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THE BIRKHOFF CENTER AND ANALYTIC SETS

By R. DANIEL MAULDIN'

It is shown here how G. D. Birkhoff’s notion of the center of a
homeomorphism or flow naturally gives rise to an analytic set in a prod-
uct space. It is shown that for a wide class of spaces this set is not a
Borel set.

Let X be a locally compact separable metric space with complete
metric d and let H(X) be the space of autohomeomorphisms of X. The
space H(X) has a topology under which it is a complete separable metric
group [6, 9]. For a wide class of X’s, it is known that this topology is
unique [7]. This topology may be briefly described as follows. Let
X* = X U {«} be the one point compactification of X and consider the
space M = M(X*, X*) of all continuous maps of X* into X* provided
with the compact open topology [9]. In this topology, M is a Polish
space: M is separable and possesses a complete metric compatible with
this topology. Identify H(X) with F = {(f, g§) E M X M:fg = gf =
idy- and f(e) = oo}. Since F is closed in M X M, F is also a Polish
space. We consider H(X) to have this topology.

If h € H(X) and Y is an Ah-invariant subset of X, then a point y €
Y is said to be nonwandering with respect to Y provided there is an
increasing sequence of positive integers n,, n,, ns, . . . and points y, €
Y,p = 1,2,3,...such that the sequence hA"(y,) converges to y. Let
R,(Y) = {y € Y:y is nonwandering with respect to Y}. If Y is a closed
h-invariant set, then R,(Y) is also closed and A-invariant. Set R)(X) =
X and by recursion, for each ordinal a, R;*'(X) = R,(R%(X)) and, if A
is a limit ordinal, R)(X) = Na< RA(X). Since this “central” sequence
{R(X)} forms a decreasing transfinite sequence of closed sets in X, there
is a least countable ordinal & = 8(k) such that R*!(X) = R}(X). This
ordinal is called the depth of 4 and R}(X) = R,(X) is called the center
of h. Of course, R,(X) is the closure of the set of all A-recurrent points.
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(A point x is h-recurrent means there is an increasing sequence of pos-
itive integers n,, n,, ns, . . . such that the sequence A™%(x) converges
to x.)

The universal center of H(X) as an analytic set. Let

(1.1) R = R(X) = {(h, x) € H(X) X X:x € Ry(X)}.

Thus, R = R(X) is the “universal” center of H(X). For each ordinal
a, let

(12) Ru = UhEH(X) {h} X R;a,(X)

Of course, {R*}4<,, is a decreasing transfinite sequence and Na<o; R* =
R.

THEOREM 1. For each countable ordinal o, R* is a Borel subset of
H(X) x X.

Proof. It suffices to show that if R* is a Borel set, then R**'is a
Borel set. Let {V,};-; be a base for the topology of X. For positive
integers m and n, set

(1.3) P(m,n) = {h:h-"(V, N R}) N R = &}.
Then

(1.4) H(X)\P(m, n) = projuxW(m, n),
where

(1.5) W(m,n) ={(h,x,y):x ER;,y ER; N V,and y = h"(x)}.

Since the map (h, x) — h™(x) is continuous, V,, is o-compact, and R} is
closed in X, it follows that for each &, W(m, n), is o-compact. Thus,
PIOjunW(m, n) is a Borel set [14]. Let

(1.6) E(n) = [Fw} P(m, n) X V,,] N R~

Since R**' = R*\U;_, E(n), R**'is a Borel set.
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A different tact is taken to show R is an analytic set.
THEOREM 2. The set R is an analytic subset of H(X) X X.

Proof. Let B = {(h, x):x is h-recurrent}. Then B is a Borel subset
of H(X) x X. This may be seen by setting, for positive integers m and
n,

1.7 B(m, n) = {(h, x):d(h"(x), x) = 1/m}.

If the sequence {(h,, x,)};-1 converges to the pair (h, x), then {hi};_,
converges to the homeomorphism 4. But, convergence in this topology
implies continuous convergence [9]. This means {/}(x,)};-; converges to
h(x). Thus, each set B(m, n) is closed in H(X) X X and B is an F,; set,
since

(1.8) B= N U U B(m, k).

1 n=1k=n
Now, R is the sectionwise closure of B:

(1.9) R= U {I} x cl«(B)).
heH(X)

But, the sectionwise closure E of an analytic set A in a product space
X X Y is an analytic set:

(110) E = projm{(x, Ys Y15 Y25, Y35 -« .) eX XY
X Y*:Vn(x, y,) € A and y, — y}.

Coanalytic operators and the boundedness principle. In order to
more carefully analyze the universal center set, the complement of R
will be expressed as the set constructed from the empty set by a mono-
tone, inductive, coanalytic (=II}) operator T" [2].

Define I': ?(H(X) x X) — P(H(X) x X) by I'(K) = K U ¥(K),
where

(h, x) € ¥(K) < V((ny), (y) € N¥

x XM3i(h, y;) € K or AmVpd(x, h"(y,)) = 1/m].
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If A C BC X, then A CT(A) and I'(A) C I'(B). Thus, I is monotone
and inductive. Note that if K C H(X) X X and for each &, K, is fully
h-invariant, then I'(K), simply adds to K, all the & wandering points of
X\K. The operator I' constructs from A C H(X) X X a transfinite
sequence {I"*(A):a € ORDY} as follows: ’

(2.1) T'(A) = A,

(2.2) r+*(4) = r(I+(A4)), for all ordinals a,

(2.3) A = U I'+A4) for limit ordinals N > 0.
a<\

Note that for each ordinal a, I'(¢) = (H(X) X X)\R* and I'*(¢) =
(H(X) x X)\R.

THEOREM 3.  The operator I is monotone, inductive and coanalytic.

Proof. Since the union of two coanalytic operators is coanalytic,
it suffices to show the operator ¥ is coanalytic [2]; i.e., there is a Polish
space Y and a Borel operator A on H(X) X X X Y such that for all
(h, x) and K:

(2.4) (h, x) € ¥(K) & Vy(h, x,y) € AKK X Y).

Set Y = NV x [H(X) X X x X]". For each i, let fi(h, x, (n,), (h,, x,,
yp)) = (ha Xiy (np>y (hpa xpa yp>) Let

(2.5) G = {(h, x, (n,), <h,, x,, ¥,)):Yph™ = h,}
(2.6) M = {(h, x, (n,), (hy, Xp, Y)) :YPhy(x,) = y,},
and

27 D = {(h,x, (m), (hy, X, y,)) : ImVpd(x, y,) = 1/m}.

The set D is an F, set. Since the map (h, x) — h(x) is a continuous map
of H(X) X X onto X, the set M is closed. Also, since composition map
of H(X) x H(X) onto H(X) is continuous the set G is closed. Define
the operator A on P(H(X) X X X Y) by setting
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2.8) A(E) = U ffE)yUD U (HX) X X X Y)\(G U M).
i=1

Clearly, A is a Borel operator over H(X) X X X Y and (2.4) holds.

THEOREM 4. The set R is a Borel set if and only if there is some
ordinal o < w, such that the depth of each homeomorphism of X is <a.

Proof. 1f Ris a Borel set, then (H(X) X X)\R = I'*1() is a Borel
set. By the boundedness principle for such operators [2], there is a
countable ordinal a such that I'*(¢) = I'*1(¢). This means R;(X) =
Ru(X), for each h € H(X) and the depth of each homeomorphism is
=a. Conversely, if 3(h) = a, if each A, then R* = R, and R is a Borel
set.

Remarks. One could have proven this last theorem by dualizing
the operator I' to obtain a derivation and using the boundedness prin-
ciple for derivations [3]. Or, one could use a rank argument by consid-
ering the function ¢:R — o, given by ¢(h, x) = min{a:(k, x) € I'}.
The function ¢ is a coanalytic norm and one could use the boundedness
principle for such norms [11].

Spaces with nonBorel centers. Let K be the Cantor space. Thus,
K is a compact metrizable dense-in-itself,. 0-dimensional space. It is
known that an autohomeomorphism of a closed nowhere dense subset
of K can be extended to a autohomeomorphism of K [5] [8]. We show
here that there is an extension which has the same center. The proof is
essentially a modification of van Engelen’s argument for an extension
[5]- Consequently, the proof is only outlined. This theorem is stated,
but not proven, in van Douwen’s manuscript [4].

THEOREM 5. Let A be a closed nowhere dense subset of the Cantor
space, K and let 4 be an autohomeomorphism of A. There is an extension
h of h to some autohomeomorphism of K such that Ri(K)C A.

Proof. Fix a partition {V,},-o of K\A into nonempty, pairwise
disjoint clopen sets such that

3.1 Vi diam (V) < d(V,, A),
and

(3.2) lim d(V,, A) = 0.

—>0
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The proof of the theorem is based upon the following lemma. We note
that condition (3.7) insures the preservation of the center.

LEMMA 6. There are bijections p, o:0 — o and a sequence
{a.}i-0 of points of A with the properties:

If n is even,

(3.3) Ad(Vowy, an) < 2d(V,, A),
and

(3.4) Vow C B(h(a,), AV, A)).
If nis odd:

(3.5) AV, h(an)) < 2d(Vow, A),
and

(3.6) Vowy C B(@n, d(Vowy, A)).
Finally,

(3.7) p~'o has no periodic points.

Proof. Let p(0) = 0 and choose a, such that (3.3) holds. Let
So = {i:V; C B(h(a,), d(V,0), A)}. Since S, is infinite, choose o(0) € S,
with o(0) # p(0).

Suppose n is a positive integer and a;, o(i), and p(i) have been
defined for i < n such that (3.3)-(3.6) hold if i < n and there do not
exist distinct integers iy, . . . , i all less than » such that

o(ir) = p(iz)

(3.8)
o(ix-1) = P(ik)

o(ix) = p(ir).
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If nis odd, let o(n) = min w\{o(i):i < n} and choose a, such that (3.5)
holds. Let S, = {i € w:V; C B(a,, d(V,u), A)). S, is infinite. Choose
p(n) € S,\M{o(i):i < n}. Then (3.6) holds for n. Clearly, there do not
exist distinct integers i, . . . , i all less than n + 1 such that (3.8) holds.
The argument is similar if » is even. Thus, ¢ and p are bijections of w
and since (3.8) never holds, p~'o has no periodic points.

Proof of Theorem 5. For each n € w, let h, be a homeomorphism
of Vi 0nto V. Let A = h U U,e, h,. Clearly, A is a bijection of K
which extends 4 and 4 and its inverse are continuous at each point of
K\A. It is well known that 4 is continuous.

Finally, if x € K\A, there is some n such that x € V. Then
h(x) € Vowy = Vop-1my. S0, h(h(X)) € Voo-1owmy. Consider the bi-
jection of ®, s = p~'o. By induction, for each k = 1, A*(x) € Vi(k-14).
Since p~'o has no periodic points, lim. s(n) = c. This implies x is a
wandering point of A.

THEOREM 7. For each ordinal o < w,, there is a homeomorphism
h of K with depth a.

Proof. In an, as yet, unpublished manuscript, Eric van Douwen
showed that for each countable ordinal o, there is a countable closed
subset A of K and an autohomeomorphism 4 of A with depth a. The
extension of & given by Theorem 5 has the same property.

THEOREM 8. The universal center, R(K), of the Cantor set K is
analytic but is not a Borel set.

THEOREM 9. The universal center, R(X), of a C* n-manifold with
n = 3 is analytic but not a Borel set.

Proof. This follows from a theorem of D. A. Neumann [13]. He
showed that there are even flows on X of arbitrarily high order.

Remark. The exact relationship between the iterative stages in the
construction of the center of a flow and the stages in the construction
of the center of its time ¢ # 0 homeomorphism seems to be unresolved.
Of course, the final objects, the center of the flow and the center of the
homeomorphism are the same [6].

Question. Must the universal center of a two dimensional manifold
be a Borel set? It follows from known results, mentioned later, that the
universal center of one dimensional manifolds and of some two dimen-
sional manifolds is a Borel set.



104 R. DANIEL MAULDIN

The universal center for flows. There is a natural generalization
of the preceding theorems concerning homeomorphisms of flows. Let
F(X) be the space of flows on X. Thus, F(X) consists of all continuous
maps ¢:R X X — X such that for each t € R, ¢(t, *) is an autohomeo-
morphism of X and ¢(s + ¢, x) = ¢(s, ¢(t, x)). Again, F(X) has a
natural Polish topology. Regard F(X) as a subset of H(X), where H(X)F
has its compact open topology [9]. In this topology, H(X)* is a Polish
space and F(X) is a G, subset of it.

If ¢ € F(X) and Y is an ¢-invariant subset of X, then a point y €
Y is said to be nonwandering with respect to Y provided there is a
sequence of numbers t, &, £, . . . converging to « and points y, € Y,
p =1,2,3, ... such that the sequence ¢(z,, y,) converges to y. Let
R,(Y) = {y € Y:y is nonwandering with respect to Y}. If Y is a closed
h-invariant set, then R,(Y) is also closed and ¢-invariant. Set R3(X) =
X and by recursion, for each ordinal a, R3*'(X) = Ry (R(X)) and if A
is a limit ordinal, Ry(X) = N.« Ri(X). Since this “central” sequence
{R(X)} forms a decreasing transfinite sequence of closed sets in X, there
is a least countable ordinal 8 = 3(¢) such that R}"'(X) = R}(X). This
ordinal is called the depth of ¢ and R}(X) = R,(X) is called the center
of ¢. Of course, R,(X) is the closure of the set of all ¢-recurrent points
(or even the ¢-Poisson stable points). (A point x is A-recurrent means
there is a sequence of numbers #;, 5, t;, . . . converging to « such that
the sequence ¢(¢,, x) converges to x.)

Let

Re(X) = R(X) = {(¢, x) € F(X) X X:x € R(X)}.

Thus, Rx(X) is the “universal” center of F(X). In view of Neumann’s
theorem, we have

TueOREM 10. The universal center R{(X) of the space of flows of
a C” n-manifold with n = 3 is analytic, but, it is not a Borel set.

Question. Must the universal center for flows on a two dimensional
manifold be a Borel set? A. J. Schwartz and E. S. Thomas showed that
the depth of a flow on an orientable 2-manifold of finite genus has depth
=<2 [15]. D. A. Neumann showed that in the nonorientable case the
depth is =3 [12]. Thus, for these manifolds the universal center is a
Borel set. For one dimensional manifolds, even the depth of a map is
=2 [16, 17].
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Question. For each a < w,, is there a locally compact metric space
(or even a manifold) such that the depth of the universal center for
homeomorphisms (or flows) is exactly a?

Acknowledgment. The author thanks Ethan Coven for his com-
ments, references and discussions concerning the notion of depth.
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