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CONFORMAL REPELLORS WITH DIMENSION ONE
ARE JORDAN CURVES

R. DANIEL MAULDIN AND M. URBANSKI

We show that a conformal repellor in R™ whose Haus-
dorff and topological dimensions are equal to 1 is a Jordan
curve. Moreover, its 1-dimensional Hausdorff measure is
finite and it has a tangent at every point.

Introduction. In this note we study the topological and metric
structure of conformal repellor X C R™, m > 1, of topological
dimension 1. The definition of conformal repellor is given in the
next two sections. We then show the following dichotomy: either
the Hausdorft dimension of X exceeds 1 or else X is a Jordan curve
(simple closed curve) and its 1-dimensional Hausdorff measure is
positive and finite. Moreover, in the latter case X has a tangent
at every point - X is smooth. This result generalizes Lemma 3 of
[PUZ] which is formulated in the plane case (m = 2). The proof
contained in [PUZ] uses the Riemann mapping theorem and can be
carried out only in the plane. The proof presented in our paper is
different and holds in any dimension. The reader is also encouraged
to notice an analogy between our result and a series of other recent
papers (see for examples [B, P, R1, S, U, Z1, Z2] ) which are
aimed toward establishing a similar dichotomy. However, to our
knowledge, all these results were formulated in the plane case and
have as a starting point the assumption that X is a continuum.
Then the dichotomy is only that either the Hausdorff dimension of
X exceeds 1 or X is a smooth curve.

THE SETTING. Let X be a nonempty compact subset of R™, U
an open set, X C U and f a map of U into R™ of class C1**,0 < q,
such that

i fX)cx
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(i1) thereis some k > 1 such that for each z in X and 0 # v € R™,
1D2 ()| > Jlv]l-

(iii) Nnpof™™(U)=X (X is a repellor for f).

(iv) if @ # V is relatively open with respect to X, then there is
some k > 0 with f*(V) = X. (f is locally eventually onto or
topologically exact.)

This is our fundamental setting. Our goal is to determine additional

conditions under which X must be a Jordan curve. We make the

following conjecture.

CONJECTURE . If dimyop(X) = 1, then either X is a smooth
Jordan curve or HD(X) > 1.

Towards this end, we shall assume from this point on that
(v) dimgep(X) = 1.

Our results are a mixture of dynamical, geometric and topological
methods some of which are laid out next.

1. Notations and theorems. Let us recall some facts and the-
orems we will require. First of all, since X is compact, by con-
dition (ii), we can fix B, 1 > B > 0, A > 1 and a compact
neighborhood U of X such that for each z in U, n > 1, and
0 # v € R™,||D,f"(v)|| = BA"||v||. We will make considerable use
of the following basic theorem which follows by repeatedly applying
the inverse function theorem.

THEOREM . There is some R, 1 > R > 0, such that for each
z in X, B(z,R) C U and for all positive integers n, there is a
homeomorphism ;™ of B(f*(z), R) — U such that f;"(f"(z)) = =
and f7"(f*(u)) = u, f u € B(f"(z), R).

We will say that X has a strong tangent in the direction 6 at x
provided for each 8, with 0 < 8 < 1, there is some 0 < r such that
XNB(z,r) C S(z,0,). We will use the following theorem. Since
we could not find it stated, we provide a proof.
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THEOREM 1. If X is locally arcwise connected at a and X has a
tangent 6 at a, then X has strong tangent 0 at a.

Proof. Suppose there is some 0 < 3 < 1 and points z, in X such
that for each n, |z, —a— < z,—a,0 > 0| > B|z,—a|. For each n, let
ay : [0,1] = X be an arc from a to z, with diam(a,) — 0. For each
n, note that since X has tangent 6 at a, there is some ¢,0 < t < 1
such that a,(t) € S(a,8,3/2). Let t, be the largest number such
that a,(t,) € S(a,0,3/2) and let s, be the first number larger than
t, such that a,(s,) € 95(a,0,8). Consider y, a point of the arc
a, from a,(t,) to a,(s,) at maximum distance from a and take z,
to be a point of this same subarc at minimum distance from a. If
|z —a|| < ||lyn—al|/2, then considering the projection of this subarc
on the line through a and y,,

H' (X B(a, |lyn — all)\S(a,6,/2)) > llya — all/2.

If ||zn — a|| > |lyn — a||/2, then, considering the projection of this
subarc on the sphere with center a and radius ||y, — a||/2, we get
HY (X1 Blas o~ aD\S(0,0,372) = (/20812 ~ . Thus,

X does not have a tangent at a.

REMARK. More generally, this theorem remains true if X is
only assumed to be connected im kleinen at a.

Let T be the set of points of X which are f-transitive with respect
to X; z € T if and only if w(z), the w-limit set of z is X, where
w(z) = Np>1<{fP(z) : p > n}. We recall that T is a dense Gs
subset of X and if 4 is an ergodic probability measure on X which
gives each nonempty open set positive measure, then u(7) = 1.

QUESTION. If 0 < H'(X) < oo, does there exist an ergodic
measure on X equivalent to H'|x which gives positive measure to
the nonempty open sets?

REMARK. Note that if m < H!|x = v, then mo f™! < v
and f is nonsingular with respect to v. So, we are looking for a
positive fixed point of the well-known Perron-Frobenius operator

P L) » D), where P)() = 3 () o),
vef1(z)
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The difficulty here is that except for the conformal case (where
dvof
dv

Radon-Nikodym derivatives,

(z) = f’(:v)), we do not know whether the distortion of the

%f, n > 1, is uniformly bounded
v

away from infinity.

LEMMA 1. Suppose conditions (i)-(iv) hold. If X has a degenerate
component, them the component of each transitive point of X is
degenerate.

Proof. Let z be a point of X such that the component of X con-
taining = is {z}. Let V be an open neighborhood of « with diameter
< R/2 and such that dx(V) = 0. Let z be a transitive point of X
and let {n;}$2, be an increasing sequence of positive integers such
that for each k, f**(z) € V. Then the sets {f; ™ (V )}z, form a
basis for the topology at z and 9x (fz_""(V)) = 0. O

2. The conformal case. In this section, we assume that condi-
tions (i)-(v) hold and, in addition (vi) f is conformal at each point
of X.

Our goal is to prove the following theorem.

THEOREM . Suppose conditions (i) through (vi) hold, then either
X is a smooth Jordan curve or HD(X) > 1. Moreover, if X is a
smooth Jordan curve, then f is topologically equivalent to z — 2z*
on the unit circle, where k is the degree of f.

We will make use of the following fundamental result. Suppose
conditions (i)-(iv) hold and condition (vi) holds. If HD(X) = ¢,
then 0 < HY(X) < 400 and there is and ergodic probability measure
u equivalent to H! which is positive on the nonempty open subsets
of X [R2]. To prove the theorem, let us assume HD(X) = 1. We
will make use of the corresponding ergodic measure . The theorem
will be proved be a series of lemmas.
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LEMMA 2. X is a continuum.

Proof. If each component of X were degenerate, then X would
have topological dimension zero. So, some component, C, of X is
non-degenerate. We have u(C) > 0, since H}(C) > 0 Actually,
every component of X is non-degenerate. Otherwise, by Lemma 1,
T, the set of transitive points is totally disconnected and C C X\T'.
But, u(X\T) = 0.

Since each component of X is non-degenerate and has positive
H'-measure, X has only countably many components and by Baire
category theorem, some component has a non-empty interior. There-
fore since f is topologically exact X is a continuum. O

QUESTION. Suppose conditions (i)-(v) hold and HD(X) = 1.
Is it true that X is a continuum?

We recall now that since X is a continuum and 0 < H}(X) < oo,
X has finite degree [EH]. Such continua are Peano continua and
also, X is a regular curve. Indeed, X is a continuum of finite degree,
see ((EH, Wh1]). We recall that a point z of X has order < n with
respect to X, ord(z) < n, provided there is a neighborhood base of
X at z such that the boundary of each of these sets with respect to
X has cardinality < n. Also, ord(z) = n means ord(z) < n and the
order of z is not <n — 1.

LEMMA 3. For each z € X, ord(z) > 2.

Proof. Let € X and assume ord(z) > 1. Since X is a continuum,
ord(z) = 1. In particular, there is a relatively open neighborhood V
of z with diameter < R/2 and such that card 0x(V') = 1. Let z be
a transitive point of X and let {n;}32; be an increasing sequence
of positive integers such that for each k, f**(z) € V. Then the sets
{f7™(V)}3Z, form a neighborhood basis for the topology at z and
card(aj(fz'”"(V))) = 1. Thus, the order of X at each transitive
point is 1.

On the other hand, X being arcwise connected, contains a set of
positive p measure consisting of points of order at least 2. Thus,
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some transitive point of X has order at least 2. This contradiction
proves the lemma. O

QUESTION. Suppose conditions (1)-(5) hold, HD(X) = 1 and
X is a continuum. Is it true that X has no end points, i.e., the
order of each point of X is > 27

Fix 7, 0 < 7 < a. Since f is of class C1**, we can fix some R;
suchthat 0 < Ry < RandVre X Vze B(f(:z:),Rl)

() 152 (F@) = 1) = Dy i (@) = =)
<Dy f I If (@) = 2l

Set -
K=T[(1+B7\7R]).
3=0

Of course, 1 < K < o0.

Let us make the following notations. Let z € X, n > 1 and z €
B(f”(a:),Rl). For 0 < k < nset z; = f** (f;n(f”(x)) = frk(z)
and z; = fr* (fx‘“(z)) So, zg = f™*(z) and zo = z. Notice that for
0<k<n-1,f(zks1) = zx and f(2zr41) = 2&. Also, note that for
each k,

(2) lox — 2l < sup 1Dy S5l - llzo — 2ol-

y€[zo,20)

We also make the conventions that 1 = [];; a; and Y a;=0.

Let 0 < R2 < min(B_lRl,Rl,B)\Rl).

LEMMA 4. Let z € X, n be a positive integer and z € B(f”(x), Rz).
Then V0 < k < n,

k-1 k-1
(3) llzx = zill < TLI1D=, 53,11 - llwo = zoll - TT (1 + lles — 2117
7=0 7=0

and

(4) llzk = zell < K| Dao f55 N - llzo = 2o]l-
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Proof. Inequality (3) is verified by induction on k. By convention,
it holds if k = 0. Now, [le1 — z1]| = || 5, (f(21)) = £}(20)] - Also,
| f(z1) — 20|l = ||lzo — 20| < Rz < Ry. So, applying (1), we find

e —21ll < 1D e S5t - 15 (1) = 20l ™+ | Doy S (F(22) = 20)] -

Again, since zo = f(z1),

llz2 = 2]l < [[1Deo 2,1l - llwo = 20[I(1 + [|z0 — 2o]|")-

Assume (3) holds for k,1 < k < n —1. Then ||zk41 — zk1]| =
F (f@en) = £51, ()| - Also, | f(2iar) = 2ll = 2k — 2.
From (2), we have || f(zk41)—2k|| < B7IA7*||zo—20]| < B™'A7IR, <
R;. Proceeding as before, we find that

k k
lzke1 = zkaall < TL D=, f4, 0 - lleo = zoll - TT (1 + llzs = z17).

7=0 7=0

Thus, inequality (3) holds for all £,0 < k < n. To see that (4)
holds note that for each j, it follows from (2) that

llz; — 2| < B7A7||zo — 20| < B7'A7Ry.
k-1
Also, since f is conformal, [] | D, fw‘]il" = ||Deo f3F]|. Inequality

7=0

(4) now follows from (3). g

LEMMA 5. For each € > 0, there is some 0 < r(€) < R, such that

the following statement is true:
Vo€ X VYn>1 Vze B(f(z),R(e)),

()
@) = EMM@) = D i 57 (2= (@) |
S| Dt (z = (@)
= €| Dy 5711 | (2 = £7(@))] -

Proof. Fix 0 < 3,7 such hat 8+ < 7. Let ¢ > 0. Choose
R(e) such that 0 < R(e¢) < Ry, KB™PR(¢)? < 1 and R(e)”(l +
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B"’Z /\'j") <e. Now, let £ € X and n > 1. Suppose z €
Jj=1

B(f"(m),R(e)). From (1) we have
(6) llz1 — 21 — Do 7, (20 — o) |

< IDm M- llzo = 2ol - [lwo — 2ol
For 0 < k < n, set Ay = ||zx — zx — Dy, ;k"(zo — g)||- So, Ag =10
and if 0 < k < n,
(7) Ag < “'Dl'k—l :;;l(zk-l - xk—l) - Dzo :v_kk(zo - xo)“

+ |lzk = 2k — Doy, £, (201 — 21 ||-

Applying the chain rule to the first term and (6) to the second term,

Ak S| Dayy fill - N2rmr — Tho1 — Dao f7.570 (20 — o)

Tk—1
A Dy FM - l26-1 = @l - 121 = @ [PH7

By conformality, [ Duy_, £571 - 1Dz S50V = Dy S5, s0 apply-
ing (4) to ||zk-1 — zk-1||, we have

Ak < || Doy, F 1 Ak=1 + K| Doy £ FI] - |20 — ol - |21 — 2o [|PF7.
By the conditions placed on R(e), K||zx—1 — zx—1]|° <1, so

(8)
Ak < Doy fM 181 + 1D £ - N1(20 = o)l - ll2k-1 =z ||

O

CLAIM . For1 <k <n,

k-1
(9)  Ap < |Daoffl - o — 2ol ™7 {1+ BT A7)
k =

J

Proof of claim. Since Ag = 0, by (8), Ay < || Dy, f2:H]- | 20— 20| 7.
Assume 1 < k < n and (9) holds, then by (8), conformality and the
fact that ||z — zi||Y < B7 A%,

k
Apy1 < || Dxy ;}ffl)“ |lz0 — zo[**7 - (1 + B—‘YZ’\_N) i

J=1
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In particular,

A=) = £ (@) = Dymiar S (2 = ()|
< 1De £ l120 = zoll - 120 — ol (1 | B-wix'“) |

< €| Dpna £ - 12 = f(2)]]-

O

LEMMA 6. deg > 0 Veg > e >0 Vz e X Vn2>1 Vuce
R™ 0 < ||lu|| < R(e)

(10)
(1), fM(2) + u]) € S(z, Dyney f7™(u), 26, BIAT"R(e)).

Proof. Fix ¢y > 0 such that if 0 < € < ¢, then ¢/1 — € < 2e.
Let y = f(2), where = € (f°(z), /"(2) +u). By (2), y — || =
If-™(2) — z|| £ B~*A7"||z — f*(z)||- It remains to show that y €
S(a:, Dnioy f2" (z — f"(m)),2e). Or, it remains to show,

’sin&(y — Z,Dgn(z) f7" (z - f”(:z:)))l < 2e.

From (5), we have

|7 = (£ @) | 2 0 = O | Dy £ (2 = (=) -

So , using the fact that |sin £(a.b)| < ||b— a||/rnin(“a||, Hb||), we
have

lsin &(y — 2, Dgn(g) fo " (z — f"(:c)))l < ] i - < 2e.

O

LEMMA 7. If X has a strong tangent at x, then X has a strong
tangent at every point y of w(z).

Proof. Let u € R™ be a unit tangent vector for X at z. By
compactness of X and S,,_1, there exists some v with |jv|| = 1
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and an increasing sequence {ny}%2, such that hm f™(z) =y and,
setting ux = D, f™*(u), lim uk/”uk” =v. Fix 6 >0 and let g>1

be so large that S.(z,u 6/4 rYNX =0 for every 0 < r < A79. We
claim that

(11) X (5(y,v,6,R(6/8)) =
By way of contradiction, suppose z € X ) S¢ (y, v, 6, R(5/8)). Then
if ny is large enough, z € XﬂSc(f”"(:c),uk, §/2, R(&/S)). Now by
Lemma 6
f7m(2) € S(, Dymey £ (2 = f™*(2)),6/4, B A" R(6/8)).
By conformality,
LDy fi™ (2= f(2)),u) = £(z = f™*(z), ux).

This implies that f;™(z) € X N S$°(z,u,6/4, B-*A~"R(6/8)). This
contradiction proves (11) which shows that X has strong tangent v
at the point y. O

COROLLARY . The continuum X has a strong tangent at every
point.

Proof. Since X is a regular 1-set, X has a tangent and and there-
fore a strong tangent at H'-a.e. point. Thus, X has a strong tangent
at some transitive point and therefore at all of its points. O

LEMMA 8. There are not three points y1,y2,y € X such that
Y1,Y2 € B(ya R(”/IG)) and 7!'/4 < ‘A(ylayvyZ)l < 37('/4

Proof. Suppose that three such points exist. Then there is some
€ > 0 such that for every z € B(y,€)

(12) y1,y2 € B(Z,R(?T/lﬁ)) and 7/4 < |4(y1,2,y2)| < 37/4.

Now, let x be a transitive point and n;,ns,ns,... an increasing se-
quence of positive integers such that for all k, f™(z) € X N B(y,¢€).
Applying Lemma 6 and (11), we see that for every k£ > 1,

/8 < IA( —""(yl),x,f;n"(yg))[ < Tr /8.
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Since f™(y1) and f; ™ (yz) both converge to z, this implies that X
does not have a strong tangent at z. This contradicts the corollary
and proves the lemma. O

LEMMA 9. Let x € X. If vy is an arc from x; # = to x5 # x €
X N B(z,R(r/16)), then |£(1,,22)| > 37/4

Proof. Suppose that |{(z1,z,z3)] < 37/4. Then by Lemma 8,
|£(z1,z,22)] < w/4.  So, either |{(z,z1,22)] > =/4 or
|£(z, 22, 21)| > /4. Let us assume |£(z,z1,22)| > 7/4. Again,
by Lemma 8, |{(z,z1,22)] > 37/4. Thus, |{(z,z2,21)| < 7/4.
As the point z moves along the arcy from z to zs, |£(z,z1,22)|
varies continuously from |£(z, 1, z2)| to 0. Since |£{(z,z2,21)| and
|£(z1,2,22)| also vary continuously, it follows from Lemma 8 that
both are bounded above by 7/4. Thus, we would find some z such
that the angles of the triangle with vertices z,,z and z; would not
sum to 7. This contradiction proves the lemma. O

LEMMA 10. For every z € X, ord(z) < 2.

Proof. Suppose that there is some y € X with ord(y) > 3. Since
X is locally connected, it follows from Menger’s, "n-Beinsatz” the-
orem ([K, p.277], [M, p.213]) that there are three arcs v;,7, and
vs C X all having y as a common endpoint and which are otherwise
pairwise disjoint. Choose 0 < é < R(7/16)/2 so small that each arc
~; contains a point at distance 6 from y. Also, let y;, 2 = 1,2,3 be
the first point on «; in the order starting at y at distance ¢ from y.
Let ~+; be the subarc of +; from y to y;. Thus

(’fl U ’fz) U(’fl U ’)73) U(’)’2 U ’)73) - B(y, (7"/16)/2)-
Applying Lemma 9, we get
(13) 1€ (1,9, 92)1, 1£(y1,9,43)], [£(y2,y,y3)| = 3m/4.

But, the inequalities |£(y1,y,y2)| > 37/4 and |{(y1,y,y3)| > 37 /4
imply that |£(y2,y,y2)| < 7/4 + 7/4 = 7/2 which contradicts (13)
and finishes the proof. O
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Now, to complete the proof of the theorem, we first quote the
fact (see [K, p.294]) that the only continua which have order 2 at
each point are simple closed curves. Let k be the degree of f. That
f acting on X is topologically equivalent to z — z* follows from
[Wh2, p.184].
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