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THE BAIRE ORDER OF THE FUNCTIONS
CONTINUQUS ALMOST EVERYWHERE

R. D. MAULDBIN

AsstrRACT. Let @ be the family of all real-valued functions
defined on the unit interval / which are continuous except for a
set of Lebesgue measure zero. Let @, be ® and for each ordinal «,
let O, be the family of all pointwise limits of sequences taken
from |Jy<a ®y. Then @, is the Baire family generated by ®. It is
proven here that if 0<a<w,;, then @D, . The proof is based

" upon the construction of a Borel measurable function £ from I
onto the Hilbert cube O such that if x is in @, then /~'(x} is not
a subset of an F; set of Lebesgue measure zero.

If @ is a family of real-valued functions defined on a set S, then the
Baire family generated by @ may be described as follows: Let ®=®
and for each ordinal «>>0, let @, be the family of all pointwise limits of
sequences taken from | J, ., @,. Of course, @, =®,, ,;, where o, denotes
the first uncountable ordinal and ®,, is the Baire family generated by @;
the family ®,, is the smallest subfarmly of R¥ containing @ and which is
closed undcr poxntw1se limits of sequences. The order of @ is the first
ordinal « such that ®, =0, .

Let C denote the family of all real-valued continuous functions on the
unit interval I. It was first proven by Lebesgue that the order of C is
w, [1]. In 1924, Kuratowski [2] proved that if one relaxes the continuity
condition by only requiring that the original functions be continuous
except for a first category set, then the Baire order of this enlarged family
is 1. In 1930, Kantorovitch [3] showed that if one requires that the original
functions be continuous except for a set of Lebesgue measure zero, then
the Baire order of this family is at least 2. Recently, the author generalszed

this result in the following fashion [4]. ;

THEOREM. Let S be a complete separable metric space, let u be a
o-finite, complete Borel measure on S and let O be the family of all real-
valued functions on S, whose set of points of discontinuity is of u-measure 0.
Then (1) the order of © is 1 if and only if u is a purely atomic measure whose
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set of atoms is dispersed and (2} if the order of @ is not 1, the order of @ is
at least 3.

In this paper ® will denote the family of all real-valued functions de-
fined on the unit interval J which are continuous except for a set of
Lebesgue measure zero. It is shown here that the Baire order of this
family is w;. The method of proof involves showing that there is a Borel
measurable function 4 from I onto the Hilbert cube such that if x is a point
of the Hilbert cube, then /~1(x) is not a subset of an F, set of Lebesgue
measure 0. Of course, there is no such function A which is continuous
or even an h such that #~1(x) is an F, set for each x. Thus, the function A
is necessarily fairly complicated. We begin with a sequence of lemmas
which are used to demonstrate the existence of one such function A.
This function will be used to construct a transfinite sequence of “universal
functions” {U,}oca<w, {Theorem 2]. Finally, a diagonal type argument is
applied to prove that the order of @ is w, [Theorem 4].

LeMMA 1. Let P be a perfect subset of the interval I such that if an open
set U meets P, then W(POU)>0. There is a double sequence {F,,}7 ;1
of disjoint perfect subsets of P such that (1) each Fy, is nowhere dense in P
and if an open set U meets F.,,, then MU NF,;)>0, and (2) if nis a positive
integer and U is a nonempty set open with respect 1o P, then there is some
p such that F,, is a subset of U.

Proor. Let {s,}2, be a countable base of nonempty open sets with
respect to P.

Let K;; be a perfect set lying in 5 Ns;=5, such that Kj, is nowhere
dense in P and if an open set U intersects Ky, then A(K;ynU)Y>0. For
each positive integer n and integer p, 1=p=n-t1, let Kypy be &, if
Sp18,= 2, and, if s,.,Ns,# @ let K, , be a perfect set lying in
Sny1S, such that (1) K,y , is nowhere dense in P, (2) K, , is disjoint
from (Uy Uner KU (UZT Kpyq o) (a union from 1 to O is taken to be
empty) and (3) if an open set U intersects K,y 5, then A(K, 1 ,NU)>0.

For each p, let Fy,=K,,. For each positive integer pair n, p, let Fr.\y
be the first term of the sequence {K;,}o., which follows F,, and which is
nonempty.

It follows that the double sequence {F, ,}7 n-a has the required proper-
ties.

Now let {Finm}Z st be a double sequence which has the properties
Jisted in Lemma 1, where P is the interval [0, 1].

By repeated application of Lemma 1, we have

LeMMA 2. There is a system of sets {Fn, ny.m.ny > Where i1y, =~ * Figy)
ranges over the family of all finite sequences of positive inlegers of even
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length such that if (ny, ny, ** , Mar_y, M) iS Such a sequence, then the
double sequence {Fin, . n,....ny_y.noe.nmin.o=1 HaS the properties listed in
Lemma 1 with respect to the set {F(, ny...ng_s.np0)-

Let W, be the family {F,,.,}o; for each n, and for each finite sequence
of positive integers (ny, - - - , 1), let Wi, ... 0, be the family

{F(nl,il.na.iz.v--.nk.ik)}

where (i, - - - , i;) ranges over all k-tuples of positive integers. Let T, ...,
be the union of all the sets in the family W, ...,-

Notice that these families have the following three properties:

) If (my, =) (g, -, my), then T, ny and T oimy
are disjoint;

(2) Each set in Wi, ...n,.n,, )18 @ subset of some set in Wi, ...nps
and

(3) If Fe Wi, ....ny, 1 1s a positive integer, and U is an open set which
meets F, then there is some set in the family Wi, ..., .. Which is a subset
of U.

.

LemMA 3. Let {n,}y., be a sequence of positive integers. The intersection
of the monotonically decreasing sequence {Tin, o mp i I8 1Ot Q subset of
an F, set of measure 0.

Proor. For each n, let 4, be a closed set of Lebesgue measure 0.
Since T, is dense in the interval 7, it follows that there is some set F,,
which does not intersect 4,.

Since A(F(,,.x,))>0 and A(4,)=0, there is an open set which meets
F, ., which does not intersect 4,. It follows from property (3) that there
is a set Fi, ., ny.5, Which is a subset of F,, ) and does not meet A,.

Continuing this process, we obtain a monotonically decreasing se-
quence {le,kl,...,%rkw,}‘;?ﬂl such that for each p, Fin k.m0, does not
intersect 4,. The nonempty intersection of this sequence of sets is a
subset of (i=; Ttn,,.n, Which does not intersect { 1 4. This completes
the proof of Lemma 3.

For each k, let Hy=\J T}_.....n,» Where the union is taken over all
k-tuples of positive integers. Let H={"z=, H;. The set H is an F; set.

Let .4 denote the space of all irrational numbers between 0 and 1.
Identify the space of all infinite sequences of positive integers with the
space via the continued fraction expansion of the members of the space
NI ZeN let [Zy, Zy, Zs, - - +] denote the sequence of integers ap-
pearing in the continued fraction expansion of Z.

LemMMA 4. There is a Borel measurable function f from H onto A~ such
thatif Z e A", thenf~Y(Z) is not a subset of any F, set of Lebesgue measure 0.
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Proor. For each x € H, there is only one sequence of positive integers
{2, such that x € (Vils Tnymy)s let f(x) be the irrational numbers
in 4" identified with this sequence. It follows from the preceding Jemma
that f maps H onto A" and if Z € A", then f~1(Z) is not a subsct of an F,
set of measure 0. '

For each k-tuple nyg, =+, e, 1t Jininy (Z:Z;=n,, i=1,2, -, k}.
The sets J(,,,....n,y form an open base for the usual topology on the space
We have

U mmm) = U (ﬂ T(m,---.nk.zl.--‘,zp))-
Zew \P=1
Thus, 2/, 1.---.1%)) is an analytic set [5, p. 467]. It follows from Lusin’s
first separation theorem [5, p. 485] that f is Borel measurable (actually,
fHU) is an F,,, set for each open set U).
We are now in a position to prove

THEOREM 1. There is a Borel measurable function h from the unit
interval I onto the Hilbert cube 1°° such that if x €1 @ then f~(x) is not a
subset of an F, set of Lebesgue measure 0.

Proor. Let f be a function as described in Lemma 4, Let. g be a con,
finuous function from 4" onto the Hilbert cube [5, p. 440]. The com-
position, g o f, maps H onto the Hilbert cube and is Borel measurable.
Let (g1, g2, gs» * * * ) be the sequence of the natural projections of g o f.
For each p, g, is a Borel measurable function from H onto the interval 1
(5, p. 382]. Foreach p,let £, be a Borel measurable extension g,, to all of
I which mapsinto . Leth= (g1, £z, §3, - ). The function # has the required
properties.

TuporEM 2. There exists a transfinite sequence of *‘universal Sfunctions”
{Udocaco, SUCh that for each «, 0<a<wy, we have

(1) U, is a Baire measurable function on IX1 which maps into the unit
interval I; and

(2) if f is a function in Baire's class o. which maps into I, then the set
of all x such that U (x, y)=f(p), for every y in I, is not a subset of an I,

set of Lebesgue measure zero.

The proof essentially follows the argument in [6, p. 133].
Proor. Let {5,}2.; be a countable dense subset of the positive part
of the unit ball of the Banach space C(J).
Let
Uo(x,y) == sn(y)a if x = 1/”&
= 0, otherwise.
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It can be easily verified that U, is a Borel measurable function on Ix/
and of course it maps into the interval . Let h=(hy, hy, hy, -+ ") be a
function from 7 onto the Hilbert cube having the properties described
in Theorem 1.

For each ordinal «, 0Sa<w,, let

Ua-l-l(x’ y) = hm Sup Ua(hn(x)! y)
nor oo
for each (x, y) € IxI; also, if « is a limit ordinal, let {¥,1p=1 be an in-
creasing sequence of ordinals less than e« which converges to « and let

Uu(x, ) = lim sup U, (,(x), »).
7o

It may be proven by transfinite induction that the functions U,, 0<a<
w,, are Borel measurable and map into J.

The proof that the functions U, are “universal” and represent each
appropriate function in Baire’s class « on a “large” set proceeds by trans-
finite induction.

First, suppose f is in Baire’s class 1 and f maps I into 1. Consequently,
there is a sequence (ny, 7, 1y, - - *) Of positive integers such that ‘the
sequence {8, }p.; converges pointwise to f on /.

If x e (1 /ny, 1[0y, 1fn,, - - +), then

Uy(x, y) = lim sup Uq(h,(x), y) = lim sup Sas(¥) = S (¥}

for each y in I. Thus, the function U, has the second required property.

Now, suppose « is a limit ordinal, the functions U,, 0<y<«, have the
required properties and f is a function in Baire’s class « which maps [
into 1.

There is a sequence {f,}., of functions, converging pointwise to f
on I such that for each p, f, is in Baire’s class y,, and f, maps /into .

For each p, let x, be a number in I such that U, (x, y)=f,(y), for every
yiml

If x € 1 (x,, Xg, X3, - * ), then Uy(x, y)=f(y), for each y in J and U,
has the required properties. ‘ ’

A similar argument can be given for the remaining functions U,,;.

In order to prove that the Baire order of @ is w;, we will employ a
theorem which was published previously by the author:

TureoreM 3 [7]. If « is an ordinal, 0 <a<w;, then a function f is in
D, if and only if there is a function g in Baire's class « such that the set
D={x:f(x)5g(x)} is a subset of an F, set of measure zero.



540 R. D. MAULDIN

We will now prove
THEOREM 4. The Baire order of @ is w,.

Proor. Let « be an ordinal, 0<a<w,. Let U, be a universal function
having the properties stated in Theorem 2. Let w{x)=lim, ., (1 — U.(x,x})".
The function w is a Baire function which maps [ into [ and there is no x
such that w(x)=U,(x, x). Actually, w is the characteristic function of the
set of all x such that U (x, x)==0.

Assume that w € @,. By Theorem 3, there is a function g in Baire’s
class « such that the set D={x:w(x)s%g(x)} is a subset of an F, set K of
Lebesgue measure 0. It is assumed here that g maps into [ (this is no
restriction). By Theorem 2, there is some x € K’ such that U, (x, y)=g(y)
for all y in I In particular, U,(x, x)=g(x)==w(x), since x & K'. This
contradiction proves the theorem.

Question. If 0<a<w,, is there a o-ideal R, of subsets of 7 of the first
category which contains all the sets of Lebesgue measure 0 such that the
family @ of all functions which are continuous except for a set in this
o-ideal R, has Baire order «? See {7], for some relationships between
the classes ®, and the classical Baire functions of class «.

REMARK. As mentioned in the first part of this paper the Baire order
of the family of all real-valued functions on I which are continuous
except for a first category set is 1. This fact together with the technique
employed in this paper yield the following

THEOREM. There does not exist a Borel measurable function h from the
unit interval I onto the Hilbert cube 1“0 having the property that if x € I'°,
then f~1(x) is not a subset of a first category set.
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