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We show that there is a Bore1 measurable selection of Paretian utilities in ‘markets with a 
continuum of traders’. Theorem: Let T and X be Polish spaces, R a Bore1 subset of T x X xX, 
and B={(t,x): (t,x,x)ER}. Suppose that for each t, R,={(x,y): (t,x,y)ER} is a preference order 
on B, = {x: (t,x) EB). Then there is a Bore1 measurable function f: B-$0, l] such that for all 
t E IT; f,: B,+[O, I] is a Paretian utility or continuous representation of R,. This improves earlier 
results showing that there are universally measurable f. 
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1. Introduction 

Let Y be a topological space. A preference order, -C, on Y is a closed linear 
preorder on Y This means I is a binary relation on Y which is a closed 
subset of Y x Y and which is transitive, reflexive and complete. In other 
words, 5 is a linear order on the equivalence classes of Y given by x-y if and 
only if x<y and y<x. We write x<y provided x<y and l(ylx). We note that 
a linear preorder on Y is closed if and only if all sets of the form (y: yi_x) or 
{y: x<y} are closed in Y This concept was introduced by Debreu (1959) and 
is discussed in Hildenbrand (1974) and Hildenbrand and Kirman (1988). 

Debreu (1964) showed that any preference order 5 on E: where Y is second 
countable, can be realized by a continuous function f: Y+[O, 11, i.e., for all 
X,~VE I: xlyc*f(x) sf(y). Thus, f is a continuous representation of the 
preference order 1. Such a function f is called a Paretian utility for 5. See 
also, Mauldin (1984) and Rader (1963) and the discussion in Hildenbrand 
(1974). 
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A parameterized version of this problem or ‘preference orders in markets 
with a continuum of traders’ has been considered in Burgess (1985), Mauldin 
(1983) and Wesley (1976). Let T and X be Polish spaces and let R be a Bore1 
measurable subset of T x X x X such that for each t E 7; R, = {[(x, y): 
(t, x, y,) E R} is a preference order on the set B, = {x: (t, x, x) E R}. Here closed 
always means relatively closed in B,. We refer to the set 
B = ((t, x): (t, x, x) E R} as the field of R. Since the map f: T x X-T x X x X 
given by f( t, x) = (t, x, x) is continuous and B = f - ‘(R), B is a Bore1 subset of 
T xX. For t E 7; we write x sty for (t,x, y) E R. Thus, we are considering for 
each point or trade t, a preference order on the field B, where both the field 
of the preference order and the preference order vary in a Bore1 measurable 
fashion with t. Wesley (1976) using forcing methods, showed that if T = [0, 11 
and X = R”, then there is a Bore1 measurable function f: B+R such that for 
Lebesgue measure almost all t,ftis a utility for il. Mauldin (1983) improved 
this result. Using standard methods of set theory, he showed in the general 
setting, the existence of a selection f of Paretian utilities such that f is 
measurable with respect to a known family of universally measurable sets, 
9(T x X), the C-sets of Selivanovskii. Here 9’(T x X) is the smallest family 
of subsets of T x X containing the open sets which is closed under 
complementation and Suslin’s operation (&). This result also yields Wesley’s 
theorem as a corollary. 

The main problem which remained unresolved until now is whether there 
exists a Bore1 measurable function f: B+[O, l] such that for all t E T, the 
function f,: B,+[O, l] given by f,(x) = f(t, x) is continuous and represents sl. 
In other words, the question is whether there exist a Bore1 measurable 
selection of Paretian utilities. This would be the best possible result. In 
Cenzer and Mauldin (1983) it was shown that there is a Bore1 measurable f 
in a special case: each is not only a linear preorder, but is a prewellorder. 
We will show here that indeed such a Bore1 measurable function f exists in 
the general case. 

The starting point for the previous approaches involved first showing that 
there is a sequence, {f,},Zl, of universally measurable selections for B such 
that for each t, {f.(t)}.Z1 is order dense in B,. In particular, each function f, 
is a ‘uniformization’ of B. This means the graph of each function f, is a 
subset of B. Unless these functions can be chosen to be Bore1 maps [which is 
possible in certain cases as shown in Mauldin (1983)], the previous pro- 
cedure cannot lead to a Bore1 measurable parameterization. We give an 
example at the end to show that it is not always possible for the mapsj, to 
be Bore1 measurable. 

We state now the main theorem of this paper. Recall that a Polish space 
refers to a complete separable metric space. A function f: X+Y between 
Polish spaces is Bore1 measurable, or Bore1 for short, iff f-‘(U) is Bore1 for 
all open U c Y This is equivalent to saying [Kuratowski (1962), Theorem 1, 
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p. 384 and Theorem 2, p. 489), or Moschovakis (1980, 2E.4, p. 901 that 
graph (f)= {(x, y):f(x)=y} is a Bore1 subset of X x Y 

Theorem (boldface version). Let T and X be Polish spaces, R a Bore1 subset 
of T x X x X such that for each t, R, = {(x, y): (t, x, y) E R) is a preference order 
on B, = (x: (t, x) E B}, where B = {(t, x): (t, x, x) E R} is the field of R. Then there 
is a Bore1 measurable function f: B-+[O, l] such that for all t E T, f,: B, + [0, l] 
is a Paretian utility or continuous representation of R,. 

For the remainder of this section we fix some notation and present some 
standard results from descriptive set theory for the convenience of the reader. 
The reader wishing more background might consult Moschovakis (1980) or 
Kuratowski (1966). In section 2 we prove our main technical result, the 
existence of sectionwise open (or closed) Bore1 separating families. In section 
3 we do the main ‘Urysohn-like’ construction. This does not quite produce a 
representing function, but what we call an ‘almost representing’ function. The 
arguments up to this point use only the ‘easy uniformization theorem’, 
discussed below, and notions and results from classical descriptive set theory 
(what modern descriptive set theorists refer to as the ‘boldface’ theory). 
Finally we must modify this function to obtain a true representing function, 
and thereby complete the proof of the main theorem. We present two proofs 
for this last part of the construction, one in section 4 and one in section 5. 
The proof in section 4 uses still only the easy uniformization theorem, but 
uses some notions from effective descriptive set theory (the ‘lightface’ theory). 
The proof in section 5 uses only the classical notions, but makes appeal to 
the full uniformization theorem. The lightface arguments may prove to be 
necessary elsewhere, so we believe it is worth presenting both arguments. The 
reader sufficiently familiar with descriptive set theory may now skip directly 
to section 2. 

Throughout the rest of this paper 7: X denote Polish spaces, 
R c T x X x X is as stated in the theorem, and B= {(t,x): (t,x, x)> is its field. 
For t E 7; B, = {x: (t,x) E B} denotes the section of B at t. We rarely mention 
R but write instead x5 ty for R(t,x, y) and <* for R(t,x, y) A 1 R(t, y,x). If 
Cc T x X we will also write C(t) for the section of C at t to ease notation. 
We employ frequently the ‘logical notation’ common to descriptive set 
theorists. For example, if SC T x X we write S(t, x) interchangeably with 
(t, x) ES. Also, lS(t, x) means (t, x) #S. Throughout, o denotes the set of 
natural numbers. Clopen means both closed and open. 

Recall that a subset A of a Polish space is analytic [or in the terminology 
of Moschovakis (1980), C;] if A is the image of a Bore1 set under a Bore1 
measurable map [Kuratowski (1966, p. 478), Moschovakis (1980, p. 39)]. A 
set C is coanalytic (or ZI:) means its complement is an analytic set. 
Equivalently, S c X is analy?ic if it be written in the form S(x)o3y E YT(x, y) 
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where TcX x Y is Bore1 (equivalently, closed), for some Polish space Y 
Likewise, S is coanalytic if it can be written in the form S(x)oVy~ Y T(x, y), 
for Bore1 7: The class of analytic sets is closed under countable unions, 
countable intersections, and existential quantification over Polish spaces. 
Likewise, coanalytic sets are closed under universal quantification. Suslin’s 
theorem [Kuratowski (1966, p. 486) or Moschovakis (1980, p. 90)] says a set 
is Bore1 iff it is analytic and coanalytic. 

For the convenience of the reader we provide a quick review of the 
lightface notions. The reader wishing more background could consult chapter 
three of Moschovakis (1980). The reader intent on avoiding any lightface 
arguments can skip section 4, reading section 5 instead. In sections 224 we 
also use the notation of the lightface theory, but the reader may read these 
sections replacing Ci by ‘analytic’, Hi by ‘coanalytic’, and dt by ‘Borel’. 

As classical (boldface) descriptive set theory is developed in the context of 
Polish spaces, the effective (lightface) theory is developed in the context of 
recursively presented Polish spaces. Roughly, this means a Polish space with 
a countable dense set D= {ri: iew} such that the metric on D is effectively 
computable. All of the familiar Polish spaces (e.g. the reals Iw, the Baire 
space, C[O, 1)) are recursively presented. Below, X, I: T denote recursively 
presented Polish spaces. The classical notions of analytic, coanalytic, and 
Bore1 have lightface analogs Zi, ZI:, and d:, respectively. Briefly, a set SC X 
is C: (or more generally Z:(t), i.e., ‘C: in the parameter t E T’) iff it can 
written in the form S(x)o3y E YT(x, y) for some space Y where T CX x Y is 
II: [resp. n:(t)]. ZIY is the effective refinement of the notion of closed, which 
is sometimes denoted l7:. For x E ?; the set A CX is ZZy(t) if there is a 
Bc T x X in ZIY such that A = B,. S is ZI: iff its complement is Z:, and A: iff 
it is both Z: and #. A basic fact is that 2 = UrsTC:(t), and similarly for “1 
and A>. The collection of C: sets is closed under existential and universal 
quantification over the integers, and existential quantification over recursi- 
vely presented Polish spaces. Similarly, ZI: is closed under universal quantifi- 
cation over Polish spaces. A function f: X-t Y is A: iff graph (f) c X x Y is 
A:. Essentially all of the theorems of ‘classical’ descriptive set theory about 
the boldface classes have ‘effective’ analogs, replacing ZI: by ZZ:, etc. Because 
the lightface classes refine the boldface classes, one obtains a sharper result 
by proving the lightface version of a theorem. In fact, the lightface version 
implies the boldface version for all Polish spaces (not just recursively 
presented spaces) since any Polish space X has a presentation (ri: i~w) 
which is recursive in some parameter ZE I& 

We in fact actually prove the following sharper form of the main theorem: 

Theorem (lightface version). Let T, X be recursively presented Polish spaces, 
and R a Ai subset of T x X x X such that for each t, R, is a preference order 
on B, where B= {t, x): (t, x,x) E R} is the field of R. Then there is a Ai function 
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f: B+[O, 11 such that for all t E q f,: B,+[O, l] is a continuous representation 

of& 
As mentioned before, the arguments of this paper may be read by either 

the boldface or lightface reader. The latter will obtain the above lightface 
version of the theorem and the former, the boldface version. The lightface 
reader should read sections 1 through 4 for the complete proof. The boldface 
reader should read sections 2 and 3 replacing ‘Z:’ by ‘analytic’, ‘n:’ by 
‘coanalytic’, ‘A:’ by ‘Borel’, and ‘recursive’ by ‘continuous’, and then read 
section 5. We caution the lightface reader that when dealing with a sequence 
of sets A,,, if we say A, is ZI: (or Z:, etc.) we always mean that the sequence 
of sets is uniformly ZZ:, that is, the set A(x, n)ox~ A, is ZI:. Also, ‘Polish 
space’ means ‘recursively presented Polish space’ to the lightface reader. 

Finally, let us recall in detail some facts which will be used several times in 
the proof. They are consequences of the so-called ‘easy uniformization 
theorem’, but we give direct proofs below using only the countable reduction 
property for # sets. For the sake of completeness recall first the Novikov- 
Kondo uniformization theorem [Moschovakis (1980, p. 235)]: if ScX x Y 
is zt, then there is a function f with III graph which uniformizes S, that 
is, dam(f) = {x E X: 3y E YS(x, y)> and Vx E dom(f)S(x, f(x)). The lightface 
version for ZZ: sets is the Novikov-KondoAddison theorem. If Y is 
countable (e.g. Y=o) the theorem is easier, and sometimes referred to as the 
‘easy uniformization theorem’ [Moschovakis (1980, p. 202)]. We need only 
this easier version to establish the facts below which we need. 

Recall the reduction property for fl: [Kuratowski (1966, p. 508), 
Moschovakis (1980, p. 204)] says that if A, B are ZI: subsets of a Polish 
space, then there are ZIi sets Cc A, D cB such that C n D = 0, C u D = 
A u B. There is also a countable reduction theorem for infinitely many ZZ: 
sets A, [see again Kuratowski (1966, p. 508)]. To see this, let A,cX be ZI: 
sets. Define RcX x o by R(x, n)o(x~ A”). Thus, R is ZI:. Let R’c R 
uniformize R by the easy uniformization theorem. Let B,= {x: (x, n) E R’}. 
Then B, c A,, the B, are pairwise disjoint, and U.B, = U,,A. since R’ was a 
uniformization of R. 

We prove now two facts which will be used repeatedly in the paper [c.f. 
the A selection priciple [Moschovakis (1980, p. 203)]. We give direct proofs 
using only the countable reduction property for # sets. 

Fact 1. Let ScXxw be II: and with dom(S)=(xEX: Zln~~S(x,n)} a Ai 
subset of X. Then there are Ai functions f,: X-W such that dom(f,)c 
dam(S), Vm E o Vx E dom(f,)S(x, fJx)), and S = U,graph(f,). 

Proof. Let A,,, = (xEX: S(x, m)}, so A,E l7:. By the countable reduction 
theorem for II: let B,cA, be disjoint ZI: sets with U,B,=U,A,=dom(S). 
Since dam(S) is A:, the B, are actually A:. Let f, = B, x {m}. 0 
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Note that the domains of the& above are Ai sets (it is actually true that 
the domain of an arbitrary Ai function f: X+ Y is A:). Another useful fact 
which follows from the above is the ‘A selection principle’: 

Fact 2. Zf ScX xo is Z7: with dom(S)EA:, then there is a Ai function f: 
dom(S)+o such that Vx~dom(S), S(x, f(x)). 

Proof. Let f(x) = mox E B, where the B, are as above. 0 

2. The separating families 

We say the family (B,: nEo> of subsets of B is a separating family for the 
preference order if whenever (t,x), (t, y) E B and x<,y then for some now we 
have (t,x) qi B, and (t, y) EB,. We construct in this section two families {B,: 
neo} (resp. {B,,: new}) of Ai subsets of B, where each B, (resp. 8,) is 
upward saturated (see below) and sectionwise open (resp. closed). Recall that 
B, sectionwise open means that each section B,(t) is open in the relative 
topology on B, = {x: (t, x) E B). 

Let us make some more terminology and note some basic facts. A set 
CcB is ‘upward saturated’ means if (t,x) E C and x ty, then (t,y) E C. If 
E cB, then the smallest upward saturated set containing C is, sat”(C) = 
{(t, y): 3x[(t,x) E C and x ,y]. A set C is saturated means if (t,x) E C and 
x -ty, then (t, y) E C. An upward saturated set is, of course, saturated. There 
is a similar notion, satd(C), for the downward saturation of C. Note that the 
saturation, in any of the above senses, of a Ai set is C:. We will also consider 
the sectionwise versions of these notions. For example, if EcX and t E ?: 
then sat,(E) = {z: 3y~E(z-,y)}. Let L be the ‘strict’ preference relation; 
L= {(4x, y): x<,y} and let E = {(4x, y): x-~Y}. Both E and L are Ai subsets 
of T x X x X. To see this, set R = {(t, x,y): (t,y,x) ER). Clearly, R is a A: set, 
since fi =f-‘(R), wheref is the permutation map T xX x X into itself which 
interchanges the second and third coordinates (A:, C:, and fit sets are all 
closed under inverse images by recursive functions, just as Borel, analytic, 
and coanalytic sets are closed under inverse images by continuous functions). 
Now, E = R n i? and L = R\E. Note that 2 = {(t, x, y): y<,x} is also a Ai set. 

There is one technical observation which will play a role in our consider- 
ations. Fix t and note that the closure of a downward saturated set may not 
be downward saturated (although this is the case if each <t is a linear 
ordering). So, for AcB,, cl,(satP(A)) is not necessarily downward saturated. 
Fig. 1 indicates how this can occur. It can happen that there is some 
z ~cl,(satP(A)) and some w -r~ such that w $cl,(satf(A)). However, in this 
case, note that satp(cl,(satp(E)) = {u: u TV}. Thus, satp(cl,(satf(E)) is always 
both downward saturated and closed with respect to t. 
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Fig. 1. Shown is a section B, of a preference order on some EC T x [wz where points are 
preferred according to the values of their x-coordinates. Here, A, converges to, but does not 

contain z. We have cl,(sat,d(A,)) = A, v {z}. 

The main ingredient in the proof of the theorem is the following lemma. 

Lemma I. There is a sequence of Ai subsets (&)T= o of B c T x X satisfying: 

(i) for each n and each t, B,(t) is upward saturated (and, therefore, saturated) 
and B,(t) is open relative to B,, and 

(ii) if x<,y, then, for some n, (t, x) +! B, and (t, y) E B,. 

More succinctly, Lemma 1 asserts the existence of a A:, upward saturated, 
sectionwise open separating family. 

Proof: Let V,, U,, U3,. . . be a recursive presentation for the topology of X 
[see Moschovakis (1980, p. 128)]. (In the boldface case, simply take any 
enumeration of a base for X.) Define G c T x w x w by 

G(t,i, j)oVz,Vz,[(z, ~satp(cl,(satp(U~ n B,))) A zz E Uj n B,)+zI <z,]. 

We claim that G is a ZI: subset of T x o x o. This is immediate from the 
closure properties for ZI: once we observe that the relation Hc T x CO x X 
defined by H(t, i, zl)ozl E satp(cl,(satp( Ui n B,)))is C:. To see this, note that 
H(t,i,z,)o3w3{y,: nEo)[w-,z, h (Vn E w, y, E satP( Ui n B,)) A (y, converges 
in X to w)]. Here {y,: n E o} denotes an element of the Polish space X” = the 
set of sequences from X [note: X” is a (recursively presented) Polish space if 
X is - c.f. Moschovakis (1980, 3B.3, p. 133)]. From the closure properties of 
C: sets and the fact that the downward saturation of a Et set is Zj we see 
that H is Z:. 

Define now AcTxXxXxwxo by A(& x, Y, i, &+(x-Q) A 
XE Ui A YE Uj A G(t, i, j)]. Thus, A is also II:. We claim that for all (t,x, y) 
such that x<,y that 3 3j A(t,x, y, i, j). To see this, fix t, x, y with x<,y. First 
suppose that for some z that x<,z<,y. Then let i, j be such that x E Ui n 
B, c (w: m-&z}, and y~U~nB,c{w: w>,z}. Then A(t,x,y,i,j) since 
satf(cl,(satp( Ui n B,) c {w: w ,z}. The case where there is no z strictly 
between x and y is similar, since in this case (w: w tx} is (relatively) clopen. 

Applying Fact 2 of section 1 to A (viewing the domain of A as 
L= {(t, x, y): x<,y}) now yields a Ai function h: L-W x w such that for all 
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(t, x, Y) EL, 44 x, Y, MC x, Y), hdt, x, Y)), where h(t, x, Y) = (Mt, x, Y), hk x, Y)). 
Let SC T x o x o be defined by S(t, i,j)o3x3y[x<,y A h(t,x,y)=(i, j)]. Thus 
S is C:. Clearly SC G. Hence by the separation property of C: sets 
[Moschovakis (1980, p. 204)] there is a Ai set U such that S c U c G. Apply 
now Fact 1 of section 1 to U. This yields a sequence of Ai functionsf, with 
dom(f,) c dom( U) c T such that U = U,graph(f,). 

Temporarily fix an n EW, and we define B,. The construction uses an 
infinite iteration of the operations of descriptive set theoretic separation, 
upward saturation, and adding sets sectionwise open. Define first two subsets 
D,‘,D;ofTxXby 

(t, X) E DA+d(i, j)[f.(t) =(i, j) A x E satp(cl,(satP( Ui n I$)], 

and similarly. 

(t, X) E Dz(t, x)-3(& j)[f.(t) =(i, j) A x E sat:( Uj n B,)]. 

Notice that Df and 0,’ are disjoint Zi, Dlf is downward saturated, 0,’ is 
upward saturated, and 0,’ is sectionwise (relatively) closed. By the separation 
theorem for Z:, there is a Ai set F0 such that F, I Df and F, n 0,’ = a. 

Next we claim that there is a Z: set G, c T xX with F, c Go, Go A 0.’ = 
@, and Go sectionwise open. To see this consider the relation Kc T x X x w 
defined by K(t, x, i)oF,(t, x) A (x E Vi) A Vz(z E (Vi n B,)-+z $0.‘). So K is ZI:. 
Also, for every (t, x) E F, there is an i~w such that K(t, x, i), since Df is 
sectionwise closed. Applying Fact 2 of section 1 to K produces a d: function 
r: F,,+w such that for all (t, x) E F,, K(t, x, z(t, x)). Then let G,(t, x)o3y3m EO 
[(F,(t, y) A z(t, y) = m A x E U, n I?,]. Finally, let If, = sat”(G,). So, Ho is also 
Zi, is upward saturated, and disjoint from 0,‘. We are now in a position to 
repeat the above arguments starting with Df and If, instead of 0,’ and 0:. 
Continuing, we produce sets F, c G, c H, c F, c G, c H, c . . . c F, c Gk c 
H,c . . . . Let B,= UkFk. Then B, is disjoint from Df since all the F, are, is 
upward saturated since all the H, are, is sectionwise open since all the Gk 
are, and is Ai since all the F, are Ai and the relation F(t,x, k)o(t,x) E F, can 
be seen to be Ai (note: in the boldface case we use only that a countable 
union of Bore1 sets is Borel). 0 

It is easy to see that a slight variation of the above construction produces 
a separating family (B,: n E o> of Ai subsets of B which are upward 
saturated and sectionwise closed (e.g. do the above argument making the B, 
downward saturated, instead of upward saturated, and then take comple- 
ments relative to B). 

3. The main construction 

Fix for the rest of the argument a separating family {B,: n EO} of Borel, 
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upward saturated, sectionwise open subsets of B, and a separating family 
{B,: n E co} of Borel, upward saturated, sectionwise closed subsets of B. Recall 
that B,(t) = {x: (t, x) E B} denotes the section of B, at t, and similarly for other 
sets. Recall also that when referring to a section of a set, such as B,(t), open, 
closed always refer to the relative topology on the section. 

We produce in this section a function F: B-CO, l] which is an ‘almost 
representing’ function. To be precise: 

Definition. F: B+[O, 1) is an almost representing function for the preference 
order R if F is a Ai function which is sectionwise continuous, invariant with 
respect to wf, non-decreasing on each section with respect to <1, and for all 
t, x,y if x<,y and there are at least five distinct wt classes strictly between x 
and y, then F(t, x) < F(t, y). 

It is because of this last clause that we only have an almost representation. 
In section 4 we modify F to obtain a true representing function. 

The idea of the construction in this section is quite similar to that of 
Urysohn’s lemma in topology. We construct a family of sets C,, and use this 
family to define F. 

We first introduce two relations, which we denote c c and c,, , between 
the sections B,(t), B,(t). Define FcTxwxoxo by F(t,n,m,i)o 
(i=O A Vx[B,(t,x)+&(t,x)]) v (i= 1 A Vx[&,,(t,x)+B,(t,x)]. So F is # and 
VtVnVm3i F(t, n, m, i). By Fact 2, let f: T x o x o+{O, l} be Ai and uniformize 
F on the last coordinate. For t E T, n, m EO define B,(t) c c B,,,(t) iff 
f(t, n, m) = 0. Note that B,,,(t) c B,(t) implies B,(t) c c B,,,(t), and if B,(t) c B,,,(t) 
but not _B,(t)c c&,(t) then B,(t)c&,(t). Also, for any n, memo, {t E T: 
B,(t)c cB,(t)} is A:, sincefis A:. 

Similarly define G(t,n,m, i)c T x w x co x o using B,(t), B,(t) instead of 
B,(t), B,,,(t), and get a corresponding Ai function g: T x o x w-+(0, l}. Define 
B,(t) c c B,(t) analogously. 

For t E 7; n, m E o define B,(t) c ,J3,(t) r&(t) closure is strongly contained 
in B,(t)‘] to hold provided 3k~o [B,(t)c c&(t)c c&,,(t)]. Note that c,, 
need not be transitive. However, for n, m EO, {t ET : B,(t) cJ?,(t)} is A:. 

Without loss of generality assume that B, = &, = B and B, = 8, = fa. Let 9 
be the set of dyadic rational numbers in [O, 11, i.e., rationals I of the form 
I = i/2” for some n and 05 ij2”. Let 9,,,c9 be those rationals of the form 
i/2” for 0 5 i 5 2”. 

Our next goal is to define the family {C,: I ~9) of Borel, upward 
saturated, sectionwise open subsets of B. The C, will be nested in that if I < s 
are in 9 then C,c C,, and in fact we will have that on each section 
cl,JC,) = C,. 

We define the C, in stages. At step n we define C, for each I ~9,,. At the 
same time we define at step n a Ai function 0,: T x 9~+0. We will also have 
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that 19,+, extends 0.. The C, will be related to the B, by C,(t) = Bonct, ,,(t), for 
rE9”. 

First, set C,, =B,,=B, C, =B, =@. Also, set &(t,O)=O and 0,(t, 1) = 1. 
Suppose now that Ckizn and 8, have been defined, where 0 Sk S2”. We 

define C1,2n+ 1 for 0 5 1$2”+l and extend 0, to 8,+ 1. If 1 is even, we set 
C 1/z”+ ’ = C(l,2),2”, and set e,+,(t,1/2”‘l)=e,(t,(1/2)/2”). For I=2m+l, we 
define CtZm + lj,z” +, c B as follows: 

(G4EC (Zm+ 1)/Z”+ lo3PCP $ ientt, r): 

rE%.> A (C~2m+2)~2n+~ 0) = cP,(t) = clc2m,2”+ 40) 

A for the least such p we have 

-=-3PCP 4 U%(tv r): 

r E %I A (B&@,(2m + 2),2 “+ l)tt) c clBJt) c clBB,(f, Zm/Z"+ l)ft)) 

A (t, x) E B, for the least such p] 

v Cl 3~{ * * * > A (t, ~1 E B~,ct, 2m/2”+ lJt)l* 

Thus C~2mC1j,2”+L is A :. In fact, inspection of the above argument shows 
that the C, are uniformly A:, that is, the relation C(r, t)oC,(t) is also Ai. 
Also, C (2m + 1j,2” + 1 is upward saturated and sectionwise open since each B, is. 

We define Bn+l(t,(2m+ 1)/2”+‘) =least p$ {ll,(t,r): r~9”) such that 
C(2m+2j,2”+ I c~,B~(~)c~~C~,,,,~~+~ if such a p exists, and otherwise set 
tln+l(t,(2m+ 1)/2”“)=8,(t,2m/2”“). Clearly 0n+l is a Ai function extending 
e 
“This defines C, for all r ~9. We let 9= U&,: T x ~-WI. Thus, C,(t) = 

BBct, ,,(t) holds for all t E 7; rE9. In summary, the C, are A:, upward 
saturated, sectionwise open, and if r es are in 9 then C,c C, (the last 
property following easily from the construction). 

We prove some additional facts about the C,. 

Lemma 2. Let r c s E 9, t E 9, and suppose C,(t) - C,(t) has infinitely many -f 
classes. Thenfor some peg with r<p<s we have C,(t)$C,,(t)$C,(t). 

Note that it follows that C,(t)cJ,(t) c ,,C,(t) since from the definition of 
the C, we have that whenever a< b are in 9 then either C,(t)c,,C,(t) or else 

C,(t) = C,(G 
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Proof: Take n so that Y = i/2”, s =j/2” where 0 5 i <j 2 2”. Without loss of 
generality we may assume that j=i+ 1. Let d, u, u, w be such that d<,uitv 
xtw and d, a, u, WE C,(t)- C,(t). Since the I$, & were separating families we 
have that for some I,p,q~m that WEB,(~), u$fi,,(t), u~B,&t), u$B,(t), 
u E B,(t), d $ B,(t). It follows that C,(t) c dc(2i+ 1)/2”+ ’ c cIcAt). If c(2i+ 1)/2”+ ’ # 
C,(t), C,(t) we are done. Otherwise, set si=s and r,=(2i+1)/2”+’ if 

c(2i+ 1)/2”+ ICt) = cr(t)9 and set s1=(2i+1)/2”+’ and rl=r if C~Zi+l),Zn+I(t)= 
C,(t). Repeat the argument using si, ri instead of s,r to get s2,r2, etc. Note 
that for all k we have 

since in the definition of CtSk+lk)12(t) we are in the case 
, . 

(in definition of C,) 
where 3p { ... j. Hence from the minimality clause in the definition of C, it 
follows that for some k we must have C (sL +r,)12(t) = B,(r). Hence, C,(r) = 
C,,(r) $G Csr +r&9/2 (6 = B,(t) 4 C,,(t) = C,(t). 0 

Lemma 3. For all r < s E 9 and t E T we have clg,(C,(t)) c C,(t). 

Proof: Let TV IT; new, 05 i<2”, and consider r=i/2”, s=(i+ 1)/2”. Let 
u=(r+s)/2=(2i+ 1)/2”+l. It is enough to show that c&JC,(t))c C,(t) and 
cl,*(C,(t)) c C,(t). If in the definition of C,(t) the first case applies (i.e. 3p{. . . }) 
then C,(t)c,,C,(t) c,&,(t) and we are done since C,(t) c&,(t) implies 
cl&(C,(t)) c C,(t), etc. Otherwise, from the definition of C,(t) we have 
C,(t)=C,(t). By Lemma 2, C,(t)-C,(t) has only finitely many wT classes. If 
C,(t)=C,(t), then by induction we have cl,*(C,(t))c C,(t), so C,(t)=C,(t) is 
(relatively) clopen and we are done. If C,(t) #C,(t), then C,(t) must have a -f 
least class, and again C,(t) is clopen and we are done. 0 

We define now the function F: B+[O, l] which will be the almost 
representing function. 

Define F: B+[O, l] by F(t,x)=inf{r~& (t,x)$Cr). Clearly F is well 
defined and maps B into [0, 11. F is also non-decreasing on each section 
since each of the C, is upward saturated, and F is also invariant with respect 
to -* since each of the C, is. 

We prove a few lemmas concerning the function F. 

Lemma 4. F is a Ai function. 

Proof We have F(t,x) = yoVN ~aElr~g[r <y+ l/N A (t,x) # C,] A 



372 S. Jackson and R.D. Mauldin, Bore1 measurable selections 

Vr E Q[(t,x) 4 C,.-+y j r]. Clearly the graph of F is At, hence F is a Ai 
function. 0 

Lemma 5. For all t E ‘T; F, = F(t, .) is continuous (from B, to [0, 11). 

Proof: Fix t E Tand XE B,. First we show that F, is right continuous at X. If 
there is a i, least class greater than x the result is trivial, so assume 
otherwise. 

Case 1. For some rE9, C,(t)={yEB,: x<,y}. If there are two distinct rl, 
r2 ~9 with C,,(t) = C,,(t) = (YE&: xity}, then by Lemma 3, C,(t) is (relati- 
vely) clopen, and the result is trivial. So, assume there is a unique r such that 
C,(t) = {DEB,: x<~Y}. In this case clearly F(t,x)=r. Since there is no least 
class greater than x (more precisely [x] _,) it follows that for all r’ ~59 with 
r’ > r that 3y>,x(y $ C,.(t)). Hence for any r’ > r 3y>,x with F,(y) 5 r’. So F, 
is right continuous at x in this case. 
Case 2. For all rE9, C,(t) # {DEB,: xi,y). Given E>O let r ~9 be such 
that (t, x) 4 C, and 1 F(t, x)-r ) c E. By the assumption of this case there is a 
y>,x such that (t, y) # C,. Thus F,(y)sr, so 1 F,(y)- F,(x) 1 cc. 

We now show that F, is left continuous at x. We assume w.1.o.g. that there 
is no -f largest class less than x. 

Let r,,, s0 E 9 be such that x E C,,, x $ C,,(t) and I F,(x) - so I c E, where E > 0 
is given. Without loss of generality we may assume that ro=i/2”, so = 
(i+1)/2” for some i, n. Let uo=(ro+so)/2=(2i+1)/2”+‘. Set rl=rO, sl=uo if 
x$C,,(t), and set rl=uo, sl=so if x~C,,(t). Thus, x#C,,(t), x~C,~(t), 
xE&(t), and sr-rl =+(so-ro). Continuing, we get rk<skEQ with x#C,,(t), 

x~C,~(t), and I sk-rk ( c E. If now yl,x and YE C,,(t) then F,(y) 2 rk, so 

1 F,(Y) - F,(x) 1 <cc 0 

Thus, F is sectionwise continuous. Our next lemma completes the proof 
that F is an almost representation. 

Lemma 6. For all tE ‘I x, YE B, with x<,y if 3z1, z2, z3, z4, zs such that 
x<,zIit... <tzs<,y, then F,(x)<F,(y). 

ProoJ Fix t,x,y,zI ,..., zs as above. We first claim that for some SET that 
y E C,(t) and x 4 C,(t). To see this, first take ro, so E 9 with r. = O/l, so = l/l so 
that y$ C,,(t) and x E C,,,(t). Assume rk <s,E~~ have been defined with 
y$ c,,(t) and x E c,,(t). Let uk =(rk+Sk)/2. Note that there are iIItegtXS p, q, 
and e such that YEB,, z,$B,, zseBq, z4# B,, z4~Bp, and z,$B,. It follows 
that 3p[p $ {0(t, r): r E .&I A C,,(t) c .,B,( t) c &(t)] [recall here that if 
B,(t) $ B,(t) then B,(t) c c BJt)]. Therefore, f?(t, uk) $ (@t, I): r E z&}. Let 
rk+l=rky sk+l=uk ifY$c&), and r k+ 1 =uk, Sk+ 1 =sk if x E c&) cif YE cuk(t) 
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and x$ C,,(t) we are done]. For large enough k it follows using the 
minimality clause in the definition of C, that y E C,,(t) and x $ C,,(t), since for 
each k C,,(t) c ,,B,(t) c JZJt), and hence B,(t) must be C,,(t) for some large 
enough k. 

Fix now so9 such that y E CS(t) and x # C,(t). We claim that for some 
rug with I #s that YE C,(t), x4 C,(t) (note: we may have r<s or r>s here). 
To see this, repeat the above argument using the fact that either z1,z2, z3 # 
C,(t) or z3,z4,z5~C,(t) and that only three z points are sufficient for the 
above argument. By renaming r,s if necessary we may assume that T < s. 
Thus we have r < s and y E C,(t), C,(t), and x # C,(t), C,(t). Hence, F(t, y) 2 s 
and F( t, x) 5 r, so F( t, x) < F( t, y). IJ 

In summary, we have produced a A : F: B+[O, 1) which is sectionwise 
continuous, invariant, non-decreasing, and iff x<,y with at least live distinct 
-I classes strictly between x and y then F(c,x) <F(t, y). In particular, note 
that if each section B, is order dense in itself with respect to xr then F is 
already a representation. 

4. Getting the representing function 

We now proceed to modify our ‘almost representing’ function F to obtain 
a representing function F. We need nothing from sections 2 and 3 other than 
the existence of the almost representing function F. 

Fix for the rest of this section an almost representing function F: B+[O, 11. 
The idea of this section is to add to F countably many new functions f, 
which will separate the ‘gaps’ which F fails to separate. The set of gaps (i.e., 
(t, x, y) with x<,y and such that there do not exist five distinct -f classes 
strictly between x and y), however, is not in general A:. Instead, we exploit 
the fact that we already have the almost representing function F, which 
allows us to do a separation argument. 

Define U c T x X x X by U(t, x, y)ox<,y A (F(t, x) = F(t, y)). Clearly U is 
A : and saturated. Note that if U(t,x,y) then there are at most four wf 
classes strictly between x and y. 

We need to introduce a more or less standard coding for the A:(t) subsets 
of X, uniformly in t. Although this is quite a standard construction, this is 
the place in the argument where we seem to need to invoke the lightface 
classes. We recall the construction. Let A TV x T x X be universal n: for 
subsets of T x X [see Moschovakis (1980, section 3F)], i.e., every II: subset 
of T x X is of the form {(t,x): A(n, t, x)} for some LEO. It follows that for 
each t E T that A, = {(n, x): A(n, t, x)} is universal for n i(t) subsets of X. Let 
rz+(n,-,, nr) be a recursive bijection between w and w x w, and let (a,b)+(a, b) 
be its (recursive) inverse. Define &, A, c w x T x X by A,(n, t, x)oA(no, t, x), 
and A,(n, t,x)=-A(nl,t,x). So, A,, A, are n:. Let C, I) be n: and reduce A,, 
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A,, that is, CnD=@, CuD=A,uA,, A,,-A,cC, and A,-AocD. We 
define a set CO which is our set of codes for A t(t) subsets of X. Define 
COcoxT by CO(n, t)&‘x[C(n, t, x) v D(n, t, x)] WxCA,(n, t, 4 v 
A,(n, t,x)]). Thus, CO is Z?:. If (n, QECO, we say that n is the code of a A:(t) 
subset of X. Specifically, if (n,t)~ CO, let &={xEX: C(n,t,x)} ={xEX: 1 
D(n, t, x)}. Thus if (n, t) E CO, S,, t cX is A i(t). 

Returning to the proof, define Vc T x X x X x o x w by: 

V(t,x,y,i, j)-=U(t,X,y) A CO(i,t) A CO(j,t) A XESi,t 

A (S,,, A is downward saturated with respect to 5,) 

A (S, t is upward saturated with respect to 5,) 

A (Si, , u S, f = B,) A (Si, f, Sj, I are relatively open in B,). 

Writing this out in full we have 

V(t,x, y, i, j)oU(t,x, y) A CO(i, t) A CO( j, t) A C(i, t, x) 

A C( j, t, y) A Vz(D(i, t,z) v D( j, t,z)) A vz( 1 D(i, t,z)+B(t, z)) 

A b’z( 1 D( j, t, z) --+B( t, z)) 

A VzVw[(lD(i,t,z) A w<,z)+C(i,t, w)] A VzVw[(lD(j,t,z) 

A wb++C( j, t, w)] A vz[B(t,z)-+(C(i, t, z) v C( j, t, w))] 

A Vz[lD(i,t,z)+3k~o(z~U~ A VW{WE U,nB,+C(i,t,w)})] 

A Vz[lD(j, t,z)-+3kEw(zEU, A Vw(w~U,nB,+C(j,t,z)))]. 

Written out it is evident that Vis ZI:. 
Note that for all t, x, y such that U(t, x, y) there are i, j E o such that V(t, 

x, y, i, j). To see this, suppose U(t, x, y). Let z1 <r. . . -Cr.zk, k 5 4, be 
representatives from the wf classes strictly between x and y (we allow k=O, 
i.e., there are no -t classes strictly between x and y). Let U, V be disjoint 
basic open sets with x E U, z1 E V (or y E 1/ if k=O), and such that 
Uc{w: w tx} and I/c{w: w&z,). Let E=sat$UnB,), and F= 
sat:(v A B&. Then E, F are disjoint C t(t) sets with E u F =B,. Also, E and F 
are both relatively open in B,. Since B, E A i(t), we actually have E, F E A f(t). 
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Consequently there are i, j E w such that CO(i, t), CO(j, t), Si,t = E, and 
S,,, = F. Then V(t, x, y, i, j) holds. 

By Fact 2 of section 1, there is a Ai function g: U-W x o uniforming Van 
the last two coordinates. That is, for all (t,x, y) E U, V(t,x, y,g,-,(t,x, y), 

g,(t, x9 y)) where go9gl are defined by g(t, x, Y) = (go(t, x, y),gr(r, x, Y)) for 
(t,x,y)~U. Let g’: U-W be defined by g’(t,x,y)=(g,(t,x,y),g,(t,x,y)). Thus, 
for all (t,x, y) E U, V(t,x,y,g’(t, ~,y)~,g’(t,x,y)~) holds. Define Hc T x o by 
H(t, n)oIx 3y (U(t, x, y) A g’(t, x, y) = n). Thus H is C :. Define also I c T x o 

by 

m n)eCO(n0, t) A CO(n,, t) A (S”,, f A SW, f = !a 

A CL,, (=Bt A &,,tch) 

A (L, is downward closed with respect to 3,) 

A (S,,, t is upward closed with respect to 5,) 

A (SW” SW=&) A 

(S,,,,, S,,,,) are relatively open in B,). I is ZZ : by a computation similar to 
that for K Clearly H c 1. So, let J c T x co be A : and separate H, (T x co) - I, 

that is, HcJcZ. 

Since J is d i, we may easily express J as the countable union of graphs of 
partial A : functions j, [proof: define j, by j”(t) = 
pop= n A (t, n) EJ]. That is, J = U. graph( j,). Note that for each n, the 
domain of j, is a A : subset of lY Also, the sequence of j, is A i, that is, the 
relation of three arguments‘j,(t) =p is A :. 

For each n EW, define now a functionf,: B+[O, l] by 

; 

0 if t$dom(j,) 
f.(t,x)= 0 if t ~dom(j,) and XES~~(~)~, t. 

1 if t E dom( j,) and x E Sin(t),, t 

Since for t E dom( j,) we have x E Sjnfrjo, f iff C( jJt)o, t, x) iff 1 D( jn(Qo, t, x) 
[since CO( jn(t)o, t)], and similarly for S. ,n(fI,,b it follows that the graph off, is 
A f. Hence f, is a Ai function. Moreover, as a relation of four arguments, 
f.(t,x)=i is A:. 

Note also that f.: B+[O, l] is sectionwise continuous. This follows since for 
all to T the function f,, f =f.(t, a): B,+[O, l] is either the constant 0 function 
or else the characteristic function of the (relatively) clopen set Sjn(t),: 1= 

4 - Sjn(f)o. f’ Also, f, is clearly non-decreasing on each section and invarrant 
under rt. 

Let F: B+[O, l] be defined by &t,x)=F(t,x)+&_,(1/2”)f,(t,x). Clearly F 
is sectionwise continuous since F and the f, are. F is also easily A : using the 
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fact that F is A i and the relation f.(t,x) =i is A i. Clearly F is sectionwise 
non-decreasing with respect to t and invariant with respect to mf. 

Finally, we show that fi represents the preference order. Suppose (t,x), 
(t, y) are in B and x< ty. If (t, x, y) 4 U then F(t, x) < F(t, y) and we are done. 
So, suppose U(t, x, y). Then for some no w we have j”(t) =g’(t, x, y) since 
range g’ ) U, = H, c .I, and J = U,, graph( j,). But for this n we have x E Sj,(t),, f, 
y E Sin(t),, f. Hence f.(t, x) = 0 and fJt, y) = 1 and so F(‘(t, x) < F(t, y) and we are 
done. 

This completes the proof of the theorem. 

5. An alternate boldface or ‘classical’ argument 

Let F: B-t[O, l] be a Bore1 almost representing function for the preference 
order. We give in this section an alternate construction of the representing 
function F from F, using only classical (boldface) arguments. 

As before, define U c T x X x X by U(t, x, y)ex<,y A (F(t, x) = F(t, y)). So 
U is Borel, saturated, and if U(t, x, y) then there are at most four mt classes 
strictly between x and y. Note that for each TV T there are only countably 
many pairs of equivalence classes ([x]~, [y],) such that U(t, x, y), since each 
such pair is determined by a pair of basic open sets in B,. Let {B,: no} be 
a Bore1 separating family for the preference order, for example, the family 
constructed in section 2. Let h,: B+[O, l] be the characteristic function of B,, 
and let H=x,(1/2”)h,. H is a Bore1 function (being a sum of Bore1 
functions), invariant with respect to mt, and if x<,y then H(t, x) <H(t, y). 
Define WcTx II2 by W(t,r)o3~3y[U(t,x,y) A H(t,x)=r, A H(t,y)=r,]. 
Here r+(ro, rJ denotes a Bore1 bijection between R and R x R. Clearly W is 
analytic. Also, each section of W is countable since H is invariant. By a 
classical result of Lusin, every analytic set with countable sections in a 
product of Polish spaces can be written as a countable union of analytic 
graphs of functions [see Lusin (1930), Maitra (1980) or Mauldin (1978)]. Let 
g, be functions with dom(g,,) c IT: graph(g,) is analytic, and W = u. graph(g,). 

For n E w, set E, = graph(g,) c T x R. So, E, is analytic. Define P, c T x R 
by P,(t, r)-=-[{z: H(t,z)zr,} is relatively clopen in B,]. Written out: P,(t,r)o 
Vz[H(t,z)~r,+{3iEwzEUi A VW (wEUi n13B,)+H(t,w)~r,}]. Since H is 
Borel, P, is easily coanalytic. Note that E,cP, since if E,(t,r) then for some 
x, y such that U(t, x, y) we have {z: H(t, z) I rI} = {z: z&y}. Define Q, c T x R 
by QJt,r)oP,(t, r) A VSE lR[E,(t,s)+(s=r)]. Q, is also coanalytic. Using the 
fact that E, is the graph of a function, it follows easily that E, cQ,, and if 
E,(t,r) then r is the unique real such that Q,(t,r) holds as well. Let F,cQ, be 
coanalytic and uniformize Q, by the Novikov-Kondo uniformization 
theorem. Thus E,cF,. By the first separation theorem, let K, be Bore1 with 
E, cK, c F,. Hence, K, is the graph of a Bore1 function which extends g,. 
Let graph@,) = K,. 
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Summarizing, we have produced Bore1 functions h, such that WC un 
graph(h,), and Vt~dom(h,)[{z: H(t,z) 1h,,(t),} is relatively clopen in B,]. 
Define now f,: B+[O, 1 J by 

0 if t$dom(h,) 
f.(t,x)= 0 if tEdom(h,) and H(t,x)<h,(t),. 

1 if tEdom(h,) and H(t,x)Lh,(t), 

Since H and h, are Borel, and the domain of a Bore1 function is Borel, it 
follows easily that f. is Borel. Also, f. is invariant since H is, and f, is 
sectionwise continuous from the properties of h,. 

As before, let P: B+[O, l] be defined by p(t, x) =F(t,x) +&,,(1/2”)f,(t,x). 
To see P represents the preference order, suppose (t,x), (t, y) are in B and 
x<,y. If (t,x, y) $ U, then F(t,x) < F(t,y) and we are done. So, suppose 
U(t,x,y). Then for some n we have E,(t,r) where r,,=H(t,x) and rI =H(t,y). 
For this n we have h,(t) =r. Since {z: H(t, z) 2 h,(t),} = {z: H(t,z) 2 H(t, y)} = 
{z: z2,y) in this case, it follows that f.(t,x)=O and f.(t,y)=l. Hence, 
F( t, x) < F( t, y) and we are done. 

6. Concluding remarks 

We point out again that the theorem applies even when the field Bc T x X 
of the preference order R has no Bore1 uniformization. 

Example. There is a Bore1 preference order R c [0, 1] x [0, f] x [0, 11 with 
domain [O, i], field Bc [0, l] x [0, 11, with each section R, a linear ordering, 
yet B has no Bore1 uniformization. 

Simply let B be a Bore1 subset of [0, l] x [0, l] which has no Bore1 
uniformization and with projection onto the first coordinate being all of 
[0, 11. [One such example is given in [Mauldin (1979, Example 3.1).] Let 
R(t,x,y)-((t,x),(t, y) EB A xsy), where 5 is the usual order on [0, l] (Note 
that in this case we may get a representing function f directly, namely 
_I-(& 4 = 4. 

Let us close this paper with a question. Our representing function does not 
seem to be invariant under the equivalence of the preference orders. 

Qu.estion. Can the Bore1 measurable representing function F be chosen such 
that if R, = R,., then F(t, .) = F(t’, .)? 

We believe this question should have a positive answer. 
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