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Abstract. We consider a set, L, of lines in Rn and a partition of L into some number
of sets: L = L1 ∪ . . .∪Lp. We seek a corresponding partition Rn = S1 ∪ . . .∪Sp such that
each line l in Li meets the set Si in a set whose cardinality has some fixed bound, ωτ . We
determine equivalences between the bounds on the size of the continuum, 2ω ≤ ωθ, and
some relationships between p, ωτ and ωθ.

In 1951, Sierpiński [S2] showed that the continuum hypothesis is equiv-
alent to the following: for the partition of the lines in R3 parallel to one of
the coordinate axes into the disjoint sets L1, L2, and L3, where Li consists
of all lines parallel to the ith axis, there is a partition of R3 into disjoint
sets, S1, S2, and S3, such that any line in Li meets at most finitely many
points in Si. He also showed that the corresponding statement for R4, using
L1, L2, L3 and L4 and four sets S1, S2, S3 and S4, is equivalent to 2ω ≤ ω2.
Also, the corresponding statement for R2, using sets of lines L1 and L2 and
sets S1 and S2, is false. He obtained analogous results by replacing “finite”
by “countable”. Thus, CH is equivalent to the assertion that R2 can be
divided into two disjoint sets S1 and S2 with each line in Li meeting Si
in a countable set [S1]. He showed that the countable version for R3 with
three sets is equivalent to 2ω ≤ ω2. These theorems were generalized by
Kuratowski [Ku] and Sikorski [Si]. Erdős [Er] raised the issue of whether
these results could be further strengthened by considering partitions of all
lines rather than just those lines parallel to some coordinate axis. Davies
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[D1] showed that an analogous result is obtained if one partitions the lines
in Rk, k ≥ 2, which are parallel to one of L1, . . . , Lp, where L1, . . . , Lp are
fixed pairwise non-parallel lines (and one partitions the lines according to
which Li it is parallel to). This result was extended by Simms [Sm2], who
considered translates of linear subspaces instead of just lines. Simms’ result
also generalizes Sikorski’s result, and gives best possible bounds for the type
of partitions it considers. Davies [D2] later removed the restriction that the
lines in Rk be partitioned in the special manner referred to above. Bagemihl
[B] has also extended some of these results. See Simms [Sm1] for an extensive
historical survey.

We develop a general framework within which these theorems can be
obtained as corollaries. Our framework deals with arbitrary partitions of
all lines (or planes, or more general objects) and not necessarily special
partitions or families of lines. As we shall see, the central issues are the
number of sets of lines in the partition, the allowed size of the intersection
of a line in a given set with the corresponding set in the decomposition of
the space, and the value of the continuum. Galvin and Gruenhage [GG],
and independently Bergman and Hrushovski (cf. Proposition 19 of [BH]),
have previously obtained results which imply special cases of some of our
results. In particular, those results yield (1.1)⇒(1.2) for the case θ = 0 and
p = s+ 2. Corollary 8 of this paper also follows from [D2] and unpublished
results of [GG]. In the last part of this paper, we deal with some perhaps
surprising phenomena arising from infinite partitions. In particular, we show
that some interesting set-theoretic properties come into play.

We should mention that some of the key ideas of our arguments go
back to combinatorial arguments of Erdős and Hajnal [EH], and thank Fred
Galvin for bringing to our attention some of his earlier work.

1. The main result. Let us establish some conventions for this paper.
If t is a positive integer, then card(A) = |A| ≤ ω−t means A is finite. If
θ = θ + s, where θ > 0 is a limit ordinal and s is an integer, and t is an
integer with t > s, then |A| ≤ ωθ−t means |A| < ωθ.

Theorem 1. Let θ be an ordinal , θ = θ + s ≥ 1, where θ is 0 or a limit
ordinal , and let s ∈ ω. The following statements are equivalent :

(1.1) 2ω ≤ ωθ.
(1.2) For e a c h n ≥ 2 and for e a c h partition of L, the set of all lines

in Rn, into p ≥ 2 disjoint sets, L = L1 ∪ L2 ∪ . . . ∪ Lp, there is a partition
of Rn into p disjoint sets, Rn = S1 ∪S2 ∪ . . .∪Sp, such that each line in Li
meets Si in a set of size ≤ ωθ−p+1.

(1.3) For s o m e n ≥ 2, s o m e p, with s + 2 ≥ p ≥ 2, and s o m e
non-parallel lines l1, . . . , lp in Rn, if we let Li be the set of all lines in Rn
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parallel to li, then there is a partition Rn = S1 ∪ . . . ∪ Sp such that every
line in Li meets Si in a set of size ≤ ωθ−p+1.

Before we prove Theorem 1, let us make some comments and derive some
corollaries.

R e m a r k. Note that statement (1.2) implies statement (1.3) for all
p ≥ 2, not just for those p satisfying s + 2 ≥ p ≥ 2. However, if p > s + 2,
then from the facts that 2ω ≤ ωθ+(p−s−2) and (1.1) implies (1.2), we get the
conclusion of (1.2) which means |l∩Si| < ωθ̄ if l ∈ Li, i = 1, . . . , p. Thus, we
cannot possibly derive (1.1) from even the statement of (1.2) for p > s + 2
since 2ω ≤ ωθ+(p−s−2) does not imply 2ω ≤ ωθ.

R e m a r k. The fact that (1.3) implies (1.1) is Davies’ theorem. We in-
clude a proof for the sake of completeness.

The first corollary yields Sierpiński’s theorem as a special case and an-
swers question a) in [Er].

Corollary 1. The following are equivalent :

(i) CH , the continuum hypothesis, holds: 2ω = ω1.
(ii) If the lines in R3 are decomposed into three sets Li (i = 1, 2, 3),

then there exists a decomposition of R3 into three sets Si such that the
intersection of each line of Li with the corresponding set Si is finite.

P r o o f. Take θ = 1, n = 3 and p = 3 in Theorem 1. Then each line in
Li meets Si in a set of size at most ωθ−p+1 = ω−1, which by our convention
means finite.

The second corollary yields the Bagemihl–Davies theorem [Sm1, p. 127]
as a special case and notes that the condition that we be in R3 in Corollary
1 is not necessary. This also answers question b) in [Er].

Corollary 2. The following are equivalent :

(i) 2ω = ω1.
(ii) If the lines in R2 are decomposed into three sets Li (i = 1, 2, 3),

then there exists a decomposition of R2 into three sets Si such that the
intersection of each line of Li with the corresponding set Si is finite.

P r o o f. Take θ = 1, n = 2 and p = 3 in Theorem 1.

The next corollary is a theorem of Kuratowski [Ku].

Corollary 3. Let n ∈ ω, and θ be a limit ordinal or zero. The following
two statements are equivalent :

(i) 2ω < ωθ̄.
(ii) There is a partition of Rn+1, Rn+1 = S1 ∪ . . . ∪ Sn+1, such that

|l ∩ Si| < ωθ̄ whenever l is parallel to the i-th axis.
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P r o o f. As Kuratowski mentions, the case n = 0 is easy. If n > 0, take
θ = θ + (n − 1) and p = n + 1 in Theorem 1. Thus, 2ω ≤ ωθ < ωθ̄ if
and only if Rn+1 =

⋃n+1
i=1 Si, where |l ∩ Si| ≤ ωθ−p+1 = ωθ̄ provided l is

parallel to the ith axis. This means, by our convention, that |l∩Si| < ωθ̄, as
required.

R e m a r k. As noted by Kuratowski, a special case of Corollary 3 is the
following: 2ω ≤ ωn if and only if Rn+1 =

⋃n+1
i=1 Si, where |l∩Si| < ω provided

l is parallel to the ith axis. It also follows from Theorem 1 that the condition
of working in Rn+1 can be dispensed with, as well as the requirement that
the lines be parallel to a coordinate axis (though the lines must satisfy the
conditions stated in (1.3) to get the implication (ii)⇒(i)). This yields Davies’
theorem:

Corollary 4 (Davies). Let n ≥ 2, and let l1, . . . , lp, p ≥ 2, be non-
parallel lines in Rn. Then the following are equivalent :

(i) 2ω ≤ ωθ.
(ii) There is a partition Rn =

⋃p
i=1 Si of the points in Rn such that for

every line l parallel to li, |l ∩ Si| ≤ ωθ−p+1.

P r o o f o f T h e o r e m 1. We introduce an auxiliary proposition Q(p)
for integer p ≥ 2.

Proposition Q(p). For each ordinal θ, if A is a set of lines and points
in Rn of size at most ωθ, and the set of lines in A, which we call L, is
divided into k disjoint sets, L = L1 ∪ . . . ∪ Lk, where k ≥ p, and if f is
a function with domain S, the set of points in A, such that for all x ∈ S,
f(x) ⊆ {1, . . . , k} and |f(x)| ≤ k − p, then there is a partition of S into k
sets, S = S1 ∪ . . . ∪ Sk, such that for each x ∈ S:

a) x 6∈ Sa, if a ∈ f(x).
b) Each line l in Li meets at most ωθ−p+1 points in Si.

We think of f(x) as being forbidden “colors” for x. Thus, the hypothesis
of Q(p) requires there to be at least p non-forbidden colors for each point
x ∈ A. Note that Q(p) for all p ≥ 2 yields (1.1)⇒(1.2) of Theorem 1 by
taking k = p and f the function with constant value ∅.

We establish Q(p), working in ZFC, by induction on p. So, assume first
that p = 2. Let A be a set of points and lines in Rn of size ≤ ωθ, for some
ordinal θ (we allow θ = 0). Let L = L1 ∪ . . . ∪ Lk be a partition of the lines
in A with k ≥ p, and let f be as in the statement of Q(p). We define the
partition S = S1 ∪ . . .∪Sk of the points in A as required. Let {lα1 }, . . . , {lαk }
and {xα}, α < ωθ, enumerate the lines in L1, . . . , Lk, and the points of S,
respectively. We inductively decide to which Si we add xα. Suppose we are
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at step α < ωθ and we have decided for all β < α to which Si we add xβ .
Consider the following cases.

C a s e I. For some 1 ≤ i ≤ k such that i 6∈ f(xα), and all β < α,
xα 6∈ lβi . In this case add xα to Si (choose i arbitrarily if the above is
satisfied for more than one i).

C a s e II. For all 1 ≤ i ≤ k with i 6∈ f(xα), xα lies on some lβ(i)
i , with

β(i) < α. Let β(i) in fact be the least such ordinal < α. Let i0 6∈ f(xα) be
such that β(i0) ≥ β(i) for all i 6∈ f(xα). We then add xα to Si0 .

Thus, we have defined a partition S = S1 ∪ . . . ∪ Sk. Fix now a line
lδi ∈ L. We show that |Si ∩ lδi | ≤ ωθ−p+1 = ωθ−1 (this means, by our
convention, that |Si ∩ lδi | < ωθ). First, we need only consider those points
xα with α > δ, since there are < ωθ points xα with α ≤ δ. If xα were put
in Si by virtue of Case I, then xα would not lie on lδi . Suppose then that
xα, α > δ, is put in Si by virtue of Case II. Thus, βj(α) is defined for each
j 6∈ f(xα). Since xα is put into Si, we have βi(α) ≥ sup{βj(α) : j 6∈ f(xα)}.
If βi(α) > δ, then by definition, xα 6∈ lδi . Thus, we need only consider xα

for which δ ≥ βi(α) ≥ sup{βj(α) : j 6∈ f(xα)}. There are < ωθ possibilities
for the set {βj(α)}. Since k− f(xα) has at least two elements, and two lines
determine a point, it follows that the set of such xα has size < ωθ. This
completes the proof of Q(2).

Note, in particular, that Q(2) holds when θ = 0, that is, when A is
countable. However, for countable A, Q(2) easily implies Q(p) for all p ≥ 2
as well (since in this case |l∩Si| ≤ ωθ−p+1 means the same thing, i.e., l∩Si
is finite, for all p ≥ 2).

Before giving the inductive step in the proof of Q(p), we introduce a
basic definition.

Definition. If A is a collection of lines and points in Rn, we call A good
if it satisfies the following:

a) For any two distinct points x, y ∈ A, the line determined by x and y
is also in A.

b) For any two distinct intersecting lines in A, the point of intersection
is also in A.

Clearly, for any infinite set A of lines and points in Rn, the good set
generated by A has the same cardinality as A.

Assume now that Q(p) holds, and we show Q(p+1). Let A be a collection
of lines L and points S in Rn with size ωθ, and let L = L1 ∪ . . . ∪ Lk
be a partition of L with k ≥ p + 1. We may assume θ ≥ 1 by our note
above. Without loss of generality, we may also assume that A is good. Let
f : S → {1, . . . , k} be given with |f(x)| ≤ k − (p + 1) = k − p− 1. Express
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A as an increasing union, A =
⋃
α<ωθ

Aα, where each Aα is good, and
|Aα| ≤ ωθ−1. We call a line l ∈ Aα “new” if l ∈ Aα\

⋃
β<αAβ , and otherwise

call l “old” (relative to α). We label the points of Aα as new and old in the
same fashion. We define at step α the partition of Sα, the set of new points
in Aα, Sα = Sα1 ∪ . . . ∪ Sαk . Suppose we are at step α < ωθ. Enumerate
Lα,i, the new lines of Li in Aα, and points of Aα into type ωσ(α) < ωθ, say
lβα,i, x

β
α, β < ωσ, 1 ≤ i ≤ k. Note that for each β < ωσ(α), each xβα lies

on at most one old line, since each Aδ is good. Thus, for β < ωσ(α), set
fα(xβα) = f(xβα)∪{j}, where j is such that xβα lies on an old line in Lj if one
exists, and otherwise set fα(xβα) = f(xβα). Thus, fα maps the new points of
Aα into {1, . . . , k} and |fα(x)| ≤ k − p. Now, by the induction hypothesis
Q(p) applied to ωσ(α), we may partition the points in Sα, Sα = Sα1 ∪. . .∪Sαk ,
so that any new line lβα,i intersects at most ωσ(α)−p+1 points from Sαi , and
xβα 6∈ Sαa for any a ∈ fα(xβα). Note that ωσ(α)−p+1 ≤ ωθ−p.

This defines our partition of S. To show this partition works, fix a line
l in A, say l ∈ Li. Let α be the least such that l ∈ Lα,i, so that l is a new
line at step α. We must show that ≤ ωθ−p points in Si =

⋃
γ<ωθ

Sγi lie on l.
First, any point xδγ , for γ > α, in Si cannot lie on l, since then i ∈ fγ(xδγ),
but, by construction, xδγ 6∈ Si. So, we may assume γ ≤ α. Now, there is at
most one point xδγ for γ < α on the line l, since otherwise l would not be
new at α. Thus, we need only consider points of the form xδα, δ < ωσ(α).
However, from the definition of the set Sαi , ≤ ωσ(α)−p+1 of these points lie
on l ∈ Lα,i.

Thus, each line in Li intersects≤ ωθ−p points of Si. Since fα(xβα) ⊃ f(xβα)
for all xβα ∈ S, we also have xβα 6∈ Sa if a ∈ f(xβα). This completes the proof
of the proposition Q(p+ 1) and, as mentioned, the proof that (1.1) implies
(1.2).

Since (1.2) clearly implies (1.3), it only remains to prove (1.3) implies
(1.1). Assume now (1.3) holds, with θ = θ + s and 2 ≤ p ≤ s + 2. To-
wards a contradiction, assume 2ω ≥ ωθ+1. Let l1, . . . , lp and L1, . . . , Lp
and S1, . . . , Sp be as in (1.3). For each i, 2 ≤ i ≤ p, let vi be a vector
parallel to li with ‖vi‖ = 1. We construct sets B1, . . . , Bp as follows. Let
B1 ⊆ l1 = {x0 + tv1 : t ∈ R} be any set of size ω(θ−p+1)+1 ≥ ωθ̄. As-
sume 1 ≤ i ≤ p − 1 and Bi has been defined with |Bi| = ω(θ−p+1)+i < 2ω.
Let Di be the set of all distances between two distinct points of Bi. So,
|Di| = |Bi|. Let Ci+1 be a subset of R such that |Ci+1| = ω(θ−p+1)+(i+1)
and (Ci+1 − Ci+1) ∩ Di = ∅ (where A − B := {a − b : a ∈ A, b ∈ B}).
Let Bi+1 =

⋃
c∈Ci+1

[cvi+1 + Bi] =
⋃
x∈Bi [x +

⋃
c∈Ci+1

cvi+1]. Thus, Bi+1

consists of ω(θ−p+1)+(i+1) translates of Bi in the direction of li+1. Also, no-
tice that these translates of Bi form a pairwise disjoint family. Finally, since
2ω ≥ ωθ+1 = ω(θ−p+1)+p, Bp is defined.
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Consider first Bp−1. Since |Bp−1| = ωθ, and since each line parallel to lp
through a point of Bp−1 intersects Sp in at most ωθ−p+1 points, |Sp ∩Bp| ≤
ωθ. But, since Bp consists of ωθ+1 disjoint translates of Bp−1, there is some
cp ∈ Cp such that cpvp + Bp−1 ⊆ S1 ∪ . . . ∪ Sp−1. If p = 2, stop; otherwise,
continue. So, in general, suppose 3 ≤ j ≤ p and we have produced numbers
ci ∈ Ci, for j ≤ i ≤ p, such that ej + Bj−1 ⊆ S1 ∪ . . . ∪ Sj−1, where
ej = cpvp+cp−1vp−1+. . .+cjvj . Now, ej+Bj−1 =

⋃
c∈Cj−1

[ej+cvj−1+Bj−2],
the translates in this union being pairwise disjoint, and |Cj−1| = ωθ−p+j .
Since Sj−1 contains at most ωθ−p+j−1 points of this union, there is some
cj−1 ∈ Cj−1 such that ej + cj−1vj−1 + Bj−2 ⊆ S1 ∪ . . . ∪ Sj−2. Finally, we
have B̃1 = e2 + B1 = cpvp + cp−1vp−1 + . . . + c2v2 + B1 ⊆ S1. As B̃1 is
a translate of B1, |B̃1| = |B1| = ωθ−p+2. But, also, B̃1 is a subset of the
line through x0 + e2 parallel to l1. Thus, |B̃1| ≤ ωθ−p+1. This is a contra-
diction.

Further generalizations are possible. The only properties of lines that
were used in the preceding argument were that two distinct lines determine
at most one point and two distinct points determine a line. We generalize
this as follows.

Definition. Let H ⊆ P(Rn) be a family of subsets of Rn. Let r and s be
positive integers. We say that H is (r, s) finitely determined if the following
are satisfied:

(1) The intersection of any r distinct elements of H is finite.
(2) For any s distinct points in Rn, there are at most finitely many h ∈ H

which contain all those points.

Example. The set H of all circles in Rn (n ≥ 2) is (2, 3) finitely deter-
mined.

Example. The set H of all hyperplanes in Rn perpendicular to a coor-
dinate axis is (n, 1) finitely determined.

Somewhat more generally still, we introduce the notion of a partition
being (r, s) finitely determined.

Definition. Given H ⊆ P(Rn), we say a partition H = H1 ∪ . . . ∪Hk

(k can be infinite here) is (r, s) finitely determined if:

(1) The intersection of r distinct elements of H lying in different Hi is
finite.

(2) For any s distinct points in Rn, there are at most finitely many h ∈ H
containing these s points.

Note that if H ⊆ P(Rn) is an (r, s) finitely determined family of sets,
then any partition of H is (r, s) finitely determined.
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Theorem 1 may be generalized as follows, where our convention is still
in force.

Theorem 2. Let θ ≥ 1 be an ordinal. The following are equivalent :

(2.1) 2ω ≤ ωθ.
(2.2) For each positive integer t, for each n ≥ 1, and for any r ≥ 2,

s ≥ 1, if H = H1 ∪ . . .∪Hp is an (r, s) finitely determined partition of some
H ⊆ P(Rn) into p = t(r − 1) + 1 disjoint sets, then there is a partition of
Rn, Rn = S1 ∪ . . . ∪ Sp, such that |h ∩ Si| ≤ ωθ−t for all h ∈ Hi, 1 ≤ i ≤ p.

P r o o f. The proof that (2.1) implies (2.2) is similar to that of Theorem
1. As there, we formulate an auxiliary proposition, R(t), for t ≥ 1, which we
prove in ZFC by induction on t.

Proposition R(t). For each ordinal θ, k, and integers n ≥ 1, r ≥ 2,
s ≥ 1, if H = H1 ∪ . . . ∪ Hk is an (r, s) finitely determined partition of
H ⊆ P(Rn) into k ≥ t(r − 1) + 1 pieces, then if A ⊆ H ∪ Rn is a set
consisting of some elements of H and points, S, of Rn with |A| ≤ ωθ,
and f is a function from S into P({1, . . . , k}) such that for all x ∈ S we
have |f(x)| ≤ k − [t(r − 1) + 1], then there is a partition of S into k sets,
S = S1 ∪ . . . ∪ Sk, such that for each x ∈ S, x 6∈ Sa if a ∈ f(x), and if
h ∈ Hi ∩A, then |h ∩ Si| ≤ ωθ−t, for 1 ≤ i ≤ k.

The proof for t = 1 proceeds exactly as the proof of Theorem 1 for p = 2.
Again, the determination of which set xα should be placed into breaks into
two cases. In the first case, for some i 6∈ f(xα) we have xα 6∈ hγi for all γ < α,
and xα is placed in some Si with i in this set. For the xα in the second case,
one obtains a function xα → (β(i1(α)), . . . , β(ig(α))), where g ≥ r and the
ij(α) list the i’s such that xα lies on some hγi , with γ < α, and β(ij(α)) is
the least such γ. This function is not necessarily one-to-one as in Theorem 1,
but, from the first condition of being (r, s) finitely determined, the function
is finite-to-one. This is sufficient for the argument.

Note, as in Theorem 1, that if θ = 0, then R(1) easily implies R(t) for
all t. Thus, we may assume in the inductive step that θ ≥ 1.

The inductive step for obtaining R(t+ 1) from R(t) is similar to that for
Q(p). Perhaps it should be noted that in obtaining R(t+ 1) from R(t), one
builds, as before, an increasing transfinite sequence of “good” sets, Aα, with
A =

⋃
α<ωθ

Aα and |Aα| < ωθ. Aα being good now means that if h1, . . . , hr
are elements of distinct sets Aα∩Hj , then

⋂
hi ⊆ Aα, and for any s distinct

points of Aα, the finitely many elements of H containing these points are in
Aα. Since the partition of H is (r, s) finitely determined, the cardinality of
the good set generated by an infinite set does not increase. The argument
then proceeds as before.
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To prove (2.2) implies (2.1), take t = 1 and n = 2. Let Hi be the set of
lines parallel to the ith axis. So, the partition is (2, 1) finitely determined.
Applying (2.2) to this family, we have p = r = 2 and t = p − 1. So, there
is a partition R2 = S1 ∪ S2 such that |h ∩ Si| ≤ ωθ−t = ωθ−p+1. Since (1.3)
implies (1.1), 2ω ≤ ωθ.

R e m a r k. Since a partition of lines is (2, 2) finitely determined, Theorem
1 follows from Theorem 2, by taking r = 2, in which case θ − t = θ − p+ 1.

Corollary 5 (Sikorski). The continuum hypothesis is equivalent to the
following statement. The points in R3 can be partitioned into three sets S1,
S2 and S3 such that each plane perpendicular to the xi axis meets Si in at
most countably many points.

P r o o f. If H = planes in R3 perpendicular to a coordinate axis, then H
is (3, 1) finitely determined. Now, take θ = 1 = t in Theorem 2. The proof of
the converse may be found in [Si] or done directly. Of course, our proof also
works for any partition of the planes in R3 which is (3, s) finitely determined
for some s.

As another example, consider the analog of Corollary 4 where “count-
able” is replaced by “finite”. We first show that four “colors” are not suffi-
cient (note: Lemma 1 and one direction of Corollary 6 follow from Theorem
5.9 of [Sm], but are included here for the sake of completeness).

Lemma 1. There are four unit vectors, v1, v2, v3 and v4, in R3 such that
if Hi = {h : h is a plane with normal vi}, then the partition H1 ∪ . . . ∪H4

is (3, 1) finitely determined , and yet there is no partition R3 = S1 ∪ . . .∪S4

such that |h ∩ Si| < ω0 for all h ∈ Hi.

P r o o f. Let vi, i = 1, 2, 3, be the canonical unit basis vectors for R3.
Let v4 =

(
0,−√2

/
2,
√

2
/

2
)
. Let A1, A2 ⊆ R with |A1| = ω0 and |A2| = ω1,

and let A3 = Q, the rationals. Let G ⊆ R be such that |G| = ω1 and
(G−G) ∩Q = {0}. Let W = {(0, t, t) : t ∈ G}. Let B = A1 ×A2 ×A3 and
E = B +W . The following claim suffices to finish the proof of the lemma.

Claim. For each u = (u1, u2, u3) ∈ R3, E+u 6⊆ S1∪ . . .∪S4, where each
Si meets each plane with normal vi in a finite set.

P r o o f o f C l a i m. Fix u, and assume such sets Si exist. For each
y ∈ A2, let Ey = [A1×{y}×A3]+W+u. Then E+u =

⋃
y∈A2

Ey. To see that
these sets are disjoint, notice that otherwise we would have (a1, y1, q1)+w1 =
(a2, y2, q2)+w2, with w1 6= w2. But this would imply t1−t2 ∈ Q for some two
distinct elements of G. Now, for each x1 ∈ A1, the plane x = x1 + u1 meets
only finitely many points of S1. Thus, S1∩ (E+u) is countable and so there
is some y0 ∈ A2 such that Ey0 ⊆ S2 ∪S3 ∪S4. For each (x, z) ∈ A1×Q, the
plane h(x, y0, z) passing through (x, y0, z) + u with normal v4 meets only
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finitely many points of S4. But Ey0 =
⋃
w∈W [(A1 × {y0} × A3) + w + u]

and the sets in this union are disjoint. So, there is some w0 ∈ W such that
(A1×{y0}×A3)+w0 +u ⊆ S2∪S3. But this set lies in a plane with normal
v2. So, only finitely many points of this set are in S2. Thus, there is some
z0 ∈ Q such that (A1×{y0}×{z0})+w0 +u ⊆ S3. But this set is an infinite
subset of a plane with normal v3 and S3 meets this plane in a finite set.

Corollary 6. The continuum hypothesis is equivalent to the following
statement. If H is a set of planes in R3 and H = H1∪ . . .∪H5 is a partition
of H which for some s is (3, s) finitely determined , then there is a partition
R3 = S1 ∪ . . .∪S5 such that each plane in Hi meets Si in a finite set. More
generally , the hypothesis 2ω ≤ ωn is equivalent to the above statement , where
H = H1 ∪ . . . ∪H5 is replaced by H = H1 ∪ . . . ∪H2n+3.

P r o o f. If 2ω = ω1, take θ = 1 and t = 2 and apply Theorem 2. To prove
the converse in this case, assume 2ω ≥ ω2. Let us follow the same notation
used in the proof of Lemma 1. Let v5 be a unit vector, v5 6= vi, 1 ≤ i ≤ 4,
and H5 = {h : h is a plane normal to v5}. Let F ⊆ {x : 〈x, v5〉 = 0} such
that (F − F ) ∩ (E −E) = {0} and |F | = ω2. Let S1, . . . , S5 be the required
partition of R3. Set M =

⋃
f∈F E + f =

⋃
e∈E e+F , the sets in each union

being disjoint. For each e ∈ E, |S5 ∩ (e+F )| < ω0. So, |S5 ∩F | ≤ ω1. Thus,
there is a vector f ∈ F such that E + f ⊆ S1 ∪ . . . ∪ S4. This contradicts
the Claim in the proof of Lemma 1.

The argument for this direction can be strengthened slightly. We may
take F ⊆ {αx : α ∈ R}, where 〈x, v5〉 = 0. Let v6 6= v1, . . . , v4 be perpen-
dicular to v5, and define H6 accordingly. Let G ⊆ {αy : α ∈ R}, where
〈y, v6〉 = 0, be such that |G| = ω2 and (G − G) ∩ (M − M) = {0}. Set
N =

⋃
g∈GM + g. It is easy to check then that if R3 = S1 ∪ . . . ∪ S6 is a

partition of R3, for some f ∈ F , g ∈ G we have E + f + g ⊆ S1 ∪ . . .∪ S4, a
contradiction. Thus, the following statement implies the continuum hypoth-
esis: for every partition H = H1 ∪ . . . ∪H6 of planes which is (3, s) finitely
determined for some s, there is a partition R3 = S1 ∪ . . . ∪ S6 with each
plane in Hi meeting Si in a finite set.

If 2ω = ωn, apply Theorem 2 with θ = n and t = n + 1 to obtain
one direction. The converse direction (which follows from Simms) can be
obtained by extending the above argument, assuming 2ω ≥ ωn+1, and using
vectors v5, v6, . . . , v2n+4, v2n+5. This, in fact, gives the stronger result that
the stated partition property using 2n+ 4 sets Hi, Si implies 2ω ≤ ωn. The
details are left to the reader.

Theorem 2 may be refined in several different ways. For some families
H ⊆ Rn, the value of p in (2.2) of Theorem 2 is not the best possible. For
example, in R4, for each Λ = {i1, i2} ⊆ {1, 2, 3, 4} with i1 6= i2, let HΛ

consist of all planes of the form xi1 = a1 and xi2 = a2, where a1, a2 ∈ R.
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Notice that H =
⋃
ΛHΛ is a (4, 3) finitely determined partition of some

planes into 6 sets. Sikorski [Si] showed, as a particular case of a general
theorem, that there is a corresponding partition R4 =

⋃
SΛ such that if

h ∈ HΛ, then h ∩ SΛ is finite. A direct application of Theorem 2 requires
partitioning R4 into 7 sets. One can refine Theorem 2, however, to obtain
Sikorski’s theorem.

Theorem 5.9 of Simms [Sm2] extends Sikorski’s result by obtaining the
best possible value of p (in the notation of our Theorem 2) in the case where
H is the family of translates of a fixed finite number of subspaces of Rn, and
the elements h of H are partitioned according to which subspace they are a
translate of. His results are stated in terms of the least integer n such that
the collection of subspaces is “n-good”. In fact, we may refine the argument
of Theorem 2 to obtain Simms’ result, and also allow general partitions of
the family H. We briefly sketch the argument.

Let Π be a finite set of linear subspaces of Rn, for some n ≥ 2. Let H
be the family of translates of these subspaces. That is, every h ∈ H is of the
form h = V +u, where V ∈ Π and u ∈ Rn. Following Simms, we say that Π
is t-good if for every linear ordering ≺ of Π, there is a subset S of Π of size
t such that for all V ∈ Π,

⋂{V ′ � V : ¬∃V ′′ ∈ S such that V ′ ≺ V ′′ ≺ V }
is finite. We thus have:

Corollary 7. Let n ≥ 2, and θ ≥ 1 be an ordinal. The following are
equivalent :

(1) 2ω ≤ ωθ.
(2) For every non-empty set Π of size k of non-trivial linear subspaces

V of Rn which is t-good , if H = {V + u : V ∈ Π, u ∈ Rn} is partitioned
into k sets H = H1 ∪ . . . ∪Hk, then there is a partition Rn = S1 ∪ . . . ∪ Sk
such that for every h ∈ Hi, |h ∩ Si| ≤ ωθ−t.

(3) There is a non-empty set Π = {V1, . . . , Vk} of non-trivial linear
subspaces of Rn which is not (t+ 1)-good and for which there is a partition
Rn = S1 ∪ . . . ∪ Sk such that ∀1 ≤ i ≤ k ∀u ∈ Rn |(Vi + u) ∩ Si| ≤ ωθ−t.

R e m a r k. The fact that (3) implies (1) is half of Theorem 5.9 of [Sm2],
and will not be proven here. The special case of (1)⇒(2) for the partition
of (3) is the other half of that theorem.

S k e t c h o f p r o o f o f C o r o l l a r y 7. Assume 2ω ≤ ωθ, and let Π
and H = H1 ∪ . . . ∪Hk be as in (2) above. As in the proof of Theorem 2,
we prove in ZFC an auxiliary proposition R(t) (which suffices to prove the
corollary).

Proposition R(t). Let θ be an ordinal , n ≥ 2, t ≥ 1, k ≥ 1 be integers,
Π = {V1, . . . , Vk} be a set of non-trivial subspaces of Rn which is t-good ,
H = H1 ∪ . . . ∪Hk be a partition of H = {V + u : V ∈ Π,u ∈ Rn}, and let
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A ⊆ Rn ∪H be a set of size ≤ ωθ. Then there is a partition S = A ∩ Rn =
S1 ∪ . . . ∪ Sk such that for all h ∈ A ∩Hi, |h ∩ Si| ≤ ωθ−t.

If t = 1, then the hypothesis that Π is 1-good simply says that
⋂k
i=1 Vi

is finite. It follows that the intersection of any k distinct elements of H
is also finite. Thus, the given partition of H is (k, 1) finitely determined.
Theorem 2 then finishes this case. Since Π being t-good implies Π is t′-good
for all t′ ≤ t, we see that R(t) also holds for all t when θ = 0. So, we may
assume θ ≥ 1. Likewise, in proving R(t) we may assume that θ = θ+ (t− 1)
for some ordinal θ. We call a set A ⊆ Rn ∪ H good provided: (1) for any
h1, . . . , hq ∈ A ∩ H, if

⋂q
i=1 hi is finite, then

⋂q
i=1 hi ⊆ A, and (2) for any

x ∈ Rn ∩A, the finitely many h ∈ H which contain x also lie in A.
Without loss of generality, we may assume A is good, and |A| = ωθ.

Write A =
⋃
α1<ωθ

Aα1 as an increasing union, where each Aα1 is good
and has size ≤ ωθ−1. Similarly, we write each Aα1 as an increasing union
Aα1 =

⋃
α2<ωθ−1

Aα1,α2 , where each Aα1,α2 is good of size ≤ ωθ−2. Con-
tinuing, we define good sets Aα1,α2,...,αt−1 for all α1 < ωθ, . . . , αt−1 <
ωθ−(t−2), such that each Aα1,α2,...,αt−1 has size ≤ ωθ−t+1 = ωθ̄. Write also
Aα1,...,αt−1 =

⋃
αt<ωθ̄

Aα1,...,αt , where each Aα1,...,αt has size < ωθ̄ but

is not necessarily good (if θ ≥ 1, then we may make these sets good as
well). For each point x (or h ∈ H) in A and ordinals α1, . . . , αi, i ≤ t,
we say that x (or h) is new relative to α1, . . . , αi provided for all j ≤ i,
x ∈ Aα1,...,αj −

⋃
β<αj

Aα1,...,αj−1,β . There is clearly a unique sequence
α1 = α1(x), . . . , αt = αt(x) such that x is new relative to α1, . . . , αt.

For x ∈ A, we now describe the Si into which we place x. Let α1 =
α1(x), . . . , αt = αt(x). Let h1

1, . . . , h
a(1)
1 enumerate the h ∈ H∩A on which x

lies which are old relative to α1. Let h1
2, . . . , h

a(2)
2 be those h ∈ H∩A on which

x lies which are new relative to α1 but old relative to α1, α2, and continuing,
h1
t , . . . , h

a(t)
t those h ∈ H ∩ A on which x lies which are new relative to

α1, . . . , αt−1 but old relative to α1, . . . , αt. Clearly, a(1) + . . .+ a(t) ≤ k. If
there is some “color” 1 ≤ i ≤ k not taken on by any of the hlj , put x into
one such Si. Note that this includes the case where a(1) + . . . + a(t) < k.
Otherwise, let h1

1, . . . , h
a(1)
1 , h1

2, . . . , h
a(2)
2 , . . . , h1

t , . . . , h
a(t)
t correspond to the

subspaces W1, . . . ,Wk of Π (so, W1, . . . ,Wk is a permutation of V1, . . . , Vk).
This determines a linear ordering ≺=≺(x) of Π. By t-goodness, there are
b(1) < . . . < b(t) such that for all 0 ≤ j < t,

⋂b(j+1)
m=b(j)Wm is finite (where we

interpret b(0) as 1). Note first that b(1) > a(1), as otherwise h1
1 ∩ . . .∩ ha(1)

1
would be finite. This would contradict the fact that x is new relative to α1,
and all of the Aβ are good. Without loss of generality, we may assume that
b(1) = a(1) + 1. It then follows by similar reasoning that b(2) > a(2), and
again we may assume that b(2) = a(2) + 1. Continuing, we may assume



On partitions of lines and space 113

that b(t − 1) = a(t − 1) + 1. Thus, h1
t ∩ . . . ∩ ha(t)

t is finite. Also, by our
above remarks, we may assume that a(1) + . . . + a(t) = k, and each color
1 ≤ i ≤ k is taken on exactly once in the sequence h1

1, . . . , h
a(t)
t (that is, for

each i, there is exactly one h in this sequence which lies in Hi). For each
1 ≤ j ≤ a(t), let β(hjt ) < ωθ̄ be the ordinal such that hjt is new relative to
α1, . . . , αt−1, β(hjt ). Finally, put x into Si, where hlt ∈ Hi and l is such that
β(hlt) ≥ sup{β(hjt ) : 1 ≤ j ≤ a(t)}.

To show this works, fix an h ∈ Hi ∩ A. We show that |h ∩ Si| < ωθ̄.
Suppose |h∩Si| ≥ ωθ̄. Let α1 = α1(h), . . . , αt = αt(h), i.e., h is new relative
to α1, . . . , αt. If x 6∈ Aα1 , and x lies on h, then by definition of our coloring,
x 6∈ Si. There are no old (relative to α1) points x which lie on h, since the
Aβ are good. Thus there must be ≥ ωθ̄ points x ∈ Si which are new at α1

which lie on h. Continuing, we see that ≥ ωθ̄ points x ∈ Si which are new
at α1, . . . , αt−1 lie on h. There are < ωθ̄ points in Aα1,...,αt , hence we need
only consider x new at α1, . . . , αt−1, β, where β > αt. If such an x lies on h,
then the values of the β(hjt ), 1 ≤ j ≤ a(t), as computed for x, are all ≤ αt
from the definitions of the β(hjt ) and our coloring. Since h1

t ∩ . . . ∩ ha(t)
t is

finite, it follows that there are < ωθ̄ such x, a contradiction.

2. Infinite partitions. In this section we consider results related to
partitions of lines and points into infinitely many pieces. The analog of
Theorem 2 becomes the following.

Theorem 3. (ZFC) Let n ≥ 1. For any r ≥ 2, s ≥ 1 and any (r, s) finitely
determined partition H =

⋃
k<ωHk of H ⊆ P(Rn), there is a partition

Rn =
⋃
k<ω Sk such that |h ∩ Si| < ω for all i < ω and h ∈ Hi.

P r o o f. First, one proves in ZFC, by induction on η ∈ ON , the following
proposition:

Proposition P (η). If A is a collection of elements of H and points in
Rn, |A| ≤ ωη, and A ∩ H =

⋃
n<ω An is a partition which is (r, s) finitely

determined , and if f is a function with domain S = points in A such that
∀x ∈ S f(x) ⊆ ω, |f(x)| < ω, then there is a partition S =

⋃
n<ω Sn such

that each h ∈ An intersects Sn in a finite set , and , for all x ∈ S, x 6∈ Sa for
any a ∈ f(x).

Notice that P (2ω) implies Theorem 3.
In proving P (η), we may assume that A is good, that is, if h1, . . . , hr

lie in different An, then
⋂r
i=1 hi ⊆ A and if points x1, . . . , xs are in A, then

so are the finitely many h in H which contain them. Note that P (0) is
essentially trivial (see the proof of Corollary 9 below). For η ≥ 1, the proof
that P (η) holds is broken into cases depending on whether η is successor
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or limit. In each case, we write A as an increasing union of good sets, the
argument then being essentially identical to those given earlier.

As a special case of Theorem 3, we have:

Corollary 8. (ZFC) If the lines L in Rn (n ≥ 2) are partitioned into ω
disjoint pieces L =

⋃
k<ω Lk, then there is a partition Rn =

⋃
k<ω Sk such

that each line l ∈ Li meets Si in a finite set , for all i ∈ ω.

Still further generalizations are possible. For example, we may define
H ⊆ P(Rn) as being (r, s, κ) determined (or a partition being (r, s, κ) deter-
mined) where κ is an infinite cardinal as before, except that we now require
that the intersection of r distinct elements of H (or the intersection of r
elements of H lying in different Hn) has size ≤ κ, and for any s distinct
points at most κ many h ∈ H contain these points. Then we have:

Theorem 4. (ZFC) Let n ≥ 1, r ≥ 2, s ≥ 1 be integers, κ an infinite
cardinal. Let H ⊆ P(Rn) be (r, s, κ) determined. Then for any partition
H =

⋃
α<κHα into κ disjoint sets, there is a partition Rn =

⋃
α<κ Sα of

Rn into κ disjoint sets such that |h ∩ Sα| < ω for all h ∈ Hα.

The proof is a trivial generalization of that of Theorem 3; just start with
good sets of size κ.

Of course, since the last theorem and previous corollary are proved in
ZFC only, their conclusions imply no bound on the continuum.

Corollary 8 may be modified in a curious manner, which reintroduces
set-theoretic connections. The case p = 0 follows from Davies [D2].

Corollary 9. Suppose m is a positive integer and 2ω ≤ ωm. If the set
L of lines in Rn, n ≥ 2, is partitioned into ω sets, L =

⋃
k<ω Lk, then there

is a partition Rn =
⋃
k<ω Sk such that any line in Lk meets Sk in a set of

size at most m+1. More generally , if 2ω ≤ ωm, and the lines are partitioned
into ωp sets, L =

⋃
α<ωp

Lα, for p ∈ ω, then we may partition the points,
Rn =

⋃
α<ωp

Sα, so that |Lα ∩ Sα| ≤ m− p+ 1 for all α < ωp.

S k e t c h o f p r o o f. We show by induction on m ≥ 0 (working in
ZFC) that if A is a good set of lines and points in Rn (n ≥ 2) of size ≤ ωm,
L =

⋃
α<ωp

Lα is a partition of the lines in A, and f is a function which
assigns to each x ∈ S = A∩Rn a finite subset of ωp, then we may partition
the set S of points in A, S =

⋃
α<ωp

Sα, so that each line l ∈ Lα intersects
Sα in a set of size at most m− p + 1 and that for all x ∈ S, x 6∈ Sα for all
α ∈ f(x). For m ≤ p, the result is trivial (assign colors to the points of S
in a one-to-one manner avoiding the forbidden colors). If A is a good set of
size ωm, m > p, write A =

⋃
β<ωm

Aβ , with each Aβ good of size ≤ ωm−1.
For β < ωm, consider the new points of Aβ . Each such point lies on at most
one old line. For each such point, let f(x) = f(x) ∪ {j}, where x lies on an
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old line in Lj if one exists (otherwise set f(x) = f(x)). By induction, we
may partition the new points at β so that for any x ∈ Sα new at β, x lies
on at most m − p lines new at β in Lα, and also α 6∈ f(x). Since any line
new at β has at most one old point which lies on it, it is easy to see that
this partition of S works.

Considering the converse direction to Corollary 9 leads to some interest-
ing questions. For example, assuming CH, given a partition L =

⋃
k<ω Lk

of the lines in Rn, we may partition the points, Rn =
⋃
k<ω Sk, so that for

each l ∈ Li, |l ∩ Si| ≤ 2. Davies showed in [D2], answering a question of
[Er], that we may not always get |l ∩ Si| ≤ 1, even assuming CH. We will
strengthen this result in the next section. It is natural to ask, then, whether
this partition property implies CH, or has any strength beyond ZF at all.

Question. Is it true (or consistent) in ZFC that if the lines in the
plane are partitioned into countably many sets, L =

⋃
k<ω Lk, then we may

partition the points, R2 =
⋃
k<ω Sk, so that for each l ∈ Li, |l ∩ Si| ≤ 2? Is

the analogous statement for Rn true (or consistent)? More generally, do the
converse implications to Corollary 9 hold?

3. An ordinal partition property. We begin by considering the ques-
tion of whether the hypothesis 2ω ≤ ωm is necessary in Corollary 9. Sup-
pose that 2ω = ω2. The argument of Corollary 9 shows that we still have
the “two-point” partition property (i.e., for each line l ∈ Li, |l ∩ Si| ≤ 2)
provided we have the following:

(∗) For every set A ⊆ L ∪ Rn of lines and points in Rn of size ω1, and
any partition A ∩ L =

⋃
k<ω Lk of the lines in A, there is a partition

A ∩ Rn =
⋃
k<ω Sk such that for each line l ∈ Lk, |l ∩ Sk| ≤ 1.

Our previous argument showed that (∗) fails assuming CH, but it is not
immediately clear (∗) fails assuming just ZFC. We show below, however, that
this is the case. We first reformulate (∗) into purely set-theoretic partition
properties. Consider the following partition statements about ω1 (F. Galvin
pointed out to us that the properties P (ω1), Q(ω1) were introduced earlier
in [EGH], where they were shown to be false assuming CH):

P (ω1) For every partition P : (ω1)2 → ω, there is an h : ω1 → ω such
that for all α < β < ω1, if P (α, β) = i, then at least one of h(α),
h(β) 6= i.

Lemma 2. (ZFC) (∗)⇔P (ω1).

P r o o f. Assuming (∗), let P : (ω1)2 → ω be a partition. Let B ⊆ Rn
be an independent set of size ω1, i.e., no three points of A are colinear. Let
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A = B ∪ L, where L is the set of lines through two points of B. Applying
now (∗) to A produces an h : ω1 → ω as required by P (ω1), identifying ω1

with B. Assuming P (ω1), let A, L be as in the statement of (∗). Let {xα}
enumerate the points of A. Define P : ω1 → ω by P (α, β) = i iff the line
between xα and xβ lies in Li. Applying P (ω1) then produces an h : ω1 → ω.
This defines a corresponding partition of the xα which easily works.

Note that it makes sense to consider P (ω1) in just ZF. We reformulate
P (ω1) in a more suggestive manner of usual partition type properties:

Q(ω1) For any partition Q : (ω1)2 → ω, we may write ω1 =
⋃
k<ω Ak so

that for all k, Q([Ak]2) is co-infinite.

Note that in Q(ω1) there is no loss of generality in assuming the Ak are
disjoint.

Lemma 3. (ZF) P (ω1)⇔Q(ω1).

P r o o f. Assume first P (ω1), and let Q : (ω1)2 → ω be given. Let r : ω →
ω be onto with r−1(i) infinite for all i ∈ ω. Let P (α, β) = r(Q(α, β)). Let
h : ω1 → ω be as given by P (ω1) for P . Let Ak = {α < ω1 : h(α) = k}.
Then, for α, β ∈ Ak, r(Q(α, β)) 6= k, hence Q(α, β) 6∈ r−1(k). Assume now
Q(ω1), and let P : (ω1)2 → ω be given. Let {Ak : k ∈ ω} be as given
by Q(ω1) for the partition P . Let n0, n1, . . . be distinct integers such that
nk 6∈ P ([Ak]2) for all k. Let h(α) = nk for all α ∈ Ak. This easily works.

The following theorem of Todorčević (see Section 4 of [To]) immediately
implies that Q(ω1) is false in ZFC.

Theorem (Todorčević). Assume ZFC. There is a partition c : [ω1]2 → ω
such that c([C]2) = ω for all uncountable C ⊆ ω1.

Corollary 10. (ZFC) (∗), P (ω1), Q(ω1) are all false.

From the failure of P (ω1), it follows (in ZFC) that there is a partition
L =

⋃
k<ω Lk of a set L of lines in R2, with |L| = ω1, such that for every

partition R2 =
⋃
k<ω Sk we have |l ∩ Sn| ≥ 2 for some n and l ∈ Ln (cf. the

proof of Lemma 2). This strengthens a result of Davies mentioned earlier.
Todorčević’s theorem is proved in ZFC, and thus it remains possible that

Q(ω1) (or, equivalently, P (ω1)) is consistent with ZF. We in fact show that
Q(ω1) is a theorem of AD, and thus holds in L(R) assuming ZFC + large
cardinal axioms. In fact, we show a much stronger version of Q(ω1) under
these hypotheses. Consider the following strengthening of Q(ω1):

Qs(ω1) For every partition Q : [ω1]2 → ω, we may write ω1 =
⋃
k<ω Ak

where Q([Ak]2) is finite for all k ∈ ω.
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R e m a r k. It is easy to see directly that Qs(ω1) fails in ZFC (let {xα :
α < ω1} be an ω1 sequence of distinct elements of 2ω, and let Q(α, β) =
least i such that α(i) 6= β(i)).

Theorem 5. (ZF + AD + DC) Qs(ω1) holds.

P r o o f. We sketch two proofs. The first uses only the theory of indis-
cernibles for L(x), x ∈ R. The second uses the analysis of measures on ω1

of [J1]. The second proof, however, extends to cardinals other than ω1.

Let Q : [ω1]2 → ω be given. From AD, there is an x ∈ R such that
Q ∈ L(x). Let C = {ξα : α ∈ ON } be the canonical closed unbounded set
of (Silver) indiscernibles for L(x). Below, τ , σ denote terms in the lan-
guage of set theory with x as a parameter. Let τ be a term such that
Q = τL(x)(ξ0, . . . , ξn, β0, . . . , βm), where ξ0 < . . . < ξn < ω1 ≤ β0 <
. . . < βm ∈ C. For each α < ω1 we canonically choose a representation
α = σ(α)L(x)(θ0(α), . . . , θm(α)(α)), for some term σ(α) and θ0(α) < . . . <
θm(α)(α) < ω1 in C. For each α < ω1, let p(α) ∈ ω be an integer which
codes the term σ(α), m(α), and the manner in which the two sequences of
ordinals (ξ0, . . . , ξn), (θ0(α), . . . , θm(α)(α)) are interlaced (including which
of them are equal). For α, β < ω1, let q(α, β) ∈ ω be an integer which
codes how the two sequences of ordinals ~θ(α), ~θ(β) are interlaced. Let Ak =
{α < ω1 : p(α) = k}. To see this works, fix k ∈ ω, and consider Q¹[Ak]2.
Note that q([Ak]2) is finite. It thus suffices to show that if α < β, γ < δ
are in Ak, and q(α, β) = q(γ, δ), then Q(α, β) = Q(γ, δ). However, from
the fact that α, β, γ, δ ∈ Ak and q(α, β) = q(γ, d), it follows that the man-
ner in which (ξ0, . . . , ξn), ~θ(α), and ~θ(β) are interlaced is the same as that
for the sequences (ξ0, . . . , ξn), ~θ(γ), ~θ(δ). It thus follows by indiscernibility
that Q(α, β) = (τL(x)(ξ0, . . . , ξn, β0, . . . , βm))(σL(x)(~θ(α)), σL(x)(~θ(β))) =
(τL(x)(ξ0, . . . , ξn, β0, . . . , βm))(σL(x)(~θ(γ)), σL(x)(~θ(δ))) = Q(γ, δ).

For the second proof, fix again Q : [ω1]2 → ω. Let I ⊆ P(ω1) be the
countably additive ideal consisting of all A ⊆ ω1 such that A ⊆ ⋃k<ω Sk
where each Sk ⊆ ω1 is such that Q([Sk]2) is finite. Assume by way of con-
tradiction that I is a proper ideal (i.e., ω1 6∈ I). By Kunen, from AD, any
countably additive ideal on an ordinal κ < Θ can be extended to a measure
(i.e., countably additive ultrafilter) on κ. (Proof: Let µ be the Martin mea-
sure on the Turing degrees D. By the coding lemma, let π : R→ I be onto.
For d ∈ D, set %(d) = least α < κ not in

⋃
x∈d π(x). This is well-defined

since I is proper. Then %(µ) is a measure on κ giving measure 0 to all I ∈ I,
where %(µ)(A) = 1 iff µ({d ∈ D : %(d) ∈ A}) = 1.)

The claim of Section 2 of [J1] analyzes, assuming AD, all measures ν on
ω1. The result (somewhat restated) is that there is a function f : [ω1]m → ω1

for some m ∈ ω such that for all B ⊆ ω1, ν(B) = 1 iff there is a c.u.b. C ⊆ ω1
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such that f(δ1, . . . , δm) ∈ B for all δ1 < . . . < δm ∈ C. By applying
the finite exponent partition property on ω1 (with exponent 2m) finitely
many times, we get a c.u.b. C ⊆ ω1 such that for all pairs of increas-
ing sequences of length m from C, (α1, . . . , αm), (β1, . . . , βm), the value
P (f(α1, . . . , αm), f(β1, . . . , βm)) depends only on the manner of interlacing
of the two sequences. This C, however, then defines a measure one set with
respect to ν on which Q takes only finitely many values, a contradiction.

Corollary 11. P (ω1), Q(ω1) are consistent with ZF.

Finally, we state without proof some extensions of the above ordinal par-
tition properties. For cardinals κ, δ, let P (κ, δ) be the statement that for any
partition P : [κ]2 → δ, there is an h : κ→ δ such that for any α < β < κ, at
least one of h(α), h(β) is different from P (α, β). Let Q(κ, δ) be the statement
that for any Q : [κ]2 → δ, we may write κ =

⋃
λ<δ Aλ where for each λ,

δ−Q([Aλ]2) is infinite. Let also Qs(κ, δ) be as Q(κ, δ) except that we write
κ =

⋃
k<ω Ak, and we require each Q([Ak]2) to be finite.

The same argument given before shows that ∀κ, δ (P (κ, δ)⇔Q(κ, δ)).
Also, in Q(κ, δ), we may replace “δ −Q([Ak]2) is infinite” by “δ −Q([Ak]2)
has size δ”. The second proof given above for Qs(ω1) when combined with
the analysis of measures on δ1

2n+1 (see [J2] for the case n = 1) yields:

Theorem 6. (ZF + AD + DC) For all δ < δ1
2n+1, Qs(δ1

2n+1, δ) holds.

It is again easy to see that Qs(κ, δ) fails in ZFC for all uncountable κ and
infinite δ. We believe, however, that the Steel–Van Wesep–Woodin forcing
[W] for recovering ω1-DC can be used to show the following: (ZFC + ADL(R))
There is a model of ZF +ω1-DC + ∀δ < δ1

2n+1 (Qs(δ1
2n+1, δ) holds). Thus,

Qs(κ, δ) is consistent with small amounts of choice.
As S. Todorčević pointed out to us, one can show that Q(ω1), and hence

Qs(ω1), have consistency strength beyond ZFC. In fact, Q(ω1) implies ω1

is inaccessible to L. For if not, then for some x ∈ R, ω1 = ω
L(x)
1 . Let

c : [ω1]2 → ω be the Todorčević partition defined in L(x). Applying Q, let
A ⊆ ω1, |A| = ω1 be such that c([A]2) is co-infinite. The proof of Todorčević’s
theorem shows that in L(x,A), c retains the property that c([B]2) = ω for
all B ⊆ ω1 of size ω1. This contradicts c([A]2) being co-infinite.

The failure of P (ω1) in ZFC rules out one approach for showing the
“two-point” partition property (as in Corollary 9) in ZFC, or even from
2ω = ω2. The original question, stated at the end of Section 2, however,
remains. Note, however, that the consistency of ZF +¬CH +Q(ω1) shows
that the “ordinal version” of the two-point partition problem is consistent
with ZF +¬CH. Here “lines” refers to subsets of ω2 satisfying the usual
properties, i.e., two ordinals less than ω2 determine a line, and two distinct
lines intersect in at most one ordinal.
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