 2.

Proof. For c € R,
(K€ K(X): Ps(K)>ct= ] Gn
n=1

where K € G, if and only if there exists a d-packing {(z;, )}, of K such that
Z?:lg(Zri) > c¢. Each G, is open, consequently P s is lower semicontinuous.
Hence Py = limy, o Py 1/y is of Baire’s class 2.

Since P, is not countably subadditive one needs a standard modification to get
an outer measure out of it. Thus we define the packing g-measure for A C X by

Py(A) = inf { in(Ai) LA C DA,}.

If A is compact, the sets A; can also be taken compact. Then P, is a Borel regular
outer measure. When g(r) = r® we denote P, = P*®. The packing dimension, which
was introduced in the previous section, can also be defined in terms of the packing
measures:

dim, A = inf{s: P*(A) = 0}.

For these relations, see e.g., [TT1], [F] or [M]. The proofs there are in R” but they
generalize without changes.

Let us indicate why dealing with packing measure is somewhat delicate. This
can be seen by carrying out a straightforward logical analysis of its definition. Let

E={K e K(X): P,(K) < c}.

Then

E = proj, <{(K,K1,K2,...) EL(X)®:K C UKl and ZPQ(Ki) < c})
i=1 i=1
:pI‘Ojl(CﬂD),

where -
C = {(K,Kl,Kz,...) e K(X)®:K C UK}
=1

and

D= {(K,KI,KQ,...) € K(X)™ : in(Ki) < c}.

It follows from Lemma 4.1 that D is a Borel set. But, from its definition, the set
C' is a coanalytic set. Also, it is not a Borel set. (If it were, then consider C' N F,
where F' is the Borel set of all (K, Ky, K»,...) such that each K; is a singleton.
The projection of this set on its first coordinate would be an analytic set. But this
is the set of all countable closed sets, a classic example proven by Hurewicz not
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to be analytic, see [H]). Thus, this analysis only yields that E is a so-called PCA
(or Z;) set and whether these types of sets are measurable is independent of the
Zermelo—Fraenkel axioms of set theory, see [J, pp. 528 and 563].

In the following Pr(X) stands for the set of all Borel probability measures on
X. We equip Pr(X) with the topology of weak convergence. Then it is a complete
separable metrizable space. The support of a measure y € Pr(X) is denoted by
Spt .

4.2. Theorem. Suppose there is k < oo such that g(2r) < kg(r) for r > 0. Then
for all c € R the set

[K € K(X): Py(K) > c}
is analytic. In particular, the function Py : K(X) — [0,00] is measurable with
respect to B(A).

Proof. We may assume ¢ > 0. We shall make use of the theorem of Joyce and
Preiss [JP] according to which for any compact K with P,(K) > c there exists a
compact M C K such that ¢ < Py(M) < oco. Defining p € Pr(X) by u(B) =
Py(M N B)/Py(M) we have spt p C K and cpu(L) < Py(L) for all L € K£(X). The
converse of this holds trivially: if there exists p € Pr(X) such that spt 4 C K and
cp(L) < Py(L) for all L € K(X), then P,(K) > c. It follows that
{K € K(X):Py(K) > c} =proj; A

where

A={(K,p) € K(X)xPr(X):sptp C K, cu(L) < Py(L) for L € K(X)}.
Thus it suffices to show that A is a Borel set. We have

A=5n () Am
m=1
where
S={(K,n) € K(X)xPr(X):sptpC K}
and

Ay = {(K,p) € K(X) x Pr(X) : eu(L) < Py 1ym(L)
for compact sets L C K}.

First, the set S is clearly closed. Secondly, (K, pu) € A,, if and only if for every
j € N and every compact set L C K there is a (1/m)-packing {(z;,r;)}, of L
such that

(c—1/4) (L) < g(2ry).
i=1
For a fixed j the set of all such pairs (K, u) € K(X) x Pr(X) is open. To see this

note that its complement consists of those (K, ) for which there exists a compact
set L C K such that for every (1/m)-packing {(z;,r;)}_; of L we have

(c= 1/ (L) = 3 g(2r),

and this set is easily seen to be closed. Thus each A,, is a Gs-set, and so is A.
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4.3. Question. Is P, B(A)-measurable without the doubling condition g(2r) <
kg(r)?

In the proof we needed the doubling condition since Joyce and Preiss proved
their result using it.

5. DIAMETER-BASED PACKING MEASURE AND DIMENSION

The definitions for the upper box counting dimension and packing dimension of
Section 3 can also be given in terms of the diameters of balls instead of their radii.
More precisely, for K € K(X) let N5j(K) be the smallest number of open balls of
diameter at most 0 that are needed to cover K. If we replace N5 by ]V(; in the
definitions of dimp and dim,, we get the same dimensions. For packing measures
and the dimensions induced by them the situation is different in general metric
spaces, and we look at that in some detail. We restrict here to the gauge functions
g(t) = t*.

Let A C X and 6 > 0. Define

where the supremum is taken over all finite sequences By, ..., B, of disjoint open
balls centered at A and of diameter at most §. As before, we then define

P*(4) = lim P} (A),

P*(A) = inf{iﬁs(A,-) LA C DAZ},

and also
dim, A = inf{s : P*(A) = 0}.

Clearly, P < P* and &iﬁp < dimy, and it is easy to give examples of metric spaces,
even compact subspaces of R, where both of these inequalities are strict.

We would now like to modify the method ofAS/ection 3 to prove the measurability
of dim,. For that we need a formula giving dim,, in terms of a box counting-type
dimension. For K € (X) and j =1,2,..., let p;(K) be the largest number n of
disjoint open balls By, ..., B, centered at K with 277~ < d(B;) < 277. Of course,
p; (K) may be zero for some j’s. Set

— 1 (K
dimp K = limsup %()
j—o0 J IOg 2
(with log0 = —o0). Then p; is lower semicontinuous and so dimp is of Baire’s class

2.
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5.1. Lemma. For K € K(X),

dim, K = inf { supdimpK; : K C | J K, Ki € IC(X)}.

=1

Only very minor modifications are needed to carry out the argument of Tricot
from [T] for the radius packing measures and dimensions, it is given also in [F] and
[M]. We leave the details to the reader. Using Lemma 5.1 one can now argue as
before to prove the following theorem.

5.2. Theorem. The function aiTnp : IC(X) — [0, 00] is B(A)-measurable.
5.3. Question. Is P* B(A)-measurable?

The problem here is that in Section 4 we used the theorem of Joyce and Preiss
[JP] which does not hold for the measures P*; a counterexample has been con-
structed by Joyce [Jo].

6. MEASURABILITY OF SECTIONS

We shall now study the measurability of the Hausdorff and packing measures
and dimensions of sections in a product space. Let T" be a Polish space.
HfECTxX,and t €T, thenlet By = {z € X : (t,z) € E}.

6.1. Theorem. Let B C T x X be a Borel set. If By is o-compact for allt € T,
then the functions t — Hy(B:) and t — dimg By, t € T, are Borel measurable.

Proof. Assume first that each B; is compact. Then the map ¢t — B; is Borel
measurable (even upper semicontinuous, see [K2, p. 58]) from T into C(X). Thus,
the assertions follow from Theorem 2.1.

If each B; is o-compact we use a result of Saint Raymond [S] to find Borel
sets By C By C ... such that B = |J,__, By, and (By): is compact for all ¢ € T,
n=12,.... As Hy(B;) = limy, 00 Hy((Br):) and dimg By = limy,_,o dimg (B¢,
the theorem follows.

6.2. Remark. Dellacherie proved in [D] that ¢ — #H5(B;), and hence also t —
dimg By, is B(A)-measurable provided B is an analytic subset of T'x X and T" and
X are compact metric spaces; his proof easily extends to the case where T" and X
are complete and separable. We shall now show that these functions need not be
Borel measurable even when B is a Borel subset of [0, 1] x [0, 1].

6.3. Example. There exists a Borel set B C [0,1] x [0, 1] such that the function
t — dimg By, t € [0, 1], is not Borel measurable.

Proof. Let E = {K, : 0 < a < 1} be a copy of the Baire space (that is, a space
homeomorphic to the irrationals) in £C([0, 1]) consisting of pairwise disjoint elements
and such that dimg K, > 0 for all @ € [0,1]. To see that such a set E exists,
consider f, a typical continuous function with respect to the Wiener measure. For
almost all y in the range of f, the level set f~1{y} has Hausdorff dimension 1/2,
see [T]. The map y — f~{y} is one-to-one and Borel measurable. Choose a copy
of the Baire space D C [0,1] on which this map is a homeomorphism, see [K1].
Then we can take as E the image of D.
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Let C' be a coanalytic subset of [0,1] which is not a Borel set. By [K1] there
exists a continuous map ¢ of E onto A =[0,1]\ C.
Define

B ={(z,y) € [0,1] x [0,1] : z = p(K) and y € K for some K € E}.

Then B is a Borel set. To see this let S = {(z,y,K) : = ¢(K) and
y € K}. Then S is a Borel set and the projection map onto the first two co-
ordinates is one-to-one and maps S onto B whence S is a Borel set by [K1, p. 487].
Also the projection of B into the z-axis is A and for x € A, B, contains some
K € E, whence dimyg B, > 0. If z € C, then B, = () and dimg B, = 0. Thus for
the map g, g(z) = dimpg B,, the set ¢g~1{0} = C is not a Borel set and so g is not
a Borel function.

We now turn to the measurability of the packing dimension and measure of the
sections. Applying Theorems 3.4, 5.2 and 4.2 we can use exactly the same argument
as in 6.1 to prove the following theorem.

6.4. Theorem. Let B C T x X be a Borel set such that all the sections By, t € T,
are compact.
(1) The functions t — dim, By and t — a—i\I_I/lth, t €T, are B(A)-measurable.
(2) If g is as in Theorem 4.2 the function t — Py(By) is B(A)-measurable.

7. AN EXAMPLE

In this section we show that the packing dimension and measure functions need
not be Borel measurable. For this we shall use continued fractions, see e.g., [R].
Any z € [0, 1] can be written as

1
Z:[bl,bg,...]: 1
b
U ST
where b; € N. The sequence by, bo, ... is finite if and only if 2 is rational. We then

write
b1, b5] =i/
where the integers p; and ¢; are as in [R, p. 136]. The following basic relations hold

for them, see (3) and (5) on page 136 of [R]: defining p_; = 1, ¢_1 = 0, po = by,
qo = 1, we have

(71) b = bjpj—l +pj—27 q; = b]Qj—l + qj—2 for J = 17 27 SRR
(7.2) Pitj—1 — pj—1q; = (=171 for j=1,2,....

For irrationals z = [by, ba, .. .| we use the fact that the even convergents [by, b, .. .,
by;] increase to z and the odd convergents [bq,bs, ..., bgj+1] decrease to z. Also,
[b1,...,bj,b] is increasing with b if j is odd and decreasing if j is even. For the
denominators g; we shall need the following simple estimates.
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7.3. Lemma. bl-...-bjgqj§2jb1-...-bjforj:1,2,....

Proof. Since q; = by and q2 = b1bs + 1, this holds for 7 = 1, 2. Suppose the asserted
inequalities are valid for j < m. Then by (7.1)

by bm <bm(bi- .. bm—1) + Gm—2 < bmGm—1+ Gm—2
= G < b (2™ by b)) F 272 b
< 2™by - ... by

Thus the lemma follows by induction.
We denote by Z = [0, 1]\ Q the set of irrationals in [0, 1]. Let z = [a1, a2,...] € Z,
and define
N(z) ={la1,k1,02,ks,...]: k; €N fori=1,2,...}.
7.4. Lemma. For z € Z, dim, N(z) > 1/2.

Proof. We shall show that N(z) contains a compact set M such that dimg(M NV)
> 1/2 whenever V is an open set with M NV # (). This implies dim, N(z) > 1/2
by Lemma 3.3.

Temporarily fix ni,ns,... € N, n; > 11. Let

M = {[a1,k1,a9,ka,...]: 1 <k; <mn;, k; €N, fori=1,2,...}.

Then M is a compact subset of N(z).

Let J = J(a1,k1,-.., Gm, kn) be the smallest interval containing all the points
of M whose expansions begin with a1, k1, ..., am, kn. Using the above mentioned
monotonicity properties of [by,...,b;,b], we see that J contains the interval with
left endpoint A = [ay, k1, ..., Gm, km, @mi1, 2] and right endpoint B = [ay, kq, .. .,
s kmy @1, na1]. Let p; and ¢;, 4 = 0,1,...,2m + 1, be the partial numerators
and denominators generated by the sequence ay,k1,..., am,km, @Gmy1 With pg = 0,
go = 1. Then by (7.1) A = u/v where u = 2pap 41 + Pom and v = 2¢am+1 + Gom.-
Similarly, B = U/V where U = npyr1p2ma1 + Pom and V. = nyi1¢ama1 + @om.
Using (7.2) we estimate the length of the interval [A, B]:

B_A_ (Mm+1 = 2)(P2m+192m — P2ml2m+1)
(Mm+192m+1 + @2m) (2¢2m+1 + g2m)
Nm+1 — 2
(nm+IQ2m+1 + QZm)(2QZm+1 + Q2m)
Nm+1 — 2 1

> )
(Mmy1+1) 3q%m+1 N 4q%m+1

as Nyp41 > 11.
Hence, recalling Lemma 7.3, the length of .J satisfies

1
H (T (ar, bty s @my b)) > —5—
4q2m+1
1
>
T A2mt2(ay - Aggr)?(Rg e ny)?

= O
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We want to show now that two different intervals as above are disjoint. By the
basic monotonicity properties stated at the beginning of this section, it suffices to
consider J1 = J(a1, k1, ..., km—1,0m, k) and Jy = J(ay, k1,..., km_1,am, k') where
1 <k <k <mny. These two sequences generate the same p; and ¢; for ¢ < 2m.
The interval J; lies to the left of the interval J;. The right hand endpoint of .J; is
at most

Bl - [ala klv ceey Qo ka Am+1, Mm41 + 1]

So Bl = Ul/Vl where by (71)

Ur = (1 + 1) ((k@m41 + 1) + k) em—1 + Gmt1P2m—2) + kP2m—1 + P2m—2
= ((nm+1 + 1) (kam+1) + k) p2m—1 + (g1 + 1) Gmg1 + 1) pam_s
= apam—1 + BP2m—2,

and similarly, with the same «a and (3,
Vi = agam—1 + Bgam—2-
The left hand endpoint of J5 is at least
Ay = a1, k1, am, k' ama1, 1] = uz /vy
where, as above
Uy = &'Pam—1+ B'P2m—2, V2= em—1+ 3 Goem—2

with
o =kapmy1 +1+E, B =amp1 +1.

Thus by (7.2)

uzVh — Urvg
ST
_ (alﬁ — aﬁl)(p2m—IQZm—2 - p2m—2q2m—1)
vV
B a’ﬂ _ 01/3/
o owW

Now

O[//B — O[/BI = (k'am_|_1 —|— k/ + 1)((nm_|_1 + ].) am_|_1 + 1)
— (g1 + 1) (kams1 + 1) + k) (amy1 + 1)
= ((nm4r + 1) ag 1 + 1) (K = k)
+ (g1 +2) amy1 (K — k) — g1 > 0,

whence A — By > 0 so that J; and J5 are indeed disjoint.
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It follows now that at least ny ...n,, intervals of length d,, are needed to cover
M. Thus

- log Ns (M
dimpM > limsup Og&—m()
m—oco  —logom,

> lim s log(ny ... 1nm)
im su :
- m_mop (2m + 2)logd + 2log(ay ... am) + 2log(ny ... ny)

Choosing the sequence (ny,) to grow sufficiently fast, the last upper limit is 1 /2
and then dimpM > 1/2. The same argument shows that also dimp(M NV) > 1/2
for all open sets V with M NV # 0. Thus dim, M > 1/2 as required.

For A C R? let
A, ={yeR: (z,y) € A}.

7.5. Theorem. a) There exists M € K(R?) such that {x € R : dim, (M) > 0} is
an analytic non-Borel set.
b) The set E = {K € K([0,1]) : dim, K > 0} is an analytic non-Borel set.

Indeed, E is a complete Zi set: if A is an analytic subset of a Polish space X,
then there is a Borel measurable map h of X into K([0,1]) such that h~*(E) = A.

(Complete sets are discussed in [KL].)

Proof. The results in Sections 3 and 4 show that the sets in question are analytic.
For the claim that they are not Borel sets a) clearly implies b), since x — M, is
Borel measurable. To prove the theorem it suffices to prove E is Z} complete.
To do this we shall make some additional observations to a beautiful technique of
Mazurkiewicz and Sierpinski, [MS].

Let A be an analytic subset of a Polish space X. Let f be a continuous map of
T =N onto A. For z = (a1, as,...) €T, let

o(z) = (a1, as,as,...).

Then ¢ is a continuous map of Z onto itself. Let g = fop:Z — A, which is also
continuous and onto. Moreover

gz} D N(ai,as,...)
whenever x € A and f(ay,as,...) = x. Thus by Lemma 5.1
dim, g~ Hz} >1/2 forz € A.
Let M be the closure of {(g(c),0): 0 € Z}. Then M is a closed subset of X x [0, 1].
If z € A, then M, D g~ '{z}, whence dim, M, > 1/2. If z € [0,1] and y € M,,
then there is a sequence o; € T such that (g(o;),03) — (x,y). If y € Z, then

z = limg(o;) = g(y) € A. Thus for z € [0,1] \ A, M, C Q and so dim, M, = 0.
Hence we have shown that h='(E) = A, where h(z) = M,.
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8. DENSITIES

In this section we shall study the lower density

ANB
dg(A, z) = liminf Pyl (,7)
=0 g(2r)

of packing measures P, for x € X and A C X. We shall always assume that the
gauge function g satisfies the doubling condition

(8.1) g(2r) < kg(r) forr>0
with some k < co. We also denote
d*(A,z) = d4(A,x) when g(r) =r®.
If ACR"® and P4(A) < oo, then
dg(A,z) =1 for P° almost all z € A

according to [ST, Corollary 7.2]. We shall show in Example 8.9 that this is false even
for g(r) = r® in any infinite-dimensional Hilbert space. However, in Theorem 8.3 we
derive the optimal inequalities 275 < d*(A, z) < 1. For this we need a modification
of well-known covering lemmas.

8.2. Lemma. Let 0 <n < 1/2, let B be a collection of closed balls in X such that
sup{d(B) : B € B} < o0,

and suppose that A C X is such that every x € A is a center of some B € B. Then
there exist B(xz;,r;) € B,i=1,2,..., such that the balls B(x;,nr;) are disjoint and

Ac|JB(wi,r).

(3

Proof. For each z € A choose some B(z) = B(z,r(z)) € B. Set
M = sup{r(z) : z € A}.
Let 2n <t < 1 and define
Ai={z € A:tM <r(z) < M}.
Choose a subset By C A; which is maximal with respect to the property:
if z,y € By and = # y, then © ¢ B(y) or y ¢ B(x).

Then Ay C U,cp, B(z) and the balls B(x, nr(:v)), x € By, are disjoint. Next let
Ay = {xEA\ U B(z) : *M < r(x) StM}
.TEBl

and choose a maximal subset By C Ay such that for any z,y € By with = # y,
x ¢ B(y) or y ¢ B(x). It follows that

A Udc |J B
.TEBluBQ

and the balls B(z,nr(z)), € By U By, are disjoint. Continuing in this manner we
find the desired balls.
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8.3. Theorem. Let A C X and P*(A) < co. Then

278 <d’(A,z) <1 for P? almost all x € A.

Proof. The right hand inequality follows with essentially the same proof which was
used in [M, 6.10], or one can consult Cutler [Cu] who proved this for P, with
general gauge functions. To prove the left hand inequality, we may assume that A
is a Borel set by the Borel regularity of P*. Given A > 2 it is enough to show that
d?(A,xz) > X\=* for P* almost all z € A. Let t < A~% and let

Bc{zre A:d°(Ax) <t} = A,

Given 6 > 0 we can apply Lemma 8.2 to find disjoint balls B(x;,7;/A) such that
r; € B, 2r; < (S,

P* (AN B(z;,7;)) <t(2r;)® and

B C [j B(.”Ei,?"i).

1=1
Then
P*(B) <Y _P*(BN B(xi,1;))
=1
<Y (2r)° =tA°D (2ri/N)° <A PS(B).
i=1 i=1

Letting 6 — 0 we have P*(B) < tA\*P*(B) for all B C A, which implies P*(A4;) <
tASPS(Ag). As tA° < 1, we obtain P*(A;) = 0 for all £ < A~*%, and this yields that
d*(A,x) > A\~* for P* almost all z € A as desired.

8.4. Remark. The inequalities
c<dy(A,x) <1 for P® almost allz € A

hold for any g satisfying (8.1) if P,(A) < oco. Here c is a positive constant (not
necessarily optimal) depending on g. This was proved by Cutler in [Cu]. The above
proof also applies.

Next we show that instead of inequalities we have equality H, almost everywhere
in A. Recall that we are assuming (8.1).

8.5. Theorem. If A C X with Py(A) < oo, then

dg(A,z) =1 for "y almost all z € A.

Proof. By the Borel regularity of P, we may assume that A is a Borel set. If our
claim is false there are t < 1 and a Borel set C' C A such that #,(C) > 0 and
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dg(A,x) < t for x € C (recall Remark 8.4). As H, < P, (see [Cu, 2.6], also the
proof of this fact in R for g(r) = r* in [M, 5.12] generalizes without difficulty), we
can use the Radon—Nikodym theorem to find a non-negative Borel function f on C
such that

Hy(B) = /depg

for Borel sets B C C. Since Hy4(C) > 0, there are u > 0 and a Borel set D C C
such that H,(D) > 0 and f > u on D which yields

(8.2) Hy(B) > uPy(B) for B C D.

Let 6 > 0. By the analogue of Theorem 8.3 for g(r) = r°, recall Remark 8.4,
c < dg(D,z) <t for P* almost all z € D. For the upper density with respect to
the Hausdorff measure we have, cf. [Fe, 2.10.18 (3)], also the proof of [M, 6.2] for
g(r) = r® generalizes easily,

(8.3) limsup Hy(D N B(z,7))/g9(2r) <1

r—0

for H, almost all z € X. From (8.2) we see that (8.3) also holds for P, almost all
x € D. Let B C D be a Borel set. By a standard covering theorem, see e.g., [Fe,
2.8.6], we can find z; € B and 0 < r; < /2 such that the balls B; = B(x;,r;) are
disjoint,

B C U B(xi,r;) U U B(z;,5r;) forallnm=1,2,...,
i=1 i=n+1

cg(2r;) < Py(DNB;) <tg(2r;) and
Hqy (D N B(x;, 5ri)) < 2¢(107;).

Thus recalling also (8.1) and (8.2) we have

Pg(B) < zn:'Pg(Dﬂ Bl) + i Pg(DﬂB($¢,5Ti))

1=1 i=n+1
< tZg(?ri) +ut Z Hg(DﬂB(xi,ESm))
=1 i=n+1

<tP5(B)+2k%ut ) g(2r)
i=n+1

< tPys(B) +2k%u~'c™t > Py(DN By).
i=n+1

Here

Y Py(D N B;) < Py(A) < 0.
1=n+1
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Thus letting first n — oo and then 6 — 0, we obtain
Py(B) < tPy(B)
for all Borel sets B C D. This implies
0 < Hy(D) <Py(D) <tPy(D) < o0
which is a contradiction since ¢ < 1.

8.6. Corollary. Let g satisfy the doubling condition. Let A C X with Py(A) < oo.
Then Hgy(A) = Py(A) if and only if

. Hg(AﬂB(x,r))
lim
r—0 g(2r)

=1 for Py almost all x € A.

The proof of Theorem 6.12 of [M] applies without any essential changes when
we have Theorem 8.5 at our disposal.

8.7. Remark. An interesting application of Corollary 8.6 in R” is the following
theorem of Saint Raymond and Tricot. Let A C R™ with 0 < P*(A4) < co. Then
H*(A) = P*(A) if and only if s is an integer and A is P*-rectifiable in the sense
that P? almost all of A can be covered with countably many Lipschitz images of
R?, see [ST] or [M]. Attempts to extend this to more general metric spaces starting

from 8.6 boil down to the following: in which metric spaces X is it true that if
A C X with H*(A) < oo, then

H3 (AN B(x,
lim ( (z T)) =1 for H® almost allz € A
r—0 (21")5

if and only if s is an integer and H?® almost all of A can be covered with countably
many Lipschitz images of R*? Kirchheim proved in [K| that the “if” part is valid
in any metric space. Chlebik has given in [C] a proof which shows that the “only
if” part is valid at least in all infinite-dimensional inner product spaces. Thus
combining these results with Corollary 8.6 the argument to prove Theorem 17.11 in
[M] shows that the theorem of Saint-Raymond and Tricot is valid in Hilbert spaces.

8.8. Theorem. Let X be a Hilbert space, s >0 and A C X with 0 < P*(A) < oo.
Then H?(A) = P*(A) if and only if s is an integer and A is P*-rectifiable.

Now we construct an example in an infinite-dimensional space to show that the
lower bound in Theorem 8.3 is the best possible.

8.9. Example. Let X be an infinite-dimensional Hilbert space and s > 0. Then
there is a compact set K C X such that 0 < P*(K) < oo and

d°(K,x) <27° forze K.

Proof. Let eq,es,... be an orthonormal basis of X. Let (mg) be a sequence of
positive integers such that m; > (1 +/2)*

(8.4) my, /oo and Zmlzl = 00.
k=1



MEASURE AND DIMENSION FUNCTIONS: MEASURABILITY AND DENSITIES 19
Define the positive numbers A by
(8.5) mEAy, = A\_y  with A\g = 1.
Then A\ /Ag—1 — 0. Fori=1,...,my set
z(i) = A\e; and  B(i) = Uz, A\ /V2)

where U(z,r) denotes the open ball with center z and radius r. Suppose then that
for some k € N the points z(i1, ..., i) have been defined. We put

.I'(il, .. .,ik,i) = :U(il, .. .,ik) + Agg1€i, t=1,...,Mk41.

Set,

Blit,... i) = B(x(i1,. .., i), \/V2).

Let Q@ = [[2,{1,...,m;} have the product topology. The system {B(i1,...,i) :
1 <i; <mj,j <k, keN} of open balls is a Cantor scheme:

(8.6)
for each k the balls B(iq,...,ix), 1 <i; <mj, 1 <j <k, are pairwise disjoint.
(8.7) for each k and 1 <7 < mygyq,

B(ir, - ig,4) C Blir, ..., i1).

To verify these, recall that my > (1 + \/5)3 Moreover,

(8.8) d(B(i1,- - i5,1)) = (V2 App1)*
and
mE41
(8 9) Z d(B(Zla '7ik7i))s - d(B(Zlv 7“6))8
=1
Define - -
K=() U Bliv.....it) = () U Blir,-.-in)-
k:l’il...’ik k=1 ’Ll’Lk
Then
(8.10) KN B(i1, ... i) C B(x(it, ..., ik), 2Ak41).

Let g be the coding map from the coding space 2 onto K. Thus,

{9(0)} = (] B(olk)
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for o = (i1,142,...) € Q where olk = (i1,...,i;). By properties (8.6) and (8.7), ¢
is a homeomorphism of the Cantor space €2 onto K and g maps the cylinder set
[i1,...,ix] onto K N B(i1,...,i;). Define 1 on the cylinder sets in Q by

i([ie, ... k) = (V2 A)°.

By properties (8.8) and (8.9), p satisfies Kolmogorov’s consistency conditions. Let
it also denote the extension of i to a Borel measure on €. Let p be the image
measure on K of g via the coding map g. Thus

(8.11) (K N B(i1, ... i) = (V2 M) = d(B(i,...,i1))".

We use pu to show that P*(K) > 0. Let A C K be a Borel set and § > 0. Then
there is a disjoint subfamily {B; = U(zj,r;)} of the family {B(i1,... i)} such
that d(B;) <0, BjNA# 0, say z; € B;N A, and A C |J; B;. In fact, by choosing
for every x € B the largest B = B(iy,..., i) such that z € B and d(B) < 6, we
find the sequence (B;). Using (7) and the fact that Agy1/Ax — 0 we see that for
some 1% and #; with r; < (1+0(0)) r, #; € K we have Bj = B(z;,r}) C B;. Thus
by (8.11),

pA) < 3 p(By) = 3 d(B))" < (1+0(9)) 3 d(B))”
< (1+o0(8)) P5(A).
Hence p(A) < P*(A) for all Borel sets A C K, which gives
0 < u(K) < P*(K)

as desired.
We now show that P*(K) < oo and prove the lower density estimate. Both of
these will follow from

(8.12) PH(KNB(o|t) < (V2X)* foroeQ, =1,2,....

(In fact, it is easy to show that also the converse inequality in (8.12) holds.) Let
ceQ,£>1,0<0d < Agy1 and let Dq,..., D, be disjoint closed balls centered at
K N B(o|f) with

(8.13) dj = d(Dj) < 0.
We want to show that

(8.14) D a5 < (1+0(9) (V2 A)*

which clearly yields (8.12). For each j let k; be the unique integer such that

(8.15) 2V2 g, 41 < dj < 2V2 )y,
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and let Bj = B(iy,...,i,) be such that o|k; = (i1,...,i;) and K N B; N D; # 0.
Since Ag+1/Ax — 0 as k — oo, we may assume, in order to prove (8.14), that

2\/5)%]-—{—1 + 4)\kj+2 < dj < 2\/5)\kj - 4)\kj+1-

This has the effect that K N B; C D;, whence the balls B; are disjoint. It follows
then from (8.6)—(8.9) that

(8.16) S d(B))* < d(B(olf)’ = (V2A)".
Set

I={j:dj <V2Ay +4\,41} and
J={j:dj > V2, + 4,41}

Then by (8.16)

(8.17) > ds <> (V2 Ak, + 4 4)°
< (14 0(9) Do(VEM,)* = (1+0(6) D d(By)’

< (14 0(6)) (V2 o).

For each k every ball B(iy,...,i;—1) can contain at most one D; with k; = k
and j € J because of the disjointness. Thus there are at most mq, ..., mg_1 indices
j € J with k; = k. Hence by (8.15) and (8.5)

Y di<my . me1(2V20)° = (2V2)° /my..

jedkj=k

So by (8.15) and (8.4),

(15) dods<(2v2) Y mipt—o.

jeJ Ak1<9

Thus (8.17) and (8.18) yield (8.14) and hence also (8.12).
Let 0 € Q and x = g(0) € K. By the construction and (8.12),

—S
Y

po PENB@ V2 =) _ o P(K 0 B(o]k)
oo (2(V2h — A1)’ koo (22 — hig))

which completes the proof since P* < P?.
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