Open Problems in Topology J. van Mill and G.M. Reed (Editors) © Elsevier Science Publishers B.V. (North-Holland), 1990

CHAPTER 32

Problems in Topology arising from Analysis

R. Daniel Mauldin

Department of Mathematics
University of North Texas
Denton, Texas 76203-5116 USA

Contents	
1. Topologically Equivalent Measures on the Cantor Space	619
2. Two-Point Sets	621
3. Pisot-Vijayaraghavan Numbers	622
4. Finite Shift Maximal Sequences Arising in Dynamical Systems	
5. Borel Selectors and Matchings	
6. Dynamical Systems on $S^1 \times \mathbb{R}$ —Invariant Continua	
7. Borel Cross-Sections	
References	

1. Topologically Equivalent Measures on the Cantor Space

Two measures μ and ν defined on the family of all Borel subsets of a topological space X are said to be homeomorphic or topologically equivalent provided there exists a homeomorphism $h: X \to X$ such that $\mu = \nu h^{-1}$. This means that for each Borel set E, $\mu(E) = \nu(h^{-1}(E))$. The measure μ is said to be a continuous image of ν if h is only required to be continuous. OXTOBY and ULAM [1941] characterized those probability measures, μ , on the finite dimensional cubes $[0,1]^n$, which are homeomorphic to Lebesgue measure— μ must give each point measure zero, each nonempty open set positive measure and the boundary of the cube must have μ measure zero. Later OXTOBY and PRASAD [1978] extended this theorem to the Hilbert cube. The situation regarding the Cantor set remains unsolved—even for product measures.

Let $X = \{0, 1\}^{\mathbb{N}}$ and for each $r, 0 \le r \le 1$, let $\mu(r)$ be the infinite product probability measure on X determined by r: $\mu(r) = \prod_{n=1}^{\infty} \mu_n$, where $\mu_n(0) = 1 - r$ and $\mu_n(1) = r$, for all n. For each r, let $E(r) = \{s : \mu(r) \text{ is homeomorphic to } \mu(s)\}$.

First, let us note when one of these product measures is a continuous image of another.

1.1. THEOREM. The measure $\mu(r)$ is a continuous image of $\mu(s)$ if and only if there is positive integer n and integers a_i , $0 \le i \le n$, such that

$$0 \le a_i \le \binom{n}{i},\tag{1}$$

and

$$r = \sum_{i=0}^{n} a_i s^i (1-s)^{n-i}.$$
 (2)

PROOF. Suppose $f: \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ is continuous and for each Borel set E,

$$\mu(r)(E) = \mu(s)(f^{-1}(E)).$$
 (3)

Let $E = \langle 1 \rangle$. Then $f^{-1}(E)$ is a clopen subset of $\{0,1\}^{\mathbb{N}}$. Therefore, there is a positive integer n and a subset \mathcal{E} of $\{0,1\}^n$ such that

$$f^{-1}(\langle 1 \rangle) = \bigcup \{ \langle e \rangle : e \in \mathcal{E} \}. \tag{4}$$

For each $i, 0 \le i \le n$, let a_i be the number of sequences $e = (q_1, \ldots, q_n)$ of \mathcal{E} such that $\#(e) = \sum_{p=1}^n q_p = i$. Thus, $0 \le a_i \le \binom{n}{i}$ and if #(e) = i, then $\mu(s) = (\langle e \rangle) = s^i(i-s)^{n-i}$. Thus

$$r = \mu(r)(\langle 1 \rangle) = \sum_{i=0}^{n} a_i s^i (1-s)^{n-i}.$$
 (5)

Conversely, let us assume that (1) and (2) hold. Let \mathcal{E} be a subset of $\{0,1\}^n$ such that \mathcal{E} has exactly a_i members e with #(e) = i. Notice that if $\sigma \in \{0,1\}^N$, then σ has a unique representation as

$$\sigma = t_1 * t_2 * t_2 * t_3 \cdots, \tag{6}$$

where for each i, t_i is in $\{0,1\}^n$. Define $f: \{0,1\}^N \to \{0,1\}^N$ by $f(\sigma)(i) = 1$, if and only if $t_i \in \mathcal{E}$. Clearly, f is a continuous map of $\{0,1\}^N$ into $\{0,1\}^N$ and for all k,

$$1 - r = \mu(r)(\{\sigma : \sigma(k) = 0\}) = \sum_{i=0}^{n} \left[\binom{n}{i} - a_i \right] s^i (1 - s)^{n-i}$$

$$= \mu(s)(f^{-1}(\{\sigma : \sigma(k) = 0\}).$$
(7)

From this it follows that $\mu(r)$ is the image of $\mu(s)$ under f.

1.2. EXAMPLE. $\mu(1/2)$ is the image of $\mu(1/\sqrt{2})$.

Let us note that there are many maps which take $\mu(s)$ to $\mu(r)$. For if f is such map, then since $\mu(s) = \mu(s) \circ h$, where h is a homeomorphism induced by a permutation, $\mu(r) = \mu(s) \circ f \circ h$. Theorem 1.1 characterizes those shift invariant product measures $\mu(s)$ and $\mu(r)$ such that each is a continuous image of the other.

1.3. THEOREM. Each of $\mu(r)$ and $\mu(s)$ is the continuous image of the other if and only if there are positive integers n and m, integers a_i , $0 \le i \le n$, integers b_j , $0 \le j \le m$ such that

$$0 \le a_i \le \binom{n}{i}, 0 \le b_j \le \binom{m}{j}, \tag{8}$$

$$r = \sum_{i=0}^{n} a_i s^i (1-s)^{n-i}, \tag{9}$$

and

$$s = \sum_{j=0}^{m} b_j r^j (1-r)^{n-j}. \tag{10}$$

? 1065. Problem 1.4. Is it true that $\mu(r)$ and $\mu(s)$ are homeomorphic if and only if equations (8), (9) and (10) hold?

Let us note that for integers a_i and b_j satisfying the given constraints, there is always a solution of equations (9) and (10). This may be seen by applying

Brouwer's fixed point theorem to the map given by:

$$(r,s) \to (\sum_{i=0}^{n} a_i s^i (1-s)^{n-i}, \sum_{j=0}^{m} r^j (1-r)^{n-j}).$$

A number of references can be drawn from Theorem 1.1. For each r, let $F(r) = \{s: \text{ each of } \mu(r) \text{ and } \mu(s) \text{ is a continuous image of the other}\}$. NAVARRO-BERMUDEZ [1979, 1984] showed:

1.5. THEOREM. For each r, F(r) is countable and $F(r) \supseteq E(r)$. If r is rational or transcendental, then E(r) = F(r) and consists of exactly its obvious members: $E(r) = \{r, 1 - r\}$.

Huang extended this theorem by proving the same result in case r is an algebraic integer of degree two. The situation is more complicated for the other algebraic numbers. For example, HUANG [1986] proved:

1.6. THEOREM. For each n > 2, there is an algebraic integer $r \in (0,1)$ of degree n and a number $s \in (0,1)$ such that r and s satisfy relations of the form (9) and (10) and $s \neq r$ and $s \neq 1 - r$.

Let us examine Huang's algebraic integer of degree three. It is the unique real solution of

$$r^3 + r^2 - 1 = 0 (A)$$

(It is perhaps worth noting that 1/r is the smallest Pisot-Vijayaraghavan number.) Now, set

$$s = r^2. (B)$$

Clearly, $s \neq r$ and $s \neq 1 - r$. OXTOBY and NAVARRO-BERMUDEZ [1988] showed that for this r and s, the measures $\mu(r)$, $\mu(1-r)$, $\mu(s)$, and $\mu(1-s)$ are topologically equivalent.

Problem 1.7. Let r be the root of eq. (A) between 0 and 1. Does E(r) or 1066. ? F(r) consists of exactly the four numbers r, 1-r, r^2 and $1-r^2$?

Problem 1.8. For each r, is it true that there are only finitely many numbers 1067. ? s such that $\mu(s)$ and $\mu(r)$ are homeomorphic?

2. Two-Point Sets

MAZURKIEWICZ [1914] showed that there is a "two-point" subset M of \mathbb{R}^2 , i.e., M meets each line in exactly 2 points. Direct generalizations of this result were given by ERDÖS and BAGEMIHL [1957]. The axiom of choice plays a central role in the construction of M. The problem naturally arises as to how effective such a construction can be.

? 1068. Problem 2.1. Is there a Borel set M in \mathbb{R}^2 which meets each straight line in exactly two points? Can M be a G_{δ} set?

LARMAN [1968] has shown that M cannot be an F_{σ} set. But, even whether M can be a G_{δ} set is unknown. It is known that if M is an analytic set then M is a Borel set. This follows for example from the fact that every analytic subset A of \mathbb{R}^2 such that each vertical fiber A_{σ} has cardinality ≤ 2 lies in a Borel set B such that each vertical fiber has cardinality ≤ 2 . Miller has shown that V = L implies that M can be taken to be a coanalytic set (MILLER [1989]).

I have proven the following.

2.2. THEOREM. A two point set M must always be totally disconnected, i.e., every connected subset of M consists of a single point.

Larman's Theorem follows from this since each σ -compact subset of \mathbb{R}^2 which meets each vertical line in two points contains the graph of a continuous function defined on some interval.

? 1069. Problem 2.3. Must a two-point set M always be zero-dimensional?

Note that if E is a subset of the plane which meets each line in 2^{ω} points then there is a two-point set M lying in E. Since there is such a subset E of the plane which is both zero-dimensional and of planar Lebesgue measure 0, M can be both zero-dimensional and of Lebesgue measure 0. On the other hand, one can construct M such that M meets each closed subset of \mathbb{R}^2 which has positive Lebesgue measure. Thus, M can also be taken to be non-Lebesgue measurable. It should be noted that the property of being a partial two-point set cannot necessarily be extended. For example, the unit circle meets each line in no more than two points but of course we cannot even add a single point to this set and retain this property.

? 1070. Problem 2.4. Can a zero-dimensional partial two-point set always be extended to a two-point set?

(van Mill and I note that this is true assuming CH holds).

3. Pisot-Vijayaraghavan Numbers

Let S be the set of all Pisot-Vijayaraghavan numbers. Thus, $x \in S$ if and only if x is an algebraic number, x > 1 and all its conjugates have moduli less than 1. Salem [1983] proved that the countable set S is also a closed subset of R. Siegel [1944] showed that the smallest element of S is the root of $x^3 - x^2 - 1$. Pisot and Dufrenoy [1953] showed that the smallest number in the Cantor-Bendixson derived set of S is the root of $x^2 - x - 1$.

Problem 3.1. What is the order type of the set S of all Pisot-Vijayaraghavan 1071. ? numbers?

Problem 3.2. What is the Cantor-Bendixson derived set order of S?

1072. ?

4. Finite Shift Maximal Sequences Arising in Dynamical Systems

A particular countable linear order type arises in one-dimensional dynamics. A simple case occurs in the iteration of the critical point in a scaled family of unimodal maps of the unit interval one-dimensional dynamics. For example, consider the quadratic map q(x) = 4x(1-x) on the unit interval, [0,1]. For each λ , $0 \le \lambda \le 1$, consider the itinerary, $I_{\lambda q}(1/2)$, of the critical point of the scaled map, λq . Thus

$$I_{\lambda q}(1/2)(i) = \begin{cases} R, & \text{if } (\lambda q)^{i}(1/2) > 1/2, \\ C, & \text{if } (\lambda q)^{i}(1/2) = 1/2, \\ L, & \text{if } (\lambda q)^{i}(1/2) < 1/2. \end{cases}$$

We make the convention that the sequence stops at the first C if there is a C in the sequence. Thus, a finite itinerary arises from a value of λ such that 1/2 is periodic under λq . The set of all possible itineraries has been abstractly characterized as follows. First, consider the parity-lexicographic order on the space S of all finite and infinite sequences of R, L and C such that if the sequence has a C there is only one C and it is the last term of the sequence. Thus, if $A = (A_1, A_2, \ldots)$ and $B = (B_1, B_2, \ldots)$ are elements of S, then $A \leq B$ provided $A_i < B_i$, where i is the first place where A and B disagree and we use the order L < C < R if there are an even number of R's preceding A_i in A and we use the reverse order if there are an odd number. An element A of S is said to be shift maximal provided A is not less than any of its shifts, $\sigma^i(A) = (A_{i+1}, A_{i+2}, \ldots)$ in the parity-lexicographic order.

4.1. THEOREM. An element $A = (A_1, A_2, A_3, ...)$ is the itinerary of 1/2 under the quadratic map, q, for some value of λ if and only if A is shift maximal. \square

This theorem is true not only for the quadratic map but for a general wide class of maps of [0, 1] onto [0, 1] (See COLLET and ECKMAN [1980] and BEYER, MAULDIN and STEIN [1986].)

Problem 4.2. What is the order type of the countable set of finite shift- 1073. ? maximal sequences in the parity-lexicographic order?

5. Borel Selectors and Matchings

Consider the hyperspace of all compact subsets of the unit interval, $\mathcal{K}(I)$. There are exactly 2 continuous selectors. If $f:\mathcal{K}(I)\to I$ is continuous and

for each compact set K, $f(K) \in K$, then either $f(K) = \max(K)$ for all K or else $f(K) = \min(K)$ for all K. In MAULDIN [1980], I showed that there are ω_1 Borel measurable selectors $f_{\alpha} : \mathcal{K}(I) \to I$ such that if K is an uncountable compact set, then the values $f_{\alpha}(K)$ are distinct.

? 1074. Problem 5.1. Can one prove in ZFC that there are continuum many Borel measurable selectors on K(I) such that for each uncountable compact set K, the selected points of K are all distinct?

There does exist such a family of Borel selectors if instead of the uncountable compact sets, one considers the family of compact perfect sets (MAULDIN [1979]).

? 1075. Problem 5.2. Let B be a Borel subset of $[0,1] \times [0,1]$ such that each horizontal and each vertical fiber of B is co-meager. Can B be filled up by a collection of pairwise disjoint graphs of Borel isomorphisms of [0,1] onto [0,1]?

DEBS and SAINT-RAYMOND [1989] have shown that B does contain a Borel matching—the graph of some Borel isomorphism. This result is false if comeager is replaced by Lebesgue measure one. An example of such a set is given in GRAF and MAULDIN [1985] and in more detail in MAULDIN and SCHLEE [1989]. More problems on this theme are given in MAULDIN [1989].

6. Dynamical Systems on $S^1 \times \mathbb{R}$ —Invariant Continua

Fix a > 0 and B > 0 and define a map $T: S^1 \times \mathbb{R} \to S^1 \times \mathbb{R}$ by

$$T(e^{i2\pi x}, y) = (e^{i2\pi ax}, B(y - A(x)).$$

In order for the map to be well-defined and continuous, we assume $A: \mathbb{R} \to \mathbb{R}$ is continuous, has period 1 and that a is a positive integer. For convenience, we assume ||A|| = 1. Note that T maps the fiber $\{e^{i2\pi x}\} \times \mathbb{R}$ one-to-one and onto $\{e^{i2\pi ax}\} \times \mathbb{R}$. Also, T restricted to the fiber is an orientation preserving similarity map with similarity ratio

$$B: ||T(e^{2\pi ix}, y) - T(e^{2\pi ix}, z)|| = B|y - z|.$$

This map or close relatives have been studied by Kaplan, Mallet-Paret and Yorke [1984], Moser [1969] and Fredrickson et al [1983]. In order to examine the dynamics of T, note that

$$T^{n}(e^{i2\pi x}, y) = (e^{2\pi i a^{n}x}, B^{n}y - \sum_{p=0}^{n-1} B^{n-p}A(a^{p}x)).$$

If a=1, then the dynamics are quite simple. If B=1, then $T^n(e^{2\pi ix},y)=(e^{2\pi ix},y-nA(x))$ and the asymptotic behaviour is clear. If $B\neq 1$, then the graph \mathcal{G} , of

 $f(x) = (\frac{B}{B-1})A(x)$

lifted to the cylinder is invariant. If 0 < B < 1, this graph is a universal attractor. In fact, for each x and y, $T^n(e^{2\pi ix}, y) \to (e^{2\pi ix}, \mathcal{G}(x))$. If B > 1, this graph is a repeller. The points of the cylinder above the graph iterate to $+\infty$ and those below iterate to $-\infty$.

From this point on, we assume $a \ge 2$. Now the map T is a-to-1:

$$T^{-1}(e^{2\pi ix},y) = \left\{ (e^{2\pi i((x+k)/a)}, B^{-1}y + A((x+k)/a)) : k = 0, \dots, a-1 \right\}.$$

If B > 1, then the graph of the continuous, period 1 function f which satisfies the functional equation:

$$f(ax) = B(f(x) - A(x))$$

is invariant. Or, setting b = 1/B,

$$f(x) = A(x) + bf(x).$$

The unique solution of this equation is the Weierstrass function:

$$f(x) = \sum_{p=0}^{\infty} b^{p} A(a^{p} x).$$

The graph of f on the cylinder is a nowhere differentiable invariant 1-torus. It is also a universal repeller. The points of the cylinder above the graph iterate to $+\infty$ and those below iterate to $-\infty$. The capacity dimension of this graph is $2 + \log b / \log a$, in some cases (Kaplan, Mallet-Paret and Yorke [1984]). The Hausdorff dimension of this set is a long standing unsolved problem. It is widely believed that the capacity dimension is the Hausdorff dimension. The best estimates in the general case are given in Mauldin and Williams [1986].

Problem 6.1. Find the Hausdorff dimension, γ , of this graph. Moreover, find 1076. ? the exact Hausdorff dimension function—if there is one. In other words, find a slowly varying function L(t) such that $0 < \mathcal{H}^h(f) < \infty$, where $h(t) = t^{\gamma}L(t)$.

If 0 < B < 1, then T has an attracting continuum M. This is seen by noticing that if $|y| \le \frac{B}{1-B}$, then

$$|B(y - A(x))| \le B(|y| + |A(x)|) \le B(\frac{B}{1 - B} + 1) = \frac{B}{1 - B}.$$

Thus the "can",

$$K = S^1 \times \left[\frac{-B}{1 - B}, \frac{B}{1 - B} \right],$$

is mapped into itself, $T(K) \subseteq K$. Set

$$M = \bigcap_{n=0}^{\infty} T^n(K).$$

Then M is an invariant continuum which separates $S^1 \times \mathbb{R}$ and M attracts the orbit of all points. Pat Carter and I have shown that T acts chaotically on the continuum M. The case 0 < B < 1 is very different from the case 1 < B, in fact I conjecture:

? 1077. Problem 6.2. Is it true that M is a Sierpiński curve? In particular, is this true if A is the tent map on [0,1]?

Let us remark that in general M is not a graph in this case. Let us assume M is the graph of a function from S^1 into \mathbb{R} . Since the graph is compact, there is a continuous period one map $f: \mathbb{R} \to \mathbb{R}$ such that M is the graph of the lift of f to the cylinder. Since

$$T(e^{i2\pi x}, f(x)) = (e^{i2\pi ax}, B(f(x) - A(x))),$$

the function f must satisfy the functional equation

$$f(ax) = B(f(x) - A(x)),$$

for all x. Or,

$$f(x) = A(x) + \frac{1}{B}f(ax).$$

However, Pat Carter and I have shown that for some functions, the unique solution of this equation which is continuous at zero does not have period one. This class includes the case when A is nonnegative. In particular, if A is the tent map, M is not a graph.

? 1078. Problem 6.3. Let A be a non-constant, continuous, period one map of \mathbb{R} into \mathbb{R} with ||A|| = 1, a is an integer, $a \ge 2$ and 0 < B < 1. Is it true that the unique continuous solution of

$$f(x) = A(x) + \frac{1}{B}f(ax)$$

does not have period one, or more generally, is not periodic?

7. Borel Cross-Sections

Let X be an indecomposable continuum and consider the decomposition of X into its composants and let R be the corresponding equivalence relation: R is a Borel subset of $X \times X$ and each equivalence class is a meager, dense, F_{σ} subset of X. I have raised the following question over the past fifteen years, but it probably has been known much earlier.

Problem 7.1. Is there a Borel subset B of X which meets each equivalence 1079. ? class in exactly one point?

While this question remains unsolved, there is one case for which the answer is no. The continuum X is said to be strictly transitive in the sense of category provided that for each subset E of X which has the Baire property and which can be expressed as the union of some composants either E or $X \setminus E$ is meager (Kuratowski [1968]).

7.2. THEOREM. Let X be an indecomposable continuum which is strictly transitive in the sense of category. There is no Borel cross-section for the composants of X.

PROOF. Assume that there is a Borel cross-section B. For each subset E of X, let sat(E) be the union of all composants which meet E. Notice that if E is a Borel set, then sat(E) of E is analytic, since $sat(E) = \text{proj}_2(R \cap (E \times X))$ and, therefore, sat(E) has the Baire property. Define a probability measure, μ , on the Borel subsets of B as follows: $\mu(E) = 1$, if sat(E) is co-meager, and $\mu(E) = 0$, otherwise. Then μ gives each singleton measure 0, and each Borel subset of B has measure 0 or 1. This is impossible.

There are a number of indecomposable continua which are strictly transitive: Knaster continua (Kuratowski [1968]) and those admitting a Polish group action for which the orbit decomposition consists of the composants (Rogers [1986]).

References

BAGEMIHL, F. and P. ERDÖS.

[1957] Intersections of predescribed power, type, or measure. Fund. Math., 41, 57-67.

BEYER, W. A., R. D. MAULDIN, and P. R. STEIN.

[1986] Shift-Maximal sequences in function iteration: existence, uniqueness, and multiplicity. Math. Anal. Appl., 115, 305-362.

COLLET, P. and J. P. ECKMANN.

[1980] Iterated Maps on the Interval as Dynamical Systems. Birkhäuser, Basel.

DEBS, G. and J. SAINT-RAYMOND.

[1989] Selections boreliennes injective. Amer. J. Math., 111, 519-534.

FREDERICKSON, P., J. L. KAPLAN, E. YORKE, and J. A. YORKE.

[1983] The liapunov dimension of strange attractors. J. Diff. Equations, 49, 185-207.

GRAF, S. and R. D. MAULDIN.

[1985] Measurable one-to-one selections and transition kernels. Amer. J. Math., 107, 407-425.

HUANG, K. J.

[1986] Algebraic numbers and topologically equivalent measures in the Cantor set. Proc. Amer. Math. Soc., 96, 560-562.

KAPLAN, J. L., J. MALLET-PARET, and J. A. YORKE.

[1984] The lyapunov dimension of a nowhere differentiable attracting torus. Ergod. Th. and Dynam. Sys., 4, 261-281.

Kuratowski, K.

[1968] Topology, Volume II. Acad. Press, New York.

LARMAN, D. G.

[1968] A problem of incidence. J. London Math. Soc., 43, 407-409.

MAULDIN, R. D.

[1979] Borel Parametrizations. Trans. Amer. Math. Soc., 250, 223-234.

[1980] Some Selection Theorems and Problems. In Lecture Notes in Mathematics 794, pages 160-165. Springer-Verlag, Berlin-Heidelberg-New York. Measure Theory, Oberwolfach 1979.

[1989] One-to-one selections and orthogonal transition kernels. Measure and Measurable Dynamics, Contempory Mathematics, 94, 185-190.

MAULDIN, R. D. and G. A. SCHLEE.

[1989] Borel measurable selections and applications of the boundedness principle. Real Analysis Exchange, 15, 90-113.

MAULDIN, R. D. and S. C. WILLIAMS.

[1986] On the Hausdorff dimension of some graphs. Trans. Amer. Math. Soc., 298, 793-803.

MAZURKIEWICZ, S.

[1914] Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs. C.R. Varsovie, 7, 382-384.

MILLER, A.

. ś.

[1989] Infinite Combinatorics and definability. Ann. Pure Appl. Logic, 41, 179-203.

Moser, J.

[1969] On a theorem of anosov. J. Diff. Equations, 5, 411-440.

NAVARRO-BERMUDEZ, F. J.

[1979] Topologically equivalent measures in the Cantor space. Proc. Amer. Math. Soc., 77, 229-236.

[1984] Topologically equivalent measures in the Cantor space II. Real Analysis Exchange, 10, 180-187.

- NAVARRO-BERMUDEZ, F. J. and J. C. OXTOBY.
 - [1988] Four topologically equivalent measures in the Cantor space. Proc. Amer. Math. Soc., 104, 859-860.
- OXTOBY, J. C. and V. S. PRASAD.
 - [1978] Homeomorphic measures in the hilbert cube. Pac. J. Math., 77, 483-497.
- OXTOBY, J. C. and S. M. ULAM.
 - [1941] Measure preserving homeomorphisms and metrical transitivity. Annals of Math., 42, 874-920.
- PISOT, C. and I. DUFRESNOY.
 - [1953] Sur un ensemble fermé de nombres algebriques. Ann. Sci. Ecole Norm. Sup., 98, 105-133.
- ROGERS, J. T.
 - [1986] Borel transversals and ergodic measures on indecomposable continua. Top. Appl., 24, 217-227.
- SALEM, R.
 - [1983] Algebraic numbers and Fourier analysis. Wadsworth International Group, Belmont, California.
- SIEGEL, C. L.
 - [1944] Algebraic integers whose conjugates lie in the unit circle. Duke Math. J., 11, 597-602.