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POLYA TREES AND RANDOM DISTRIBUTIONS

By R. DaNIEL MAULDIN,! WiLLiaM D. SUDDERTH? AND S. C. WILLIAMS

University of North Texas, University of Minnesota
and Utah State University

Trees of Polya urns are used to generate sequences of exchangeable
random variables. By a theorem of de Finetti each such sequence is a
mixture of independent, identically distributed variables and the mixing
measure can be viewed as a prior on distribution functions. The collection
of these Polya tree priors forms a convenient conjugate family which was
mentioned by Ferguson and includes the Dirichlet processes of Ferguson.
Unlike Dirichlet processes, Polya tree priors can assign probability 1 to the
class of continuous distributions. This property and a few others are
investigated.

1. Introduction. The Polya urn scheme is, perhaps, the simplest and
most concrete way to generate a sequence X, X,,... of exchangeable random
variables having values in a finite set E = {0, ..., k}. Suppose that the urn u
has initially «; balls of color i for i € E and, that, at each stage, a ball is
drawn at random and replaced by two of the same color. Let X, =i if the nth
ball selected is of color i. It is well known that the X, are exchangeable and
that the sample distribution of X,,..., X, converges almost surely to a
random probability vector ® = (0, ..., ®,) which has a Dirichlet distribution
with parameters (u,,...,u,). Furthermore, given ® =6, the variables
X, X,,... are independent with P[X, = i] = 6, for all n and i. (These facts
are reviewed in the next section.)

All of these results were generalized by Blackwell and MacQueen (1973)
who showed that the random distributions constructed by Ferguson (1973) can
be viewed as the limit of the sample distributions of variables which are
obtained from a Polya urn scheme based on a continuum of colors. The urn
scheme makes many properties of Ferguson distributions intuitively clear. For
example, the Ferguson distributions form a conjugate family of prior distribu-
tions for nonparametric problems just as the Dirichlet distributions form a
conjugate family for multinomial sampling. [By the way, Ferguson (1973)
called his distributions ‘Dirichlet processes.” To avoid confusion with the
processes constructed here, we will continue to call them Ferguson distribu-
tions.] ‘

This paper shows how to construct another conjugate family of prior
distributions from trees of Polya urns. Mauldin and Williams (1990) gave the
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first such construction and the following is a natural generalization. Let E* be
the set of all finite sequences of elements of E ={0,..., %k} including the
empty sequence ¢. A Polya tree is a function that assigns to every p in E* an
urn u(p) which contains u(p); balls of color i for each i € E. The Polya tree
u can be used to generate a sequence of random variables X;;, X;,,... and a
new tree u® as follows: Draw a ball at random from u(¢) and replace it by
two of the same color. Set X, = i, if the ball is of color i,. Next draw a ball
from u(i,), replace it by two of the same color, and set X,, = i, if the ball is of
color i,. Go on to u(i,, i,) and continue in this fashion. Set X; = (X;;, X,,...)
and let u be the Polya tree which was obtained in the construction. Iterate
the entire process to obtain X, X,,... and «® u®,.... It is shown in
Theorem 4.1 that the X, are exchangeable. So, by a theorem of de Finetti,
there is a measure @ = @, defined on the space of probability measures on
EN =E X E X --- such that the distribution of X,, X,,... can be obtained
by first choosing ® with distribution @ and then choosing X;, X,,... to be
independent with distribution # given ® = 6. This de Finetti measure @ will
be calculated explicitly (Theorem 4.2).

The measure @ can be regarded as a prior which picks a random distribu-
tion on EV and the collection of these priors based on Polya trees forms a
conjugate family. (If ® is a random probability with distribution @, and
X,,..., X, is a random sample from ®, then, by Theorem 4.3, the posterior
distribution of © is @, where u'™ is the Polya tree after the nth stage of the
construction above.)

If EV is mapped measurably into another space, then the structure of the
Polya priors can be carried over to the new space to obtain random distribu-
tions there. For example, let I be the unit interval and define ¢: ENY — I by

o x
1.1 Xy, Xoyun.) = 7'1”
(11) W) = B oot
Let X,, X,,... be the EM-valued variables constructed above and set Y, =

Y(X,) for n =1,2,... . The Y, are exchangeable because the X, are and the
de Finetti measure @ = @, for the Y, is easily calculated from Q. We will use
this example throughout the paper, but there are other mappings which may
be of interest also. Ferguson has suggested mapping EN to the probability
simplex in dimension % + 1 by the rule

1
k+1

(xq,%5,%5,...) =

k k
ex1+k+1(e"2+k+1(ex3+m)) ’

where e, =(1,0,...,0),e, =(0,1,...,0),...,e, =(0,0,...,1) are unit vec-
tors. Lavine (1990) maps EV to other spaces by using trees of nested parti-
tions.

The priors @, based on Polya trees are tailfree processes in the sense of
Freedman (1963) and Fabius (1964). A nice discussion of some of their
properties is given by Ferguson (1974). He points out that the family of Polya
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tree priors includes the Ferguson distributions of his 1973 paper, but that,
unlike Ferguson distributions, Polya tree priors can assign probability 1 to the
set of continuous probability measures. Simple conditions are given in Theo-
rem 5.2 and its corollary to guarantee that @, is supported by the continuous
measures. Ferguson (1974) also points out that results of Kraft (1964) can be
used to give conditions on » which guarantee that @, assigns probability 1 to
the set of distributions which have densities with respect to Lebesgue mea-
sure.

The priors @, defined on probability measures on [0, 1] are also related to
the distributions constructed by Dubins and Freedman (1967) in a different
fashion. In fact, if £ = 1 and if u(p) contains exactly one ball of color 0 and
one ball of color 1 for every p, then @, was shown by Mauldin and Williams
(1991) to be one of the Dubins and Freedman measures. The family of all @, is
the natural conjugate family of priors which contains this basic measure. [See
Graf, Mauldin and Williams (1986) for another generalization of the Dubins
and Freedman measures.]

The next section is a review of classical Polya urn schemes, Dirichlet
distributions and their connection by way of de Finetti’s theorem. After these
preliminaries a study is made in Section 3 of Polya tree processes which end
after a finite number of stages. This is in preparation for the study of infinite
trees and also provides a conjugate family of priors for finite, sequential
sampling schemes. Section 4 treats infinite Polya trees u and characterizes the
de Finetti measures @,. Section 5 gives conditions under which Q, concen-
trates on continuous distributions and Section 6 gives conditions under which
the support of @, is large. The expected distribution function and the expected
mean of a Polya tree prior are calculated in Sections 7 and 8.

Applications of Polya trees are discussed by Lavine (1992). He shows how to
construct a Polya tree prior with a given predictive density and how to use
mixtures of them to model uncertainty about a parametric model. Examples
with data are presented.

2. Polya urns and Dirichlet distributions. The initial data needed for
the classical Polya urn scheme described in the introduction are the vector
u = (uy,...,uy,), where each u; represents the initial number of balls of color
i. Such a vector will be called an urn vector if u, is nonnegative for every
i € E and the quantity [u| = u, + - -+ +u, is strictly positive. The probability
of drawing a ball of color i from u is, by definition, u,/|u| for each i. After
drawing a ball of color i, the urn at the next stage has u; + 1 balls of color i.
With these conventions, the Polya urn scheme, as described in the introduc-
tion, generates a sequence

X=(X,X,,...)

of random variables with values in E. (As before, X, = i if the nth ball drawn
has color i.) The sequence X is said to have a Polya distribution with
parameter u or, more briefly, X is #(u).
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In order to calculate the joint distribution of X;,..., X,,let j = (ji,..., j,)
be a sequence of n elements of E and set
(21) P(.]ru):P[Xl =j1’---’Xn zjn]‘

For each i € E, let ¢(i) be the number of i’s occurring in the sequence j and
define s(i) = u; + c(i). Notice that, if X, =j,,..., X, =J,, then s(i) corre-
sponds to the number of balls of color i in the urn after the nth stage.

A simple counting argument shows that

(s(0) = Doy = - (s(k) = )etry
(lul +n -1),

(2.2) P(jsu) =

b

where, as usual,
(a)o=1 and (a),=a(a—-1) - (a—b+1), =1,2,....

It is clear from (2.2) that P(j; «) is unchanged when the coordinates of j are
permuted. We record this in a lemma.

Lemma 2.1. If (X, X,,...) has a Polya distribution, then X, X,,... are
exchangeable.

The next result is a version of de Finetti’s theorem on exchangeable
variables. It is a special case of results in Meyer (1966) or in Aldous (1983).

THEOREM 2.1. Let X;, X,,... be exchangeable variables with values in
E={0,...,k}. Forn=1,2,... andi € E, let C,(i) = #{j < n: X; = i}. Then:

(@ (C,(0),...,C,(k))/n converges almost surely to a random probability
vector © = (0, ...,0,).

(b) Additionally, given O, the variables X, X,,... are independent and
each has distribution 0.

The distribution of the random probability vector ® in Theorem 2.1 is
called the de Finetti measure for the sequence X = (X, X,,...). [It is called
the directing measure by Aldous (1983).]

Let

k
S, ={(6p,..-,0,):0,>0,...,0,>0, ) 6,=1).
' i=0
Here is a simple characterization of the de Finetti measure.
THEOREM 2.2. A probability measure u defined on the Borel subsets of S,

is the de Finetti measure for the exchangeable sequence X if and only if, for
every finite sequence i,,...,1,, of elements of E

(2.3) P[X,=i,....X,=i,]= jego 0 du(B,,...,0,),

where c; is the number of elements in iy,..., i, which are equal to j for each j.
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Proor. If u is the de Finetti measure for X, formula (2.3) follows from
Theorem 2.1(b). Conversely, u is uniquely determined by its moments since it
has compact support. O

Notice that (2.3) is equivalent to
(2.4) P[X1=i1,...,Xm=im]=E[]—[®i0],
a=1

where O is a random probability vector with distribution .

Our next task is to identify the de Finetti measure when X is a Polya
sequence. First we recall the definition of.a Dirichlet distribution.

The Dirichlet distribution defined here will be slightly more general than
usual in that some of the variables can be degenerate at zero. Our definition is
consistent with that of Ferguson (1973). Let ® = (0,,...,0,) be a random

vector with values in S, and let u = (u,,...,u,) be an urn vector. Suppose
first that u, > 0 for all i. Then we say ® is Dirichlet with parameter u,
written D(u) if £ = 0 and ®, = 1 almost surely or if £ > 0 and (Q,...,0,_,)
has the density function
f(e 6 = Fluh o e
O CO BN TP A
for (8,,...,6,) € S,. [Notice 8, =1 — (8, + -+ +8,_,).] In the general case,
take F to be that subset of {0,..., &} cons1st1ng of those ¢ for which u, > 0.
SayF {ig,...,7,} where 0 < r <k Now define 0 tobeD(u)lf(G) .. ®,)

is Du,,...,u, )) and ©; = 0 almost surely for j & F.

The next result gives the nice connection between Polya urn schemes and
the Dirichlet distribution. It is a special case of the theorem in Blackwell and
MacQueen (1973). Much of it can also be found in Blackwell and Kendall
(1964). An elementary proof can be based on Theorem 2.2.

THEOREM 2.3. If X is P(u), then the de Finetti measure for X is D(u).

The Dirichlet family of distributions is useful for Bayesian analysis largely
because it is the natural family conjugate to the multinomial. Here is a
statement of this well-known fact.

THEOREM 2.4. Suppose O is D(u) and, given O, X, has distribution 0.
Then, given X, =i, © is D(u + 8(i)), where 8(i) is the probability vector
which has 1 in the ith coordinate.

An elementary proof can be given using Bayes formula. A more _interesting
proof in the present context is to embed X, in a sequence X = (X,, X,,...) of
variables which are independent with dlstrlbutlon O given O. Then X is £(u)
by Theorems 2.1 and 2.3. So, clearly, (X,, X;,...) is P(u + 8(i)) given
X, =i. Use Theorems 2.1 and 2.3 again to see that ® is D(u + 8(i)) given
X, =1
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3. Finite Polya trees. Let s be a positive integer and let E,_; be the set
of all finite paths or sequences p = (iy,...,i,,) of elements of E whose length
m is less than or equal to s — 1, including the empty sequence ¢. A Polya tree
of height s is a mapping u which assigns to each p € E,_; an urn vector
u(p) = (u(p)y,...,u(p),). Given such a u, the procedure explained in the
introduction generates a random vector

X, = (Xll""7Xls)

and a new tree u®. [As before X;; = i if the ball drawn from u(¢) is of color
i, etc. However, this procedure, unlike the one in the introduction, ends after s
stages.] The function u? is given by

U(ig,...,i,),;+1, f X, =104,...,%,, =i,

Uiy, i), = Xime1=J
U(iyyovoslp)js if not,

for each p = (iy,...,i,,) € E,_; and j € E.

Iterate the procedure using u® to get X, = (X,,,..., X,,) and «®, and so
on.
The sequence X = (X, X,,...) is called s-stage Polya with parameter u or
Z(u).

To calculate the joint distribution of the first n variables, let

J= (P J™)

be a sequence of n vectors in E°:

J = (Jatr--»Jas)s =1,...,n.

For each such j and each path p of length r — 1in E,_,, let j(p) be the
vector corresponding to the colors of those balls drawn from u(p) if
(X,,...,X,) =j. That is, if i is the number of draws made from u(p), then

(3.0) J(p) = (Jayrs -5 Jarr)s

where j@V, .. ., j@) are those vectors occurring in j (taken in order) whose
first r — 1 coordinates coincide with p. Set j(p) = ¢ if the path p is not
traversed. Now the probability of drawing j(p) from u(p) is just P(j(p); u(p))
as in (2.2). Furthermore ,
(3.1) P[(Xy,...,X,) =jl = I1 P(j(p);u(p)),

PEES—I
where the convention is made that P(¢; u(p)) = 1. One can verify (3.1) by
writing the probability on the left as a product of the probabilities of the ns
draws made and then grouping together the terms corresponding to the draws
made from each u(p).

Lemma 3.1. If (X, X,,...) is P(u), then the variables X, X,,... are
exchangeable.
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Proor. The probability P(j(p); u(p)) is invariant under permutations of
the coordinates of j(p) and, hence, is invariant under permutations of
i) i(n)

JO, L j™ o

Now Theorem 2.1 applies to the sequence X, X,,... of exchangeable
variables taking values in E°, and we would like to identify the de Finetti
measure. First some additional notation and terminology are needed.

It is convenient to view probability measures on E° as being ““strategies” in
the sense of Dubins and Savage (1965).

DEFINITION. An s-day strategy is a mapping 6 which assigns to every
p € E;_, a probability measure 6(p) on E. The notation 6, will often be used
for 6(¢).

An s-day strategy 6 naturally determines a probability measure u = u(8)
on E° as follows: The marginal u distribution on the first coordinate is 6,
and, given that the first r coordinates are p where p € E", 1 <r < s, the
conditional u distribution of the (r + 1)st coordinate is 6(p).

To simplify notation, the measure w(8) associated with 6 will be written as
6 below. In particular, the product rule for calculating the probability of an
intersection gives, for (i,...,i,) € E*,

(32) 0{(”1’ . "is)} = 00({11})6(l1)({l2}) T O(il" "’is—l)({is})‘

If ©,,0@,),...,00,,...,i,_;) are random probabilities on E, then we can
use (3.2) with capital thetas to define a random probability ® on E*.
Let u be a Polya tree of height s.

DEFINITION. A random probability measure ® on E° is a Dirichlet strategy
with parameter u [written D ()] if the random probability measures {@(p):
p € E,_}} are independent and O(p) is D(u(p)) for every p € E,_,.

TueorReM 3.1. If X = (X, X,,...) is &(u), then the de Finetti measure of
Xis D(u).

Proor. The proof is an application of Theorem 2.2. For the application, E
is replaced in that theorem by E*® and,

J= (0™

is a finite sequence of elements of E°. We must verify (2.4) which here
becomes

(33 PI(X,,-.., X,) 4] = B[ TTo ()

under the assumption that ® is D (x). The left-hand side of (3.3) is given by
(3.1). So it remains to calculate the right-hand side.
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By (3.2), if 6 is a strategy and

j(a) = (jal"' "jas)’
then

9({j(a)}) = oo{jal}a(jal){ja2} e O(jali R ja,s—1){jas}-

Now substitute into the right-hand side of (3.3), collect terms and use the
independence of the ®(p) to obtain

G4 B(ITe |- T1 5[ IT om ().

a=1 PEE,y  \icj(p)
Here j(p) is the same as in (3.0) and i varies over the coordinates of j(p)
taken with their multiplicities. It follows from Theorems 2.2 and 2.3, and our
assumption that @(p) is D(u(p)) that

E( T 0(p)((1))) = PUi(p)s u(p).

i€j(p)
By (3.1) and (3.4), the proof is complete. O

Just as the Dirichlet family is conjugate to ordinary multinomial sampling,
the family of Dirichlet strategies is conjugate for “strategic sampling’”’ in
which an experiment takes place in several stages each of which depends on
the preceding outcomes. Even if the experiment is terminated (censored)
before the last stage, the Dirichlet strategies remain conjugate as was pointed
out by Dickey (1990).

THEOREM 3.2.  Suppose O is D(u) and, given 0, X, = (X,,,..., X,,) has
distribution ©. Then, given (X,,...,X;,) =(i,,...,i,) wherel <r <s, 0 is
D (u') where

w(p) =u(e) +8(iy),
Wiy, .o ig) =u(iy,...,i,) +8(iy4y) fora=1,...,r—1,

u'(p) =u(p) forallotherp € E,_,.

Proor. Do an induction on r using Theorem 2.4 and the independence of
the @(p)’s. [Alternatively, use Bayes formula and the fact that the density for
O is the product of the densities for the O(p).] O

4. Infinite Polya trees. An infinite Polya tree is a mapping u which
assigns to every p € E* an urn vector u(p). Given such a u, the scheme
described in the introduction generates sequences X;, X,,... and u®, u®, . ..
where, for each n,

Xn = (Xn17Xn2"")

is a random element of EV and u™ is an infinite Polya tree. The sequence
X = (X, X,,...) is infinite stage Polya with parameter u or %(u). We can
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also code each X, using a (k + 1)-ary expansion as in (1.1) to get a random
variable Y, with values in the unit interval I. We will also call the sequence
Y = (Y,,Y,,...) infinite stage Polya on I or Z,(u).

The basic properties of the infinite stage Polya sequences are easily derived
from the finite case. To do this, let X = (X}, X,,...) be #(u) and, for positive
integers s and n, let

X7(l8) (an"" an)

be the first s coordinates of X,,, let X® be the sequence (X{, X{*,...) and
let u® be the restriction of u to E, ;. Here is an obvious but useful fact.

Lemma 4.1. If X is P(u), then, for every s, X is P(u®).

TueorREM 4.1. If (X, X,,...) is P(u) [(Y,Y,,...) is P(u)], then
X, Xy, ... [(Y},Y,,...)] are exchangeable.

Proor. Let n be a positive integer and let A be a Borel subset of (EN)".
To prove exchangeability of the X,’s, we need to check that P[(X,,..., X,) €
Al is invariant under permutations of the indices. It suffices to do this for sets
A of the form

A=A X XA,
where each A; is a cylinder set in EV of the form
A,=B,xEY, B,CE"

for some positive integer r,. Take s to be the maximum of the r,’s so that each
A, depends on only the first s coordinates and is of the form

A,=C,xEN, C,cE".
Thus
P[X,€A,,...,X,€A,]=P[XPeC,...,. X eC,].

Exchangeability of the X;’s now follows from that of the X{*”’s. The exchange-
ability of the Y;’s is an easy consequence of that of the X,’s. O

A more general form of Theorem 2.1 [c¢f. Hewitt and Savage (1955) or
Aldous (1983)] can now be used to see that there is a de Finetti measure for a
sequence which is #Z(u) or & (u). To describe these measures, let M(EY)
[M(I)] be the space of probability measures defined on the Borel subsets of
EN(I) and give this space its usual topology of weak convergence. Let X be
Z(u). Then the de Finetti measure @ = Q, for X is a probablhty measure
defined on the Borel subsets of M(E") and satisfying

(4.1) P[XleAl,...,XneAn]=f(]—[6(Ai))Q(d0)
i=1

for all n and all Borel subsets A,,..., A, of EV. The de Finetti measure

n

Q = Q, for a Y which is &,(u) can be defined similarly; just replace the X,’s
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by Y’s and take the sets A, to be Borel subsets of the unit interval. The
existence and uniqueness of @ and @ are well known [cf. Hewitt and Savage
(1955) or Aldous (1983)]. There is, of course, a simple relationship between @
and Q.

Let ¢: EN — I be the mapping defined by (1.1). Clearly, # is continuous
and induces a continuous mapping 8 — 8¢~ * from M(E?Y) into M(I) where
(8¢~ B) = 6(y " Y(B)) for B a Borel subset of I. Now @ can be thought of as
the distribution of 6 ~! when ® has distribution Q; that is,

(4.2) Q(F)=Q{6: 0y~ € F}

for Borel subsets F of M(I).
To characterize @, it is again useful to use the notion of a strategy.

DEFINITION. A strategy 6 is a mapping from E* to the collection of
probability measures on E.

Each strategy 6 naturally determines a measure u = u(6) € M(EY) by the
requirement that uw(6)X{x € EVN: x; = i,,...,x, = i } be equal to the right-hand
side of (3.2) for every finite sequence i,,...,i, of elements of E. As in the
s-day case, we will write 6 for w(6) and we can obtain a random measure @
with values in M(E™) by putting a joint distribution on {®(p): p € E*}.

Let u be an infinite Polya tree.

DEFINITION. A random probability measure ® with values in M(E") is a
Dirichlet strategy with parameter u [written D (u)] if the random probability
measures {O(p): p € E*} are independent and ®(p) is D(u(p)) for every
p € E*. The measure corresponding to the distribution of such a ® is also said
to be D (u).

THEOREM 4.2. IfX = (X, X,,...) is P (u), then the de Finetti measure Q,
of Xis D(u).

Proor. If ® is D(u), then, for every positive integer s, ® restricted to
E._, is D (u). So, by Theorem 3.1, equality (4.1) holds when every A; depends
only on the first s coordinates. O

Again the Dirichlet strategies are conjugate for strategic sampling even if
the experiment is terminated at some finite stage.

THEOREM 4.3. Suppose © is D(u) and, given 0, X, = (X, X,5,...) has
distribution ©. Then, given X, [or given (X ,,..., X;,)l, ©® is D(u™?) where

u®($) = u() + 6(Xyy),
U Xy, X)) =u(Xog, oo Xyp) + 6(Xy ,0y) forr<s-—1,
uP(p) = u(p) forotherp € E*.
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Proor. In checking the properties of a conditional distribution, one can
restrict attention to O restricted to the finite sets E, and to finitely many of
the X,,’s. But then the desired properties follow from Theorem 3.2. O

Another way of expressing the result of Theorem 4.3 is that if ® has the
prior distribution @, on M(EY), then, given X, the posterior distribution of
0 is @, where u¥ is the tree obtained in the construction of Section 1. It
follows that the posterior of © given X;,..., X, is @ . (Notice that u™ is a
random tree depending on the values of X,,..., X, .)

Suppose next that © is a random element of M(I) with distribution @, and
we wish to calculate the posterior distribution of ® given Y, where Y, = ¢(X)).
It follows from (1.1) and (4.2) that this posterior distribution will be @, if we
make the convention that u™® should be the tree associated with an X, such
that (X,) = Y, and having only finitely many 0’s (say) and if the probability
under @, that Y, is a (k + 1)-ary rational is zero. This last condition is
certainly satisfied if Y; has a continuous distribution in the sense of the next
section.

5. Continuity of predictive distributions and random measures. A
prior Q [respectively @] on M(E™)[M(I)]is a probability measure defined on
the Borel subsets of M(E™) [M(I)]. Suppose the random measure ® has
distribution @ [@] and, given @, the variables X, X,, ... are independent each
having distribution ©. The marginal distribution of X is called the predictive
distribution for the prior @ [Q].

The collection of continuous measires on EN[I]is given by

C={0eM(EY):0{x} =0forall x € EN}

[C={6 eM(I):0{x} =0forall x € I}].

We are interested in conditions on an infinite Polya tree u for the prior @,
[@,] to have a continuous predictive distribution and also for @,(C) [@,(C)] to
be 1. For convenience, we will work on E¥, but the conditions given apply as
well on I for the prior @,.

Now, under @,, the probability that X, equals x € E¥ is just the probabil-
ity, in the Polya tree construction, of traversing the path x = (x,, x,,...) and

this probability is given by the infinite product

_ u(d)x, ) u(xl)xg ) u(xy, %3) x,

(5.1) [(x;u) = lu($)| Tu(x)] [w(xy,x5)]

Here is an immediate consequence and an obvious corollary.

THEOREM 5.1. The predictive distribution of @, (Q,) is continuous if and
only if TI(x;u) =0 for every x € EV.
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COROLLARY 5.1. If the proportion of balls of each color is bounded away
from 1 in the sense that

(5.2) sup{Lp)i-peE*ieE <1
' lu(p)|” ’ ’

then the predictive distribution of @, (®Q,) is continuous.

In the special case when every u(p), is an integer, condition (5.2) is satisfied
if the total number of balls in each urn is uniformly bounded and if there are
balls of different colors in every urn.

The next two lemmas hold for a general prior @ [@] on M(EYN) [M(I)].

_Lemma 5.1, If Q(C) [Q(C)] equals 1, then the predictive distribution of @
[@] is continuous.

Proor. If Q(C) =1 and x € EV, then

P[X, =x] = [P[X, =x|0© = 6] dQ(6) =fce(x)dQ(e) = 0. O

LEMMA 5.2. A necessary and sufficient condition for Q(C) [Q(C)] to be 1 is
that P[ X, = X,] be zero.

Proor. Now X, and X, are independent with distribution 6 given O = 6.
Hence, P[ X, = X, | ® = 0] is zero if and only if 6 is continuous. Consequently,

P[X, =X,] = fCCP[Xl = X,|0® = 6] dQ(6) > 0
if and only if @(C°) > 0. O

To apply Lemma 5.2 to the case where @ = @, for a Polya tree u, notice
that, given X; = x, the distribution of X, is the predictive distribution for
@, o by Theorem 4.3. Thus

(5.3) P[X, =x|X, =x] = [1(x;u®).

In the expression on the right, the tree u¥ is from the construction in Section
1 and, in particular, depends on x. Also, if m is the distribution of X, then

(5.4) P[X, =X,] = fP[X2 =x|X, = x| dm(x).
Now we are ready to give conditions for @,(C) to be 1.
TueoreM 5.2. If Q,C) [Q,(C)] equals 1, then Tl(x;u) =0 for every

x € EN. If TI(x;u®) =0 for m almost every x € EN, then @,(C) [@,(C)]
equals 1.
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Proor. The first assertion is immediate from Theorem 5.1 and Lemma
5.1. The second follows from (5.3), (5.4) and Lemma 5.2. O

The trees u™ obtained in the Polya construction of Section 1 all have the
property that every urn u™(p) differs from u(p) at most by the addition of
one ball. More precisely, every u"(p); is either u(p), + 1 or u(p), depending
on whether p = (x,...,x,) and x,,, = i for some n or not. Similarly every
luM(p)| is either [u(p)| + 1 or |u(p)| according to whether p = (xq,...,x,) for
some n or not. It follows that the terms occurring in the infinite product
expression (5.1) for I1(x; uV) will be bounded away from 1 if (5.2) holds and
the [u(p)| are bounded away from zero. This observation yields a corollary to
the second assertion of Theorem 5.2.

CorOLLARY 5.2. If (5.2) holds and
(5.5) inf{lu(p)|: p € E*} > 0,
then Q,(C) [Q,(C)] is 1.

Condition (5.5) obviously holds when every u(p), is an integer because in
that case |u(p)| > 1. (We are not allowing empty urns.)

6. Support and consistency. As Ferguson (1973) remarked, it is often
desirable for a prior to have large support. The support (or topological carrier)
of a probability measure u defined on the Borel subsets of a compact
Hausdorff space M is the least compact set S(u) which has p measure 1.
Notice that u has full support in the sense that S(u) = M if and only if every
nonempty, open subset of M has positive u measure.

Here is a characterization of the Polya tree priors which have full support.

THEOREM 6.1. The following are equivalent conditions on an infinite Polya
tree u:

(a) The prior @, has full support.

(b) The prior @, has full support.

(c) For every p € E*, the Dirichlet measure D(u(p)) has full support.
(d) For everyp € E* and i € E, u(p), > 0.

Proor. (a) = (b). Assume (a) and let F be a nonempty, open subset of
M(I). Then the set G = {6: ¢! € F} is a nonempty, open subset of M(EN)
and, by (4.3),

Q(F) = Q(G) > 0.

(Here and below @ =@, and @ = Q,.)

(b) = (d). Suppose (d) is false. So there exist p = (iy,...,i,) € E* and
i € E such that u(p); = 0. Thus, if @ is a random measure with distribution
Q,, then O(p){i} = 0 with probability 1.
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Let I and r be the numbers whose expansions to base £ + 1 are
l=1y...1,,100...,
r=.;...1,,ikk...,

and let J be the closed interval [/,r]. Let g: I — [0,%) be a continuous,
non-zero function which equals zero on the complement of J. Consider the
nonempty, open set

U= {u e M(I): fgd,u, > 0}.
To prove (b) is false, we need only show Q(U) = 0.
Notice that U is a subset of the set
F={ueM(I):u(J) >0},
So it suffices to show Q(F) = 0. By (4.3),
Q(F) = Q{6: 0(y(J)) > 0}.

Also,
YNI) ={x € EN:ixy =iy, 0, =0y, Xy = 0)
and
0~ (J)) = 0{i}0(ir){is} -+ 0(irs...,0,){5)
<0(iy,...,1,){i} =0(p){i}.
Hence,

Q(F) < Q{0:0(p){i} > 0} = 0.

() = (d). This is a trivial consequence of our conventions about the
Dirichlet distribution. [Notice that to say D(x(p)) has full support means that
the support of D(u(p)) is S,.]

(d) = (a). Assume (d). It suffices to show that each set in a base for the
topology of M(E™) has positive @ measure. The usual base for the weak
topology consists of sets of the form

{0 e M(EV): ‘fgide ~ [&, dé,

where the g; are continuous, real-valued functions on EV, 0, is a fixed
element of M(E") and the ¢, are positive numbers [cf. Section I1.6 of
Parthasarathy (1967)]. However, every continuous g on EV can be uniformly
approximated by a finite, linear combination of indicator functions of sets of
the form

(6.1) C={xeEY:x, =iy,...,x,=1,).

(This follows from the Stone-Weierstrass theorem, for example.) Hence, an-
other base for the topology of M(E™) consists of sets of the form

(6.2) B={6eM(EV):16(C)) - 0,(C,)| <e;,i=1,...,n},

where each C; is a set of the form (6.1), 8§, € M(E") and each ¢, is positive.

<ei,i=1,...,n},
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So we need only show Q(B) is positive for B as in (6.2). To do this, we begin
by borrowing a trick from Ferguson [(1973), Proposition 3.3]. Call n the
dimension of the set C in (6.1) and let b be the maximum of the dimensions of
the C, occurring in (6.2). Then each C; is a disjoint union of at most 2° sets of
the form

(6.3) D={xEEN:x1=j1,...,xb=jb}.
Let & be the minimum of the ¢, in (6.2). Then B contains the set
(6.4) F= ({6 €M(EY):|8(D) — 6,(D)| <e/2%},

D

where the intersection is over all D of the form (6.3). So it suffices to show
that @(F) > 0.
Now each D occurring in (6.4) is of dimension b. So a strategy 6 belongs to
F if and only if its restriction 6® to E,_; belongs to
F,= N {6 € M(E®):[6(D,) — 8,(Dy)| <e/2°},
D,

where D, is that subset of E® such that
D =D, X E"V.

The set F, is a nonempty, open subset of M(E?®), and if © has distribution @,
then

Q(F) =P[® € F] = P[@® € F,].

The final probability is positive because ©® is D,(x®)) and has, under
condition (d), a density which is positive on all of M (Eb) [The space M(E?®)
can be identified with the set S, where n = k® — 1 and the density of ®® is
taken with respect to Lebesgue measure.] O

Let A € M(E™) and let u be an infinite Polya tree. Suppose data variables
X,, X,,... are independent with distribution A and consider the posterior
distributions @, calculated from these data variables. Following Freedman
(1963) and Fabius (1964), call the pair (A, @,) consistent if, with probability 1,
@, converges weakly to 8(1), the measure concentrated on {A}. For A € M(I),
the consistency of the pair (A, @,) is defined similarly under the assumption
that A gives mass zero to the collection of & + 1-ary rationals so that @, is
the correct posterior given data Yi,...,Y, which are independent with distri-
bution A.

THEOREM 6.2. If A belongs to the support of @, [Q, and assigns mass zero
to the (k + 1)-ary rationals], then the pair (A,Q,) [(A, Q,)] is consistent.

The proof of this theorem is similar to the proof of Theorem 2.2 in Fabius
(1964), the main idea being a reduction to the finite, discrete case of Freedman
(1963). Indeed, the measures @, are ‘“‘tail-free”” in the sense of Fabius so that
this result is almost immediate from his.
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7. Estimation of a distribution function. Suppose Y,,...,Y, is a
sample from a distribution ® € M(I) and we wish to estimate the distribution

function F for ® given by
F(y) =0[0,y], 0=<y<l.

If ® has prior distribution @,, then, as Ferguson [(1973), Section 5 (a)]
explains, a natural Bayes estimator is the distribution function F,(y|Y;,...,Y,)
which corresponds to the expected value of F(y) under the posterior @, and
can be written as

Fy| Ys,..., ) = [6[0,5]Q,m(d0).

Since we know the form of the Polya tree u(*), the problem reduces to the no
data case where F is the expected (or predictive) distribution function as in

F(y) = F(y;u) = [6[0,7]Q,(d0).

For the calculation, introduce the notation I'l((y,, ..., y,); ) for the probabil-
ity that the Polya tree process X;,,...,X;, traverses the finite path
1. .., y,); that is,

u( )y, u(yh---,ynﬂ)yn
AR T R T

The distribution function F (y; u) is, of course, the disAtribution function for
predictive distribution discussed in Section 5. That is, F(y; ) is the distribu-
tion function for the random variable

(7.1) Y=.Y,Y,... (tobasek + 1),

where (Y,,Y,,...) = (X;;, X5, ...) is the random sequence constructed in the
infinite Polya urn scheme of the Introduction.

_ TueEOREM 7.1. The expected distribution function under the Polya tree prior

Q, is

. o Ynr1=1 u(y 7-"syn)i
Piw) = T MGueoodin) & o
n=0

(72) 1=0 lu(yl""ayn)l

+ I((y1, 92, )5 )

for every y = .yy,... (to base k+ 1) in I. [Here TI(¢;u) =1 and
Ty, ¥5, - - - ); w) is as in (5.1). Also, the inner summation is taken to be zero
when y, ., = 0 and we take the representation of y in which infinitely many
y;'s are zero if there is ambiguity.]
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Proor. Observe that

P[Y<y]= ijop[(Yh--erz) = (Y15 5Yn)s Vo1 <yn+1] + P[Y =y],

which by inspection is (7.2). O

Formula (7.2) is annoyingly complex when compared with Ferguson’s (1973)
formula (5.2). However, it does simplify in interesting special cases.

Say that an infinite Polya tree u has constant proportions A if there is a
fixed probability vector A = (Ag,...,A,) such that, for every p € E* and
1€ E,

u(p); _
lu(p)| "

Let X* =(k + 1)"%1,1,...,1) be the probability vector all of whose coordi-
nates are equal to (£ + 1)7!

THEOREM 7.2. Suppose u has constant proportions A.

(@) If A = X*, then F(y, u)=yforallyel.
() If A # X*, then F(y; u) is singular with respect to Lebesgue measure.

Proor. If A = A*, then, by (7.2),

©

Fy;u)y= ¥ (k+1)

n=0

ny

L Do) -

Suppose now that A # A*. So, for some i € E, \; # (k + 1)~1. Now the
variables Xy, X;,,... of (7.1) are clearly 1ndependent with distribution A. By
the strong law of large numbers F(-; 1) assigns probability 1 to the set of all
¥y = .¥1¥s ... such that

#lj<n:y;=i}l/n—->2 asn -

But this set has Lebesgue measure zero. O

Consider again the problem of calculating F,(y|Y,,...,Y,) = F(y; u™). In
principle, the problem is solved since we know the form of ©# and can apply
(7.2). In practice, it may be difficult to evaluate the infinite sum of (7.2). Lavine
(1992) explains how to calculate the density for Y when it exists and gives an
example to illustrate how it depends on the choice of the Polya tree prior.

8. Estimation of a mean. As explained in Ferguson (1973), if the statis-
tician is to estimate the mean of a distribution ® € M(I) with squared error
loss, then the Bayes estimate is the expected mean of the posterior. So, if ®
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has prior distribution @, the Bayes estimate will be

(8.1) jm(e)éu<n)(de),

where m(8) = [x6(dx) and @, is the posterior. Again the problem reduces,

at least in principle, to the no data case for which a formula is given below.
Let u be a Polya tree and, for each p € E*, define m(u(p)) to be the mean

of the variable corresponding to one draw from u(p); that is,

k iu(p);

) =k T

THEOREM 8.1. The expected mean under the Polya tree prior @, is

(8.2) jm(e)éu(do) = il(k+ " Y Ti(p;u)m(u(p)),

pEEn_1

where, for each p = (i,...,1,), Il(p, u) denotes, as in (7.0), the probability
that the Polya tree process traverses p and T1(¢;u) = 1.

Proor. For Y as in (7.1),
E[Y]=E[Y,Y,...]
— E[.Y,] + E[.0Y,] + E[.00Y,] + -- -
=E[.Y;] + E[E[.OY2 | Yl]] + E[E[.OOY3 Yy, Y2]] + -
and this final expression equals the right-hand side of (8.2). O

If there is a constant m such that m(u(p)) = m for every p € E*, then
(8.2) becomes

moX (k+1) " X Tl(p;u)=meX (k+1) " =my/k.
n=1 peE"! n=1
In the special case when every urn u(p) has equal proportions of all 2 + 1

colors,
k

my= Zi/(k+1)=k/2,

i=0
so that the expected mean is 1/2.
Consider finally the problem of calculating the posterior mean in (8.1) based
on observations Y;,...,Y, where
is a unique representation for each i. A direct calculation from (8.2) is
sometimes feasible if one takes advantage of the formula
lu(p)| n(p)
m(u™(p)) = m(u(p)) + ———————
) = T+ ) ") @)+ n(p)

where, for each p € E*, n(p) is the number of draws from u(p) and y(p) is
the mean of the numbers drawn.

y¥(p),
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