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BOREL MEASURABLE SELECTIONS
AND
APPLICATIONS OF THE BOUNDEDNESS PRINCIPLE

This paper is mainly an expanded version of the talk given by Nauldin
during the real analysis conference at Michigan State University, June 14 —
17, 1989. The results of section 6 were presented by Schlee.

Ve wish to promote some classical and modern techniques in descriptive
set theory and by the way present some selection theorems and a group of four
unsolved problems.

As a starting point let B ¢ XxY and assume that each X-fiber of B, By is
countable. By the axiom of choice, B can be expressed as the union of
countably many graphs. It is a fact that if B is a Borel set (or analytic)
set, then B can be expressed as the union of countably many Borel (analytic)
graphs. The descriptive set theoretic techniques exposited here lie at the
heart of the proofs of these facts. These techniques and the analysis of sets
with countable sections form the first five sections of this paper.

In section 6, we extend some of the results obtained for sets with
countable fibers to sets with compact or o-compact fibers. Ve state the
definitive result of=Saint—Raymond, reprove a crucial part of the argument in
terms of the boundedness principle and state some unsolved problems.

~In sections 7 and 8, we discuss the possibility of filling up Borel sets
with uncountable fibers by disjoint Borel graphs or even disjoint Borel
isomorphisms and state more unsolved problems.

A fundamental tool in descriptive set theory is the first separation
principle of Souslin. A less well known, but very useful tool, is Novikov’s
generalized first separation principle. Novikov’s theorem and the modern

version of the Lusin-Sierpinski index theorem: the boundedness principle for



monotone coanalytic operators {or, equivalently, analytic derivations) are the
basis for several deep results in selection theory. We hope to exposit their
usefulness here. Ve also want to report on a recent result of Saint-Raymond

and Debs concerning 1-1 selections that is quite intriguing. Ve refer to the
reader the general survey of VWagner [23, 24] and the article of Levi [11] for

a listing of results in the field.

1. The setting and separation principles. Let X and Y be Polish spaces

(separable topological spaces with a compatible complete metric). Let p be a
metric for XxY. In addition, let & (XxY) and £ (XxY) denote the collection
of Borel and analytic sets of XxY respectively, let ¥ denote the collection
of all Borel graphs in XxY, and let ﬁa denote the collection of all
countable unions of elements in % . Given E € XxY and x € X, we denote by Ex
the set { y | (x,y)€E }. let ¥ denote the collection { K& (XxY) | Vx Ky is
compact }, and let LS denote the collection of all countable unions of
elements in ¥ . Also, by J# (X), we denote the space of compact subsets of X

given the exponential topology.

First Separation Principle. (Souslin, 1917 [22]) Let A and E be disjoint
analytic subsets of a Polish space X. Then there are disjoint Borel sets B

and D such that A ¢ B and E C D.

For Novikov’s generalized first separation theorem two different types of
proofs have been given: one, in the original style of Novikov [10,p.510] and

the other by Saint—Raymond [20].



Novikov’ s Generalized First Separation Principle. (Novikov, 1934 [18]} If

’ 43]
{An}:zl is a sequence of analytic subsets of a Polish space X with LliAn = @,

then there is a sequence {Bn}” lof Borel subsets of X such that B, 2 A; and
n=

@«

Bn = 6.
=1

9. Sets with countable sections and preliminary results. Our first two

theorems apply the separation principles to sets with countable sections

consisting of no more than one point or else isolated points.

Theorem 1. Let A be an amalytic graph in XxY. Then A c G € ¥ . In

other words, every function ¢ from E ¢ X into Y with ¢ (= 6r o) an analytic

subset of XxY may be extended to a Borel measurable map  from a Borel set E
3 E into Y.

Proof. Let E = projy(4) and ¢: E » Y with Gr ¢ = A (of course, E is an
analytic subset of X). Note that ¢ is relatively Borel measurable. If U is
open in Y, then

¢ (U) = my((X<U)NA)
and ¢ 1(1\U) = m (X« (Y\U)0A).
The first separation principle implies there is a Borel subset B of Y such
that ¢ (U) C B and B 0 ¢L(Y\U) = . Thus, ¢ '(U) = BOE. Consequently, by
“an extension theorem of Kuratowski [10,p.434], there is a Borel set' D > F and

a Borel measurable map ¢:D - E . Let ¢ = Gr v.  Q.E.D.

In order to generalize the first theorem, we use Novikov’s generalized

first separation principle.



Theorem 2. If A € £ (XxY), Vx A consists of isolated points, then
AcGe g.
Proof. Let {V,}n-1 be a base for the topology on Y. For each n, let
To = { x | card(Va N Ay) 2 2 }.
Bach T, is analytic, since
T = U [ ny(8a 0 (5x¥a)) 0 2y(Sa 0 (3%5))]
where Sy = (XxVy) N A and where the union is over all pairs (m,p) such that
Vw 0 Vp = 9. Next, for n 2> 1, let
T = [(ToV)MA] U [(Xx(1\V))NA]

o
Fach 7p is clearly analytic and £11zn = §. By Novikov’s separation

o
principle, there are Borel sets B, such that L11 Bn = @ and for each n, Z; C

B,. For each n, let
Ay = [(XxY)\Bn] n A,

Note that each A, is analytic and for each x, card(dnx) < 1. Thus, by Theorem
o
1, for each n there is 6, € ¥ such that Ay C 6n. Also note that A = !U_IA,,.

[11]
Therefore, A C Lllen € 4. Q.E.D.

3. (Operators and the boundedness principle. In order to continue a

deeper analysis of sets with countable sections we need a powerful tool. We
use the boundedness principle for analytic derivations or monotone coanalytic
operators. Let us define what this means and recall the boundedness
principle. The theory of these operators as presenfed here is fully developed
in [4]. A treatment of analytic derivations is given in [6].

By an operator on X, we mean a map from the power set & (X} to £ (X).
‘An operator I' is said to be monotone if for any K ¢ ¥ ¢ X, T'(K) ¢ I'(¥). The

dual operator D of an operator I' on X is defined by



D(A) = X\I'(X\A).
Let A ¢ X and let I' be an operator on X. We define
roa) = 4,
r® 1ty = 0(P%(A)) for all ordinals a,
I‘A(A) = |] T*A) for limit ordinals A.
kA

The set C(T';A) = |J I'®(A) where the union is over the set of all ordinals is
o

called the closure of I' on A. For some ordinal al< card(X)”, Faﬁl(A) =
I'%(A) = C1(T;A), and we denote the least such ordinal by |[T;A[. Also, we let
IT| = |T;#], and we let C1(T) = C1(T;9).

An operator A over a Polish space X is said to be Borel (or A}) if it is
defined in one of the following ways:

(a) A(K) = B, vhere B is a fixed Borel subset of Xg

(b) A(K) = f_l(K), where f is a fixed Borel map from X to X;

(c) A(K) = X\K; |

(d) A(K) = A{As(K)), where A; and A, are previously defined Borel

operators;

1]
(e) A(K) = x!r|=1A“(K)’ where the A, are previously defined Borel

operators.

An operator T' over a Polish space X is analytic or X! (respectively
coanalytic or II}) if there is a Polish space Y and a Borel operator A over
XxY such that for all x and K: |

x € T(K) iff (Jy) (x,y) € A(RxY},
(respectively) (Vy) (x,y) € A(KxY).

Note that I' is an analytic operator if and only if its dual is coanalytic.



Boundedness Principle for Monotone Il Operators. (Cenzer and Mauldin, 1980
[4]) If I' is a coanalytic monotone operator with closure C, on the
coanalytic subset P of X, then for any aralytic subset A of X with 4 ¢ C,

there is some countable ordinal e such that A ¢ T'%(P).

By an anelytic derivation, we mean an operator whose dual operator is

monotone and coanalytic. If D is an analytic derivation, the set [} D%*(A) is
o<y

called the kernel of D on A. The boundedness priniple for analytic
derivations given below follows from the boundedness principle for monotone

11! operators.

Boundedness Principle for Analytic Derivations. If D is an analytic
derivation on the analytic set A with kernel K, then for any coanalytic subset
C of X with K ¢ C there is some countable ordinal # such that Dﬂ(A) cC. In

particular, if D is an analytic derivation on X with {] D%*(X) = @, then there
a

exists a countable ordinal § such that Dﬁ (X) = 0.

4. Sample applications of the boundedness principle. The following

theorem was stated by Lusin. A proof is given in [15]. However, this theorem

follows almost immediately from the boundedness principle.

Theorem 3. Let A € 6 (XxY) and suppose that for every x, Ay is
scattered. Then there exists some & < w; such that for each x, AT = ¢.
Proof. Define I': 2 (XxY) -+ 2 (XxY) by
M) = U {x} = Ex



where E; is the ath Cantor-Bendixon derived set of Ex. Then I' is an analytic

derivation [4,p.61], and {] T'®(4) = #. By the boundedness principle, there
o<Wy

is a < w; such that Fa(A) = §. Therefore, A% = ¢ for each x. §.E.D.

Theorem 4. Let A be an analytic subset of ‘2?(x).and assume each set in
A is countable. Then there exists some a.< wy such that if K € A, then K =
@,
Proof. Let F be a Borel measurable map of J = W onto A. Let
B = {(x.y): ¥ € F(x)}.
Then B € 2 (XxY). Applying theorem 3 to B noting the fibers of B are the
elements of A, the theorem follows. §.E.D. |

Let us give another example of the use of the boundedness principle.

Theorem 5. (Bourgain [2]) Let X be a Banach space. Suppose that for
each @ < wy, C{a) can be isomorphically embedded into X, i.e., C(a) = X Va <
wy. Then C([0,1]) = X.

Proof. By C(a) we mean the Banach space of all continuous functions on
the ordinal space { 8| f ¢ a } with the order topology. To show that
C([0,1]) = X, it suffices to show that C(K) = X where K is some closed
uncountable subset of [0,1]. It is well known that for each a < wy, there is
an order preserving homeomorphism of « onto a subset Ha of the rationals.
This can be proveﬁ by transfinite induction.

Thus, we consider

A= {Ke ¥([0,1]) | C(K) =X}



Ve claim that A is analytic. Before demonstrating this let us make a few
observations. C(K) = X if and only if there exists a continuous one—to—one
linear map F: C(X) = X whose inverse is also continuous.. Also, a continuous
map is determired by its values on a dense subset. In particular, a
continuous map F on C(K) is determined by its values on the set of all
poiynomials with rational coefficients on K. Qur map F is linear if it
respects addition and rational scalar multiplication on a dense subset D of
C(K) which is closed under addition and multiplication by rational scalars.
Finally, F has continuous inverse provided there is b > 0 such that b-|[jx]| ¢
IF(x)|| for all x € D. Let {fn}i=1 and {rn}:=1be enumerations of all
polynomials with rational coefficients and all rational numbers respectively.
Ve have that C(K) = X if and only if there exists F: C(K) - X such that
(1) Va,m F(fofg + falg) = F(falg) + F(faly)
- {2) Va,m F(rn-fm|K) = In-F(falg)
(3) 3 aB>0 Vn offalgll € [F{£alg)ll < B-lifalgl

Therefore, to verify that A is analytic, for each n,m,p € W, let

Bosmyp = {(M,{xa}) € ‘z?([O,i])me | faly *+ fuly = fply 2 Xo + xa = xp},

Casmrp = {((0,{xa}) € F ([0,1])xX" | ru-fuly - fply 4 Tn'Xn = xp }, and

Dosmsp = {(H,{xa}) € H ([0,1])x8" | rp,rm > 0 and
ne ffplyll € lxpll € ru [[£p]yll}-

.

Let us note that each of the above sets are Borel. We have now that

A= "Ti((ﬂm’p Bn:mp ) n (D Cn;msp) N (y’m(q Dnsm;p)))-

smyp
Therefore A is analytic.

The set B = { ¥ € % ([0,1]) | ¥ is uncountable } is analytic [8]. Now
if A cC Hc, then, according to theorem 4, there is some countable ordinal §

such that for every McA, the derived set order of ¥ is less than 3. However,



the derived set order of the ordimal wﬁ + 1 is f+1 [21]. Thus, the derived
set order of K, is p+1. By assumption, H € A. Therfore, we have a

contradiction. Consequently, A must comtain an uncountable element. (.E.D.

5. Sets with countable sections revisited. Ve continue our analysis of

sets with countable sections.

Theorem 6. (Novikov [17] and Lusin {12]) Let B € 2 (XxY) such that Vx
{Bx] < w. Then B € % .

Proof. Since B is Borel, there is a continuous bijection ¢: H g
vhere H is a cloéed subset of J = W', Let M = {(x,t) | myle(t)) = x }.
Note that M is a closed subset of XxJ. Define $&: X g by #(x,t) = ¢(t).
Then # is continuous and § maps the fibers of M onto the fibers of M onto the
fibers of B. Hence, it suffices to show that ¥ € (¥ (Xx.}))d, since & maps
Borel graphs to Borel graphs.

Define D: 2 (XxJ) - £ (XxJ} by

D(E) = gx {x} » Ex,

where E; is the Cantor-Bendixon derived set of Ex. Since M is closed, ¥y is

closed for each x. Thus, for each x there is some ayx < wy such that the axth
derived set of My is empty. Consequently, p¥1(M) = 6. Furthermore, since D
is an analytic derivation, there is some a < wy such that D¥(M) = §. Also,

if E € € (¥xJ), then D(E) is analytic. Thus, the sets D'(¥) , 7¢ a, are

analytic. In addition, [)] D7(M) = ¢. Therefore, applying Novikov’s
Y] '

separation principle, there are Borel sets B7, 7 < @, such that {) BT = ¢
&

and for each 7 < a, D7(H) C B”. For each 7<a, let A= DT(H)\BT*l, and

note that each A is analytic and each A_ consists of isolated points (or is

10



empty). By Theorem 2, AT C GT € ;%_. Ve claim that ¥ = gla AT, from which

it follows that M € y;, Clearly, AT ¢ ¥ for each 7 < a. Thus, suppose peM.

BT+1. Let 7y be

There is some 7<a such that p € D'{H) \ DT+i(M). Hence, p ¢
the smallest ordinal such that p ¢ BWWI. Note that 4 < 7. Therefore, p €

AT’ and the claim is verified. {.E.D.

The strongest theorem concerning covering amalytic sets with countable
sections by countably many graphs is the following theorem first given by
Lusir in 1930. Ve will express this as a faithful separation theorem‘which is
a refinement of the first separation principle. In general this means if A
and E are disjoint analytic sets in XxY and Vx A, has property P then there is

a Borel set B, A ¢ B, BNE = § and Vx By has property P.

Theorem 7. (w-Faithful Separation) (Lusin, 1930 [12], Mauldin, 1978 [15],
Maitra, 1980 [13])
Let A, E € £ (XxY) and Vx |{Ax] < wand Ay N By = 9. Then 3B € ;%_such
that A CBand En B =4.

In case each By is countably infinite , theorem 7 has a particularly nice
formulation: B can be expressed as the union of countably many disjoint Borel

graphs.

Theorem 8. (w-Parametrization theorem)

Let B € & (XxY) and Vx |Bx] = w. Then there is a Borel isomorphism

1-1 1-1
#: X« -~ B such that Vx #(x,:):N -+ {x}xBy.

11



Proof. Applying Theorem 4 to the sets B and XxY\B, we have that B € ;%,

[¢4]

Hence, B = :U B, where each B, € ¥ . Let 6; =By, and for n>1, let

Gn = Bpn\ Zii Bp . Then B = éIan, 6aN6y = @ for m#n, and for each n, Gy € %
Next, using the fact that each By is countably infinite, define the sequence
{Fn}:=1 as follows: for xeX, let Fix = Gn;x where n; is the smallest natural
number such that Ghx # 9, and for m>1, let Fux = Gpyx where ny is the

smallest natural number such that ngp.; < ng and Gp,x # ¢. Ve have that B =
o
&lan , FulPy = @ for m#n, and each ¥, is a Borel graph whose projection is X.
In faét,
Fi=G U [ﬂl—i(X\m(Gl)) n Gz] U [W1MI(X\’JT1(G1KJGQ)) i Ga] .o,
and for n > 1,
Fa = [6\) B U (27 (O\m(Ga\J B)) 0 ( Gaud\[J )] U
k<n k<n k<n
[ L (E\m((6aU6a,)\U B)) N (GauAU F)] U -..
k<n k<n
Now define &: X« 4 B by #(x,n) = (x,y) vwhere {y} = Fax. ¢ is

et}
surjective since LlF“ = B, and & is injective since the F,’s are pairvise
disjoint. Furthermore, for each x, the map #(x,-): N~ B is injective and

maps N onto {x}xBx. 0Q.E.D.
Problem 1. Let C be a coanalytic subset of XxY such that for each x,
[Cx] € w. Can C be written as the union of countably many coanalytic graphs,

1
or 3, or PCA graphs? What role do the axioms of set theory play here?

6. Sets with compact and g—compact sections, measurable

multi—functions. The theory presented for Borel sets with countable sections

has some analogs for Borel sets with o—compact sections. The deepest result

12



in this direction was obtained by Saint-Raymond (theorem 12 below). Since the
techniques are delicate, we will only recall some portion of the methods. Ve
show that a certain crucial portion of Saint-Raymond’s argument can be readily

obtained from the boundedness principle. First, let us recall Novikov’s deep
) u] w
result. Now, in general, ﬂx(lle“) # lewx(En). However, if each Eny is

m m
compact and if for every n, Ey € Ep,y, wx(LllEn) = illwx(En), Novikov

exploited this fact to prove the following theorem.

Theorem 8. {compact-faithful separation theorem) (Novikov, 1939 [19])
Let A, E ¢ £ (XxY) and assume that Vx there is a compact subset Ky of Y such

that Ax € Kx and Kx 0 Ex = #. Then 3 Borel sets {Hn} such that

kn

(1) Vn Hp = Ui:s

(2) AcB=[] B, and EnB = 0.

Dni)‘ Kni Kn COmpaCt

i
Horeover my(B) = (] my(Ha) is a Borel set.

Corollary 10. If B ¢ 2 (XxY) such that Vx By is compact, then my(B) is
a Borel set.

Proof. Take A = B and E = (XxY)\B in theorem 9.

Let us take a moment here to apply Novikov’s theorem to multifunctions.
The main fact is that a compact-valued multifunction F: X - % (Y) is

measurable if and only if its "graph" is a Borel set.

Corollary 11. Let B ¢ XxY with Vx By is compact. TFAE
(1) B is a Borel set
(2) F:X » & (Y) given by F(x) = By is Borel measurable.

13



Moreover, if B is a Borel set, B has a Borel selector.

Proof. BRecall that sets of the form C(U) = { K:él‘ﬁ?(Y)l K ¢ U} and
I(U) = {Ke F(Y) | KnU# 0} vhere U is open in Y form a subbase for the
topology of % (Y).

(1)+(2). To show that F is Borel measurable it suffices to show that for
each open set U of Y each of F_l(I(U)) and Fnl(C(ﬂ)) are Borel. Thus, let §
be open in Y. Note that F™(I(U)) = #y(XxU n B) which is Borel by Corollary
10. Next, observe that FL(C(U)) = X\F™"(I(T\U)) = X\my(Xx(Y\U) n B) which
is Borel. Therefore, F is Borel measurable.

(2)-(1). Since B:X » % (Y) is Borel measurable,

Gr(F) = {(x,y) | y € Bx} = B is Borel. Q.E.D.

Theorem 12. (o—compact faithful separation theorem) (Saint—Raymond, 1976
[20]) Let A, E € ¢ (XxY) and assume that Vx there is a o—compact subset Ky
of Y such that A, ¢ Kx and Kx N BEx = . Then there are Borel sets By € ¥
such that A CB =[] Bpand BN E = 0.

Proof of theorem. In demonstrating this, Saint-Raymond [20,p.392] uses a
derivation operator which we define below. Let A and E be two disjoint
analytic subsets of XxY. Let ¢ be a continuous surjection of some Polish
space P onto A.

For each subset Z of P define D(Z) to be the set of points z of Z such

that for each neighborhood V of z,

o(WNZ)N({x}xT) n E ¢ ¢, where x = my(¢(2})-

Saint-Raymond then gives the following recursion [20, p.393]
20 =9, 2% - @Y, and 2} = [] 2% if A is a limit ordinal.
O N :

and then proves the following lemma and corollary.

14



Lemma. If B is a Borel subset of P which contains Za, & < wy, then
there is H € ¥ containing p(P\B) and disjoint from E. |
| Corollary. If 3 a < w; such that 2% = 9, then there is'R'e €, such
that Ac Hand H NE = §.

Consequently to prove the above theorem, it suffices to show that for
some
o < Wy, 7% = ¢ given that for each xeX, the section Ay is contained in a Ka
disjoint from E. In order to prove this, Saint-Raymond gives an indirect
argument by showing that if the 2% are nonempty then there is a‘compact set
K contained in a section of AUE and such that no Ka can contain KnA without
meeting KNE. Below we give a different argument which involves the
boundedness principle fdr monotone coanalytic operators and the Baire Category
theoren.

Claim 1. D is an analytic operator. Consequently if 7 is analytic, then
Z% is analytic for a < w.

P-} 2P as follows:

Proof. For each meélN, define the operator Am: 2
xeA (7) TRF
xe 1y { (2, (20) ¥)22"E |V [d(2,20)<1/m A 7y (p(z0))=7 (9(2))] A p(za)),
where d is a metric for the topology on P. |
Ve then have
2€D(Z) IFF Vm zeA (Z).
Consequently, it suffices to show that each A, is analytic. Let % bea
continuous surjection of some Polish space § onto E. Fix meN. TFor each |
keN, set
{(z (z2) ) €PxPPg d(zk,z)<1/m},
{(z () s¥) R0 7, (9(21)) =1 (p(2))} and
AR (CHENEOT:S S8 I EA R (w))<1/k}.

15



For each k, Bk is open, Ck is closed and Dk is open. Next define for each k,
fk: Pmexq—+PmexQ by
fk(zs(zn):w) = (Zx, (2zn) ).

Note that for éach k, fk' is continuous. Now define A: 21}—»2P by
@
-1
k=1

Sinc’e for each k, Bk’Ck and Dk are Borel and since for each k, fk is Borel
measurable, it follows that A is a Borel operator. Finally,
zeA_(2) TP (3((za),%)) (2, (20) W)EA (ZxPUxD) .

Therefore, Am is a 2: operator. {.E.D.

Now let I’ be the dual operator of D, i.e., I'(B) = P\D(P\B).
Note that Ve < wy, r%¢) = P\z%

Claim 2. T is an inductive, monotone HZ operator.

Proof. Suppose B ¢ P. Then D(P\B) ¢ P\B. Thus,

B = P\(P\B) c P\D(P\B) = I'(B).

Therefore, I' is inductive.

To show I' is monotone, suppose that B ¢ C. Then P\C C P\B. Hence
D(P\C) ¢ D(P\B). Thus, I'(B) = B\D(P\B) ¢ C\D(P\C) = T'(C).

Lastly, since D is 5j, T is Ii. §.E.D.

Next, we make use of the Baire Category theorem.

Claim 3. If for each xeX, Ax is contained in a Ka disjoint from By,
then for each nonempty Z ¢ P, D(Z) ¢ 7.

Proof. Fix xeX such that ¢(Z)x # 0. There is a sequence of compact

®
sets {I(,m}:m1 such that Ax C }r“q Ko and (| Ku) N Ex = §. Thus,

R (SEER(TR SERVICR(S
Since (p_l(Ax) = gomi({x}xY) , gomi(Ax) is a closed subset of P. Also mnote

that for each n, go—I(Kn) -is closed. Now set

16



C=20 ¢ (k) .
Since @(B)x # 0, C # §. Furthernore, C is Polish and C ¢ {J ¢ "(Kn).

Therefore by the Baire Category Theorem, there is neN such that int, w_i(Kn)
# §. Consequently, there is an open subset V of P such that CnV # @ and

Cny ¢ p“i(Kn). Choose z€ ZnVR¢Fi(Ax). Since p(ZnAVIN({x}xY) ¢ Kqa, z¢B(Z).
Thus D(Z) ¢ Z. (.E.D.

Claim 4. If for each xeX, Ay is contained in a KU disjoint from Ey, then
there is a < w; such that F'%(8) = P.

Proqf. Since I' is an inductive, monotone, coanalytic operator, |I'|<w

[4,p.59]. Thus I'({] I%®)) = |J TI'*@®). Consequently by the claim,
aduh ali

|J I'%(@®) = P. By the boundedness principle, there is a<w; such that P ¢
a<wy

T%9). Hence I'*(#) = P. {.E.D.
An immediate consequence of claim 4 is: If for each xeX, Ax is contained
in a Ka disjoint from Ex, then there is « < w; such that 7% = ¢. This

completes the proof of the o—compact faithful separation theorem.

In order to raise an unsolved problem concerning selectors, let us recall

a basic selection theorem.

Theorem 13. The space of compact subsets of Y, JY), has a Baire class
1 selector. |
Proof. By embedding Y in {0,1]”, it suffices to prove the result for
F ([0,1]%). Let ¢: [0,1] ~» [0,1]% be a continuous map of [0,1] onto [0,1]¥.
Also, let s: J% ([0,1]) ~ [0,1] be a continuous selector for % ([0,1]).
Define §: % ([0,1]%) = [0,1]“ by 3(K) = ¢(s(¢ “(X)))). § is a Baire class

17



1 selector for % ([0,1]%). Q.E.D.

A natural question which naturally arises is how many disjoint selectors
are there for the uncountable compact sets? Ve can formulate this question as

follows:

Problem 2. Let B ¢ J?({D,1]2) such that Vx By is compact and
uncountable. Does B have 2¥ pairwise disjoint Borel selectors? (B does have
R, pairvise disjoint selectors [16].) In particular, what about the o-compact

set B constructed in [16]7?

7. Parametrizations: Filling up sets with selectors. In Theorem 8 we

shoved that if B € B (XxY) and for every x, [Bx| = w, then B has a Borel
parametrization, i.e., a Borel measurable coding of disjoint Borel selectors
of B which fill up B. Tt is natural to ask whether there is an analogous
result with each By uncountable. In other words, if B € 2 (XxY) and Vx By is
uncountable is there a Borel map & of XxJ onto B such that for‘each x, #(x,-)
maps J onto B? If & exists, then for each ¢ € J, #(Xx{c}) is a Borel graph.
i is a Borel measurable coding of a family of pairwise disjoint selectors
filling up B. Now, in general, this is not possible. In [9], Kallman and
¥auldin gave an example of a Borel set B ¢ [0,1]x[0,1] such that for each x,
By, is an uncountable Gd set and yet B does not even have a Borel selector.
However, necessary and sufficient conditions for the existence of a Borel

parametrization have been given:
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Theorem 14. (Parametrization theorem) (Mauldin, 1979 [14])
Let B € .2 (XxY). TRAE
(1) 3 Borel set ¥ ¢ B such that Vx My is a Cantor set.

1-1
(2) 3 a Borel map §: Xx[0,1] -+ B such that

1-1
vx #(x,-): [0,1] - Bs.
(3) 3 atomless conditional probability distribution x ~ gy € Pr(Y)
Vx pux{Bx) = 1.

In [16], Mauldin gave an example of a o—compact subset B of [0,1]x[0,1]
such that for each x, By is uncountable and yet B does not contain a Borel set
each section of which is an uncountable compact set. According to 1 above,

this set does not have a Borel parametrization.

8. (One-to-one selections and parametrizations. Let us motivate this

section by slightly modifing a set considered by Hadamard [1].

B = {(x,y)€RxR | x,y are transcendental and x,y are not algebraically related}
Does H contain a Borel graph? This is the question considered by

Hadamard. It can be answered affirmatively on the basis of several theorems.

In fact , B has a Borel parametrization. This is a corollary of Theorem 14.

Does H contain a Borel isomorphism? The answer is yes. It follows from the

theorem of Debs and Saint-Raymond, theorem 18.

Problem 3. Does H have a parametrization of Borel isomorphisms? (open)

Before stating the results of Debs and Saint-Raymond, let us give some

measure theoretic results concerning one—to—one selections.
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Theorem 15. (Graf and Mauldin, 1985 [7]}
Let X =Y = [0,1]. Let B € % (XxV) such that ¥x Vy IBx], 18] > .

3¢, D¢ [0,1] such that 4(C) = A(D) = 1 and a Borel isomorphism g: C -~ D
such that Gr g C B.

In order to give an example to show that the conclusion of theorem 15 is
the most one could hope for in the direction, we need the next lemma.

Lemma 16. Let h: A€ [0,1} = %5 = { K€% ([0,11) : A(K) 2 1- i/n } be
Borel measurable and x € h(x) ¥x € A. Then h is not onto.

Proof. Suppose h is onto. For each t > 1 - 1/n, t#1, let Bt = { K € #p
| A{K) = t}. We claim that A(hml(Et)) > 1-t for each t. Suppose
A(h—l(Eg)) < t. There is K C {O,II/hwl(Et) such that A(K) = t. By the
surjectivity of h, there is x such that h{x) = K. But, x € h—I(E;), a
contradiction. Thus, the claim holds. Since the uncountable collection {Et}
consists of pairwise disjoint Borei sets, the uncountable collection
{hﬁl(Et)} consists of pairwise disjoint A-measurable sets of positive
measure. This is a contradiction. Therefore, h is not onto. Q.E.D.

Theorem 17. There is a Borel subset B of {0,1}2 such that Vx Vy A(Bx) =
J(BY) = 1 and B does not contain the graph of a Borel isomorphism of [0,1]
onto [0,1]. Indeed, B does not contain the éraph of a Borel surjection of
[0,1] onto [0,1].

| Proof. Let (Fn)imzz {0,1] b ETI xn be a Borel isomorphism. For each n,
let R = %é{o . Fn(y)*{y}. Then for each m, R is Borel. Consequently R =

1 4}
IRn L ([0,1]2}. Furthermore, for each v € [0,1] and n € N we have

e
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Yy 2 A(Fﬂ(y)) > 1 - 1/n, and hence, A(R°) = 1. Let A = {x: }(Rx) = 1}.
Then the Borel ssubset A of [0,1] has Lebesgue measure one. Now suppose ¢ is
a Borel map of A onto [0,1] such that Vx (x,g{x)) € R. For each n, let An =
{x €A : x¢€ Fn(g(x))}. By lemma 16, the map FnogiAn is not onteo. For each
n, choose K € % \Fn0g|An. Let g(x) = v where Vn F (v} = K . Now (2,v) €
Rn’ for some n. Thus, x € An and Fn(g(x)) = Kn’ a contradiction. Thus, R
does not contain the graph of a Borel map of A onto [0,1]. Finally, to
complete the construction of the example, let ¢ be a Borel isomorphism of
[0,1] onto A. Let B = (4 x id)“l(R). Clearly, the Borel set B has all the
required properties. Q.E.D.

Mauldin raised the possibility that the category version of the preceding
theorem may have a different answer. If B € % ([0,1]2} and Yz Vy Bx and gy
are comeager, then does B contain the graph of a Borel isomorphism? The
answer is ves, and in [5], Debs and Saint-Raymond prove the following theorem.

Thereom 18. (Debs and Saint-Raymond, 1989 [5]) Let X,Y be compact
perfect metric spaces. B € % (XxY) with Vx Yy Bx and BY are dense 65 sets.
Then B does contain the graph of a Borel isomorphism.

Remarkabl&, this result depends on X and Y being compact. Specifically:
N

Example 1. {Debs and Saint-Raymond, 1989 [5]} = Gg set GC N x ZN with

all fibers both ways dense and such that G contains no Borel isomorphism.

N

Example 2. (Debs and Saint-Raymond, 1989 [5]) I B € % (2 XEN) with Vx By

is a dense G§ and Yy BY is residual and B contains no Borel isomorphism.
Problem 4. Let X, Y be compact perfect metric spaces. B € @ {XxY) with

¥x ¥y By and BY are dense G§ sets. Does B have a Borel parametrization of

Borel isomorphisms of X onto Y?
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