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R. DANIEL MAULDIN

In this note we investigate o-rectifiable continua: those
metrizable continua which have o—finite linear Hausdorff measure
with respect to some compatible metric. Let us recall that
Eilenberg and Harrold [EH] have given several characterizations
of rectifiable continua: those continua which have finite linear
Hausdorff measure with respect to some compatible metric. One of
their characterizations is that a metrizable continuum X has
rectifiable if and only if every subcontinuum of X contains
uncountably many local separating points of X. An analysis of
this condition in the o—finite case naturally leads to a
transfinite recursion. Via this recursion, we obtain a similar
necessary condition and conjecture that this condition is alseo
sufficient. The results given here were first presented at the
1986 Symposium on Topology and its applications in Prague and
then at the (Oberwolfach conference on measure theory in March
1990. |

First, let us assume that X is a continuum with metric p and
X has o—finite linear measure with respect to this metric. Thus,
there are subsets Xl’XZ’X3’°" of X such that for each n, Xn C

X,,q and é?l(xn,p) <oand |J X = X. In what follows, &

1(Xn,p) denotes the linear Hausdorff measure on X with respect to
the metric p. If it is understood what metric is being used, p
will be suppressed.

LEMMA 1. If X ¢s o-rectifiable, then, for each x, € X and
for Lebesgue measure almost all t, '
{x] p(x,xo) = t} is countable.

PROOF. Fix x Now, for each n we have the fundamental

formula
~+

F1x) 2 | #O(x € Xy plxgix) = 1) dA(E).
0
This formula is explicitly used by Eilenberg [E]. Thus, for each

0-
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n, for l-a.e. t {x € X_| p(xg,x) =t } is finite, since #0 is
simply counting measure. The lemma follows from this.

COROLLARY 2. If a continuum X is o-rectifiable, then X is g
rattonal curve: X has a base such that the boundary of each set
zn this base ts countable.

Several examples will be given to show the converse does not
hold. Next, we obtain some more topological properties of
o-rectifiable curves. '

Recall that a point x of a continuum M is a local separating
point of M means there is some open neighborhood U of x for which
there is a separation of U, U \ {x} = U; U U, and both open sets
U1 and U2 meet the component of U containing x [W2, p. 61].

LEMMA 3. If X is o-rectifiable, then, for each x,., for
A-a.e. t with 0 < t < max{p(xy,x> : x € X}, there is a local
separating point x of X such that p(xy,x) = t.

PROOF. This follows from Lemma 1 and Whyburn’s theorem that
every countable set which separates X contains a local sepafating
point of X[W2, p.62]. o

LEMMA 4. If X is o-rectifiable, then X 75 Suslinian: every
collection of pairwise disjoint nondegenerate subcontinﬁa*qf X is
countable. -

PROOF. 1If X were not Suslinian, then there would be
uncountably many pairwise disjoint nondegenerate subcdntinua of

X. But, every nondegenerate continuum has positive é?l'measure.
This would contradict the basic fact that for no o—finite measure
does there exist an uncountable collection of pairwise disjoint
sets with positive measure.

EXAMPLE 1. Let T be Sierpinski’s triangular curve [K, p.
276]. Then T is a regular curve(has a base of open sets each
with finite boundary) and is Suslinian. However, T has only
countably many local separating points. Thus, there is no metric
under which T has ¢~finite linear Hausdorff measure.

EXAMPLE 2. The sin 1/x continuum has ¢—finite 7% L neasure

as a subset of R2 under the usual Euclidean metric. Thus, a
oc-rectifiable continuum need not be locally connected. This
contrasts with the fact that rectifiable continua must be locally

connected.
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DEFINITION. A continuum M has property P means every
subcontinuum K of M which contains only countably many local
separating points of M is nowhere dense in M.

From Lemmas 3 and 4, we have .

THEOREM 5. If the continuum ¥ is o-rectifiable, then every
nondegenerate subcontinuum of X has property P. '

EXAMPLE 3. The converse of theorem 5 does not hold.
Consider the planar continuwm X = C x [0,1] U [0,1] x {0} where C
is the Cantor set. Every nondegenerate subcontinuum of X has
property P, but X is not even Suslinian much less c—rectifiable.

We recall some of Whyburn’s results for a general metrizable
continuum X. For each point x of X, there is a maximal
subcontinuum, K(x) = K(x,X), of X containing x which also
contains only countably many local separating points of X [Wi,
Theorem 2.1]. Let & be the decomposition of X into the
collection of its maximal subcontinua C such that C contains only
countably many local separating points of X. Whyburn showed that
the decomposition & is upper semi—continuous [W1, Theorem 4.2]
and that the decomposition space X/&ﬁwith the quotient topology
is a hereditarily locally connected continuum {Wi, Theorem 5.5].
Indeed, Whyburn showed that X/ is a regular curve and every
subcontinuum of X/% contains uncountably many local separating
points of X/ @ {W1i , Theorem 6.2]. Thus, X/& is a continuum of
finite degree and is, therefore, rectifiable [EH].

From Lemmas 3 and 4, we have:

LEMMA 6. If X is o-rectifiable, then there are only
countably many nondegeneréte elements of 9D aend each element of &

15 nowhere dense in X. ‘
DEFINITIGN. The transfinite local separating point

decomposition sequence {3%}a<w of a continuum X is defined as
1
follows. Set 3% = @, the upper semi—continunous decomposition of

X into the collection of its maximal subcontinua C such that C
contains only countably many local separating points of X.
Suppose @ is an ordinal and for each 7 < «, a decomposition é%
of X into continua has been given. If a is a limit ordinal, then
let K € 2, if and only if K = ﬂ7<a KT’ vhere each K7 € 3%, If o
= f+1, then let K € Q% if and only if there is some H € &% such

that K is a maximal subcontinuum of H which contains only

B T
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countably many local separating points of H. For each point x of
X and ordinal 7, let KT(X) = K7(x,X) be the element of 5%,
containing x. Since K7(x) is a transfinite decreasing sequence
of closed subsets of X, there is a smallest countable ordinal a =
s(x) such that K _(x) = Ka+1(x). The ordinal o(x) will be called
the local separating point index of x. The order of X, o(X) =
sup{o(x) | x € X}.

In orxder to pfove the next theorem, we first reformulate a
result of Whyburn’s as the next lemma.

LEMMA 7. Let C CY C X be continua. If C contains only
countebly many local separating points of Y, then C conteins only
countably many local separating points of X.

An argument for this lemma may be gathered from the proof of
(5-2) of [VW1, p. 446] .

COROLLARY 8. Let Y be a nondegenerate subcontinuum of the
continuum X. Then for each y € Y and for each ordinal a, Ka(y,Y)
C Xa(y,X). |

PROOF. Let C = Ko(y,Y) be the maximal subcontinuum of Y
containing y and only countably many local separating points of
Y. By lemma 7, C contains only countably many local separéting
points of X. Thus, K5(y,¥) C K,(v,X). The proof may be
completed by transfinite recursion.

THEOREM 9. Zet X be ¢ continuum. FEvery nondegenerate
 subconiinuum of X has propertly P if and only if for each x, Ka(x)
- {x}- -

PROOF. Assume every subcontinuum of X has property P. 1f
KU(X)(X) were not the singleton x, then since K, x)(x) has
property P, the maximal subcontinuum §Q of Ka(x)(x) containing X
and only countably many non—separating points of KU(X)(X) is
nowhere dense in KG(X)(X). But, § = Ka(x)+1 + Ka(x)(x)' Thus,
Ka(x) = {x}.

Now, assume for each x, Ka(x) = {x}. Let Y be a
nondegenerate subcontinuum of X. 'If Y does not have property P,
then there is some subcontinuum K of Y with nonempty interior, U,
relative to Y and which contains only countably many local
separating points of Y and let y € Y. If y € U, then for each «a,
Ka(y,Y) includes the closure of U with respect to Y. But, from
corollary 8, we have the contradiction: Kv(y)(y’Y) ={v}.

R T T BT
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QUESTION 2. Is it true that o(X) < wl? What if X has

property P?
Next, we show the answer to this last question is yes if X

is g—rectifiable.

THEOREM 10. If X has a metric p under which the !
measure of X is o-finite, then, for each x, X&(x} = {x}.
Horeover, there is a countable ordinal a < Wy such thaet for each
x, ofx) L a, i. e., there is a countable ordinal a < w, such that
3% is the decomposition of X into singletons.

PROOF. The first part of the theorem follows from theorems
5 and 7. In order to show the indices are uniformly bounded

below wy, write X = Uﬁml En’ where each E is a G5 set with

positive finite J?I measure. Since X is Suslinian, for each 7,
there are only countably many elements of DT which are not
singletons. By way of contradiction, let us assume each &% is
not trivial. It follows that there would be some positive
integer n and some ¢ > 0 such that for each a < @y, ﬁ%,n = {Ke g,

| é?l(EnﬂK) 2 €} ¥ ¢. Since the sets in Ea,n are disjoint,

there are not more than &?1(En)/e members of the collection
3%,n' For each a < wy, consider the closgd set Ma = Ué%’n. If
a < f§, then M_ 3 Mﬁ‘ Let x € (M . Then for each e < w,, K, (x)
would be nondegenerate. (Q.E.D.

REMARK. By rather involved constructions ome can show that
for eachfa < g there is a o-rectifiable X such that the order of
X is exactly a.

CONJECTURE. A metrizable continuum X is o—rectifiable if
and only if X is Suslinian and there exists some a < Wy such that
2% is the decomposition of X into singletons.

The next example shows that the connected union of two
rectifiable continua need not be rectifiable.

EXAMPLE 4. There is a continuum X and two subcontinua X1

and X2 such that each Xi is of finite degree(and therefore

possesses finite J?l measure in some metric pi) and yet X =
X1 U X2 is not rectifiable. The continuum described by
Kuratowski [K, p. 268] is such an example. (The bottom unit

interval contains no local separating points.)
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In contrast to this last example, we will show that the
connected union of two ¢-rectifiable continua is a o~rectifiable
continuum. In order to show this, we first require a more
detailed analysis of Hausdorff’s theorem concerning the extension

of metrics.
DEFINITION. Let d and r be metrics on a set E. Then r is

said to be compact Lipschitz with respect to d on E provided that
for each compact subset K of E there is a constant Cg such that

if x and y are in K, then r(x,y) < ch(x,y).

THEGREM 11. et d be a bounded metric on a space X and let
4 be a closed subset of X with a bounded compatible metric r
defined on A. There is an exztension p of r to a metric on X

" whick is compact Lipschitz on X \ 4.

PROOF. Ve will follow the construction given by Arens [A]
of a metric p on X which extends r. First, let ¥ = :
{B(x,d(x,A)/4 | x € X \ A}. Let &= {U,:A€L} be a locally
finite refinement of #. Set fy(x) = d(x,X\U,) and s = 2y £y
Thus, s is a continuous map of X\A into the positive real
numbers. Set gA = fA/S‘ 0f course, the family {gA:AEL} forms a
partition of unity subordinated to the cover #. For each A,
choose x, such that U, C B(xA,d(xA,X\A)/é and choose a; € A such
that d(x,,a,) < (5/4)d(xA,A). o '

Fix a point aqy € A and consider g, the usual isometric
imbedding of A with metric r into C,(4), the Banach space of
bounded continuous functions on A, given by p(a)(x) = r{x,a) —
r(x,ay). For each a, |¢(a)]] = r(a,ay) < [A],, the r—diameter of
A.

Consider the extension p:X ~ Cy(A) defined by p(x) =

EAgA(X)W(aA)’ for x ¢ A. Arens shows 7 is a continuous extension
of . Moreover, consider the Banach space L = C,(A) x R x Cy (%)
with the sup norm: [[(h,t,k)|| = max([h}|, | t],]k]]). For each x, let

dx(y) = d(x,y). Define F :X » L by F(x) = (p(x), d(x,A),
d(x,A)dx). Clearly, F|, is an isometric imbedding of A with
metric r into L. Arens shows that F is a homeomorphism and thus,
setting p(x,y) = [[F(x) - F(y)|l, we have an metric extension of r
to X compatible with the metric d. Let K be a compact set lying

in X \A.
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Claim. There is a number wg such that if x and y are in K,

then

(*) [e(x) ~ 2 < wgd(x,y)-
Proof. Let 81 = 8y »---58) =g, be the elements of the
1 n

partition of unity which are nonzero at some point of K. Thus,

190G = w1 = [2(e3 () - &5(3))e(2) )1 < Mlolay DIIEI (55 G0 -
g;(¥))]-

But, [[p(a, )|| < [A[,. and for each j,

g5 (%) “‘gJ%Y)

[s(¥)(d(x,X\U, ) - d(Y,X\UA )) + (s(y) -
s(x))d(y,X\U, )]/S(K)S(y)
Let By = mlnzéKs(z) > 0 and Hy = maxZEKs(z). Then

|850) — &5 () [ < 1/Bg(Hed(x,y) + [X]4ls(x) - s(¥)[]
and :

[s(y) — s(x)]| < Z% =1 14GXNUy ) —-d(y,X\UA )| € nd(x,y).

k|

Inequality (*) follows from these 1nequallt1es

Note

Id(-xaA) -Vrd(Y:A)! S d(")Y)
and for each =z,
[d(x,A)d(x,z) — d(y,A)d(y,z)]| £ 2[X]qd(x,¥) -

That p is d-Lipschitz on K now follows easily from these
inequalities and the claim. |

THEOREM 12. LlLet X be a compact metric space. If X may be

expressed as Uz -7 H. where each H; 25 closed and has a metric T
under which H{ has o-finite x 1 measure, then X possesses a

metric under which it has o-finite X 1 measure. In particular,
tf X is the union of finitely many continue each with finite
degree, then X 1s o-rectifiable.

PROOF. - Suppose X = MIU Mg-and let d be a metric on X.
- First, extend ry to a metric py on X. Use theorem 8 to extend
the metric X, on M2 to a metric Py ON X which is compact

Lipschitz with respect to py on X\M,. Expréss X\M, = UKj, where

each K. is compact. Since each set K., has o—finite 7% 1 measure

Lt Arah
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with respect to the metric Ty and Py is r1~Lipschitz on Kj’ each
set K. has o—finite é?l#measure vith respect to the metric Po-

Thus, X has o—finite % wmeasure with respect to the measure p2

The theorem follows by induction.
REMARK. Obviously, this theorem can be placed in a more

general context and holds for general Hausdorff measures.
QUESTION 3. Suppose X = U?:l M; where each Mi is closed and
has a metric r, under which Mi has o—finite J?l measure. Is it

true that X possesses a metric under which it has o—finite x L

measure?
QUESTION 4. Supppose the continuum X possesses a metric

under which it has e¢—finite 5?1 measure. Is it true that X =

U?=1 Mi, where each Mi is closed and has finite &% ' measure.

Finally, we review the fact that a rectifiable curve X is a
Peano continuum, by showing there is a map of [0,1] onto X with a
bound on its arc length. Ve do this since there is a mlnor p01nt
missing from the argument given in [EH].

Ve need the the following lemmas concerning'dendrites.
Recall that a dendrite is a locally connected continuum D which
contains no simple closed curve. A dendrite is finiﬁe'méahs it

has only finitely many end points or non—cut points.

LEMMA 13. Llet D be a finite dendrite with & *(D) < w. If
each of = and y is a point of I, then there is a continuous map f

of [0,1] onto D such that the arc length, Lé F < 2é¥‘l(X), f(o) =
z and f(1) =
This lemma may be proven by induction on the number of end

points.
THEOREM 14. Let X be e nongenerate metrizeble continuum

with metric p. Then 0 < Q?I(X;p) <w 2f and only if there is a
continuous map f of the unit intervel onto X which has fintte arc
length. |

PROOF. First, assume X is a rectifiable curve. Let f be a
continuous rectifiable map of [0,1] onto X with arc length L. Ve

recall a standard argument that J?i(X,p) < L. Let g parametrize
X bv arc length. In other words, let h be the continuous

»mem{nm\exq% 2N, <



CONTINUA WITH o~FINITE LINEAR MEASURE

strictly increasing map of [0,1] onto [0,L] given by h(t) =

Lg(f), the length of f on [0,t]. Then g = foh ' and g is a
nonexpansive map of [0,1] onto X: for s,t € [0,L], p{g(s),g(t))

<pEN(s), £ (07)) <R () £ o pg(s) — g(t)[. By the

-1
h " (s)
standard inequality concerning the Hausdorff measure of image

sets under Lipschitz maps, we have J?I(X,ﬁ) = J?I(g([O,L]) &

Lt[0,1] = L.
Now, let us assume J?i(X,p) < . Ve recall the argument
[EH] that the continuum X has finite degree. Fix Xg- We have

the fundamental formula

o > % LX) gf;m #O({x € X_| p(xg.x) = t}) dA(t).

Thus, for Lebesgue measure almost all t, the set of points at
distance t from x, is finite. This implies the continuum X has
finite degree. 1In particular, X is a regular curve in the sense
of Menger and Urysohn. This implies that X is locally connected

(Ko, p. 283]. Therefore, there is a sequence {Dn}iml of

. 100 X
dendrites such that for each n, (1) D, CD i, (2) U1 D is
- dense in X and (3) if C is a component of D .1 \ D, then C meets
D_ in exactly one point x{(c) and the dendrite C U {x(c)} has

diameter < 277, Let f1 be a continuous map of [0,1] onto D1 such
that Lé £y < 23?1(91). Assume that a continuous map f, of [0,1]

onto D, has been given with Lé i, < 2&?1(Dk). Let xg, s Ko
list the points x of Dk’ for vhich there is some component, C, of
Dy .1 \ Dy, for which x = x(C). For each i, let K. = U{C : x(C)
=x:.t U {x;} and let t; be a number in [0,1] such that f.(t5) =
;- Without loss of generality, we can assume O < Ty <<t <

1

X
1. Choose 0 < Sq < ty < Uy <89 <ty <uy <...< 5 <t < u

such that for each i, the diameter of £, ([sy, u;]) < g~ (k+1)
~According to lemma 11, we may define fk+1 by 1etting‘fk+1 be a
continuous map of [s;,u;] onto K; such that £; ,(s;) = £y ,(u;) =
u,
1 . .
xs, LS; fk+1 < 2K (Ki) and letting f, .4 agree with £y
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The sequence of continuous maps so defined has the property that

1 1
for each k, f; maps [0,1] onto Dy, Ly £ < 2% (B)) and

sup, | £, (t)

sequence of functions fk

— fk+1(t)| < 2~k. Let f be the uniform limit of the

Then Lj £ € 25% 1 (X) and it also

follows that f maps [0,1] onto X. Q.E.D.

This argument clarifies some points in [EH].
is essentially given in [Wa] for other purposes.

This argument

in [Fa, p. 53] and [F-M-P].
During the preparation of this manuscript, D. Fremlin sent
me a manuscript which overlaps somewhat with the results

presented here [F].
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