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1. Topologically Equivalent Measures on the Cantor Space

Two measures g and v defined on the family of all Borel subsets of a topolog-
ical space X are said to be homeomorphic or topologically equivalent provided
there exists a homeomorphism h: X — X such that p = vh™ !, This means
that for each Borel set E, p(E) = v(h~!(E)). The measure u is said to be
a continuous image of v if h is only required to be continuous. OXTOBY
and ULAM [1941] characterized those probability measures, y, on the finite
dimensional cubes [0, 1], which are homeomorphic to Lebesgue measure—u
must give each point measure zero, each nonempty open set positive measure
and the boundary of the cube must have g measure zero. Later OXTOBY
and PrasAD [1978] extended this theorem to the Hilbert cube. The situation
regarding the Cantor set remains unsolved—even for product measures.

Let X = {0,1}N and for each r, 0 < r < 1, let (r) be the infinite product
probability measure on X determined by r: J;,4(7') [152, tin, where pn(0) =
1 —7 and p,(1) = r, for all n. For each r, let E(r) {s: u(r) is homeomorphic
to u(s)}.

First, let us note when one of these product measures is a continuous image
of another.

1.1. THEOREM. The measure p(r) is a continuous image of u(s) if and only
if there is positive integer n and integers a;, 0 < i < n, such that

osaig(’;), - @

r= Za;si(l—s)”“i. (2)

and

PrRoOOF. Suppose f:{0,1}™ — {0,1}™ is continuous and for each Borel set

E, | .
p(r)(E) = p(s)(FH(E)). (3)

Let E = (1). Then f~(E) is a clopen subset of {0,1}™. Therefore, there is
a positive integer n and a subset £ of {0,1}" such that ‘

1)) =| J{(e):e € £} | (4)

For each 1, 0 < i < n, let a; be the number of sequences e =.(g1,...,¢,) of
£ such that #(e) = Zp L qp = 4. Thus, 0 < a; < (7) and if #(e) = 1, then

p(s) = () = (i — 5)"~*. Thus

r= (D) = Y a1 - ) (5)
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Conversely, let us assume that (1) and (2) hold. Let £ be a subset of {0,1}"
such that £ has exactly a; members e with #(e) = 7. Notice that if & €
{0,1}N, then o has a unique representation as

o=ty 4ty kil kig- -, (6)
where for each i, t; is in {0,1}". Define £:{0,1}N — {0,1}N by f(0)(3) = 1,

if and only if ¢; € £. Clearly, f is a continuous map of {0,1}" into {0, 1IN
and for all k,

1—r = #(r)({m(k):on:i[(’})—ai] S1-a" (1)

=0
= p(s)(f ({o:o(k) = 0}).
From this it follows that u(r) is the image of x(s) under f. O

1.2. ExaMPLE. pu(1/2) is the image of u(1/v/2).

Let us note that there are many maps which take u(s) to p(r). For if f is
such map, then since p(s) = u(s) o h, where h is a homeomorphism induced
by a permutation, u{r) = u(s) o f o h. Theorem 1.1 characterizes those shift
invariant product measures u(s) and p(r) such that each is a continuous image
of the other.

1.3. THEOREM. Each of p(r) and p(s) is the continuous image of the other if
and only if there are positive integers n and m, Integers a;, 0 € i < n, integers
bj, 0 < j < m such that

k] m
oga,—g(i),ogb,-s(j), (8)

n

r= Za,-s"(l — §)* (9)

1=0

and .
s=Y bri(1—r)y*7o. (10)

j=0
ol

Problem 1.4. Is it true that p(r) and p(s) are homeomorphic if and only if
equations (8), (9) and (10} hold?

Let us note that for integers a; and b; satisfying the given constraints, there -
is always a solution of equations (9) and (10). This may be seen by applying
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Brouwer’s fixed point theorem to the map given by:
i | . v m . 3
(rys) = O _aist (1= )" > " (L—r)*7).
i=0 f=0

A number of references can be drawn from Theorem 1.1. For each r, let F(r) =
{s: each of u(r) and u(s) is a continuous image of the other}. NAVARRO-
BERMUDEZ [1979, 1984] showed:

1.5. THEOREM. For each r, F(r) is countable and F(r) 2 E(r). If r is ratio-
nal or transcendental, then E(r) = F(r) and consists of exactly its obvious
members: E(r) = {r,1 —r}. !

Huang extended this theorem by proving the same result in case r is an

algebraic integer of degree two. The situation is more complicated for the’

other algebraic numbers. For example, HuaNG [1986] proved:

1.6. THEOREM. For each n > 2, there is an algebraic integer r € (0,1) of

degree n and a number s € (0,1) such that r and s satisfy relations of the
form (9) and (10) and s £ rand s # 1 —r.

Let us examine Huang’s algebraic integer of degree three. It is the unique
real solution of

PPt —1=0 (A)

(It is perhaps worth noting that 1/r is the smallest Pisot-Vijayaraghavan
number.) Now, set

s=r (B)

Clearly, s # r and s # 1 — r. OXxTOBY and NAVARRO-BERMUDEZ [1988]
showed that for this r and s, the measures p(r), (1 —r), p(s), and u(l —s)
are topologically equivalent.

Problem 1.7. Let r be the root of eq. (A) between 0 and 1. Does E(r) or
F(r) consists of exactly the four numbers 7, 1 —r, v and 1 r??

Problem 1.8. For each r, Is it true that there are only finitely many numbers
s such that u(s) and p(r) are homeomorphic?

2. Two-Point Sets

MAZURKIEWICZ [1914] showed that there is a “two-point” subset M of R?, i.e.,
M mmeets each line in exactly 2 points. Direct generalizations of this result
were given by ERDOS and BAGEMIHL [1957]. The axiom of choice plays a
central role in the construction of M. The problem naturally arises as to how
effective such a construction can be.

1066. 7
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Problem 2.1. Is there a Borel set M in R?* which meets each straight line
in exactly two points? Can M be a G set?

LARMAN [1968] has shown that M cannot be an F, set. But, even whether
M can be a Gj set is unknown. It is known that if M is an analytic set
then M is a Borel set. This follows for example from the fact that every
analytic subset A of R? such that each vertical fiber A, has cardinality < 2
lies in a Borel set B such that each vertical fiber has cardinality < 2. Miller
has shown that V = L implies that M can be taken to be a coanalytic set
(MILLER [1989]).

I have proven the following.

. 2.2. THEOREM. A two point set M must always be totally disconnected, lLe.,

every connected subset of M consists of a single point. O

Larman’s Theorem follows from this since each o-compact subset of R?
which meets each vertical line in two points contains the graph of a continuous
function defined on some interval.

Problem 2.3. Must a two-point set M always be zero-dimensional?

Note that if F is a subset of the plane which meets each line in 2% points then
there is a two-point set M lying in E. Since there is such a subset £ of the
plane which is both zero-dimensional and of planar Lebesgue measure 0, M
can be both zero-dimensional and of Lebesgue measure 0. On the other hand,
one can construct M such that M meets each closed subset of R? which has
positive Lebesgue measure. Thus, M can also be taken to be non-Lebesgue
measurable. It should be noted thaﬁ the property of being a partial two-point
set cannot necessarily be extended. For example, the unit circle meets each
line in no more than two points but of course we cannot even add a single
point to this set and retain this property.

Problem 2.4. Can a zero-dimensional partial two-point set always be ex-
tended to a two-point set? '

(van Mill and I note that this is true assuming. CH holds).

3. Pisot-Vijayaraghavan Numbers

Let S be the set of all Pisot-Vijayaraghavan numbers. Thus, z € S if and
only if z is an algebraic number, z > 1 and all its conjugates have moduli
less than 1. SALEM [1983] proved that the countable set S is also a closed
subset of R. SIEGEL [1944] showed that the smallest element of S is the root
of 8 —z? — 1. P1soT and DUFRENOY [1953] showed that the smallest number
in the Cantor-Bendixson derived set of S is the root of ° — z — 1.
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Problem 3.1. What is the order type of the set S of all Pisot-Vijayaraghavan
numbers? :

Problem 3.2. What is the Cantor-Bendixson derived set order of 57

4, Finite Shift Maximal Sequences Arising in Dynamical Systems

A particular countable linear order type arises in one-dimensional dynamics.
A simple case occurs in the Iteration of the critical point in a scaled family of
unimodal maps of the unit interval one-dimensional dynamics. For example,
consider the quadratic map g(z) = 42(1 — z) on the unit interval, [0,1]. For
each A, 0 < A < 1, consider the itinerary, I5,(1/2), of the critical point of the
scaled map, Ag. Thus

R, if (M)(1/2) > 1/2,

L\q(l/z)@):{ C, if () (1/2) = 172,
| L, if (M) (1/2) < 1/2.

We make the convention that the sequence stops at the first C if there is a C
in the sequence. Thus, a finite itinerary arises from a value of A such that 1/2
is periodic under Ag. The set of all possible itineraries has been abstractly
characterized as follows. First, consider the parity-lexicographic order on the
space S of all finite and infinite sequences of R, L and € such that if the
sequence has a C there is only one C and it is the last term of the sequence.
Thus, if A = (A1, As,...) and B = (B, By,...) are elements of S, then A < B
provided A; < B;, where ¢ is the first place where A and B disagree and we
use the order L < C < R if there are an even number of R’s preceding A; in
A and we use the reverse order if there are an odd number. An element A
of S is said to be shiff mazrimal provided A is not less than any of its shifts,
ot(A) = (Ais1, Aig2,...) in the parity-lexicographic order.

4.1. THEOREM. An element A = (Ay, A, As,...) is the itinerary of 1/2 under
the quadratic map, q, for some value of A if and only if A is shift maximal. O

This theorem is true not only for the quadratic map but for a general wide
class of maps of [0, 1] onto [0, 1] (See COLLET and EckmaN {1980} and BEYER,
MAULDIN and STEIN [1986].)

Problem 4.2. What is the order type of the countable set of finite shift-
maximal sequences in the parity-lexicographic order?

5. Borel Selectors and Matchings

Consider the hyperspace of all compact subsets of the unit interval, K(I).
There are exactly 2 continuous selectors. If f:K(I) — I is continuous and

1071. ?
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for each compact set K, f(K) € K, then either f(K) = max(K) for all X or
else f(K) = min(K) for all K. In MAULDIN [1980], I showed that there are
w; Borel measurable selectors fqo: K(I) — I such that if K is an uncountable
compact set, then the values f,(K) are distinct.

Problem 5.1. Can one prove in ZFC that there are continuum many Borel
measurable selectors on K(I) such that for each uncountable compact set K,
the selected points of K are all distinct?

There does exist such a family of Borel selectors if instead of the un-

countable compact sets, one considers the family of compact perfect sets
(MAuULDIN [1979]).

Problem 5.2. Let B be a Borel subset of [0, 1] x [0, 1] such that each horizon-
tal and each vertical fiber of B is co-meager. Can B be filled up by a collection
of pairwise disjoint graphs of Borel isomorphisms of [0, 1] onto [0, 1]7

DEBS and SAINT-RAYMOND [1989] have shown that B does contain a Borel
matchmg———the graph of some Borel 1somorphism. This result is false if co-
meager is replaced by Lebesgue measure one. An exampie of such a set is
given in GRAF and MAULDIN [1985] and in more detail in MAULDIN and
ScHLEE [1989]. More problems on this theme are given in MauLDIN {1980].

6. Dynamical Systems on S! x R—Invariant Continua
Fix ¢ > 0 and B > 0 and define a map 7:S* x R — S* x R by
T( s?wm’y) (ei21raa:,B(y__ A(:B))

In order for the map to be well-defined and continuous, we assume A:R — R
is continuous, has period 1 and that a is a positive integer. For convenience,
we assume ||A]| = 1. Note that T maps the fiber {8’2”} x R one-to-one and
onto {e*27%°} x R. Also, T restricted to the fiber is an orientation preserving
similarity map with similarity ratio

B: I]T(ez”i”,y) - T(ez”i”, z)|| = Bly — z].

This map or close relatives have been studied by KAPLAN, MALLET-PARET
and YORKE [1984], MosER [1969] and FREDRICKSON ET AL [1983]. In order
to examine the dynamics of T, note that

n—1
Tn(ei21ra:,y) — (ezm'a"z:, Bty — 2 Bn—PA(an))_

p=0
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If @ = 1, then the dynamics are quite simple. If B = 1, then T (%, y) =
(€2 y — nA(z)) and the asymptotic behaviour is clear. If B 3 1, then the
graph G, of

1(2) = (5o0)A)

lifted to the cylinder is invariant. If 0 < B < 1, this graph is a universal
attractor. In fact, for each z and y, T™(e?™ y) — (?™%,G(z)). If B > 1,
this graph is a repeller. The points of the cylinder above the graph iterate to
+o00 and those below iterate to —co.

From this point on, we assume a > 2. Now the map T is a-to-1:

T4 y) = {(ezmt((wk)/a), B 'y + A({(x + k)/a)):k=0,...,a~ 1} .

If B > 1, then the graph of the continuous, period 1 function f which satisfies
the functional equation:

flaz) = B(f(z) - A(=))

is invariant. Or, setting b = 1/B,

f(z) = A(z) + bf(2).

The unique solution of this equation is the Welerstrass function:
o0
flz) =) P A(aP3).
p=0

The graph of f on the cylinder is a nowhere differentiable invariant 1-torus. It
is also a universal repeller. The points of the cylinder above the graph iterate
to 400 and those below iterate to —co. The capacity dimension of this graph is
2-+log b/ log a, in some cases (KAPLAN, MALLET-PARET and YORKE [1984]).
The Hausdorff dimension of this set is a long standing unsolved problem. It is
widely believed that the capacity dimension is the Hausdorff dimension. The
best estimates in the general case are given in MAULDIN and WiLLiams [1986].

Problem 6.1. Find the Hausdorff dimension, 7, of this graph. Moreover, find
the exact Hausdorff dimension function-—if there is one. In other words, find a
slowly varying function L(t) such that 0 < H"(f) < co, where h(t) = t7L(t).

If 0 < B < 1, then T has an attracting continuum M. This is seen by
noticing that if |y} < Tf-B—, then -

By - A@) < Byl + 4@ < Bog +1) = 1o

1076. 7
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Thus the “can”,

~-B B
— ¢l —
K=5"x [1——8’1--B]’
is mapped into itself, T(K) C K. Set
M =) TMK).
n=0

Then M is an invariant continuum which separates S* x R and M attracts
the orbit of all points. Pat Carter and I have shown that 7" acts chaotically
on the continuum M. The case 0 < B < 1 is very different from the case
1 < B, in fact I conjecture:

Problem 6.2. Is it true that M is a Sierpiniski curve? In particular, is this
true if A Is the tent map on [0,1]7

Let us remark that in general M is not a graph in this case. Let us assume
M is the graph of a function from S* into R. Since the graph is compact,
there is a continuous period one map f:R — R such that M is the graph of
the lift of f to the cylinder. Since

T(e™, f(x)) = (7%, B(f(z) — A(=))),

the function f must satisfy the functional equation

flaz) = B(f(z) - A‘(’J))s
for all z. Or,
f(z) = A(®) + 5 f(az).

However, Pat Carter and I have shown that for some functions, the unique
solution of this equation which is continuous at zero does not have period one.
This class includes the case when A is nonnegative. In particular, if A is the
tent map, M is not a graph. '

Problem 6.3. Let A be a non-constant, continuous, period one map of R

into R with [[A]] = 1, a is an Integer, a > 2 and 0 < B < 1. Is it true that the
unique continuous solution of

@)= 4) + 5(e2)

does not have period one, or more generally, is not periodic?
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7. Borel Cross-Sections

Let X be an indecomposable continuum and consider the decomposition of X
into its composants and let R be the corresponding equivalence relation: R
is a Borel subset of X x X and each equivalence class is a meager, dense, F,
subset of X. I have raised the following question over the past fifteen years,
but it probably has been known much earlier.

Problem 7.1. Is there a Borel subset B of X which meets each equivalence
class in exactly one point?

While this question remains unsolved, there is one case for which the answer
is no. The continuum X is said to be strictly transitive in the sense of category
provided that for each subset E of X which has the Baire property and which
can be expressed as the union of some composants either E or X \ E is meager
(KuraTowsKi {1968]).

7.2. THEOREM. Let X be an indecomposable continuumn which is strictly
transitive in the sense of category. There is no Borel cross-section for the
composants of X . '

PRrooF. Assume that there is a Borel cross-section B. For each subset E of
X, let sat(E) be the union of all composants which meet E. Notice that if &
is a Borel set, then sat(E) of E is analytic, since sat(E) = proj,(RN(E x X))
and, therefore, sat(E) has the Baire property. Define a probability measure,
i, on the Borel subsets of B as follows: u(F) = 1, if sat( £} is co-meager, and
#(E) = 0, otherwise. Then p gives each singleton measure 0, and each Borel
subset of B has measure 0 or 1. This is impossible. 0

There are a number of indecomposable continua which are strictly transi-
tive: Knaster continua (KURATOWSsK! [1968]) and those admitting a Polish
group action for which the orbit decomposition consists of the composants

(RoGERS [1986]).
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