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REDISTRIBUTION OF VELOCITY:
COLLISION TRANSFORMATIONS

R. DANIEL MAULDIN AND 8. C. WILLIAMS

Suppose we have a large number of particles of equal mass with an initial dis-
tribution of velocity. We assume that these particles undergo triple collisions at
random and that the total velocity of each triple is redistributed according to some
given redistribution law. We show that for each given redistribution law there is an
attractive invariant velocity distribution. There is a distribution of velocity such
that for any nontrivial initial distribution with finite moments of all orders, the
iterates converge weakly to this stable distribution.

This work is a natural generalizations of Ulam’s redistribution of energy problem
[2]. In fact, Ulam had speculated that such theorem may be true. In developing
our approach to the problem, we benefitted from computer studies which strongly
indicated that the result hold in some cases, We thank Tony Warnock of Cray
Research for conducting these studies. The formal setting is developed in sections
1 and 2 and the Main Theorem {Theorem 2.1} is stated. Moment recursion formulas
and their convergence are developed in sections 3, 4, and 5. In section 6, the proof of
Theorem 2.1 is completed and a partial converse (Theorem 6.1) is proven. Finally,
in section 7, the uniform redistribution law is shown to yield a normal velocity
distribution (Theorem 7.3).

1. THE SETTING

Consider three particles of equal mass which form a complex, and the velocities
of the particles are redistributed with the constraints that the total energy and
momentum are conserved. Thus, if vi, vg, and vs are the initial velocity vectors
in R® of the particles, then the new velocities v{, vh,and v§ satisfy:

(1.1) Sy := vy + Vo + vy = vh 4 vh + v =8,
and
(12)  Sp o= Vil + lvall® + llvall® = Ivill? + vall” + lIva]1* == S5

We will consider redistribution of energy and velocity in the center of mass frame
of reference. Let A; be the fraction of the total kinetic energy that the i*® particle
has after collision and let w; be the direction vector of the velocity of the i*h particle
after collision. For convenience, we assume all particles have mass 1. Thus,

(1.3) 0< A =KifK

where K is the kinetic energy measured in the center of mass frame of reference,
K = S5 ~||1S1?/3. So,

(1.4} AL+ t+A3=1

Since the total velocity in the center of mass system is zero, we have

(1.5) \/)qwl + \/.sz + \/X;W3 =0.
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We derive another form of the constraints on the A's which are more suitable for
our purposes. From (1.5), we get

(1.6) , M+ 24/ A0 A (Wi, W) + Do = Mg

Using (1.4), we have

(L7 11— 2(M + A2)| < 2v/ A0k,

After some algebra,

(1.8) 402 —4h + 40— Ao+ 1+ 4Me S0

From this inequality, we derive

(1.9) (1/3)(18XF — 18X1 + 1823 —~ 18X, + 6 + 180 Ag) < 1/2.
Now, {1.9) can be expressed as

(1.10)

(1/3)(9A2 ~ 6Ap + 92 — 622 +9(2 — Xy — A2)® —6(1 — s —~ Ag) + 3) < 1/2.
Using the identity (1.4}, we get the inequality
(1.11) (M —1/3)% + (A2 = 1/3)2 4+ (03 — 1/3)2 < 1/6.

Thus, conditions (1.4) and {1.11) imply that the paint [A1, Az, Ag] must lie on the
circular disk, D, of radius %, center [%,%,3] which lies in the plane given by

equation (1.4). The mutually orthogonal vectors [%,—%,~11 and [0, %,w%]
both have length —%, and are both orthogonal to the normal, [1,1, 1], of equation

(1.4). Thus for each x € D\{[%, }, 1]}, there exists a unique r € (0, 1] and a unique
8 € [0, 27), so that

SR IR LS U L | PRY (S

Conversely, if {Az, A2, As] lies on the disk D, then tracing backwards from (1.11)
(using (1.4) when necessary) it is easy to see that [A1, Ae, As] also satisfies (1.7).
Letting wy and wy denote unit vectors in R? so that 2v/A1 Az (wy,wp) = 1 —
2 (M1 + Az), the vector [A, Az, As) must satisfy H\/X{ wy + \/Evm“g = Ag. Letting
—wy denote the direction vector for /AL w1 + 1/ daws, we have VA w: + v Agwy =
—+/Az3wg. Thus all points in this disk, D, are realizable as values of A;, Az and A3
which satisfy (1.4) and (1.5) for some set of unit vectors.

A redistribution of energy law is a probability measure g supported on the
disk D which is symmetric, or invariant under permutations of the coordinates.
This last condition signifies that the particles are indistinguishable. The direction
vectors for the velocity of the particles are chosen, independent of [, as follows.
First, wy is chosen from the unit sphere according to the uniform distribution.
Next, a unit vector z which is perpendicular to wy is chosen according to the
uniform distribution on the great circle which is the intersection of the unit sphere
and the plane normal to wy. Thus, w; and z determine a plane which contains wo
and wa. Finally, wy and w; are determined up to the reflection y — —y in this
plane from equations (1.4), (1.5), and the equality ||wa|| = |lws|| = 1.

We will study this process under iteration. We note that it is immaterial whether
we chose w; at random first. Thus, we have not viclated the indistinguishability
of the particles. Also, we note that there are 9 velocity component variables which
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have 5 degrees of freedom in view of the conservation laws. In our scheme, we have
2 degrees of freedom in choosing the A's, 2 degrees in choosing w and one degree
in choosing =z, a total of five.

2. Tur REDISTRIBUTION OPERATOR

We now formalize the redistribution operator, T3. Let v be a probability measure
on R® and assume we have a vast number of particles with velocity distribution
v. We imagine that these particles are partitioned into triples at random. For
each triple the velocity is redistributed as described in section one, which yields a
new velocity distribution, Ti3(). So, if X;, Xy, and X3 are independent random
velocity vectors each distributed as v, then Ti(v) will be the distribution of X/,
since X4, X4, X% all have the same distribution.

From this point on, we will suppress the subscript 2 in T;. Thus, T'() is the
distribution of

%l"—I—vK)\u,

where (1) u has the uniform distribution, 7z, on the unit sphere, (2) A is distributed
as u = fiop~* on [0,2/3], where ji is the redistribution law on the disk D) and p is
the projection map of R? onto the first coordinate, and, (3) K is the kinetic energy
in the center of mass frame of reference; i.e., K = S3 — ||S:1]|*/3. Therefore, T'(»)
is determined by the functional equation: S

@) Tu(f) = [ | Fdrv() = R

2

3
E’%

/- j =NV o

fum}

where the integral is over [0, 2] x §? x R? x R? x R®.
We will abbreviate mtegrais like this last one unless the domain of integration
or integrators are not clear. Thus, (2.1) could be written as

(Tv){(f) = / ‘ 'ff (%}" + VA Sa — L%—Eu) dvdvdvdmadp.

We note a few basic properties of the non-linear operator T : Prob(R%) —
Prob(R?). First, T' is weakly continuous and commutes with the translation oper-
ators:

(2.2) _ T(w(-) + x0) = Tv( + x0),

for any x¢ € R?®. This follows. from using (2.1) and the fact that the function

/8y — {|S1]12/3 is invariant under translation in R®. The operator T' preserves
energy:

(2.3) v(lI%)1?) = Tr(lx|*)

L Eou | de(x) ) dy(xe)dv(x3 )dme (w)du(A),

Ao

3
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and momentum:

(2.4) vix) = Tw(x).
Equations (2.3) and (2.4) can be verified by using (2.1) and the facts that
(25) [ adato= [ ) =13
D 0273 .
and
(2.6) f u;{u)dmy(u) =0,
52

where u; is the i*? coordinate of u.

In order to see that (2.5) holds, we will use Choquet’s representation theorem
[3]. We will also use this representation later on. Qur measure { is simply a
probability measure on the disk [ which is invariant under the symmetries of the
circumscribing triangle with vertices e; = {1,0,0], ez = [0,1,0], and e3 = [0,0,1].
Therefore, i can be expressed uniquely as an integral over the set of all extreme
points of C, the compact convex set of all probability measures which are invariant
under these symmetries. Thus, there is a unique probability measure P on ext(C)
such that

@7 ﬁm:fﬁmﬁﬂmwwwwy

Now, an extreme point in this case is simply a probability measure on I which is
ergodic under the action of the symmetry group. It is easy to see that 7 is ergodic
if and only if there is a point z of D such that

1 5
(2.8) T = G Z ¢, (2)»
i=0

where &y, &1, ..., &5 are the symmetries and J, is point mass at z.
Of course, for each such T,

(2.9) fD grdr(x) = 1/3.

Since f[o,z /3] [p gdie = [, g opdfi, (2.5) follows from (2.9).

Also, since the function \/W/“?; is positive homogeneous, T° commutes
with positive scaling:
(2.10) T(v(e)) = Tvic).

Facts concerning weak convergence of probability measures in metric spaces such

as R?® can be found in [1]. Our main theorem concerns the properties of the fixed
point and its domain of attraction.

Theorem 2.1 {(Main). For each symmetric probability measure fi, on I}, there ex-
ists a unique radially symmetric probability measure fi on R® with total energy one
and moments of all orders so that i = Ty (i), Further, if v is any probability
measure on R® with finite moments of all orders and v is not point mass, then

= v(x)

(v (11?) = 1o o)

(2.11) {T" (v)}ory converges weakly to i
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Moreover, the invarient measure [ is determined totally‘ by the marginal of i with
respect to the projection onio the z-axis.

Let us note that each point mass measure is a fixed point of T'. Also, if v is not
concentrated at F(x) = v{x) = m, then
(2.12) o = B (|l x— B(x) ?) = v (I x I*) = | #(x) |I*> 0.

In this case, T(A) = v(0 A+ m), is a probability measure with momentum zero and
energy one. If {T7(7)}52., converges weakly to fi, then by the commutmty proper-
ties of T, TP7((-—m) /o)) = T™(v}would converge weakly to A((-—v(x)}/(v{||x{i*)—-
[{v(x)“z)i/ 2, Therefore, to prove the theorem, we only need to prove (2.11) under
the conditions that v{x) = 0 and »{|[x||*) = 1.

Qur strategy is to first obtain a recursion formula for the moments of T™(v).
Second, to show convergence to these moments and finally, to show that the lim-
its are the moments of a unique element of Prob(R®). This is the same strategy
employed in [2]. ‘

3. THE MOMENT RECURSION FORMULAS.

Temporarily fix a probability measure v on R3 with v(x) = 0, v(||x[{*) = 1. Let
Z.be the set of all non-negative integers. For each multi-index k = [k1, kg, k3] €
Zi‘_, consider the mixed moment of order k of the nth iterate of ¥ under T

3
(3.1) Ten K :f xFdT" v (x) :f Ha:f“dT"’u(x)
R3 RS gl

We will first find a formula relating the moments of the {(n + 1)* iterate to those
of the nth. From (2.1), we have

- ] x5dT (T () (x))

o[- (oY

f ]ng“mf“(sz ”81“2)1/2%} AT™()..du(N)

0 =[S (5150 4 (3 ororaen

Since my is the uniform distribution on the unit sphere,

(3.3) fsz wWdme(u) =0,

unless j = [f1, j2, ds] is even (each j; is even). Let [-] denote the greatest integer
function. Thus,

1/2 k
) u:| dT™ ) dT™ ) dT™ ) dmy () dpih)

Ma41,k =

(3.4) f ]i] rkfjm (;“J) N (52 _ ﬂ%ﬁ)jugi (%ﬁ)k{—% AT (). duN).
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Now, the weight of k, wt(k) = ky + ko + ks. Noting that each additive term,
associated with the upper summand k;, is a polynomial in X3, Xa, and x5 of degree
k; and with coefficients only a function of A and u, the product must be a polynomial
of degree wt(k) in the variables x1, X2, and x3, with coefficients a function of A
and u. Thus, integrating, we obtain an equation

(3.5) Mpt+lk = Z Bsy 8,85 (K) s 8, M 52 Mm 55
$1,8%,83 €Z3+ wt(}: 8; )=wi(k)

where the coefficients asl,sz,gs (k) do not depend on v, but only on the redistribution
law fi. Also, if 7 is a permutation of {1,2, 3}, then

(36) g 87,52 (k) = asr{l))s'r(2} Sr{3) {k)
There is only one multi-index k with wt(k) = 0, and
(37) My, [0,0,0] = 1, n=1012..

The canonical unit vectors ey, es, and es are the only multi-indices of weight
one. It is easy to check that

(3.8) Mpe =0,n=0,1,2..
Now, according to {3.5)

Ik} wt({s)=wi(k)

(39) Map1,k = Z Qs 59,85 {k}mn,s1mn,52mn,53 4+ 3 ( Z as,{),ﬂ(k)mn,s) s

where the first sum is over the index set I'{k) = {(81,82,83) € Zi_ : zgﬂl wi(s;) =
wt(k},and Vi, wi(s;) < wi(k)}.
Define

’Yn(k) = Z s, 52,55 (k)mn,slmn,52mn,93
Ik)

and, for wi(k) = wi(s}),
Ak,s = as_{),o(k}.
* Thus, (3.9) becomes
(3.10) Mtk = V(K +3 Y AxgMas.
wi(s)=wi(k)

Or, deﬁning yn(p) = {mn,s}wt(s)zp yforn = 0,1,2,..5p = 0,1,2,..., ’}'n(p) =
{¥n(K) }utiry=p and A(p) = {Ay s : wi{k) = wi(s) = p}, we have

(3.11) Un+1 = Yn + 3AUn,

for n = 0,1,2,.... We have suppressed the argument p in (3.11) and juxtaposition
signifies matrix multiplication.

Note that it follows from (3.8) that ¥,(2) = 0.

We will need to know the entries of A. In order to compute these, note that for
each k with weight p,

61 Y Awnt= [ [ [E+VAVEKI] dratudaty.

wi{h)=p
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4. CONVERGENGCE OF MOMENTS OF WEIGHT 2.

From equation (3.12), we find

px,y)y = Y (12() A nx"y"

wt{k}=wi(h)=2

ff 3 () k[x (%:\leii)1/2urda—r2(u)du{>\} |

wi{k =2

(4.) -// K( oy 2 ) y>rdﬁr2(u>du(/\>.

But, since u is uniformly distributed on §2,

2
w2 s =[ [ [<"’3”> wi\@nxnnyuul} dra (@)du().

Since the integral of u, is zero,

x
@y eton =T 2t [ auey [ dana
Of course,
2n
(44) f ufdmy(u = [ / cos? # sin® ¢ de d9~ -
Thus, from (2.5) we get
‘ — (x,y)2 2 212
(4.5) P, y) = =+ gy I
The definition of ¢ and (4.5) yield the following matrix for A = A (2):
s 2 2 0 0 0
A A SO
¥ ¥ ¥
7 % oz 0 9 0
0 0 0 & 0 0O
0 0 0 0 £ o0
0 00 0 0 0 %

where the indices of the rows listed from top to bottom and the columns from left
o right is the following sequence: [2,0,0],[0,2,0],10,0,2],[1,1,0],{1,0,1],[0,1,1].

Formula (3.8) imphes v,(2) =0, for n = 1,2,3,.... Thus,
(4.6) ¥n+1(2) = (3A)"* (y0).

Inspection of the block matrix 3A. shows that the upper 323 block matrix has largest
eigenvalue 1 and corresponding eigenvector {1,1, 1] and eigenvalue 1/3 of multiplic-
ity 2. The lower 3z3diagonal matrix of 3A has eigenvalue 1/3 of multiplicity 3. Let

e=1/v3{1,1,1,0,0,0]. Then by this analysis
(4.7) lim 3A" (yo) = (yo,€)e.
fde ol
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Since (yo.e) = v(||x]|*}/V3, we have

(4.8) i i ze; 1= Mge, =

and, if wi(k) = 2, and k has an odd component, then limy_, o0 mp 1 1= 1 = 0

5. CONVERGENCE OF HigHER ORDER MIXED MOMENTS

Define a stochastic process {X,}52, on R? by letting {\,}5., be a sequence
of independent random variables all distributed as A, {u,}52, be a sequence of
independent random vectors all distributed as u so that {A,,u,}32, forms an
independent family and set

X 2A
(51) Xn.}.} = '—gﬁ' -+ n+1

Let Ex, be the expectation operator where the process starts with Xo = X, a.8.
Also, let W (p) = {s € Z3 : wt(s) = p}.

Xnlonss, n=1,2,3,..

Lemma 5.1. Let xo € R?, p= wi(k), and A = A(p). Then

(5.2) By, (X%) = (A" @) (k), n =0, 1,2,...
where

W
(5.3) @ [XQ]SGW{p)

Clearly (5.2) is true if n = 0. If (5.2) holds for n, we have

X 22
(—3’1 +y 5 ﬁxnnunﬂ)}

k
X 2
(_3_n+ ﬂ+1! n”un-ﬂ) ]}-n}

where Fy, is the o-algebra generated by {A;, u;|j <n}.
According to (3.12),

B (Xn-H {Z Aks

eW{p)

Exo (X§+l) = Exo

¥

m B {Exo

and by the induction hypothesis

Z Ay [A”xgv(p)] {s).

sEW (p}

By (Xs,) = (A1) (1)

Proof. Lemma 5.2. RY® = gpan{x"®)x ¢ R®} .= L.
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Let v = {vk}kew(p) be such that {v,x" )} = 0, for every x € R®. Then
Ykew(p) vix*® is a polynomial which is identically 0. Therefore, all of its coefficients
are zero. So, v is the zero vector. This means L = RV (") W

In order to study the behavior of the iterates of 3A(p) for p > 2, let us make the
following notations. Define

2a
Hia):=E [ %4—\/—%\/&1

(5.4) =E (g+ ‘é_ ui s A) .

‘We have ‘

(5.5) H(1) = %

Also, since 0 < A < &, H(a) is decreasing. Thus,

{5.6) . H(w) < ! yifl<an

Proof. Lemma 5.3. Let C, be the cardmalzty of W{p). Then
- (57) 13A)" =" Pl < v/ Colixoll” (BH(p/2)".

From equation (5.2), we have

(5.8) A" (<P (10)] < B, (IXE]) < By (1Xal).

Setting o = p/2,
EXG (Hxﬂiiza) = Exo[(xns Xn)a}

Xp-al® [8Mn 2
- B, KMQJM R Kt (i, Xn) + gAnisxnnlaPﬂ
o || Am \/’\ /\n<um Xn-1 >+ - An
ol ( Von e

Expanding the last expression in terms of conditional expectations, we have

Bro {uxnmlllhEon \/ﬁ Van < gxnln>+ "\”) V””'

Now, u,, is uniformly distributed and independent of X, _;; so we can replace
X1/ Xn-1ll by e;. Also, the function (— —\/:\/ n (up, 1) + 2A ) is inde-
pendent of F,..; and has the same expected value as ( \/7 Vi{u,ep) ) ,

which equals

A ” . Thus,

(5'9) Exo (Hxﬂﬂ%‘) = Ex, [”Xnmlilza] H(C")
By recursion on (5.9), we have

(5.10) Exo (IXnl*) = lixol* (H (o))"
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Therefore, from (5.8), (5.10) and the fact that if |2(k)| < L, for k € W{p), then
llz|| € +/CplL, we have

13A) <y P < /Colixoll? (BH(p/2))".

From Lemmas 5.2 and 5.3, we obtain
Proof. Lemma 5.4. There is a constant D = D, such that if v € RV

(5.11) 1(3A)" ()l < DIIviF (3H (p/2))*.

We investigate the convergence properties of y,. Assume p > 2 and for each
g < P, limn—eo ¥o(g) = ¥(g). In the previous sections we have demonstrated the
convergence of ¥,(0), ¥ (1), and y.(2). Since p > 2, 3H(p/2) < 1; and, it follows
from Lemma 5.4 that the spectral radius of 3A. < 3H(p/2) < 1. This means that
the operator (I — 3A)™! exists and is equal to £32,(3A)7. Next, a check of the
definition of v;{(p) shows that there is a continuous function f, such that for all 7,

75(p) = fplyilah ¢ <p).
So, by our assumption
(5.12) Jim v (p) = folyla) g < p) == ¥{p}).
We claim now that
: — (T -1
(5.13) Jim iy (p) = (I - 3A)7 (7).
By recursion on (3.11), we have
(514) Vol = Vr + 3A -1 + (3A)2’Yn—2 + {3A)ﬂ"}’1 -+ (3A}”+1ya.
We have

(515)  llynes = =3A) T N < e = Al + [1BA Y2 =+ o

(516) +HBAY (0~ DI+ A 50 - )
+1 Y GAYOl

For each n, o

G e - =38 O < Dy Y en (3012,

where -

| yo vl ifj=n+1

- =il ij <,
Cn,j=
Iy fj>n+1

Since the ¢, ;s are uniformly bounded and limy;c0 €n,; = 0, we have

(5.18) lm ynes = (I -38)7H().
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6. EXISTENCE AND UNIQUENESS OF A STABLE DISTRIBUTION.

In the preceding two sections we showed that there are numbers my, k € Z3
such that if  is an initial distribution of velocity with finite moments of all orders,
then

(61) lim My k = M.
Tered 00

It is easy to see that {T™(v)}2; is weakly conditionally compact. Therefore,
there is some probability measure fi on R? such that

(6.2) mzLﬂW%

fork e Z3.
We will show that

00 3 ‘ —1/2p
(6.3) > ( mzpei) = 400,
i

p=1 \i=

It follows from (6.3) that there is only one probability measure i with moments
mik. See [4]. It also follows that », Tw, T2y, . . . converges weakly to 4. Finally,
since T commutes with rotations, j is invariant under rotations. So, [ is radially
symmetric.

In order to prove (6.3), we will show that there are positive constants L and C
that for all p,

(6.4) by = p{|x||") < CLPp,
forp=0,1,2,...
Since 3750, Mape; < bap, for p=10,1,2,..., (6.3) follows from (6.4).

In order to simplify the presentation of the argument for inequality 6.4, we will
suppress the measures with respect to which the integrands are being evaluated.

We have
b = alxiP) = [ . [

Let 7 = sign ({S1,up}). So,

s f-]

Because 7 simply flips ug to the hemisphere with pole 8y if (S1, ue) < 0, it follows
that if we replace 1/Ss — ||S1[|?/3 by a larger function, then the integral is larger.
Now,

P
S sS4
El + \[)\‘ Sz - "---—-"” ;” L1 5 .

P
2
—-—831 + 7V 8y — -——-”S§” uy

_ s

(6.5) $2 = 15

< 30l + el + sl
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So,
w s [ 1% f (sl + el + sl
NI A o FENEI |
< ][(g 3‘31'+T\/§nxinua )

Thus, setting u; = x;/||x;||, we have

bs [ ] 2 (f)lill ’—§i+\/§nxﬁ-nm ’
(6.6) f f 5 ()1—1 [Hml!j‘ %§+r\/§§uo ”}

wi(f)=p
The biggest T«‘/ can be is 2/3 and ug is independent w;. So, almost surely

|8 + 74/ %2 uo]| < 1. We replace this function by 1 in (6.6) except when j = pe;.
Thus,

onns [ 5

wi(j}=p

( ) H fl 17 + Z (szllp ]1 -}—Tzu()” ~1 xil!")]

where 7 = sign < u;, ug >. Or,
68 by 5 (P)bnbnbs +f3||xnv B P
r = j f1Yiz s i Vg
Consider the middle term of (6.8). Let 7 = sign < e;,1p >. We have

wi(f)=p
P
(6.9) < 3 (j)bjlbhbja

4
~ 3b,,

wi(j=p
"
+ 3b,E E+T “ 22 ol 3ty
Or, setting B, = Elle1/3 + 7%/ 2 ug|l?,
P
(6.10) 4=-3E)b, < > (j)bjlbj,,bja.

wE(j)=p

Again, |5 + 774/ 33)-‘u01| < 1 almost surely. Thus, limp.,co Bp = 0. Fix pg such
that if p > po, then 3E, < 1. Define {By}5% by By = by, if p < po. and if p = po,
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then by recursion,
(6.11) By = ( 1 )
. PR TR
R P
J#pe;

Now, it follows by induction that b; < By, p=0,1,2,- .
Consider the formal sum

p
(j) szszBja'

B(t) = i %t’”

p=0
po—1 o
R Br Bpt?
(6.12) =Y =+ > -
p= P=po
We have
po—1 o0 . . .
B t* B. 9 B. tiz B. 438
(6.13) (4—3Ep)8(8) = (4— 3Ey,) > o+ 3> ;i, ;2! ;Z :
p=0 p=po R '
wt(j)=p
Therefore,
(6.14) (4 = 3E,,)3(t) - 2°(t) = p(t),
where p(t) i$ a polynomial. Set
(6.15) g(2) = (4 — 3B,z — 22
So,
(6.16) g(2(t)) = p(t).

Now, ¢'(1) = 1 — 3E,, > 0. Thus, g~ is analytic in a neighborhood of g(1) = p(0).
So, ®(#) = g~ (p(t)) is analytic in a neighborhood of 0. Since the coefficients of the
power series expansion of @ about 0 are B, /p!, there is a constant M such that

B i/p
(6.17) iim [—f} =M < 0.
p-roo | pl
Therefore, there is a constant C' such that for all p,
B, < C(M + 1)"p!

which establishes {6.4}.Thus we have established Theorem 2.1 except for the last

sentence. But that follows from the fact the moment recursion formulas are only

functions of the moments of the marginals. See Remark 7.1 and Corollary 7.4
Interestingly enough, there is a partial converse to the Theorem 2.1.

Theorem 6.1, If ji is the unique fived point of both Ty, and Ty, iff tn = po (i.e.,
ity ond fiz hove equal marginals.).

That the invariant measure It is enough to show that knowing the moments of
fi and that & = T;({) uniquely determines the moments of p, the marginal of g,
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since y is defined on the bounded interval [0, £]. To this end note that (2.1) implies
 (Ixl*") equals
5,

]f/[ 3 2+2‘/X<§?%’“>\/T§“§+ 3 T (S H‘%‘]E>rdﬂ3d7rgdp()\),

which equals upon applying an obvious multinomial expansion

= (DT () (- 155) s

In the last sum, if j is odd, then the term (%,u)J1 forces the term to be zero,
so only whole powers of A appear in the sum. Further, there is only one term

n
which has A", namely i = j == 0;k = n, and the coefficient [ (.5’2 - iligﬁﬁ) dp® is
positive. Thus, the moment [ A%du{)) can be written as the fraction

it jthan

B (7) = 5 () £ TS (5w (55 = 1598) ™ e aptamadu(y
J (8~ B) " aps ’

where the sum is over {{(¢,7,. k) : k # n and j even}.M

7. THE NORMAL DISTRIBUTION

In this section we show that there is a redistribution of energy law, H, such
that the normal distribution on R?, N(O, I3) is its attractive invariant distribution
of velocity. In order to demonstrate this, we fix the following notation. Let I,
denote the n x n identity matrix, $™ the unit sphere in R**!, and =, the uniform
distribution on S™. Let A be the 3 x 9 matrix I3, I3, [3]. Let O be an isometry of
R given by the orthogonal matrix

B
‘ VB
For example, if U, V, and W are orthogonal 3 x 3 matrices each with last row

(1/V3, 1/V3, 1/V3), then

TR 0 wp O 0 ws 0O 0
[ 531 0 0 Uag 0 0 tng 0 il
0 wy O 0 wge 0 0 wz O
0 Va1 0 0 Ugz 0 0 U3 0
(7.2) 0 0 ws 0 0 wn 06 0 wps
0 0 wx; 0 0 wep 0 0 wy
1 1 1
i 90 005 00
cow Y v w YWY
i 6 0 7 6 0 73 0 0 7 ]

is such a matrix Q.
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We will employ the three 3 x 9 matrices

(7.3) My = {I5,0,0]
M2 = {(}1 13:8]
M =[0,0,1].

Let O be an orthogonal 9 x 9 matrix of the form of (71} Let ¢y be the map from
R into R3 given by @ (y) = (Ai)i_,, where

2
(7.4) &;”Mﬁﬂﬂ i=1,2,3
for y € R®, and
T
Y2
_|y .-
V*O“[o}‘“ Yo
0
0
0

Proof. Lemma 7.1. For each O of the form of (7.1), vo maps S* onto the disk
D.

Let ¢y,..., cg be the column vectors of B. We have

(cl}Y>
(7.5) | o7 { p ] =]

(CQ? y>
So,

3 3 2
(7.6) Sa=Y |m0" g ]
fe=l gzl
8
= Z (c'ia y>2 -

But, for each 4, (¢, ¥) = (ki,y + 0), where k; is the i** column of O. Thus,(1.4)

3
S a=lly*0j?=1.
=1

By the orthogonality of the rows of O, we have:
cit+eg+er =0
{7.7) cz+ey+eg=0
cg+cg+co=0.
Also, from (7.5),

<(31 4+ €4 +€7,y)
(7.8)  (My+ Mz + M3)0T [ﬂ = (1/V3) { {eg + €5 + cs, ¥) } =0,

{c3 -+ cg + o, ¥)
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For each i, set w; = ﬁMiOT [ ?}r }, if A; £ 0 and w; = 0 if A\, = 0. We have (1.5}

Vaw + vy + 1V Agws = 0,

Thus according to the results of section 1, po maps S° into D. It can be checked
that po actually maps S° onto D.

For each O of the form of {7.1), let jip be the probability measure on D defined
by

fio(E) = m5(i05 " (B)).

Proof. Lemuma 7.2, If O is of the form of (7.1}, then fo is uniform measure on
D.

We begin by showing that fip, = o, for any two matrices Oy, 02 of form of

B
{7.1). First note for any orthogonal matrix O = | ;
- 74

BBY  LBAT
L=00T=| | ;g V3
. #AB I3
Thus
(7.9) BBT = I, ABT = 0, and BAT = 0.
; BB 4.BAT
Let O; = iB‘ , for i = 1,2. Then, 0,0 = bl VR s
iy 2 1 ABT
V3 7HAD, I
B;Bf o I : T
0 I, which is an orthogonal 9 x 9 matrix. And so By Bj is an orthogonal
6 % 6 matrix. Thus 0; 0% [ g } has the same distribution as { g } for uniform y.

Easily, o, = fio,.
Next we show [io is invariant under the rotation group of the disk D. Let O be
chosen to be the matrix

2 1 1
P00 - 00— 00
o 0 0o -2 o o I 0o o0
2 1 1

0 2 o o % 0 0 g 0

. o 0o 0o o -% o o L o
. 2 L _L
0 0 W3 o0 0 - 0 0 %

00 0 0 0 =g 0 0

0 0 0 0 g 00

b 00 s 00 gy O

0o 0 L o 0 X o 0 L |
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For 0 < v1,72,7vs < § with E«?zz cos?ry; =1 and 0 < 8;,0,,8; < 27, the vector

cosy; cosfy
Cos ¥y 8in 8y
CO8 Y2 COSFg
Cos Yo sin by
€08 73 o83
CO8 vz 8in f

(7.11) y =

represents an arbitrary vector of 5%, Defining A;, Ag, Az by (7.4}, using double angle
formulas

3
1 1
; cos® «; cos? §; = 5+3 ; cos? y; cos 26,

and similarly

i\

3 3
1 1 1 . e
= e -G—Z cos® y; cos 26; + \/520052%51112@
4=1 feel
11 1<
o = E_Ez oszqficoszﬁiw%Zwsg%sin%a-
f

Thus the representation of [\, Az, As] of the form of display (1.12) is

3
(7.12) reos = Z cos® y; cos 26;

=1

3
rsinf = Z cos? ~; sin 28;.

gu]

_ . , cosYY —sing .
Multiplying (7.12) by the rotation matrix [ sing cose }we obtain
3
(7.13) 7 cos(f — o) e= Z cos® y; cos(20; — )
Pt
rain(f ~ ) = Z cos® ry; sin(26; — 1).
Tl

Since given vy, 2, and 3, the my-conditional distribution of the #}s are independent
uniforms on [0, 27), it follows that (7.13) has the same distribution as (7.12). Thus,
fto is rotation invariant.

Next the distribution of the variable ‘rcosé’ of the (1.12) representation will
be calculated. We choose the following parameterization of §° : for v € [0, £], 8,
a € [0,7], ¢, and ¥ € [0, 2x),

cos -y cos 3
sin 7y cos &
cosysin 3 cos ¢
sin -y sih ¢ cos ¢
cosysin Ssin ¢
siny sin o sin

(7.14) y =
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Using the orthogonal matrix (7.10) with the parameterization (7.14), and easy
calculation using double angle formulas reveals Ay = % + %cos 2. Thus rcos@
of representation 1.11 is distributed like cos2y. For parameterization (7.14), the
probability density function associated with s has form C cos? ysin 8sin® vsina
for some constant . Thus for constants C', C'":

- (7.15) 7s{rcosd < a) = C”/ cos® ysin? ydy

% arccos(a)
a
= / V1 - v?dv,
-1

But the only probability measure on the unit disk which is rotation invariant and
which has (7.15)-distributed z-coordinate is the uniform distribution. W

Proof. Theorem 7.3. The normal distribution, N(8,13), on R® is the attractive
invariant distribution of velocity under the redistribution of energy law which is the
uniform distribution on D.

Let 9 distribution on D and v is its projection onto the z-axis. We calculate

(7.16) /;{3 fAN(0,Is) = ,/Ru F((®1, 22, 23))AN(0, Iy)
feoc /SB F(Vr(wy, wa, ws) )dms(w)dp(r).

Set ¢ = Aw € A(S®) and let 7(c) be the marginal distribution of ¢. The form
of O and the factL‘i’-%f-l is perpendicular to OF [ g } implies: for each ¢ € A(S%)
we have Aw = ¢ with ||w|| = 1 if and only if there is some y € 5° such that

Sfoed, [ 1Y or [ 7]

[wi,wq, ws] = (¢/3) +4/1 ~ B%QEMEOT [ g)' ] .

I

Thus,

So, (7.16) =

b oo ds? (‘” ey (1555 )mom | 3 de(y)dr(e}dza{r»

Now, M, 07 [ g ] is rotation invariant on R2. So,

| M, 07 [ o ]d«s HMIOT[ } udrs (y )dr ().

Thus, {7.16) =

f fA(SS/,a]/SE { ( + A( &’f—?)u)}dvm(u)dv(/\)d»r(c)dp(r}
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Putting in a dummy integral over S%, (7.16) =

ol St 1 (5 57 o s

Now, ¢ = A(x/|lx{)) = (1/xl}Az = (1/v/52)81. So, (7.16) =

/ fg /R { (\/~)+Wu)]dmo,@)dﬂ2@,

which equa}s (2.1).

This choice T, umform distribution on I3, is not the only choice of energy re-
distribution Iaw that attracts the Guassian distribution of velocity. Let Wedge =
{xeD:J3afe0,%] and an r € [0,1] s.t. equation 1.12 holds}, let £ = {a:
Wedge — [0,1] : a is a Borel function}, and ji, be the measure defined through the
following representation

i = [ a(x)7s + (1 — 0 (%)) The g do (),

where v is uniform distribution on Wedge, 1y is the 7 for x in (2.8) and Ref : D —
D is defined by Ref(x) = [£,2,2] — x . Let s, denote the projection measure of
fia with respect to the z-axis. Thetl

Proof. Corollary 7.4. Foralla € £, p, = v, and therefore the attractive invariant
distribution of velocity associated with [, is N(0, I3).

It is easy to check that i, o Ref™' is also a redistribution of energy law and
that it has the same marginal projection in the z-direction as fi,. But the measure
% (,&u + fig ¢ Ref ““1) = ¢, uniform on D, and so the marginal of [i, on the z-axis
is the same as v, the marginal of ¢. Apply Theorem 2.1 and Theorem 7.3.8

Obviously i # ¥ unless a is essentially identically £.

Proof. Remark 7.1. The only redistribution of energy low to produce the attractive
invariont distribution of velocity law associated with the redistribution law 5[§ 4,3

is the energy redistribution low 5[ 2 1] itself.
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