
ADVANCES IN MATHEMATICS 92, 196236 (1992) 

Multifractal Decompositions of Moran Fractals 

ROBERT CAWLEY 

Naval Surface Warfare Center, 
White Oak, Silver Spring, Maryland 20903-5000 

AND 

R. DANIEL MAULDIN 

Department of Mathematics, Box 5116, University of North Texas, 
Demon, Texas 74203 

We present a rigorous construction and generalization of the multifractal decom- 
position for Moran fractals with intinite product measure. The generalization is 
specilied by a system of nonnegative weights in the partition sum. All the usual 
(smooth) properties of thef(a) theory are recovered for the case that the weights 
are equal to unity. The generalized spectrum, !(a, r~), is invariant to a group of 
gauge transformations of the weights, and, in addition, need no longer be concave. 
In case the fractal is a Cantor set generated by an iterated function system of 
similarities, a is the pointwise dimension of the measure. We discuss properties of 
some examples. 0 1992 Academic Press, Inc. 

We analyze multifractal structures of a particular type of fractal which 
we call a Moran fractal. In so doing, we also present a generalization of the 
multifractal theory. Moran fractals are constructed by an iterative proce- 
dure using a given lixed number of similarity ratios. But, unlike objects 
constructed by using specified similarity maps, Moran fractals need not be 
themselves “self-similar” [Fa, Hu]. Thus, Moran fractals encompass a wide 
class of geometric objects, including, but not limited to, the family of self- 
similar sets as well as the attractors generated by iterated function systems 
(IFS) popularized by Barnsley and Demko [Ba]. First, we set the mathe- 
matical stage, introduce the notion of a multifractal decomposition, and 
give a brief historical sketch of the origins of multifractal ideas. 

Let J be a nonempty compact subset of m-dimensional euclidean space, 
R"', let n be a positive integer, n 2 2, and let li, . . . . tn be fixed numbers 
between 0 and 1. We also assume J is regular: J=cl(int J). A Moran 
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fractal based on seed set J and similarity ratios li, . . . . tn is a set K which 
can be expressed as 

where Sk = { 1, . . . . KZ}~ and the sets J(c) are given recursively by the condi- 
tions that J= J(a) and if J(o), for cr E Sk, has been determined, then the 
sets J(c*l), . . . . J(o*rz), on the (k + 1)th level, are nonoverlapping subsets of 
J(cr) such that for each i, J(cr*i) is geometrically similar to J(o) via a 
similarity map with reduction ratio ti. If c = (c(l), . . . . e(k)), then by c*i, 
the concatenation of c and i, we mean ts*i= (c(l), . . . . c(k), Q. 

We denote the diameter of a set E by [,!?I. Thus, if 0~ Sk, then 
1 J(o)1 = 1 Jj . t(u), where nf= 1 t+) = t(u). The geometric measure theoretic 
structure of K was determined by Moran [MO]. Let d be the unique 
solution of 

i t;= 1. (21 
i= 1 

Moran showed that the HausdorfI dimension of K is d: dim(K) =d. 
Moreover, as is also shown in Section 2, if Xd is the corresponding 
d-dimensional Hausdorff measure, 0 < Xd(K) < 1 J[ ’ -E co. For convenience, 
we assume 1 J[ = 1. For the record, we note that Spear [Spl] and, inde- 
pendently, Haase [Haa] have shown that for these constructions and, 
more generally, for an object generated from directed graph constructions 
[Maul, the packing dimension and the Hausdorff dimension of the object 
agree.l Spear has shown that Hausdorff and Packing measure differ by a 
fixed constant multiple over subsets of K [Sp2]. 

The proof that 0 x sd(K), as given in Section 2, and our analysis, is 
made easier with the aid of a natural coding space. The coding space is 
f2 = { 1, . . . . ?z}N, where N={l,2,3 ,... }. For each cr~fi and kcN, let 
crik= (c(l), . . . . c(k)). There is a natural coding map g of Q onto K detined 
by the condition 

{&I}= fi Jfclk). (3) 
k=l 

It is easily seen that g is a continuous map of L2 onto K. For each 
c-r E { 1, . . . . nj* = Up=, Sk, let lu[ denote the length of c and let C(e) be the 
cylinder set in L2 determined by 0. Thus, 

C(u)= {~EQ: r[k=q where 101 =k}. (4) 

IS.. J. Taylor has suggested the term fractal be reserved for sets for which the packing 
dimension coincides with the HausdorlT dimension [Ta]. 
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The continuity of g follows from the inclusion g(C(e)) c J(c). The coding 
map g is not necessarily a one-to-one map of Q onto K. However, in the 
important case of “pairwise disjoint” Moran constructions, the coding map 
is a homeomorphism of Q onto K. A Moran construction is said to be 
pairwise disjoint provided for each positive integer k, the sets J(c), 
OE&, are pairwise disjoint. Under this assumption, the map g is a 
homeomorphism and the set K is a topological Cantor set: a compact, 
dense-in-itselfbzero-dimensional subset of R”‘. Thus, K is a fractal Cantor 
set. 

A subclass of Moran constructions is the “map specilied” case or iterated 
function systems [Ba]. Here it is assumed that n contracting similarity 
maps Tl, . . . . Tn of Rm are given with similarity ratios r,, ,.., t,,, respectively, 
such that for 0 e Sk, 

i.e., K is constructed by iterating these specific maps applied to J. 
Our interest in this paper focuses on “multifractal” decompositions of K 

characterized in terms of the local behaviour of a probability measure 
induced on K by a product measure on Q. This is described as follows. 

Fix a probability vector (pi, . . . . JJ,J with each pi positive and let fi be the 
corresponding inlinite product measure on Q. Let p be the image measure 
on K induced by g. So p(E) = b(g-‘(E)), for E E R”‘. For each IX, let 

and 
& =&i (61 

The disadvantage of the definition of Km given by Eq. (6) is that the deter- 
mination of when x is in Km depends on knowing some sequence of sets 
J(c) of the construction closing down on x. In Section 3, we eliminate this 
problem for the case of pairwise disjoint, map specified Moran construc- 
tions. We prove that the sets Km may be characterized in terms of the local 
behaviour of the measure p. In particular, in this case, each set Km 
comprises the points of K where the pointwise dimension of p is cc In other 
words, a point x of K is in Ka if and only if 

where B(x, .s) is a ball of diameter .s centered at x. Thus, for the pairwise 
disjoint, map specitied case, the sets K= are determined by the local external 
geometric behaviour of p, and one does not need to be given explicitly the 
sets J(c)--the method of construction of K. In the framework of Halsey 
et ui. [Ha], Ka is specilied by Eq. (7) where the limit is assumed always to 
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exist, We verify this complete framework in the case of a Cantor set 
generated by an iterated function system. Here a generating partition is 
available analogous to a dynamical system where Markov partitions are 
available to organize the dynamics on the manifold. It is frustrating that we 
do not know what the situation is for the general Moran construction. 

The collection of sets Km form a multifractal decomposition of K corre- 
sponding to the measure p. (For the record, we have shown that each set 
Km is a fractal in the sense of Taylor.*) In Section 2, we determine the 
function f(a) = dim Km for a class of multifractal decompositions of general 
Moran fractals K based on p; while in Section 4, we produce a new 
generalization of the earlier multifractal scheme, along with a generalized 
formula forJ now based on weights as well as measures (see below for the 
motivation for introduction of the weights.) In Section 4, we prove the 
corresponding Hausdorff dimension results for the new sets issuing from 
the generalized multifractai decomposition. In Section 1, we develop some 
preliminary properties of the usual function f and some associated auxiliary 
functions. In particular, we show that f(a) is smooth. Properties of the 
generalized J which is also smooth, are developed in Sections 4 and 5. 

The smoothness off has been one of the reasons for the popularity and 
usefulness of the broad circle of ideas of multifractal analysis in physical 
applications. The first expositions of the idea of representing a strange or 
fractal set as a decomposition of this sort may have their genesis in an early 
paper of Mandelbrot [Man] where it was proposed that the bulk of inter- 
mittent dissipation of energy in highly turbulent fluid flow ocurs over a 
subset S c R3 of fractional dimension. An independent circle of ideas based 
on the Renyi entropies [Re, Appendix] of order q 2 0 was presented in 
several papers introducing “higher order dimensions”, by Grassberger and 
Procaccia [Grl], Heschel and Procaccia [He], and Grassberger [Gr2]. 
An extension to q e R, and a slightly sharper notion of generalized dimen- 
sion which seems to have anticipated the later partition function formalism 
(uid. our measure V~ in Section 2, and Eq. (1.1) upon which it is based) was 
discussed by Grassberger [Gr3]. 

Subsequently, in a now famous appendix to an article of U. Frisch, 
Frisch and Parisi [Fr] proposed a “multifractal” picture which was more 
restrictive than the complicated intuitive model elaborated previously in the 
paper of Mandelbrot. Based on an invariance argument, it was suggested 
in [Fr] that solutions of the three-dimensional Navier-Stokes equations in 
a zero-viscosity limit might exhibit singularities of order h, on fractal sets 
,S(h) where the velocity field just fails to be a Holder function of order h, 
and where s(h) c S(M) if /i < h’. The function dim,, S(fz) was computed 
from assumptions concerning the local behaviour of moments of the fluid 

‘Edgar and Mauldin [Ed] have extended the results of Sections l-3 to a more general 
setting and have shown the sets Ka are fractals in the sense of Taylor. 
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relative velocity. A wider generality of the multifractal decomposition idea 
was recognized by Benzi ec al. [Ben], who extended its application to 
dynamical systems. In the work of Halsey et al [Ha], a general formula- 
tion of the scenarios of multifractal theory was elaborated in which there 
were strong hints at parallels to the theory of statistical mechanics. 

Our own generalization of multifractal theory presented herein involves 
the introduction of weights wi to the terms &!lf of the generating partition 
for the measures v~,~ (Section 4-in particular, Eq. (4.1)). We have two 
kinds of motivation for this. The first is purely mathematical. In a rigorous 
construction of the multifractal theory, a key ingredient is the availability 
of a shift-invariant measure ergodic on the coding space, a role played on 
the image set in Rd by v~. There are infinitely many such measures. The 
measure used for the standard multifractal theory is a product measure 
(Section 2). We hoped that by exploring some of the others we would gain 
new insight into the nature of the multifractal formalism. A search for a 
clean example that would either destroy the multifractal formalism entirely 
or generate a nontrivial extension of it led us to the introduction of the 
weights. This simple model has the property that the resulting multifractal 
“f(a, w)-curves” are no longer necessarily concave down and the maximum 
value of f(a, w) is not necessarily the Hausdorff dimension. On the other 
hand, some properties of thef(a, w) curves are the same, such as the maxi- 
mum and minimum values taken by a when all the weights are positive. In 
addition, there is an interesting new invariance feature to thef(a, w) curve, 
namely to gauge transformations of the weights (Section 5). (There are 
many more possibilities here. For example, we have not carried out the 
corresponding analysis for Markov chains.) Our second motivation is 
physical, and is inspired by a spin-glass theory analogy [Mel, 2, 31. Here 
a large collection of pure equilibrium (Gibbs) clustering states 
a = 1, 2, . . . . N, are supposed to be present as components of a mixed state, 
with weighting probabilities Pa, .ZPa = 1. The spin glass order parameter is 
then detined in terms of a distribution over random couplings Jv between 
spins of the probability for two pure states to have a specified “overlap,” 
where the overlap is a quantity defined in terms of the Pm [Mel, 21. 
Macroscopic averaging in spin-glass theory includes an additional statisti- 
cal feature with respect to the mixture of local pure states. The inclusion of 
an independent set of weights, wi, in Eq. (4.1) provides for such an addi- 
tional statistical feature and may be thought of as simulating the Po’s. 
(Although we do not require our weights to be a probability vector, they 
can easily be normalized by a gauge transformation (see below).) We 
hasten to add that spin glass theory possesses considerable structure and 
we have not tried to establish real correspondences or close analogies to 
the generalized multifractal formalism. 

Finally, the tirst rigorous results of multifractal theory besides those 
presented herein have been due to Collet et al. [Co], Bohr and Rand 
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[Bo], and Rand [Ra], where the context was that of one-dimensional 
maps, of the unit interval and of the circle, and to Lopez [L.l, L.21, for 
rational maps of the complex plane. 

1. AUXILIARY FUNCTIONS AND THEIR PROPERTIES 

Our notation for these functions conforms for the most part to that of 
[Ha] except for our use of j?(q) in place of their -T(q). The lirst auxiliary 
function is dellned as follows. For each q E R, there is a unique number, 
j(q), such that 

icl ppy = 1. (1.1) 

Clearly, /I( 1) = 0 and /I(O) = d. Also, by implicit differentiation 

and 

b”(q) = - i (logpt+ j?‘(q) log #&Q;(q) *Cl (log &#(q). 
i. 

(1.3) 
i=l 

Thus, j.?(q) < 0, for ail q, so that b is a strictly decreasing function. Also, 
note that fl”(q)>O. As a matter of fact, either j?“(q) >O, for all q, or else 
pi = ty and b(q) = -dq + d, for all q. This follows from the fact that if 
jY’(q,,) = 0, for some q,,, then from Eq. (1.3), j.Y(qO) = -logpi/Iog t1 = . .. = 
-log p,Jlog t,, . Therefore, p. = t!?‘Cqo), i = 1 n. This implies pi = tf. In this 
case, and only in this case, b(q)‘= - dq + i’ior all q. 

THEOREM 1.1. The function /I is strictly decreasing, p(O)= d, and 
/?(l)=O. Either pi= ty, i= 1, . . . . n, and j?(q)= -qd+d, or b”(q)>O, for 
all q. 

Our second auxiliary function is 

a(q) = -/3’(q)= i (log pi)p#q) 2 (log tJpytf(q). 
I 

(1.4) 
i=l i=l 

THEOREM 1.2. The positive function a either is constantly equal to d or 
else is strictly decreasing. 

Finally, let 
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We have j(O) = d and f’(q) = -q/l”(q). So either f is constantly equal to d 
or else f is strictly increasing from - cc to 0 and strictly decreasing from 
otoco. 

Unless we have the exceptional case of pi = rf, the function q + a(q) is 
one-to-one and we can express f as a function of a; i.e., for each a between 
a(m) and a( - co), set f(a) = f(q), where a(q) = a. The graph off as a 
function of a is smooth and everywhere concave downward, and has 
several distirktive features to be derived presently. It is commonly called 
“the spectrum of scaling indices” or “f(a).” 

Let us determine the asymptotic behaviour of these auxiliary functions. 
From 

we immediately have limq - ~ j?(q) = - cc and limq 

1j=lOgpi/lOg lj, A = min Ai, and 

We claim that 

lim /3(q) + Aq = e, 
q-m 

where 

This may be seen as follows. We have 

+- .a b(q) = co. Set 

2 = max &. (I.61 

(I.71 

1 = 1 p+2q+ & (pJ;Jyyw+~q. (1.10) 
A,= A 1’ 

Note that j?(q) + Aq is nonincreasing, since from (1.4) and (1.6), we lind 

/3’(q) + A= f (A - &)(log tJpjy(q) 
1 

?I i;l (log fi) py fy < 0. 
i= I 
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By the monotonicity of j?(q) + Aq, there are two cases: (a) limq+a b(q) + Aq = 
-co, and (b)limq+m /3(q) + Aq = e, for some real number e. If case (a) 
were to hold, then taking the limit as q goes to cc in (1.10) and noting that 
if Aj> A, then pirz:A -K 1, we would have 1 = co. Taking limits in case (b), 
we obtain Eq. (1.8). What we have shown, in other words, is that the line 
-1q + e is asumptotic to b(q) as q goes to co. 

Similarly, the line -1q + C? is asymptotic to /3(q) as q goes to - a, where 
I= max Ai and t? is defined by 

1 = 1 t;. (1.11) 
&=,I 

Remark 1.3. 
value of i, .F = 0. 

If &A t: = t\, then e = 0. Similarly, if Ai = 2 for only one 

To find the asymptotic behaviour of a, express, with some algebra, 
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FIG. 1.1. p(q): smooth, concave upwards, strictly decreasing, and in!inite at q = & co. The 
straight lines are asymptotes, with slopes and intercepts as shown. The graph of p(q) is itself 
a straight line for the case pi = zf, I’ = i, . . . . n. 
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Taking the limit as q goes to cc in this last expression, we get 

CX( co) = lim cc(q) = A = min(log pi/log fi). 
q-a 

(1.12) 

Mutatis mutandis, 

fx( - co) = lim u(q) = I= max(log pi/log li). (1.13) 
q--m 

Figures 1.1 and 1.2 are sketches of the graphs of /? and u as functions of 
q illustrating their principal features. 

THEOREM 1.4. limq - ~ f(q) = e and limq - - ~ f(q) = 2. 

ProoJ Express 

we obtain, after some manipulations, 

Since S(q) +&CA (log ti) t: # 0 and Ai > A for each i, in the sums, the 
denominator of this last expression converges to one as q + NI, while the 
numerator converges to zero. Mutatis mutandis, 

lim j-(q) = 2. 
q+ -cc 

(1.17) 

---------------------------- a(-o¶) = x 

---------------------------- dml= A 

FIG. 1.2. a(q)= -/l’(q): strictly decreasing in q and bounded between positive tinite 
values. For JJ, = $, i = 1, . . . . TV, a(q) = constant = d. 
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Remurk 1.5. If the sums in Eqs. (1.8) and (1.11) contain only one term, 
then e=C=O andf(a) vanishes at its endpoints. But neitherj(u(a)) nor 
j-(m( - co)) need be zero, as the following example indicates. 

EXAMPLE 1.6. Let n =4 and J= [O, 1] x [O, 11, the unit square in Rz 
with tl=t2=t3= t4= T,pl=p2=p, andp3=p4=P>p. Thus, J=log P/log T 
and J = log p/log T. Then e = log( $‘log T # 0 and C? = log( $/log T # 0. 

Remurk 1.7. Regardless of the values of f at a( - co) or a( co), the 
limiting slopes of the f(a) curve are inlinite. Since dflda = (dfldq) . 
Wda I= a 

lim 9= +cc and alj~aj$=-~. 
u+a(+cmj da 

Also, since /I( 1) = 0, we have j(a( 1 ))‘= a( 1). And since df/da 1 aclj = 1, the 
graph off as a function of a is tangent to the 45” line at a = a( 1). 

Remark 1.8. From dflda = q(a), we have dy/da2 = a’(q)-’ = -/3”(q)-’ 
-C 0. That is, f(a) is everywhere concave downward. For the single value of 
a for which q vanishes, f has an absolute maximum, and df/da cannot 
vanish anywhere else. The value taken by f at its maximum is fmax = 

fkzl 4 

4 
/‘I 

/ ’ I 

1’ 
/ 

d-.----------------/C p 
/ 

s..------------ --------- 
f(a(,,)T.--------mmv 

’ i 

, (+yy 

/l’ I 
/’ ; 

/ / I 
~---+-.-~~ -7 

/ 
1’ i CY 

abe) = A dlb a to) al-ml =x 

FIG. 1.3. Spectrum of scaling indices, f(a): The slopes are infinite at a = A and a = 1. The 
dimension values, e and F, vanish in the nondegenerate case, where Ai = log pi/log ri takes its 
maximum and minimum for only single values of i. The straight line with slope one passing 
through the origin is tangent to the graph off at (a( 1). f(cc( 1))). For pi = ry, i = 1, . . . . n, the 
otherwise smooth and concave graph of f(a) instead becomes a single point, 
P = PfatOl, jlafOJ)l= PC4 4. 
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b(O) = d. Finally, as we shall see in Section 2 (Remark 2.12), the value 
J(u( 1)) = CC( 1) is the Hausdorff dimension of the inlinite product measure p 
generated by the probability vector (pl, . . . . p,,). Thus, f(q) iqz l is the 
information dimension of p. Figure 1.3 shows a sketch off(a) illustrating its 
principal features. 

Remurk 1.9. Excluding pi = f y, the concavity off(u) and the monotone 
property of E(q) imply the following inequalities: 

j(~~(+co))=e<j(~(l))=~~(l)<J(~(O))=d and d>f(a(-a))=E 

2. THE HAUSDORFF DI~NSION OF Kx. 

Let us consider in more detail the multifractal decomposition of K. 
Again, Ai = A(i) = 1ogpJlog fj, i = 1, . . . . n, ,? = min & and 2 = max &. For 
each CJ E Q and i E N, express poCij = l$;il). Then 

< li~+s~p log JJ( ~7 1 k)/log l( CT 1 k) < ,I= u( - co ). 

We begin by analyzing Ka, the set of points of K coded by symbol 
sequences 0 such that the limit of the log ratios is some number between 
1 and 2. From the preceding inequality, CY = a(q) for some q and 

In fact, we construct a probability measure pq supported on KaCqj, and 
show that the dimension of the pq isj(q). 

THEOREM 2.1. For each CY(~)CU -~a( -co), dim(KJ=f(a). Zn other 
words, for q l R, dim(KaCqj) =f(q) = qa(q) + /l(q). Moreouer, lhe dimension 
of Pq =f (cl)- 

The proof of this theorem is broken into two main parts. First, using 
the Vitali covering theorem, we show dim(KaCqj) <f (q). Then, using a 
geometric lemma specific to these constructions, we show dim(KUCqJ > f (q). 
In this part we also prove that the dimension of the measure pq is f(q). 
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Each of these proofs is further subdivided according to whether q=O, 
q > 0, or q x 0. The first and easiest case we commented on the introduc- 
tion. 

THEOREM 2.2. dim (I&& <f(O) = d. 

PPYX$ Since dim(K,& <dim(K), it sufIices to show that Z’(K) c co. 
This is easily seen from the estimates obtained from the covers consisting 
of the sets J(c) constructed on level k. Using the multinomial expansion, 

Oq = {a E G? : lip s~.~p log ~(cr 1 k)/log t(a I k) < a(q)) 

and set 

THEOREM 2.3. FW euck q >O, dim(K& <dim Uq<f(q). For euch 
c? > 0, *f(q) + a( Uq) = 0. 

The proof of this theorem is based upon the following lemma. 

LEMMA 2.4. Let q and 6 be positive. For each positive integer m, there is 
a collection C!$,, of pairwise disjoint sets each with diameter less than I/m such 
that 

(11 (2.3) 

w 02 lGi 
f(q)+6 < 1. (2.4) 

m 

Proof of Lemma 2.4. For each a E oq, let MO be a positive integer such 
that if k > h4,,, then 
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and 

r( u 1 k) < l/M. (2.6) 

Set Y*= {g(C(u/k)): cr E oq and k > MD}. Clearly, Ym is a Vitali class for 
Uq. Therefore, by the Vitali covering Iemma [Fa, p. 1 I], there is a pairwise 
disjoint subcollection 5%m of YM such that either 

or 

@) .3Tf(q)+6 ( uq\u s-+0. (2.8) 

However, (2.7) does not hold. To see this, suppose the sets G are 
g(C(criiki))eYm, i= 1, . . . . j. From (2.5), we have 

~g(C(~i~ki))~qa~q~+‘<t(q~ki)q’~~~+’<p(cq~ki)~ (2.9) 

for each i. Thus, 

But, since 

(2.10) 

it follows that if 9 c { 1, . . . . n}* is such that no two sequences in L$ have 
a common extension, then 

Since the sets g(C(cri 1 ki)) are pairwise disjoint, no two oil ki in fact, do 
have a common extension. Therefore, 

(2.12) 

Proof of Theorem 2.3. Since Condition (2.3) ensures that 
~fCq)+Wq\n~=~ u ‘%,) = 0, and Condition (2.4) ensures that 
sf(q)+a(uqn [n;=, ug,,,])< 1, we have ZJ(q)+‘(Uq)< 1. 
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For q -CO, set 

and set 

One argues as in the case q > 0: 

THEOREM 2.5. For euch q< 0 und ~3 >O, sffCq)+‘(Lq) < 1. TIIUV, 
~W~a~q~~ GW. 

We turn now to the proofs that dim(KaCqj)>f(q). These are based upon 
the following geometric lemma and examination of the images on K of 
measures on the coding space. This lemma is proved in a more general 
setting in [Maul. 

LEMMA 2.6. There is a number c > 0 such that if E c R”’ and IEj -C 
tmin = min{ ti : 1 < i < n}, then the cardinality of H is <c, where 

H= {og {l, . . . . n}* : lJ(o)l -c PI < 140 I lul - 1) and 40) n E # a}. (2.13) 

From this point on we tix c > 1 such that Lemma 2.6 holds. 
We now introduce the auxiliary measures pq supported on KaCqj. These 

are the image under the coding map of the infinite product measure fiq, on 
Q, based on the probability vector (pytfcq), . . . . p;ttcqJ), where 

Note that jiq(kaCqJ = 1. This follows from Birkhoff’s individual ergodic 
theorem applied to the shift transformation, the measure fiq, and the func- 
tions X(u) = log pUClj and Y(g) = log tqc,). Thus, we find that for fiq almost 
all 0, 

lim 
k-w 

logp(o[k)=E[A’]= i (lOg~i)~~tfcq’. (2.14) 
i=l 

Similarly, for pq-a.e. 0, 

lim (l/AI) 1Og t(U 1 k) = i (log fi) P: tt’q’* 
k-w 

i=l 

(2.15) 
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Taking ratios and using Eq. (1.4), we have that for &-a.e. U, 

(2.16) 

(Many authors have used the ergodic theorem in a similar fashion, e.g., 
Billingsley [Bi]. The lirst occurrence of this use is unknown to us.) 

It is shown in [Maul that Lemma 2.6 implies the following lemma. 

LEMMA 2.7. Zf E c Rm and IEi < t~i”, then 

PO(E) -c c- lEld. (2.17) 

ProoJ Let 

H={crE{l,...,n}*: l~(~)l~lEl~l~(~ll~l-l)land~(~)nE#~}. 

Then 

< 1 lEld<clEld. (2.18) 
UEH 

If ,u is a measure on a metric space X, then dim p, the dimension of p, 
is delined by dim p = min{y : 3S c X with dim S= y and p(X\S) = 01. 

THEOREM 2.8. dim(KaC,,J) >j-(0) = d. Zn fact, XfCo)(KzCoJ >O and p. 
which is supported on KaCo, has dimension f (0). 

Prooj Suppose X’d(KaCoj) -C l/c. Then there would be a collection 8 of 
sets each with diameter less than t~i” and covering KuCoj such that 

E;8 Eld< l/c. (2.19) 

But then we would also have the contradiction 

l> x c lEld> 1 PO(E) 2 ~o&oJ = 1. (2.20) 
ES8 ES8 

Since p. is supported on KaCoj, dim p. <j-(O). Assume there is some set 
S c R”’ with pa(S) = 1 and dim S <f(O). Since sd(S) = 0, there would be 
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a cover &’ of S by sets with diameter < akin such that z [Eid< l/c. This 
leads again to the contradiction (2.20). 

THEOFEM 2.9. For euch q > 0, dirn(J&J af(q). Zn facz, pq which is 
supported on KeCqj bus dimension f(q). 

ProojI Let q > 0. It sulfites to show that dim pq af(q). Assume there is 
some set S c R”’ with Qs) = 1 and X fcq) - ‘(S) = 0, for some 0 < d <f(q). 
For each TV rz kmcqj, let NV be a positive integer such that if k 2 NO, then 

log ~(0 I k)/b t(c I k) > a(q) - d/q. (2.21) 

For each M, let kmtqjhM = { cr E kafqj : N0 = it4}. 
Fix M so that fiq(KGcqj,Mng-l(S)) >O. Set Kacqj,,, =g(&cqj,M) and 

define the measure v, supported on KaCqj,,,, by 

WJ = fiqkdlVJ n &cqj,Ml, A c ZY. (2.22) 

We need the following lemma which is similar to Lemma 2.7. 

LEMMA 2.10. Zf Ec R”’ and IEl -~rs,.,, then 

v(E) = v(K~(~),~ n E) <c lElycq)-‘. (2.23) 

Proof of Lemma 2.10. For each c~g-‘(En Kmcqj,M)n &q,,M chose 
m(g) such that 

IJ~~l~~~~N .C IEI < lJt~ld~)- 111. (2.24) 

Evidently, m(c)>M, and sinceg(c)EJ(clm(e))nE, J(olm(o))nE#Ql 
According to Lemma 2.6, the cardinality of the set of 0 1 m(c) is no more 

than c. Now, 

or 

<‘xp(c~ 1 m(0))q. f(t~i m(o))b(q). (2.27) 

From (2.21), it follows that p(~ 1 m(o))q < t(c 1 rn(c))qaCq)-‘. Thus, 

v(EnKacqj,+,)<z f(~lm(~))qQ(q)+~(q)-~. (2.28) 
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(2.29) 

Completion of the Proof of Theorem 2.9. The same reasoning as that 
used for the proof of Theorem 2.8 together with the help of Lemma 2.10 
now can be used to prove the inequality 

v(A) < CsFyA), for AcRm. 

But this is a contradiction since v(s) = fiq( g - ‘( ,S) n kacqj, M) > 0, 

(2.30) 

THEOREM 2.11. For each q<O, dim(KaCqj)>f(q). Zn fact, pq, which is 
supported on Kacqj, hm dimension f (q). 

There is a proof of this theorem very similar to the one just given. 

Remurk 2.12. In particular, since pi = p, f (a( 1)) = a( 1) = dim p, as 
remarked in Section 1 (see Remark 1.8). In addition, we have the following 
completeness property: 

COROLLARY 2.13. p(lJxErA,A, KJ = ,o(K) = 1. 

Finally, we analyze the limiting behaviour as q + oo and q + - a~. 
Recall 

1 = 1 t;. (1.11) 
&=,7 

THEOREM 2.14. dim KaCaj=dirn KA=f(~(w))=e und dim Kacpmj= 
dim K2 =f (m( - a~)) = E 

ProoJ Let m= {C E Q : Vi log p&log to(i) = 21. Then g(A4) is a subset 
of KI and g(A4) is given by a Moran construction with reduction ratios given 
by the t;s for which log pi/log ti = A. So the Hausdorff dimension of g(A4) 
is e. Thus, dim K2 2 e. On the other hand, for each q > 0 and 6 > 0, we have 
from Theorem 2.3, ZfCq)+‘(Uq)< 1. Since KA c Uq, L%~(~)+‘(KJ < 1. 
Thus, dim KL <f(q), q > 0. Since f(q) decreases to e at co, dim KA < e. 

The proof that dim KI = 2 is similar. 

Remark 2.15. Recall as q+ co, p;tfcq)+O if Ai>& and p;tf(q)-+ t; if 
Ai = A. Set G(A) = {i : Ai = A}. We deline bm to be inlinite product measure 
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on fiA = {C eJ2 : Kc(i) E G(J)} generated by the probability vector 
ttTliEG(A)* As the proof of Theorem 2.12 shows, pa, the image of ga under 
g, has dimension f( cc ) =j(~( cc )) = e. In a similar way, one can detine p - m 
and obtain the analogous result, dim p-m =f( - co) = F. 

Remark 2.16. Since pi= tt and &Z1 pi< 1, Eq. (1.8) gives e< A. 
Similarly, from Eq. (1.11 ), we have t? =C 1. These relations, together with 
f(a(1)) = a(l), reflect the concavity of the f(a) vs. a curve (see also 
Remark 1.9). 

Remark 2.17. Only in the cases q = 0, co, and - cc have we actually 
obtained information about the measure of K+j with respect to 
XfCq) : 0 -Z %“Co)(K~Coj) -C 1, 0 c Z?‘(~)(&~$, and 0 c .XfC-m)(K+aJ. 
In case e(Z) is zero, then KaC,-,,j(Kat-aJ is uncountable and 
Jff@yI&)) = a2 (a?f-)(Km(em))= co). 

QUESTIONS 2.18. If q # 0, is it true that 0 -C SfCq)(Kq) x a? (This seems 
unlikely in general.) If this is not so, is there a slowly varying function L(t) 
such that 0 c &“‘(Kq) -C W, where h(t) = tfCq)L(t)? 

The following classical example illustrates our results and our questions. 

EXAMPLE 2.19. The fundamental strong law of large numbers as given 
by Bore1 yields that for Lebesgue measure almost all x in [O, 11, 

where x has its binary expansion: x = . . . x,x2x3 . . . . 
Picking up on earlier partial results of Besicovitch [Bes], Eggleston 

[Eg] extended this in a certain direction by showing that for each m, 
0 <m < 1, the Hausdorff dimension of the set Xm consisting of those x for 
which the arithmetic density is m, i.e., for which 

(2.31) 

is [m log m + (1 - m) log( 1 - m)]/log $, where 0 log 0 = 0. We obtain this 
result as follows. Let J= [0, 11, tl = t2 = 4. Then the sets J(e), UC Sk, are 
simply the dyadic subintervals of J with length (4)‘. The Moran fractal is 
a “pathological” fractal, it is the unit interval itself. For each x in [0, 1 ] 
which is not a dyadic rational there is a unique ~7 e Sk such that x E J(o), 
namely 0 = (x1, . . . . x~). For each p, 0 x p x 1, consider the probability 
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vector (1 -p =pi, p =p*) and the corresponding p measure on [O, 11. If 
~cS~, then 

p(J((J))~p~L~~(~ -p)kYL= and fJ(g)[ c2-foi =2-k 

whence 

with 

The value of 2 = f(q) for points x E KUCql is given uniquely, for p # 4, by 

For each m E [O, 11, the monotone property of a(q) guarantees a unique 
q= q(m) for which %=2(q) = m. Recall Xm = {xe [O, 1] : Z= m}. For 
m # i, 0, or 1, and p = m, Xm = &i), while for m = i, we have X1,* = &,,), 
independently of the value of p, p # i. Assume p > 4 for simplicity. Then 
q(0) = -co and X0 = K+mJ. Also, q(1) = +co and X1 = KUC+mj. 
Theorem 2.1 now gives 

dimXm=[mlogm+(l-m)log(l-m)]/log$, m E [O, 11. 

This contirms Eggleston’s result. In fact, however, Eggleston’s results are 
more general in that they encompass n-ary expansions for all na2. The 
latter more general results also can be obtained from multifractal theory in 
the same way as for n = 2 given above. Smorodinsky [Sm] has shown for 
the binary case that for m # 0, $, or 1, if /r is a Hausdorff gauge function 
concave near 0, then &“(Xm) is either 0 or co. 

3. POINTWISE DIMENSION OF p 

In this section, we relate, for each G E Q, the asymptotic behaviour of 
logp(e[k)/log ~(cJI~) to the local behaviour of p at the point g(cr). In par- 
ticular, we show that for map specified, pairwise disjoint constructions, 
CE & if and only if the pointwise dimension of p at g(cr) is CL Thus, for 
these constructions, the asymptotic behaviour of ratios on the abstract 
symbol space 0 can be transferred to the geometric behaviour of a measure 
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on a geometric realization of the symbol space. When the pairwise disjoint 
conditions are not met, we are unable to achieve the same result. We may 
be overlooking something simple, but we do not have the estimates to push 
the proof through. On the other hand, we do not have a counterexample. 
Let B(x, E) be the ball with center x and diameter s. Note that we are not 
following the usual convention that B(x, .E) is the ball with radius s. 

THEOREM 3.1. Let K be a Moran fractal and let g(a) =x. Then 

l$yp log d&dah Ww & 

< lim sup log p(J(a 1 k))/log Ma 1 k)l 
k-w 

= lim supk - ~ h3 da I k Yb3 t(a I I% J- (3-f) 

ProoJ Temporarily fix E with ~12 < min ti = 2M. Choose k such that 
./(a 1 k) c B(x, 6) and J(a 1 k- 1) is not a subset of B(x, s). Note that k > 2 
and 

log Ma I k)I < log P@CG ~11. (3.2) 

Also, l.I(alk)l GE and lJ(alk)l/tO~k~= lJ(a[k- l)l > e/2, whence 

loga+logM<log [J(a[k)l. (3.3) 

From inequalities (3.2) (3.3), and some algebra, 

h.s PUG ~IYlw & G U% Ma I k)Vog Ma I k)ll 
. [(log M/log 8) + 11. 

One obtains (3.1) by letting c + 0 in this last inequality. 

THEOREM 3.2. Let K be the Moran fractal generated by a pairwise 
disjoint and map speczjied construction. In other wor&, K is a Cantor set 
generated by an iterated function system of similarities. Let a E Q and let 
x=g(a). Then 

liF+i$log A&da), &JYb .5 

~l~~~flog~(~(a/k))~og IJtalkJl 

= lirr:f log p(a 1 k)/log t(a 1 k). (3-4) 

ProoJ Let D = min{ d( u, V) : u E .I( i), II E J(j), and i #j}. Temporarily fix 
e>O with &CD. Let hJx)=max{i:B(x,s)nKcJ(a\i)j. 
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We have 

Also, there is some s # cr(I~~(x) + 1) and point JJEJ((CJ ~&(x))*~)) nKn 
B(x, E). Since the construction is map specified, this implies that 

Thus, there is a constant U, independent of s and x, such that 

u-.5- > 14~1 m-~~l. (3.7) 

Using (3.5), (3.7), and some algebra, 

h? dW> &lDi% & 2 UC% PM~ I U~~~MW lJ(g I MxIN 1 
* [(log U/log &) + 11. 

Letting s + 0 in this last inequality, one obtains (3.4). 

Putting the last two theorems together, we have 

THEOREM 3.3. Let K be the Moran fractal generated by a pairwise dis- 
joint and map spec$ed construction. Then x E KE if and only $ the pointwise 
dimension of p at x is a: 

lim log p(B(x, s))/log s = a. 
e-0 

(3.8) 

Remark 3.4. Young [Yo] showed that for measures p on compact 
Riemannian manifolds, Eq. (3.8) implies dim p = a, which is the content of 
the second part of Theorem 2.1. 

4. GENERALIZED MULTIFRACTALS AND f (a) CURVES WITH WEIGHTY 

The infinite product measure &, introduced in Section 2 as an auxiliary 
measure to mediate the multifractal decomposition of K, is only one of 
many shift-invariant ergodic measures on Q. Any one of these measures 
might serve as a mediating measure to induce possibly other multifractal 
decompositions. We exhibit a class of mediating measures which includes 
& as a special case and we display some properties of the induced, 
generalized multifractal decompositions. The basic calculations involve 
some rather messy algebra which we have concensed as much as possible. 
Our motivation for bringing this out is explained in the introduction. 
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We begin by considering a second class of auxiliary functions analogous 
to those delined in Section 1. We modify Eq. 1.1, which expressed the 
normalization of the probability vector for &, by appending a system of 
nonnegative weights w, 

1 = i uQJ#q+), wi>O, i= 1, . . . . n, 
i=l 

where w = (wi, . . . . WJ and where Z,,, = {i : wi > 0} # 0. For a given vector 
of weights, w, and for each q E R, there is a unique number /3(q, w) such 
that (4.1) holds. When w1 = . . . = We = 1, /?(q, w) = /?(q, 1) =/L?(q), intro- 
duced in (1.1). As before 

lim /l(q, w) = -co and lim /3(q, w) = + a. 
q-+a q- -a3 

Also, 

fi’(q, w) = - i (log Z$) . WiZ+@+,) igl (log li). w&?tf(q*w) 
I 

(4.2) 
i=l 

and 

b”(q, w) = - i (log pi+/?(q, w) -log &)*wi~;$(q+) 
i=l I 

igl (log ti). w&~~(q~~), (4.3) 

where the prime denotes partial differentiation by q. Again, /?‘(q, w) .c 0, for 
all q, so that /?(q, w) is a strictly decreasing function of q. In addition, if 
there is no c such that pi= f;, for all iEZ,,,, we have fi”(q, w)> 0 for all q, 
so that a(q, w) = -/?‘(q, w) is a strictly decreasing function of q. If pi = r;, 
for ic Z,,,, then we have the degenerate case: jl(q, w) = -qc + /?(O, w) and 
a(q, w) = c. Note this is automatically the case when Zw is a singleton. Only 
if Zw = { 1, . . . . n} does c = d necessaily hold. 

In place of Eq. (1.5) for j(q), we introduce a new auxiliary function, 

where 

(4.4) 

y(q, w)= i (log Wi). wip#(q*w) 
I 

?I i;l (log fi) * wip;tye (4.5) 
i=l 

Evidently, f(q, 1) =f(q). However, f(q, w) does not share some other 
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properties of f(q); e.g., monotonicity on (-co, 0) or (0, + co). If pi= f;, 
i e Z,,,, then f(q, w) is a constant, independent of q. If ZW is a singleton, N is 
a positive constant andf= 0. Owing to the monotone behaviour of ct(q, w), 
for any w, we can solve for j” as a function of a and w, except of course, the 
degenerate case pi = $, iEZw,, That is, for each N between CX( + co, w) and 
4 -aA WI7 f@, WI =.fttqt IX, w), w), where q=q(a, w). This generalized 
multifractal spectrum f(a, w) is no longer necessarily everywhere concave 
downward. A computer calculation off(a, w) is displayed at the end of this 
section in Fig. 4.4. 

The asymptotic behaviour of the new auxiliary functions is determined in 
most instances by the same kinds of analyses as before, merely appending 
the w-dependences. Excluding now the case pi = t;, iE Z,,,, mutatis mutandis, 
we lind 

h Ptq, w) + 44 = 4wh (451 
q-a 

lim fi(q, w) + &,q = S(w), (4.7) q--m 

FIG. 4.1. b(q, w): smooth, concave upward and strictly decreasing for any choice of non- 
negative weights with at least two positive; a straight line with negative slope results if only 
one weight is positive and the others are zero. Slopes and intercepts of the asymptotes are as 
shown. When aI1 the weights are unity the intercepts are q = 1 and r9(0, IV) = D(O, 1) = d, as in 
Fig. 1.1. The case pi=r;, i6 Iw, again gives a straight line. Graphs of j?(q, rv) against q for 
gauge equivalent weights are translates of one another, viz. p + p- b, q -+ q+ a (see 
Section 5). 
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where 

in which 

219 

(4-S) 

and 
lim a(q, w) = &+,. (4.10) 

q--m 

We note that for given pis and tis, A,,, and A,,, depend only on I,,,. In par- 
ticular, we note that if the weights are all positive a( + co, w) = A and 
a( - co, w) = 2, so that a( + co, w) and a( - co, w) are independent of w. 

Figures 4.1, 4.2, and 4.3 are sketches of the graphs of b(q, w), a(q, w), 
and y(q, w) illustrating their principal features. 

In addition and in the same way as before (see (1.16)), 
q.(a(q, w)-A,,,)+0 as q+ +cc and q.(a(q, w)-A,,,)+0 as q+ -a~ To 
obtain the asymptotic forms of y(q, w), one proceeds as in the analysis 
surrounding Eqs. (1.15) and (1.16). We get 

A dq,w~ 
----------------------------- 

cd-ee,wl = xw 

FIG. 4.2. a(q, IV)= -/?‘(q, w): strictly decreasing in q for any choice of nonnegative 
weights with at least two positive; a single constant value results if only one weight is positive. 
The limits AW and I,,,, at q = cc and q = -CO, respectively, depend only on Iw; in particular, 
if all the weights are positive, ,I,,, = A and AW = 1. Gauge transformed weights result in graphs 
of a(q, w) against q that are horizontal translates of one another, viz. a + a, q -+ q + u (see 
Section 5). 
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\ 

--------------. 
-uw,wl = g(w) 

FIG. 4.3. y(q, w); finite and smooth for all q E R. For any choice of nonnegative weights 
y(q, w) tends to tinite limits, g(w) at q = cc and g(w) at q = - a~. If 0 c wi c 1, iE Iw, then 
y(q, w) > 0, while if wi > 1, ie Zw, y(q, w) -C 0; if all the weights are one, then 7 vanishes for all 
q. When p, = l:, ie Iw, y(q, w) is constant, independent of q. Gauge transformation properties 
of y(q, w) depend on a(q, w) (see Section 5). 

where 

Also, 

lim y(q, w) =g(w) = T(w)/S(w), 
q--cc 

(4.13) 

where 

S(W) = z 1Og lie WiC!fcw’ and T(W) = 1 1Og Wi* WilTcw’* (4.14) 
,a,=,& ,I,=& 

These results supply us with 

THEOREM 4.1. The following asymptotic limits hold 

h f(q, w)=e(w)+dw) and lim f(q,w)=i?(w)+g(w). q-a q--m 

(4.15) 

Finally, there is the somewhat more involved matter of the slopes of 
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j(a, HJ) at its endpoints, corresponding to q + cc and q + - co; that is, we 
seek the asymptotic behaviour of 

THEOREM 4.2. Except for the case pi= tz, iE I,,,, 

lim @(a, w)/da = m and lim dfla, w)/da = - az~ 
a+a(co) LY+a(-co) 

Proox It sufices to establish for any w that 

We first need more precise information concerning the asymptotic form of 
/?(q, w). For the q + co behaviour, we have 

Ka WI= -Ad7 + e(w) + 4q, ~1, 

where 6(q, w) is finite for all q, and as already noted, goes to zero as 
q + co. Re-express Eq. (4.1) after the method for Eq. (1.15) et seq., 

+ x wi. p *tTXlJ[(Ai-&,).lOg ti.q+lOg tj*d(q, W)]. (4.18) 
,I:>& 

We regard Eq. (4.18) as an equation for J(q, w) which we will solve to 
leading order asymptotically. To organize the problem we note first that, 
since, by the same argument as that previously adduced beneath Eq. (1.10) 
to prove Eq. (1.7), &q, w) tends to zero as q + co, each term of the second 
sum is exponentially decreasing. The second sum will be dominated by the 
subset of terms for which that rate of decrease is smallest. If we set 
Z0 = {ii Ai > &, iE Z,,,}, then that dominating subset is (indexed by) ZkO, 
namely, 

which is necessarily nonempty since the case pi= t;, ie ZW, has been 
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excluded here and in particular, also, Z,,, has at least two elements. Taking 
note of Eq. (4.8), we rewrite Eq. (4.18) as 

where the prime on the last sum denotes omission of the terms indexed by 
members of Zko. The last sum can be organized in the same way, as it, too, 
is dominated asymptotically by the subset of terms for which the rate of 
exponential decrease is minimized. To iterate this procedure, we introduce 
the indexing sets Z*+ r = Z,\Zk,, r = 0, . . . . R, with 

Zk,= {ik, k= 1, . . . . k, I(& - A,,,) log fik = metx (Ai - &,) log li = -p,.}. 
7 

We note that O<p,,<pr < ... c Pi. Equation (4.19) becomes 

Rearranging, 

+I wil;cwJ{ exp[log Zi. C?(CZ, W)] - 1 - 1Og ti. d(q, W)}, 

,I,=& 

whence 
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where 

We note that LI,Jw, d(q, w)) >O since for r=O the sum cannot be empty, 
while for r > 0, Ar(w, d(q, w)) 20. Also, Ci(w) >O, and the quantity in 
curly brackets is positive for q linite. Thus, every term on the right side of 
Eq. (4.21) is positive, and hence d(q, w) > 0, for q finite. In particular, we 
note also that 6(q, w) is larger than the first term on the right hand side. 
From the inequality, eeX - 1 +xcx2/2, x>O, we have 

d(q, WI< 4Jw, @w qlWM9 

where 

(4.22) 

Since p0 < Pi, r = 1, . . . . R, one of the two terms, the lirst or the last, on the 
right side of Eq. (4.22) must dominate, as q + cc and ij(q, w) + 0. 
But d(q, w) > 0, and every term on the right hand side is positive, so it 
cannot be the last, as then there would be a positive constant Q for 
which (C(w)d(q, w))~ - C(w)iS(q, w) P- 0, q > Q, which can’t happen since 
C(w)ij(q, w) + 0 as q -+ m. This implies that em9d(q, w) is bounded above 
as q+ a. Since also ~Jw, d(q, w))<AJw, O)=A,(w), r= 1, . . . . R, we can 
now conclude from (4.21) and from (4.22) that 

0 < em9Wh w) - 44~ @q, WI) 

(4.23) 

Thus, as q + co, the right side of (4.23) tends to zero and we have 

lim [eW9d(q, w) - Ao(w, d(w, q))] =O. 
9-m 

(4.24) 

Using the explicit form of AO(w, d(q, w)), and setting LI,-Jw, 0) E&,(W), we 
have 

lim [eWqd(q, w) - Ao(w)] =O, 
9-m 

(4.25) 

which gives the asymptotic form of d(q, w) as 6 w d0(w)eAM9. 
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We use this result to determine the large q behavior of the quantity 

where vi= q(pi, ti, We), which we need to fix the forms of y’(q, w) and 
u’(q, w). We have 

where the neglected terms go to zero faster than ePMq. After some algebra, 
we tind 

where neglected terms tend to zero faster than ePMq, and where 

A similar expression may be seen to result for the asymptotic form of 
Y(% WI, 

where Z(w) is finite for all w. Also, since Lik > Lw, for jk E ZKO, where Zk,, is 
nonempty, A(w) cannot vanish, and we have that the limit, 

is linite. 
In the same way we establish the asymptotic forms of /3(q, w) and E,,,[~I] 

for q + - a~. Mutatis mutandis, we tind 
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where the dots refer to contributions that go to zero faster than e@7, and 
where 

in which, detining TO = {i 1 li c I,,,, i E I,,,}, the ik belong to the indexing set, 

Ike= {ik, kEIoi(Jik-A,,,)log tik=r$(Li-I,,,)log ri~jioj, 
w 

and wherein fi,, incidentally also has been specitied, and may be seen to be 
positive. Finally, using 

we tind 

where T(w) is tinite for all w and A(w) is given by 
k0 

which again cannot vanish, and so we are done. 
A sample simulation of f(a, w) is displayed in Fig. 4.4. 

1.4 

FIG. 4.4. Computer calculation of the generalized spectrum of scaling indices, f(a, w). The 
example chosen had n =4, fI = t2 = t, = t., = 4, p, = 0.21, pl =p, =0.25, p4 =0.29, and 
W, = We = 1, w3 = We = 0.01. The dashed curve has all the weights equal to unity. 
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We are now in a position to analyze the multifractal decomposition 
induced by a system of weights. The decomposition is given in terms of the 
pointwise behaviour or the measure and the weights. For each w, set 
0 = {O E Q : Vie(r) E Z,,,} so that 0 = Q if all the weights are positive. For 
each q and w, let 

ZZqgw = {o E f2 : F-mm log p(e 1 k)/log l(cr 1 k) = u(q, w) 

and Frnm log ~(01 k)/log l(~ 1 k) = y(q, w)}. (4.28) 

Set 

(4.29) 

THEOREM 4.3. Let w = (wl, . . . . w,,) be a system of weights. For each 
qER> 

ProoJ The proof of this theorem is similar to the proof given in 
Section 2 for the case w = 1. We just indicate the alterations required for 
the case q S- 0. For q > 0, let 

oq,w = {O E 0 : lim sup log P(C 1 k)/log t(o 1 k) < c$q, w) 
k-m 

and lim sup log W(C 1 k)/log t(o 1 k) < y(q, w)} 
k-co 

and set 

The altered form of Lemma 2.4 reads: 

LEMMA 4.4. Let q and 6 be positive. For each positive integer m, there is 
a collection $, of pairwise disjoint sets each with diameter less than lfm such 
that 

(4.31) 

and 

(4.32) 
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Proof of Lemma 4.4. The proof of this lemma follows that of 
Lemma 2.4 with the alteration that for each 0~ oq,,,, let MC be a positive 
integer such that if k > MO, then 

h3 140 I ~Yh3 tto I kl< Ma WI+ Wh 

1% 40 I EM% f(G I k1.c da WI + Q, 
(4.33) 

and 

t(o 1 it) -c l/m. 

Set Ym= {g(C(crl/r)): flo oq+ and k 2 Mm}. Clearly again, Ym is a Vitali 
class for Uq, ~. As before, there is a pairwise disjoint subcollection %m of 9$m 
such that either 

or 

However, (4.34) does not hold. To see this, suppose the sets G are 
g(C(eilIq))E9&, i= 1, . . . . j. From (4.33), we have 

and 

~g(c(oi~~i))~~~~~~~+s’2~~(oi~~i)~~~~~~+s’2< W(Oi~/ti), 

for each i. Thus, 

f(qvw)+d< i w(~il~i)~(~il~i)q~(~i/~i)~(q,w). (4.36) 
i= 1 

But, since xy=I w~&!@~*“‘)= 1, it follows as before that 

Thus, as in Section 2, we have for q # 0, dim(Kqs”‘) <f (q, w). 

We turn now to the proof that dim(Kqpw) 2f (q, w). Again, the proof is 
based upon the geometric Lemma 2.6. We also make use of auxiliary 
measures pq,,, supported on Kq* w which are the image under the coding 
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map of the inlinite product measure fiq,,, on D 
vector ( wi p? t?C9gw) l * lierw> where 

based on the probability 

(4.1) 

Note that fi9,w(@,w) = 1. This follows from Birkholf’s individual ergodic 
theorem applied to the shift transformation on 0, j&,, and the functions 
x(c) = log poclJ, Y(u) = log We, and Z(c) = log cO(ij. Thus, we lind that 
h I$,~ almost all 0, 

lim (l/k) log ~(0 1 k) = E[X] = i (log pi). ~~pyff(~,~), 
k-m i= 1 

lim (l/k) log MJ(CJ 1 k) = E[ Y] = i (log wJ. ~~p~tf?(~~~), 

(4.38) 

k-cc i=l 

and 

lim (l/k) log f(Ulk)=E[Z] = 5 (log fi).kVip~Zf’9’w’. 
k-m i= 1 

Taking ratios and using equations (4.2) and (4.5), we have that for 
fi9, w-almost all u, 

lim logp(ojk)/logr(cr/k) 
k+co 

(log Zi) . bvip; ryw) 

(4.39) 

and 

lim log W(U 1 k)llog t((c 1 k) 
k-cc 

Thus, &J@+) = 1 = /A~,#?~). 
The proof for q c 0 continues as before. In analogy with Theorems 2.9 

and 2.11: 

THEOREM 4.5. For each q # 0, dim(K9,“‘) >f(q, w). Zn fact, pq,w, w/zich is 
supported on Kq*‘“, has dimension f (q, w). 

ProoJ We indicate the proof for q > 0. It suflices to show dim pq+, is 
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j(q, MJ). Assume am,,, = 1 and .%‘f(aw)-‘(s) = 0, where 0 < 8 <f(q, IV). 
For each cr E gq*“‘, let N0 be a positive integer such that if k 2 No; then 

For each M, let I?&“’ = 1~ E I?%w : No = M}. 
Fix M SO that ,&,,(&w n g-‘(S)) > 0. Set IQ,‘” =g(ELw) and define the 

auxiliary measure v supported on IQ” by 

for A c KY. (4.41) 

As before, in analogy with Lemma 2.10, if EC Rm and IEl c tEi,,, then 

v(E) = v(KL”‘n E) < c [Ejfcq*“‘)-‘. (4.42) 

This last inequality implies 

But, v(s) > 0, which is a contradiction. 

THEOREM 4.6. dim Z@ w =f(O, w). Zn fuct, the dimension of po,,, is 
fKh WI* 

Prooj For the upper bound, set 

oO,w = {u E 0 : lim sup log w(c 1 k)/log t(c 1 k) < ~(0, w)} 
k-m 

and set IY~,~ = g( oO,,,). One proceeds as in the proof of Lemma 4.4 to show 
that for each 8 > 0, X’Y(o~ “‘)+‘(I?‘*“‘) < ZY(‘~“‘)+‘( UoJ < 1. Note that in 
the inequalities obtained in the proof of the lemma, those involving p(g 1 k) 
are not required, since f (0, w) = fi(O, w) + ~(0, w). Similarly, for the lower 
bound, one proceeds as in the preceeding theorem. 

Remark 4.7. The special case q = 0 with w # 1 differs from the case 
where all the weights are one. For instance, it is no longer necessarily the 
case that dim K”*“’ = 4 nor is it necessarily so that 0 < X’f(“,“‘)(Ko*w) < co. 
Cf. Remark 2.17. 

We end this section with a brief exploration of properties off (a, w) as 
a function of w. When the weights are all equal to unity, so that 
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j(a, in) =f(a, 1) =f(a), the graph off vs. a is smooth and everywhere con- 
cave downwards, except for the case pi = tt, i = 1, . . . . n. As noted previously 
in Section 1, this follows from differentiating the equation 

(4.44) 

where a = a(q) = - b’(q); further 

for all q E R. 
For the general weights case, Eq. (4.44) contains an additional nonzero 

term y’(q, w)/a’(q, w) added to the right side, and the downward concavity 
off(a, w) is no longer guaranteed. If pi= ty, i= 1, . . . . n, we have again the 
case where the graph off( a, w) reduces to a single point. We shall establish 
the following property off(a, w). 

THEOREM 4.8. f(a) is a stationary surface of f(a, w) for w in the 
neighborhood of unity. Spec$cally, 

[~]a~wzl=O, j=l,..., n. (4.45) 

The technical problem of evaluating derivatives off with respect to w at 
constant a is that of the intermediate q-dependence. 

LEMMA 4.9. Let g(a, w) be a differentiable functiable function of w. Then 

where gj= gj(q, w) is the operator, 

(4.46) 

(4.47) 

and where g(q, w) =g(a(q, w), w). We prove the lemma later; first we prove 
the theorem. 

From Eq. (4.1), we find 

(4.48) 
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(4.49) 

(4.50) 

(4.51) 

(4.52) 

We apply the lemma to j(a, w) using Eq. (4.4). The necessary smooth- 
ness off(Lx, w) follows from that of jl(q, w) and y(q, w), together with that 
of a(q, w) and the smooth uniqueness of its inverse, q = q(a, w). We have 

So we still need y’(q, w) and a’(q, w). We use 

(4.54) 
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to help in getting 

while, as previously determined in Eq. 4.3), 

(4.56) 

Equation (4.45) is now immediate from Eq. (4.55), which gives y’(q, 1) = 0, 
and the relation Bj (q, 1) = - 1, j= 1, . . . . n. 

To complete the proof of the theorem, we have only to establish the lem- 
ma. In fixing u as we form the partial derivative with respect to w of a 
function g(a, w), we have to lix the value of the function u = a(q, w). Owing 
to the w-dependence of cx(q, w), the constancy of u implies a variation of q. 
Thus, regarding g(u., w) as a function of q and w via u = ct(q, w), we have 

(4.57) 

But from u = a(q, w), and the one-to-one invertibility for q = q(ct, w), 

(4.58) 

so that 

which is the content of Eqs. (4.46) and (4.47). 

5. GAUGE INVARIANCE 

The auxiliary functions now possess a new feature, namely certain 
covariance properties to transformation of the weights, 
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We call these gauge transformations. They form an Abehan group under 
composition. Note that Zw is invariant. 

THJZOREM 5.1. The transl$ormation (5.1) of the weights is a symmetry of 
f(a, w), that is, 

Proof From Eq. (4.1), T(a, b) induces the transformation of /?(q, w), 

Hq, WI-, Rq, w’) = -b + Rq + a, ~1, (5.3) 

so that 

Aq, WI-, dq, 4 = b + adq + a, WI+ ytq + a, ~1. (5.5) 

The result immediately follows from Eq. (4.4). 

Remark 5.2. Since I,,,, = lirnq+ m a(q, w) and A,,, = limq ~ -m a(q, w), 
both should be invariant by (5.4). This is the case, in fact, since A,,, and & 
are specihed in Eqs. (4.9) and (4.10), for iE Z,,,, from the pi and the ti alone. 
From Eq. (4.8), we have also 

e(w)+e(w’)= -b-a&,+e(w), 

while from (4.12) 

so that 

S(w) + S(w’) = S(w) 

T(w)+ T(w’)=b,S(w)+a&,S(w)+T(w), 

g(w)=T(w)/S(w)+b+a&,,+T(w)/S(w)=b+a&,,+g(w), 

and we have the invariance of the limit, 

lim f(q, w)=e(w)+g(w)+e(w’)+g(w’)=e(w)+g(w). 
q-m 

Similarly, limq - - ~ f (q, w) = F(w) +2(w) is also invariant. We note that if 
the sums in Eqs. (4.8) have only one term, then 

e(w) = -log w6/log tb, 
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where &, is the value of ie Z,,, for which A,,. = min(log pi/log li). On the 
other hand, s(w) = log lb and T(w) = log wiO in this case, and thus 
lim ~ - ~ f(q, w) = e(w) + g(w) = 0. Similarly, limq - - ~ f(q, w) = 0 when 
the maximum value of log pi/log ri, i E Zw, is taken for only one value of i. 
This generalizes the corresponding property holding for the w = 1 theory. 

THEOREM 53. Assume n = 2, and the weights are positive, and that pi # tf 
for both i= 1 and 2, unless also there is a number h so that ti = wf, i= 1,2. 
Then f(a, w) is independent of w, viz., f(rx, w)=f(cx). 

ProojI We use the gauge invariance off (a, w) and perform a transfor- 
mation 

The (a, b) which accomplish this satisfy 

logw;‘=a.logpI+b.logt, 

log w;l= a . log pZ + b . log t2 

which always possess a solution unless the system is inconsistent. The latter 
is the case if and only if the determinant of the coefficients of (a, b) vanish 
while those of the augmented matrices fail to do so. These conditions are 

hs Pl hit t1 1% Wl -=- #- 
log p2 log t2 log w2. (5.6) 

The equality in (5.6) implies pi= t:, i= 1,2, with c = d. The inequality 
implies the nonexistence of a number h for which ti = wf, i = 1,2. Hence, 
excepting possibly cases where the conditions (5.6) hold, f (a, w) =f (a), for 
all w, when n = 2. 1 

PROBLEMS 

1. Is it true that the sets Kq or, more generally, the sets Kq,‘” are 
fractals in the sense of Taylor? Is the packing dimension of Kq*W = f (q, w)? 

2. Can the hypotheses of Theorem 3.3 be relaxed? In particular, is it 
true that for all (pairwise disjoint) Moran constructions, the pointwise 
dimension of p at x is u if and only if x E Ka ? 

3. Regarding Theorem 4.8, is it true that f (m) is an absolute maxi- 
mum off (m, w), or at least a local maximum? 
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4. Does the multifractal decomposition in the presence of a nontrivial 
system of positive weights possess a p-measure completeness property like 
that expressed in Corollary 2.13? For example, does 

where 
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Note aaiZed in prooj Experimental observations of non-concave f(a) curves recently has 
been reported by Pauhs et al. [P]. A multifractal analysis was conducted of rat locomotor 
trajectories under the influence of cocaine. A shoulder-like non-concavity in thef(a) curve was 
observed in both the control where no cocaine was administered as well as when it was. In 
the highest dose case, a subgroup of the animals hadf(a) curves with a very pronounced two 
humped structure similar to that shown in Fig. 4.4. For all doses including the control, the 
curves lay below the 45’ line. 
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