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Abstract� We prove that the multifractal decomposition behaves as expected for a
family of sets K known as digraph recursive fractals� using measures � of Markov type�
For each value of a parameter � between a minimum �min and maximum �max� we
de�ne �multifractal components� K��� of K� and show that they are fractals in the
sense of Taylor� The dimension f��� of K��� is computed from the data of the prob	
lem� The typical concave �multifractal f���� dimension spectrum curve results� Under

appropriate disjointness conditions� the multifractal components K��� are given by


K��� �

�
x � K 
 lim

���

log �
�
B��x�

�
log diam B��x�

� �

�
�

i�e�� K��� consists of those points where � has pointwise dimension ��
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Introduction

It has been argued in the physics literature �for example Halsey� et� al� ��� that

certain fractals carrying a natural measure may be analyzed in terms of the scaling

properties of the measure� The fractal K should contain �singularities of strength ��

for certain values of a parameter �� a fractal dimension f��� describes how densely

those singularities are distributed� Computations show a typical concave shape for

this function f���� sometimes known as a �dimension spectrum��

Here we attempt to provide a mathematical setting for this sort of �multifractal

deomposition�� We begin with a �possibly fractal� nonempty compact set K in Eu�

clidean space Rn � and a measure � on K� For example� we might have a dynamical

system where� in the limit� the trajectories approach a �strange� attractor K� and the

ergodic time�averages along the process approach a corresponding measure �� Or we

might imagine an iterated function system� which approaches its attractorK as points

are chosen according to the �random method� or the �chaos game�� the time�averages

again converge to a natural measure on the attractor�

When a set K has fractal dimension d and supports a �natural� �nite measure ��

we may expect �typically�� for x � K and � � �� that the measure �
�
B��x�

�
of the

ball of radius � centered at x is roughly equal to ����d� the dth power of the diameter

of the ball� This might mean that

� � lim sup
���

�
�
B��x�

��
diam B��x�

�d ��

or� more generally� that

lim
���

log�
�
B��x�

�
log diam B��x�

� d
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for all x � K� Multifractal decomposition will be interesting exactly when this does

not happen�for many di
erent values of the parameter �� the set

K��� �

�
x � K � lim

���

log�
�
B��x�

�
log diam B��x�

� �

�

is non�trivial� The sets K��� may be thought of as the multifractal components of

K� �We use a slightly di
erent de�nition below� however� it coincides with this when

there is a disjointness property�� The Hausdor
 dimension of K��� is called f���� this

function describes the dimension spectrum�

It is important to note that we are using the Hausdor� dimension of K���� and not

the box dimension� Typically� all the sets K��� are dense in K� so they all have box

dimension equal to the box dimension of K itself� But the Hausdor
 dimension f���

varies with ��

There are some special cases �the �digraph recursive fractals�� when all of the

Hausdor
 dimension computations can be carried out explicitly� Those computations

are carried out here� They do� indeed� show the characteristic convex multifractal

dimension spectrum curve f���� The packing dimension and the Hausdor
 dimension

of the multifractal component K��� agree� so it is a �fractal� in the sense of Taylor

���� The work here extends the case computed by Cawley � Mauldin �	� It was�

in turn� suggested by the heuristics of Halsey� et� al� ��� Some interesting digraph

recursive fractals are found in ���

�� The Setting

We will describe here� the fractals Ku to be investigated� the �string models� E
���
u

that will be used in the investigation� the measures ��u of Markov type used to de�ne
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multifractal componentsK
���
u of theKu� and the functions ��q� and f��� that describe

the properties �such as the fractal dimension� of these components� �Note that ��q�

is often called ���q��

���� The sets� First� a directed multigraph �V	E� should be �xed� The elements

v � V are the vertices of the graph� the elements e � E are the edges of the graph�

For u	 v � V � there is a subset Euv of E� known as the edges from u to v� Each edge

belongs to exactly one of these subsets� We will sometimes write Eu �
S
v Euv� the

set of all edges leaving the vertex u�

We will often think of the set E as a set of �letters� that label the edges of the

graph� so we will talk about �words� or �strings� made up of these letters� A path

in the graph is a �nite string 
 � e�e� � � � ek of edges� such that the terminal vertex

of each edge ei is the initial vertex of the next edge ei��� We write E
�k�
uv for the set

of all paths of length k that begin at u and end at v� and E
�k�
u for the set of all paths

of length k that begin at u� and E
���
u for the set of all �nite paths of any length that

begin at u� and E��� for the set of all �nite paths�

A path that begins and ends at the same node is called a cycle� A cycle with no

repeated nodes is a simple cycle� A cycle consisting of a single edge �from a node

back to itself� is a loop�

We will assume that the graph �V	E� is strongly connected� that is� there is a

path from any vertex to any other� along the edges of the graph �taken in the proper

directions�� We will also assume that there are at least two edges leaving each node�

�We explain this assumption more fully below�

Next� a ratio r�e� should be speci�ed for each edge e � E� We will assume for
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simplicity that � � r�e� � �� �In the terminology of ��� it is �strictly contracting��� So

if we write rmin � mine r�e� and rmax � maxe r�e�� then we have � � rmin � rmax � ��

If 
 � e�e� � � � ek is a path� write r�
� � r�e��r�e�� � � � r�ek��

Let Ju be nonempty compact subsets of Euclidean space R
n �one for each u � V ��

The set Ju should be equal to the closure of its interior� We assume for simplicity

that these seed sets have diameter �� A digraph recursive fractal� or Mauldin�

Williams fractal� based on seed sets Ju and ratios r�e� is one of the sets

Ku �
��
k��

�
��E

�k�
u

J�
�	

where the sets J�
� are chosen recursively�

�i� J��u� � Ju� where �u is the empty path from u to u�

�ii� For 
 � E�k� with terminal vertex v� the set J�
� is geometrically similar to

Jv with reduction ratio r�
��

�iii� For 
 � E�k�� with terminal vertex v� the sets J�
e�� e � Ev� are nonoverlap�

ping subsets of J�
��

�Note the word �nonoverlapping�� This means that they intersect at most in their

boundaries� Since the sets J�
� are similar to the original sets Ju� they� too� are equal

to the closures of their interiors� Thus we are postulating the �open set condition�� as

in ���� the interiors of the sets J�
� are disjoint �for 
 of a given length�� and their

closures are the J�
��� Notice that there are many choices of how the sets J�
e� may

be placed inside J�
�� For the �graph self similar� fractals �as in �� or ����� start

with similarities �e � R
n � R

n � one for each edge e � E� and let

J�
� � �e��e� � � � �ek �Jv
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where 
 � e�e� � � � ek � E
�k�
uv � The seed sets Ju must be chosen so that �iii� is satis�ed�

Another possibility �as in ��� is a scheme that places the subsets J�
e� inside J�
� at

random�

The terminology �Mauldin�Williams fractal� was introduced by the �rst author in

��� the second author �rst studied them as �graph�directed constructions� in ����

We will assume that our directed multigraph �V	E� has the property that each

node has at least two edges leaving it� We claim that this restriction does not change

the fractals Ku that can be constructed� If the entire graph is a simple cycle� then

the sets Ku are singletons� so to ensure the system is nontrivial� we assume there is

some node with two edges leaving�

Now suppose in �V	E	 r� there is some node u� with only one edge e� leaving� Since

the graph is strongly connected� that edge goes to some node other than u�� De�ne

a new directed multigraph as follows� V � � V n fu�g� the edges E� are of two kinds�

the edges e � E that neither begin nor end at u�� and the paths ee�� where e is

an edge ending at u�� The ratios r
� are given by r��e� � r�e� in the �rst case� and

r��ee�� � r�e�r�e�� in the second case� The new system �V
�	 E�	 r�� constructs the same

sets as �V	E	 r�� but has u� deleted� Continuing in this way� we never remove a node

with two or more edges leaving� but �by the �niteness of V � the process eventually

ends� When it does� we have a graph where every node has at least two edges leaving�

The Hausdor
 dimension for digraph recursive fractals was computed in ���� see

��� Theorem ��	��� This is done as follows� For each positive number s we de�ne a

square matrix A�s�� with rows and columns indexed by the set V � the entry in row u
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and column v is

Auv�s� �
X

e�Euv

r�e�s�

The Hausdor
 dimension d of all the sets Ku is the unique nonnegative number d such

that the matrix A�d� has spectral radius ��

���� The models� We will use some �string models� in our investigation of these

fractals� Write E
���
u for the set of all in�nite strings� using symbols from E� where the

initial vertex of the �rst edge is u and the terminal vertex of each edge is the initial

vertex of the next edge� These sets are naturally compact metric spaces� For each


 � E���� the cylinder �
 is the set of all in�nite strings  � E��� that begin with


� Then the set
�
�
 � 
 � E

���
u

�
is the base for the topology on E

���
u � For  � E

���
u

and a positive integer k� the restriction �k is the �nite string made up of the �rst

k letters of � The same notation 
�k is used for �nite strings 
 when k is less than

the length of 
� As a special case of this� if 
 has length k� then the parent of 
 is


� � 
��k � ��� obtained by omitting the last letter of 
�

There is a model map hu � E
���
u � R

n for each u� de�ned so that hu�� is the

unique element of the set
��
k��

J��k��

Then clearly Ku � hu
	
E
���
u



� If hu�� � x� then we say that the string  is the

address of the point x� In the case when the sets J�
e� that constitute J�
� are

actually disjoint �not merely nonoverlapping�� the model maps hu are one�to�one�

That means each point has a unique address�

���� Measures of Markov type� We begin with positive numbers p�e�� one for
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each edge e � E� They are to be called transition probabilities� The probabilities

of all edges leaving a given node u must sum to ��

X
v�V

X
e�Euv

p�e� � ��

�Since each node has at least two edges leaving it� this implies that p�e� � � for all

edges e�� Then we de�ne products� which are to be thought of as probabilities of

paths� if 
 � E���� say 
 � e�e� � � � ek� then

p�
� � p�e��p�e�� � � �p�ek��

These numbers satisfy an additivity condition� if 
 � E
���
uv � then

p�
� �
X
e�Ev

p�
e��

Therefore� for each u � V � there is a unique measure ��u on E
���
u with

��u
�
�

�
� p�
�

for all 
 � E
���
u � Measures of this kind will be calledmeasures of Markov type� Dis�

cussion of them can be found under the heading �Markov chains� in many probability

books� For example ��� Section ���� ��	� Chapter 	�

We may think of this in more �probabilistic� language� Imagine a particle moving

�at random� on our graph� At each tick of the clock� it traverses one of the edges �in

the direction of the arrow� from one vertex to another� The number p�e� gives the

probability that the edge e will be chosen� among all the edges emanating from the

vertex that is occupied at the present time� We have a sequence �Xk�
�
k�� of random
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variables with values in V � Given that Xk � u� the conditional probability that

Xk�� � v is X
e�Euv

p�e��

�We keep a bit more information than is conventional� There may be several edges

from u to v� we will not combine them into a single edge� so that we know not only

where Xk moved to� but also which edge it traversed to get there� If necessary� this

can be thought of as a larger Markov chain� where E is the set of states� In ��� there

is at most one edge from one node u to another v� But here we allow several edges

from u to v as in ���� So this means� If X� � u� then the conditional probability

that the process traverses edges e�	 e�	 � � � 	 ek in the �rst k steps is � unless the string


 � e�e� � � � ek belongs to E�k�
u � and in that case the conditional probability is

p�
� �
kY
i��

p�ei��

The measure ��u on E
���
u corresponds to a measure �u on Ku � R

n � For F �

R
n � de�ne �u�F � � ��u

�
h��u �F 

�
� Another way to think of this measure involves the

construction of Ku using the sets J�
�� We begin by assigning mass � to the set Ju�

Then that mass is distributed among the subsets J�e�� e � Eu� so that J�e� has mass

p�e�� Once the mass for a set J�
� has been assigned� then it is distributed among

the subsets J�
e�� according to the values of p�e��

���� Hausdor� and packing dimensions� The two fractal dimensions that we will

be concerned with here are the Hausdor� dimension and the packing dimension�

We brie�y review their de�nitions�
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Let F � R
n be a set� Fix positive real numbers s and �� De�ne

H
s
��F � � inf

X
i

�diam Ai�
s	

where the in�mum is over all countable families fAig�i�� of sets with
S
iAi � F and

diam Ai � � for all i� De�ne the s�dimensional Hausdor� outer measure of F

by�

H
s�F � � lim

���
H
s
��F � � sup

���
H
s
��F ��

There is a unique critical value d� with � � d � n� such that

H
s�F � �

��
� if s � d

� if s � d�

This critical value d is called the Hausdor� dimension of the set F � we will write

d � dim F � For more complete discussions� see ��� Section ��	� ��� Section ���� ���

Section ���� We will need to know that Hs is a countably�additive measure on the

Borel sets of Rn �

Let F � R
n be a set� Fix positive real numbers s and �� De�ne

ePs��F � � sup �X
i��

���i�
s	

where the supremum is over all countable disjoint families
�
B�i�xi�

��
i��

of balls with

�i � � and xi � F � De�ne the s�dimensional packing pre�measure of F by�

ePs�F � � lim
���

ePs��F � � inf
���

ePs��F ��
Then de�ne the s�dimensional packing outer measure of F by�

P
s�F � � inf

�X
i��

ePs�Fi�	
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where the in�mum is over all countable families fFig�i�� of sets with
S
i Fi � F � There

is a unique critical value d� with � � d � n� such that

P
s�F � �

��
� if s � d

� if s � d�

This critical value d is called the packing dimension of the set F � we will write

d � Dim F � For more complete discussions� see ��� Section ���� ��� Section ��	� We

will need to know that Ps is a countably�additive measure on the Borel sets of Rn �

For any set F � R
n � we have dim F � Dim F � �For example� ��� Proposition

������� Taylor ��� has proposed that the term �fractal� be used for a set F � R
n

with dim F � Dim F � We will prove that the �multifractal components� K
���
u of our

digraph recursive fractals satisfy this criterion�

��	� Multifractal decomposition� Now consider the digraph recursive fractals Ku

de�ned above� and the measures ��u on the model spaces E
���
u � The �balls� in E

���
u

are the cylinders �
� the measure of a cylinder is ��u��
� � p�
�� the diameter of a

cylinder may be considered to be r�
�� �The diameter of the image hu
	
�



is � r�
�

and 	 c r�
� for some constant c�� Given a real number �� we will be interested in

the sets

bK���
u �

�
 � E���

u � lim
k��

log p��k�

log r��k�
� �

�
K���
u � hu

h bK���
u

i
�

They will be called the multifractal components of Ku �with respect to ��u��� Note

that bK���
u is a Borel set �actually� an F���set�� K

���
u is at least an analytic set�

At least in a special case� there is another �more natural� description of the multi�

fractal components� Suppose the Ku exhibit �graph self�similarity�� there is a simi�
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larity �e � R
n � R

n for each edge e � E� such that for 
 � e�e� � � � ek � E
�k�
uv �

J�
� � �e��e� � � � �ek �Jv�

Suppose that� for each u � V � the sets J�e� for e � Eu are disjoint� Then the

multifractal components K
���
u de�ned above satisfy

K���
u �

�
x � Ku � lim

���

log�
�
B��x�

�
log diam B��x�

� �

�
�

Indeed� two disjoint compact sets are separated by positive distance� Let

c � min
�
dist

�
J�e�	 J�e��

�
� u � V	 e	 e� � Eu	 e 
� e�

�
�

Then� for 	 � � E
���
u we have

c r�
� � ��hu��� hu���
�� � r�
�	

where 
 is the longest common pre�x of  and � � �This can be proved by induction

on the length of 
� Now if x � hu�� � Ku and � � �� then we have

Ku � B��x� � J��k��

where k� is the largest integer with � � cr��k��� and

B��x� � Ku � J��k��	

where k� is the least integer with � � r��k��� Writing rmin � mine r�e�� we may

deduce that

log p��k��

log
�
���rmin�r��k��

� � log�u
�
B��x�

�
log diam B��x�

� log p��k��

log
�
�crminr��k��

� �
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These inequalities show that

lim
k��

log p��k�

log r��k�
� lim

���

log�u
�
B��x�

�
log diam B��x�

whenever one of these limits exsits�

The Hausdor
 dimensions of the multifractal components may be computed as

follows� �Details are given below� in Section ��� Let A�q	 �� be a square matrix with

rows and columns indexed by V � The entry in row u� column v� is

Auv�q	 �� �
X
e�Euv

p�e�qr�e�	�

For given q� there is a unique � so that A�q	 �� has spectral radius �� This de�nes �

as an analytic function of q� De�ne � � �d��dq and f � q� � �� We note that in

much of the literature� what we call � is known as �� �

��
� Theorem� Let �V	E� be a strongly connected directed multigraph� Let r�e��

� � r�e� � �� be a system of ratios for the graph� and let p�e�� � � p�e� � �� be a

system of transition probabilities for the graph� de�ning measures ��u of Markov type

on the string models E
���
u � Let q	 �	 �	 f be four numbers related as above� Then for

each u � V � the multifractal component K
���
u is a fractal with dimension f �

dim K���
u � Dim K���

u � f�

This theorem is proved below� in Section 	�

�� An Example

Let us consider a particular example� before we proceed to the general case� The

�two�part dust� �Figure �� is from ��� Section ��	� It is related to the graph shown
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in Figure �� The set of vertices is fU	Vg� The set of edges is fa	 b	 c	 dg� The ratios

are given by� r�a� � ���� r�b� � ��	� r�c� � ���� and r�d� � ��	� The two digraph

recursive fractals KU and KV are fractals with dimension d � � �both Hausdor
 and

packing dimension��

Figure �� The two�part dust� Figure �� The directed graph�

Now consider the natural measures ��U	 ��V of Markov type� obtained by assigning

p�e� � ��� for all edges e� for our Markov chain� at each step� we use each of the two

possible edges leaving the present node with equal probability� Then the matrix A

becomes

A�q	 �� �

� �
�
�

�q ��
�

�	 �
�
�

�q ��
�

�	�
�
�

�q ��
�

�	 �
�
�

�q �	
�

�	
�
�

We want the spectral radius to be equal to �� So q and � must satisfy the equation

det�A� I� � �� or

��� ���q�		�	 � ��q�	 � ��q��	�	 � �� ���q�		 � ��

This may be considered a quadratic equation for ��q� It may be solved for q� We have

chosen the appropriate one of the two roots�

q �
log
�
��	�� � �	���	�� � ���	��

p
��	��	�	�� � ��	 � �	���

log �
�
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Figure �� Graph of ��q�� Figure �� Graph of f����

Then � � �d��dq� so �di
erentiating ��� implicitly� � �

���	�q � �	���	�q � ��		��q�����	 � ��� log �
���	�q � �	���	�q�� � � � ��		��q���	 � ��� log � � �	�����	�q � ��		��q� log � �

As usual� f � q�� ��

Here are some special values�

q � �� � � �� � � � log ����� log �� � log �� � ���	�� and f � ��

q � �� � � �� � � f � 	 log ���� log �� log �� � ��������

q ��� � � ��� �� �min � ��� and f � ��

q � ��� � ��� �� �max � log ���� log �� log �� � ��	��	 and f � ��

The graph of ��q� shows that it is decreasing and convex� with oblique asymptotes

at both ends� The graph of f��� shows the typical concave �dimension spectrum�

shape� with maximum value � � dim KU � dim KV at � � ���	�� �and q � ���
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�� Auxiliary Functions

Now we consider more carefully how the auxiliary functions � and � behave� Let

A�q	 �� be as above� The entry in row u� column v� is

Auv�q	 �� �
X
e�Euv

p�e�qr�e�	�

Let  �q	 �� be the spectral radius of A�q	 ��� The arguments dealing with  �q	 �� rely

on the theory of nonnegative matrices� known as Perron�Frobenius theory� see for

example ��� ���� ��	� Here are the basic properties of the function  �

���� Proposition�

�i�  � R  R � ��	�� is continuous �in fact� analytic��

�ii�  is strictly decreasing in each variable separately	 that is� if q� � q�� then

 �q�	 �� �  �q�	 ��	 and if �� � ��� then  �q	 ��� �  �q	 ����

�iii� For �xed q we have lim	��  �q	 �� � � and lim	���  �q	 �� ��� For �xed

� we have limq��  �q	 �� � � and limq���  �q	 �� ���

�iv�  is log
convex	 that is� if q�	 q�	 ��	 �� � R� a�	 a� 	 �� a� � a� � �� then

 
�
a�q� � a�q�	 a��� � a���

� �  �q�	 ���a� �q�	 ���a� �

Proof� �i� Each entry Auv�q	 �� is continuous �analytic�� The largest zero of a polyno�

mial is an analytic function of the coe!cients of the polynomial in the region where

that zero is a simple zero� Since the graph is strongly connected� the matrix A�q	 ��

is irreducible� so the spectral radius  �q	 �� is a simple zero of the characteristic poly�

nomial�
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�ii� Fix �� and let q� � q�� There is a positive Perron�Frobenius eigenvector ��v�v�V

for the matrix A�q�	 �� withX
v

X
e�Euv

p�e�q�r�e�	�v �  �q�	 �� �u

for all u � V � Now p�e� � �� so p�e�q� � p�e�q� � Therefore

X
v

X
e�Euv

p�e�q�r�e�	�v �
X
v

X
e�Euv

p�e�q�r�e�	�v �  �q�	 �� �u�

This is a strict inequality since there is a nonzero entry in row u� Therefore �as in the

Perron�Frobenius theorem�� we conclude  �q�	 �� �  �q�	 ���

The proof that  �q	 �� is strictly decreasing in � is the same�

�iii� Fix q� When � ��� all of the entries of A�q	 �� approach �� so  �q	 ��� ��

Similarly� when we let � � ��� the nonzero entries of A�q	 �� approach �� there is

at least one nonzero entry in each row of A�q	 ��� so also  �q	 �����

The proof of the other case is the same�

�iv� Fix values q�	 q�	 ��	 �� � R and a�	 a� 	 � with a��a� � �� There are positive

eigenvectors ���v� and ���v� withX
v

X
e�Euv

p�e�qir�e�	i�iv �  �qi	 �i� �iu

for all u � V � i � �	 �� Write q � a�q� � a�q�� � � a��� � a���� Let �u � �a��u�
a�
�u for

u � V � Then �using H"older#s inequality��

X
v

X
e�Euv

p�e�qr�e�	�v �
XX�

p�e�q�r�e�	���v
�a� �

p�e�q�r�e�	���v
�a�

�
�XX

p�e�q�r�e�	���v
�a� �XX

p�e�q�r�e�	���v
�a�

� � �q�	 ��� ��u�
a� � �q�	 ��� ��u�

a�

�  �q�	 ���
a� �q�	 ���

a��u�
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Now the vector ��u� is positive� so by Perron�Frobenius theory we conclude  �q	 �� �

 �q�	 ���
a� �q�	 ���

a� � �

Now for �xed q� the function  �q	 �� is a continuous function of �� Its values range

from � �when � � �� to � �when � � ���� Therefore by the intermediate value

theorem there is a real number � such that

 �q	 �� � ��

The solution � is unique� since  is a strictly decreasing function of �� This de�nes �

implicitly as a function of q�

Here are a few useful properties of this function�

���� Proposition� Let � � ��q� be de�ned by  �q	 �� � �� Then

�i� � is an analytic function of the real variable q�

�ii� � is strictly decreasing	 that is� if q� � q�� then ��q�� � ��q���

�iii� limq��� ��q� �� and limq�� ��q� � ���

�iv� � is a convex function	 that is� if a�	 a� 	 � and a� � a� � �� then

�
�
a�q� � a�q�

� � a��
�
q�
�
� a��

�
q�
�
�

Proof� �i�  is an analytic function of its two variables� Neither of its partial derivatives

vanishes� Therefore by the implicit function theorem� � is an analytic function of q�

�ii� Let q� � q�� We must show that ��q�� � ��q��� Suppose not� ��q�� � ��q���

Then � �  
�
q�	 ��q��

�
�  

�
q�	 ��q��

� 	  �q�	 ��q��� � �� a contradiction�
�iii� follows from Proposition ����ii��
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�iv� Let q�	 q�	 a�	 a� be given with a�	 a� 	 � and a� � a� � �� Write �� � ��q��

and �� � ��q��� Then

 �a�q� � a�q�	 a��� � a���� �  �q�	 ���a� �q�	 ���a�

� �a��a� � �

�  
�
a�q� � a�q�	 ��a�q� � a�q��

�
�

Therefore a��� � a��� 	 ��a�q� � a�q��� as claimed� �

Note that the probabilities p�e� were postulated to satisfy

X
v�V

X
e�Euv

p�e� � �

for all u � V � So by the Perron�Frobenius theorem� the spectral radius of A��	 �� is ��

So ���� � �� As noted above� the Haudor
 �and packing� dimensions of the sets Ku

are the number d with  ��	 d� � �� So ���� � d�

Now let us consider the derivative ���q�� We know that q and � satisfy the equation

 �q	 �� � �� The matrix is irreducible� so there is a one�dimensional eigenspace for

eigenvalue � in the matrix A�q	 ��� We normalize to obtain a unique vector ��v�v�V

satisfying

X
v�V

X
e�Euv

p�e�qr�e�	�v � �u for all u � V �

X
v�V

�v � ��

Cramer#s rule shows that the entries �v are analytic functions of q� The graph is

strongly connected� so the matrix is irreducible� so by the Perron�Frobenius theorem�
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�v � � for all v� Similarly� there exists a left eigenvector �u for the matrix� This time

we will normalize slightly di
erently�

X
u�V

X
e�Euv

�up�e�
qr�e�	 � �v for all v � V �

X
u�V

�u�u � ��

Again� the entries �u are positive analytic functions of q�

To simplify the notation� we use a prime � for derivative with respect to q� First

note

X
u�V

�u�u � ��X
u�V

�u�u

��
� �

X
u�V

��u�u �
X
u�V

�u�
�
u � ��

Consider the expression

S �
X
u

X
v

X
e�Euv

�up�e�
qr�e�	�v�

Then� of course S �
P

v �v�v � �� Di
erentiating� we obtain

� �
X
u

X
v

X
e�Euv

��up�e�
qr�e�	�v �

X
u

X
v

X
e�Euv

�up�e�
q
�
log p�e�

�
r�e�	�v

�
X
u

X
v

X
e�Euv

�up�e�
qr�e�	

�
log r�e�

�
���v �

X
u

X
v

X
e�Euv

�up�e�
qr�e�	��v

�
X
u

��u�u �
X
u

X
v

X
e�Euv

�
�up�e�

qr�e�	�v
��
log p�e� � �� log r�e�

�
�
X
v

�v�
�
v

�
X
u

X
v

X
e�Euv

�
�up�e�

qr�e�	�v
��
log p�e� � �� log r�e�

�
�

Therefore

���q� � �
P

u

P
v

P
e�Euv

�
�up�e�

qr�e�	�v
�
log p�e�P

u

P
v

P
e�Euv

�
�up�e�qr�e�	�v

�
log r�e�

�
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So we conclude that ���q� � �� agreeing with Proposition ����ii��

We will write � � �d��dq� Thus � � �� and

��� � �

P
u

P
v

P
e�Euv

�
�up�e�

qr�e�	�v
�
log p�e�P

u

P
v

P
e�Euv

�
�up�e�qr�e�	�v

�
log r�e�

�

Computations below will use some other numerical parameters� If 
 � e�e� � � � ek �

E�k� is a path� let

��
� �
log p�
�

log r�
�
�
log
�
p�e��p�e�� � � �p�ek�

�
log
�
r�e��r�e�� � � � r�ek�

� �
Write

�min � min f ���� � � is a simple cycle g

�max � maxf ���� � � is a simple cycle g �

We will see below that � ranges from �min to �max�

The last auxiliary function is f � q� � �� Its behavior depends on the behavior

of �� Now � is a convex function of q� so d���dq� 	 �� and therefore d��dq � ��

Actually� there are two rather di
erent possibilities� � is a linear function or � is a

strictly convex function�

���� Proposition� Let �xv�v�V be the �Perron numbers�� xv � � and

X
v�V

X
e�Euv

r�e�dxdv � xdu	 for all u � V�

�A� Suppose p�e� � �x��u r�e�xv�
d for all u	 v � V and e � Euv� Then�

�i� � is a linear function� ��q� � d� dq�

�ii� � � d is constant�

�iii� f � d is constant�

�iv� K
�d�
u � Ku and K

���
u � � for all � 
� d�
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�B� Suppose p�e� 
� �x��u r�e�xv�
d for at least one edge e� Then�

�i� � is a strictly convex function of q�

�ii� � is a strictly decreasing function of q� so we may consider q as a function of

� de�ned on an interval ��min	 �max��

�iii� f is a strictly concave function of ��

�iv� K
���
u 
� � if and only if �min � � � �max�

�v� The function ��q�� �minq is nonincreasing and has a limit 	 � as q ��	 the

function ��q� � �maxq is nondecreasing and has a limit 	 � as q � ��� And

� is a decreasing function of q� with � � �min as q � � and � � �max as

q � ��� �So �min � �min and �max � �max��

Proof� The Perron numbers xv � � exist by the Perron�Frobenius theorem� So if we

write xmin � minv xv and xmax � maxv xv� then we have � � xmin � xmax ���

�A��i� Let q be given� We claim that ��q� � d� dq� If we write �v � xd�dqv � then

we have

X
v

X
e�Euv

p�e�qr�e�d�dq�v �
XX

x�dqu r�e�dqxdqv r�e�d�dqxd�dqv

� x�dqu

XX
r�e�dxdv � xd�dqu � �u�

Therefore  �q	 d� dq� � �� so ��q� � d� dq�

�ii� Di
erentiate the result of �i�� � � �d��dq � d�

�iii� f � q�� � � d�

�iv� Let 
 � e�e� � � � ek be a path in E�k�
uv � Since the terminal vertex of each edge ei

is the initial vertex of the following edge ei��� most of the xv#s cancel in the product

p�
� �
�
x��u r�e��r�e�� � � � r�ek�xv

�d
�
�
x��u r�
�xv

�d
�
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so that

log p�
�

log r�
�
� d

�
� �

log�xv�xu�

log r�
�

�
�

Note that log�xv�xu� is bounded above by log�xmax�xmin� and bounded below by

log�xmin�xmax�� Now let  � E
���
u � If we write 
 � �k� we have

log p��k�

log r��k�
� d

�
� �

Ck
log r��k�

�
	

where Ck remains bounded as k��� while log r��k�� �� as k ��� This shows

that log p��k�� log r��k�� d� Therefore E
���
u � bK�d�

u � so Ku � K
�d�
u �

�B� On the other hand� suppose that p�e� 
� �x��u r�e�xv�
d for some edge e� We

claim that � is a strictly convex function of q� Since � is real�analytic� if � is linear

on some interval� then it is linear everywhere� That is� if equality holds in Proposition

��� �iv� for some q� 
� q�� then it holds for all� So suppose equality holds for q� � ��

q� � �� Now ���� � d and ���� � �� The right eigenvectors �iv are�

��v � xdv	

��v � ��

Equality in Proposition ��� �iv� means equality in H"older#s inequality in the proof of

Proposition ��� �iv�� thus there are constants au with

p�e��r�e�dxdv � aup�e�
�r�e��� for e � Euv�

Summing over v � V and e � Euv� we get x
d
u � au� Therefore

p�e� �
�
x��u r�e�xv

�d
for all u	 v � V and e � Euv� So we are in case �A��
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�i� Thus� in case �B�� � is strictly convex� �ii� It follows that � is strictly decreasing�

And �iii�

f � � �� q�� � � � q���

So df�d� � f ���� � q� In the graph of f as a function of � �as in Figure 	� the

parameter q is the slope of the tangent line to the curve� At the endpoints� where

q �� and q � ��� the graph has vertical tangent lines� Also�

d�f

d��
�

dq

d�
�

�

d��dq
�

��
d���dq�

� ��

So f��� is a strictly concave function�

�iv� Suppose � � �min� We must show that K
���
u � �� or equivalently that

lim inf
k��

log p��k�

log r��k�
	 �min

for all  � E
���
u � Now for all simple cycles � we have log p���� log r��� 	 �min� so

log p��� � �min log r���� and thus

p��� � r���
min �

Now any cycle may be partitioned into �nitely many simple cycles� Indeed� if a

cycle � is not simple� some node is repeated� so it contains a shorter cycle� the shortest

cycle contained in � is a simple cycle� When this simple cycle is removed from �� what

remains is a cycle shorter than �� Thus� if � � e�e� � � � ek� then the indices �	 � � � 	 k

may be partitioned as a disjoint union

f�	 �	 � � � 	 kg �
m�
j��

Ij
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so that f ei � i � Ij g is a simple cycle �j for each j�

Now if � is any cycle� partition it into simple cycles ��� ��	 � � � 	 �m� Then

p��� � p���� � � �p��m� � r����

min � � � r��m�
min � r���
min�

Therefore ���� 	 �min�

There are only �nitely many nodes in the graph� say there are N nodes� The same

argument as above shows that any �nite path 
 may be partitioned into cycles plus

at most N edges� Thus� if C � max f �	 p�e��r�e�
min � e � E g� then

p�
� � r�
�
minCN �

Now for given � we have r��k�� � and p��k�� �� so the term N logC disappears

in the limit� and

lim inf
k��

log p��k�

log r��k�
	 �min

as required�

A similar argument shows that K
���
u � � if � � �max�

Now there is a cycle �� with ����� � �min and a cycle �� with ����� � �max� The

in�nite path  � ���� � � � obtained by repeating �� achieves

lim
k��

log p��k�

log r��k�
� �min�

The path obtained by repeating �� achieves �max� And any value of � between �min

and �max is achieved by an in�nite path that intersperses the two cycles �� and �� in

the proper proportions� So K
���
u 
� � for such ��

�v� Now we analyze the asymptotic properties of ��q�� when q ��� and � � ���

we claim that � decreases to �min and ���minq is nonincreasing� �The other asymptote

q � �� may be done similarly��
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Now if 
 � E�k� is a path of length k� it may be partitioned into cycles ��� ��	 � � � 	 �m

plus at most N additional edges� Then� as before

log p�
� � �min log r�
� �N logC	

log p�
�

log r�
�
	 �min �

N logC

log r�
�
	 �min �

N logC

k log rmax
�

Now if we write for each k

�k � min
n
��
� � 
 � E�k�

o
	

we may conclude

�k 	 �min �
N logC

k log rmax
�

But k log rmax � �� as k ��� so we have

lim inf
k��

�k 	 �min�

On the other hand� for given large k� we may construct a path 
 of length k by

repeating the simple cycle �� �which achieves �min� many times� followed by the �rst

few edges of ��� Now if c � min f �	 p�e��r�e�
min � e � E g� we have

��
� � �min �
N log c

log r�
�
�

thus

�k � �min �
N log c

log r�
�
�

This shows

lim
k��

�k � �min�
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For a given positive integer k� the power A
�
q	 ��q�

�k
of the matrix also has spectral

radius � with the same left and right eigenvectors� So for each node u�

��� �u �
X
v

X
��E

�k�
uv

p�
�qr�
�	�v�

Thus �as in the case k � �� we have

� �
X
u

�u�u �
X
u

X
v

X
��E

�k�
uv

�up�
�
qr�
�	�v	

and may di
erentiate to conclude

���q� � �
P

u

P
v

P
��E

�k�
uv

�
�up�
�

qr�
�	�v
�
log p�
�P

u

P
v

P
��E

�k�
uv

�
�up�
�qr�
�	�v

�
log r�
�

�

But for all 
 with length k� ��
� 	 �k� so p�
� � r�
�
��� � r�
�
k � and thus log p�
� �

�k log r�
�� Therefore we have

���q� � �
�k
P

u

P
v

P
��E

�k�
uv

�
�up�
�

qr�
�	�v
�
log r�
�P

u

P
v

P
��E

�k�
uv

�
�up�
�qr�
�	�v

�
log r�
�

� ��k�

Take the limit as k � � to obtain ���q� � ��min� This implies that � 	 �min� and

also � � �minq is a nonincreasing function of q�

Next we claim that ��q� � �minq converges to a �nite nonnegative limit as q ���

If � � E
�k�
uu is a simple cycle� then from ��� we have

�u � p���qr���	�q��u�

The inequality is strict since there is more to the graph than this single simple cycle�

Therefore r���q
����	�q� � �� so q���� � ��q� � �� This holds for all simple cycles� so

q�min � ��q� � ��
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Now since q�min���q� converges to a �nite limit� its graph has a horizontal asymp�

tote� But its derivative �min���q� is negative and increasing� so that derivative must

converge to �� Therefore ��q�� �min as q ��� That is� �min � �min�

The asymptotic properties as q � �� are proved in the same way� �

�� Proof of the Dimension Theorem

We now come to the proof of Theorem ���� Fix a real number q� There are

corresponding values �� �� f as above� For each u � V we will prove that the set K
���
u

is a fractal with dimension f �

dim K���
u � Dim K���

u � f�

The proof is divided into the �upper bound� Dim K
���
u � f and the �lower bound�

dim K
���
u 	 f � Since the inequality dim F � Dim F is true for any set F � R

n � these

two bounds su!ce to prove the result�

Before we proceed with the proof� we will consider the auxiliary measures�

The matrix A�q	 �� has spectral radius �� So �as above� there exist positive right

and left eigenvectors� �v	 �v with

X
v�V

X
e�Euv

p�e�qr�e�	�v � �u for all u � V �

X
u�V

X
e�Euv

�up�e�
qr�e�	 � �v for all v � V �

By the Perron�Frobenius theorem� �v	 �v � �� So if we write �min � minv �v and

�max � maxv �v� then � � �min � �max� If we let

P �e� � ���u p�e�qr�e�	�v
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for all e � Euv� then we have

X
v�V

X
e�Euv

P �e� � �

for all u � V � These can be used as transition probabilities for some measure of

Markov type� called ��
�q�
u � Equivalently� for 
 � E

�k�
uv � the cylinder �
 is given measure

���q�u

�
�

�
� ���u p�
�qr�
�	�v�

There is a corresponding measure �
�q�
u on Ku de�ned by �

�q�
u �F � � ��

�q�
u

�
h��u �F 

�
�

���� Lemma� Let u � V � The measure ��
�q�
u is concentrated on the set bK���

u 	 that is�

���q�u

� bK���
u

�
� ��

Proof� Consider the Markov chain �Xk� with transition probabilities P �e�� as above�

In probabilistic language� we are required to prove that �conditioned on X� � u� the

�trajectory� of the Markov chain �that is� the string made up of the successive edges

traversed by the process� almost surely belongs to bK���
u �

Now the numbers �u � �u�u constitute a �stationary distribution� for the Markov

chain� That is� for every v � V �

X
u�V

X
e�Euv

�uP �e� � �v�

We next apply the ergodic theorem for Markov chains� ��� Theorem ���� p� �� or ��	�

Theorems 	��� 	��� The graph �V	E� is strongly connected� so the Markov chain is

ergodic� thus �u is the unique stationary distribution� and it occurs as the long�run

frequencies of the process� This means that� in the long run� each state v is visited a
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fraction �v of the time� Consequently� for each edge e � Ev� the fraction �vP �e� of all

edge traversals occur on the edge e� Precisely� if g � E � R is any function� then for

almost all  � E
���
u �

�

k

kX
i��

g�i��
X
u�V

X
v�V

X
e�Euv

�uP �e�g�e� as k ���

We have written i for the ith letter of the string �

Now let us apply this with g�e� � log p�e�� Then
Pk

i�� log p�i� � log
Qk

i�� p�i� �

log p��k�� We conclude� for almost all �

�

k
log p��k��

X
u�V

X
v�V

X
e�Euv

�uP �e� log p�e�

�
X
u�V

X
v�V

X
e�Euv

�up�e�
qr�e�	�v log p�e��

Similarly�

�

k
log r��k��

X
u�V

X
v�V

X
e�Euv

�up�e�
qr�e�	�v log r�e��

Therefore� for almost all  � E
���
u � we have the ratio limit

log p��k�

log r��k�
�
P

u�V

P
v�V

P
e�Euv

�up�e�
qr�e�	�v log p�e�P

u�V

P
v�V

P
e�Euv

�up�e�qr�e�	�v log r�e�
� �

by ���� That is�  � bK���
u � �

���� Proposition �upper bound�� Let u � V � The packing dimension inequality

Dim K
���
u � f holds�

Proof� �i� First� in the case q � �� we have f � � � d� this is the usual computation of

the packing dimension of a digraph recursive fractal� for example ��� Theorem �������
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�ii� Next� consider the case q � �� Fix � � �� De�ne

bS�k�u �

�
 � E���

u �
log p��k�

log r��k�
� ��

�

q

�
	

bT �N�
u �

��
k�N

bS�k�u 	

T �N�
u � hu

h bT �N�
u

i
�

Then we have

bK���
u �

��
N��

bT �N�
u

K���
u � hu

h bK���
u

i
�

��
N��

T �N�
u �

We will show Dim T
�N�
u � f � �� This is true for all N � so Dim K

���
u � f � �� And

this is true for all � � �� so Dim K
���
u � f � as claimed�

So �x N and consider the �f � ���dimensional packing measure of T
�N�
u � Let � � �

be so small that � � r�
� for all 
 � E
�N�
u � Let

B�i�xi�	 i � �	 �	 � � �

be a countable disjoint collection of balls with xi � T
�N�
u and �i � �� There exist

i � bT �N�
u for i � �	 �	 � � � so that hu�i� � xi� Let ki � N be such that r��ki� � �i �

r���ki � ���� Then ki 	 N by the choice of �� Now i � bS�ki�u � so�

log p�i�ki�

log r�i�ki�
� ��

�

q

log p�i�ki� 	
�
��

�

q

�
log r�i�ki�

p�i�ki� 	 r�i�ki�
����q

p�i�ki�
q 	 r�i�ki�

�q��

p�i�ki�
qr�i�ki�

	 	 r�i�ki�
f���
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By the choice of the ki� the cylinders
	
i�ki



are disjoint� Now

diam B�i�xi� � ��i � �r�i��ki � ��� � ���rmin�r�i�ki��

Thus

�rmin

�

�f��X
i

���i�
f�� �

X
i

r�i�ki�
f�� �

X
i

p�i�ki�
qr�i�ki�

	

�
�
�max

�min

�X
i

���q�u

�
�i�ki

�
�

�
�max

�min

�
���q�u

��
i

�i�ki

�
�
�
�max

�min

�
�

This shows

ePf���

�
T �N�
u

� � ��max

�min

��
�

rmin

�f��
�

Let � � � to obtain ePf���T �N�
u

� � ��max��min����rmin�
f�� � � and Pf��

�
T
�N�
u

�
�

�� So Dim T
�N�
u � f � ��

Therefore� as noted above� we have Dim K
���
u � f �

�iii� Finally� consider the case q � �� Fix � � �� �So ��q � ��� De�ne

bS�k�u �

�
 � E���

u �
log p��k�

log r��k�
	 ��

�

q

�
	

bT �N�
u �

��
k�N

bS�k�u 	

T �N�
u � hu

h bT �N�
u

i
�

As in the previous case� K
���
u � S�N�� T

�N�
u � The rest of the proof proceeds as before�

With the reversed inequality in the de�nition of bS�k�u and q � �� we again obtain the

estimate

p�i�ki�
qr�i�ki�

	 	 r�i�ki�
f��� �
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���� Proposition �lower bound�� Let u � V � The Hausdor� dimension inequality

dim K
���
u 	 f holds�

Proof� �i� First� in the case q � �� we have f � � � d� So the Hausdor
 dimension

inequality is essentially the computation of Mauldin and Williams� �Recall that we

assume the open set condition�� See ��� Theorem ��	�� or ���� Theorem �� The

measure ��
���
u is the measure used in these references� and the set bK���

u supports this

measure� so the computation actually shows dim K
���
u 	 d� indeed� Hd

�
K

���
u

�
is

positive and �nite�

�ii� Next� consider the case q � �� We must show that dim K
���
u 	 f � More

generally� let F be any �Borel� set in Rn with �
�q�
u �F � � a � �� We will show that

dim F 	 f � �That is� in terminology discussed below� we show that dim �
�q�
u 	 f �

Let � � � be given� We will investigate the �f � ���dimensional Hausdor
 measure of

the set F � Write bF � h��u �F � Then let

bS�k�u �

�
 � bF �

log p��k�

log r��k�
	 �� �

q

�
	

bT �N�
u �

��
k�N

bS�k�u 	

T �N�
u � hu

h bT �N�
u

i
�

Now bF is contained in the increasing union
S�
N��

bT �N�
u and ��

�q�
u

� bF� � a � �� so by

the countable additivity of the measure�

lim
N��

���q�u

� bT �N�
u

�
� a�

Choose N so large that ��
�q�
u

� bT �N�
u

�
� a��� then choose � � � so small that � � r�
�

for all 
 � E
�N�
u �
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Now suppose that fAig is a countable cover of F by sets with diam Ai � �� For

each i� let

Hi �
n

 � E���

u � r�
� � diam Ai � r�
��	 hu
	
�


 � Ai � F 
� �

o
�

There is a geometrical lemma ����� Lemma V or ��� pp� ���$�� that shows there

is a �nite constant C such that each set Hi has at most C elements� If we write

H �
S�
i��Hi� then X

��H

r�
�f�� � C
X
i

�diam Ai�
f���

Now f �
 � 
 � H g covers bF � bT �N�
u � We need to construct a cover of bT �N�

u more

e!cient than H� First� there is no need for the sets that do not meet bT �N�
u � let

H � �
n

 � H � �
 � bT �N�

u 
� �

o
� Also� we need to cover the set only once� if two

cylinders �
 are not disjoint then one of them is contained in the other� so we may

discard the smaller one� So there is a set H �� � H � such that f �
 � 
 � H �� g is a

disjoint cover of bT �N�
u �

Now for each 
 � H �� there exists  � bT �N�
u and k 	 N so that �k � 
� Then

 � bS�k�u � so

log p�
�

log r�
�
	 �� �

q

log p�
� �
�
�� �

q

�
log r�
�

p�
� � r�
�����q

p�
�q � r�
��q��

p�
�qr�
�	 � r�
�f���
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Thus� if 
 � H �� and 
 � E
�k�
uv � then

���q�u

�
�

�
� ���u p�
�qr�
�	�v � �max

�min
r�
�f���

Now

a

�
� ���q�u

� bT �N�
u

�
� ���q�u

�� �
��H��

�


�A �
X
��H��

���q�u

�
�

�

�
�
�max

�min

� X
��H��

r�
�f�� �
�
�max

�min

�X
��H

r�
�f��

�
�
C�max

�min

�X
i

�diam Ai�
f���

Thus we have Hf��
� bF� 	 �mina��C�max � �� So dim F 	 f � �� This is true for all

� � �� so we have dim F 	 f � as required�

�iii� Finally� consider the case q � �� Let � � � be given� so ��q � �� De�ne now

bS�k�u �

�
 � bF �

log p��k�

log r��k�
� �� �

q

�
	

bT �N�
u �

��
k�N

bS�k�u 	

T �N�
u � hu

h bT �N�
u

i
�

Then proceed as in the previous case� The reversed inequality and q � � mean that

the estimate

p�
�qr�
�	 � r�
�f��

remains correct� �

�� Other Remarks

	��� Hausdor� dimension of a measure� Some of the proofs given here actually

deal with the Hausdor
 dimension of a measure in order to estimate the Hausdor
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dimension of a set� The proof of Proposition 	�� shows not only that dim K
���
u 	 f �

but that dim F 	 f for any set F with �
�q�
u �F � � �� This may be interpreted as

saying that the �Hausdor
 dimension� of the measure �
�q�
u is at least f �

There is more than one possible de�nition for the �Hausdor
 dimension of a mea�

sure�� We will show here that two of them coincide�

Let S be a metric space� and let � be a �nite measure de�ned on the Borel subsets

of S� The Hausdor� dimension of the measure � is the minimum of the dimensions

of the sets that support ��

dim� � � inf f dim F � F � S	 ��S n F � � � g �

There is another natural de�nition� Fix positive real numbers s and �� De�ne

H
s
���� � inf

X
i

�diam Ai�
s	

where the in�mum is over all countable families fAig�i�� of sets with diam Ai � � for

all i that almost cover S in the sense that

�

�
S n

�
i

Ai

�
� ��

De�ne

H
s��� � lim

���
H
s
���� � sup

���
H
s
�����

There is a unique critical value s� such that

H
s��� �

��
� if s � s�

� if s � s��

This critical value s� is called the Hausdor� dimension of the measure �� we will

write s� � dim� ��
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Proposition� Let S be a metric space� and let � be a �nite measure de�ned on the

Borel subsets of S� Then dim� � � dim� ��

Proof� Let F � S with ��SnF � � �� To estimate the s�dimensional Hausdor
 measure

of F � cover F �

F �
�
i

Ai	 diam Ai � ��

Then certainly fAig almost covers S� So Hs
���� �

P�
diam Ai

�s
� Therefore Hs

���� �

H
s
��F �� Let � � � to obtain Hs��� � H

s�F �� If s � dim F � then Hs�F � � �� so

H
s��� � �� Thus dim� � � dim F � This shows that dim� � � dim� ��

For the reverse inequality� let s � dim� �� so that H
s��� � �� Given n � N � �nd an

almost cover fAnig�i�� of S with diam Ani � ��n and
P

i�diam Ani�
s � ��n� Then

the set

F �
�
n

�
i

Ani

satis�es ��S n F � � �� But for each n� the family fAnig�i�� covers F � So

H
s
��n�F � � ��n	

so that Hs�F � � �� Therefore dim F � s� so dim� � � s� This is true for every

s � dim� �� so we have dim� � � dim� �� �

Use of measures such as �
�q�
u in our proof of Theorem ��� is suggested in �	 by

Cawley and Mauldin� they consider the case corresponding to a graph with one node�

An independent calculation of the dimension of such a measure was done in ��� by

Strichartz� he considers the case corresponding to a graph with one node� using a �xed

family of similarity transformations� and the case q � �� so that � � �� and f � � is

a ratio like ����
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	��� Cross�cuts� Suppose Cu is a cross�cut of E
���
u � That is� when E

���
u is given

the structure of a tree� Cu is a maximal antichain in E
���
u � Or� the cylinders �
 for


 � Cu are disjoint and their union is dense in E
���
u � If Cu is in�nite� we assume also

that

� �
X
��Cu

���q�u

�
�

�
�

So if we write Cuv � Cu � E
���
uv � then

�	� � �
X
v�V

X
��Cuv

���u p�
�qr�
�	�v

or

�u �
X
v�V

X
��Cuv

p�
�qr�
�	�v�

Of course the sets E
�k�
u used for ��� are cross�cuts� We may deduce formulas from the

general �	� in the same way as from ���� for example

� �
X
u

X
v

X
��Cuv

�up�
�
qr�
�	�v

� �

P
u

P
v

P
��Cuv

�
�up�
�

qr�
�	�v
�
log p�
�P

u

P
v

P
��Cuv

�
�up�
�qr�
�	�v

�
log r�
�

�

Our graph �V	E� is strongly connected� so almost every  � E��� returns eventually

to its starting node� Thus

Zu �
n

 � E���

uu � 
�k 
� E���
uu for � � k � j
j

o
is a cross�cut consisting only of cycles� Then the eigenvectors drop out of �	�� for all

u

� �
X
��Zu

p���qr���	�
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So we have

� �

P
��Zu

p���qr���	 log p���P
��Zu

p���qr���	 log r���
�

Another example of a cross�cut� �x � � �� and let

Cu �
n

 � E���

u � r�
� � � � r�
��
o
�

This is useful for study of decomposition of Ku into sets of the same size�

	��� Questions� There are several questions suggested by this work that we do not

answer here� For example�

�a� When q � �� is there some sort of �limiting construction�� with dimension

f��min�% In �	� where the case of a graph with one node is considered� the limiting

construction is composed of those edges e with equality ��e� � �min� Perhaps in our

case one should delete everything except the simple cycles � with ���� � �min� In

particular� if there is a unique such cycle ��� then the limiting construction consists

only of that cycle� so its attractors are single points when u lies on ��� How are these

points related to the components K
��min�
u %

�b� What happens when the graph is not strongly connected �so the matrix is

reducible�% Reading ��� would suggest that we should analyze all of the the strongly

connected components of the graph� and then take the maximum of these dimensions�

�c� Is there a completeness theorem% Does

�
�min����max

K���
u

have measure �%
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�d� Under what �disjointness� conditions� on the sets J�
� in the construction of

the fractals Ku� can we replace the sets K
���
u � hu

	 bK���
u



used in this paper with the

more naturally de�ned sets�
x � Ku � lim

���

log�
�
B��x�

�
log diam B��x�

� �

�
%

We have seen above that this can be done when we use a �xed family �e of similarities

and have a strong disjointness property� �It was shown to be true in �	 in the case

corresponding to a graph with a single node�� Is the open set condition enough%

�e� In Proposition ���� we see in case �B� that� � is a strictly convex function of q�

� is a strictly decreasing function of q� f is a strictly concave function of �� Thus� we

have strict inequalities�

d��

dq�
� �	

d�

dq
� �	

d�f

d��
� �

except possibly at isolated points where equality occurs� Do these strict inequalities

in fact hold everywhere%

�f� It would be interesting to investigate the relations between the computations in

this paper and the �thermodynamic formalism� for dimension spectra� For example�

D� A� Rand ��� investigates the dimension spectrum for �cookie�cutter� Cantor set

fractals�

Consider these two classes of fractals� the cookie�cutter fractals and the digraph

recursive fractals� Neither class contains the other� The digraph recursive fractals

utilize only a!ne transformations� while the cookie�cutter fractals allow non�a!ne

transformations� The cookie�cutter fractals are constructed in the line R� while digraph

recursive fractals are in Euclidean space of any dimension� The graph directing the
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construction of a cookie�cutter fractal is the graph with one node and two loops� while

digraph recursive fractals may be de�ned by more general graphs�

For sets that are both digraph recursive fractals and cookie�cutter fractals� Rand#s

results agree with ours� Compare our Theorem ��� with Rand#s Theorem �� This

agreement should extend much farther� Can the spectral radius  �q	 �� be considered

�the logarithm of� a �pressure� for the general digraph recursive fractal%
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