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The axes of two congruent right circular cones intersect at a point equidistant from the cones’ ver-
tices. We derive a formula for the volume of the set of points common to the interiors of both
cones. Some of the work was done on the symbol manipulator MACSYMA,

0. Introduction.

In this paper we find the volume of the intersection of two congruent circular cones
whose axes cross at a common point P, with the vertices of the cones equidistant from P.
The formula is expressible by elementary functions. The symbol manipulator MACSYMA
was used in the derivations. The formula was needed for a practical application. It has not
been found in the literature despite a thorough search,

1. The formula.

Let o be the angle the generator of one cone makes with its axis, and P be the angle
between that axis and the line joining the two vertices. Assume that  + o does not exceed
/2 (so that the required volume is finite) and that « is no larger than P (so that the projec-
. tion technique we use is applicable). Let d be the distance from either vertex to the inter-
section of the cones’ axes. Then the geometry is as in Figure 1.

For the formula, define additionally
a:=tano, and b= tanf;
then the volume of intersection of the cones is given by

4 _d’a? a(1+b2Wh’—g? PR S a(l+by) m
3 1-a’b? bY(1+a®)? V1-a?h? Voi-ad(1-ab?) ||
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FIGURE 1

We note that 1-ab? is non-negative because tan(B + 0 is positive, and that b*~a” is non-
negative because o is no larger than B.

The unusual part of the proof of (1) invokes a projective transformation mapping the
two cones to two circular cylinders - it seemed easier to integrate the Jacobian of this
transformation over the region common 10 the two cylinders than to proceed otherwise. An
independent check of (1) was made by integrating plane sections of the volume, each per-
pendicular to the plane containing the cones’ axes but parailel to the vertex-connecting line.
The resulting relatively complex formula, obtained partly with the help of the symbol mani-
pulator MACSYMA, not only yielded the same volumes as (1) for several nontrivial values
of the parameters, but also (eventually) was shown t0 reduce to (1) by judicious ‘manipula-
tion of MACSYMA itself.

Three other checks were made: the volume associated with the case when o=B (80
that the line connecting the two vertices lies on each cone) is computable independently as
_ nd® cosa (sin200?

Vo=
o= 6(cos 202

and coincides with that yielded by (1) in this case. Further, the volume of intersection of
two circular cylinders of radius r (whose axes Cross at an interior angle n--28), given by

Ve = 16 7%/ (3 sin 2B),

is attained in the following two limiting cases of (1) fix the radius r of the cones at the
intersection of the two axes (measured perpendicular to either axis). For the first limit, fix
B and let d increase without bound, For the second limit, instead of fixing P let 2 be the
distance between the cones’ vertices, and let poth d and ! increase without bound but with
d much greater than /. Then, for each case, the limit of Vi, / Vigne 15 ONE.
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2. Derivation of the formula.
We divide all three coordinates by 4 so that
Vcam = d3 v,

where V corresponds to the intersection of the two cones in Figure 2.

w out of page

{0,cos B, 0)

FIGURE 2

Consider, now, the transformation

T: (H,V,W) e d (x,)hz) »

given by
x = sinf/u
T: y=v tanBlu
z = ¢ wlu, ¢ >0 =ascaling constant to be determined later.

@

The motivation for T is to transform the two cones, for some ¢, to two circutar cylinders.
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Under T (Figure 3):
(a) The v—w plane (i ={}) goes to so,

(b) Points symmetric with respect to the u-w plane map to points symmetric with
respect to the x—z plane, and points symmetric with respect to the u—v plane map to
points symmetric with respect to the x—y plane.

For: if T(u,v,w)=(x,y,2), then T{u,~v,w Y=(x,~y,2z} and T (u,v,~w =%,y 2 )

(¢) The transformation of any line L through vertex (0,~cosp,0) is a line T(L) paratlel to
the x-y plane which has slope —1 when projected onto that plane. A similar state-
ment holds for lines through the other vertex (0,cosB,0), except that their correspond-
ing slope is +1. So each cone maps onto a cylinder.

For: any line through the first vertex may be written as

u=s
L: v =ms ~cosp
w =ns; m,n constants, § in (—eo,0);
so that, via (2),
x = sinf/s
T(L): y=tanf {ms—cosB)s
z = ¢ ns/s = constant;
and hence, on T(L),
dxids = —sinB/s?, dylds = tanf [ms — (ms ~ cosP))/s* = sinPis?;
so that dy/dx= —1 on T(L).
(dy T is a projective transformation, i.e., it has the form
X ={ayh +apy +apw + bD
y = (@ +anv +anpw + by)D

2 = {Ayu + apv +apWw + bg)fD, ’
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where
D =aguu +agy +apgw + by

Such maps take quadric surfaces onto quadric surfaces. Under the map 7', each cone
is mapped onto a cylinder of ellipric cross-section: To see this, take a u = constant
section of one cone. From (2) we see that x=constant; and that y = v-constant and
2 = w-constant. But (v,w) satisfies the equation of some ellipse; hence, so does

.z

V now may be expressed in the following form:
Hu,v,w
V= I‘[jdu dv dw = _[Tz[v)j-a(-(;;;%dx dy dz. (3)

To compute this Jacobian determinant we invert 2y

u = sinf/x

v = uy/tanf = ycosp/x

w = uz/c = (sinfic) z/x.
Then, the Jacobian is given by

~sinf/x? 0 0
M—det <o+ cospix O

= = — sinB cosB/ (cx®, “4)
0(x,y,2) s 0 sinf/lcx) B o

which is independent of y and of z.

{x {z).0.2)

{x {2101}

FIGURE 4
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Now, the parameter ¢ in (2) acts to scale the z-coordinate; thus, the cylinders have
elliptical cross sections with semi-minor axes in the z direction if ¢ is small and semi-
major axes in the z direction for ¢ large. As we shall see in section 3, there is one value
of ¢ for which the cylinders are circular; we presume henceforth that we have selected this
¢. Then we shall compute the required integral

dy dx
= jrll}j—l’;—dz (5)

by taking sections parallel to the x—y plane (Figure 4). Thus, consider the inner integral
over the square diamond D (z) that comprises the intersection of a z=constant plane with
T(V). Two of its corners are at (x4(z), 0, z); they lie on the ellipse that is the intersection
of the cylinders with the x—z plane and are equidistant from the center of the ellipse, This
center has x -coordinate:

X, +X.

2 3
where X, are the extreme values of x on that ellipse. We have (the integration being done
on MACSYMA),

=

x

e ol el i) 2

Dy X 1 3 xf xf 3:{2 )

Now, this is to be integrated with respect to z (Figure 5).

z (x -{z}.2) {x (2.0)

X

X_ H X

Az

FIGURE 5

Here, again, X, are the extreme values of x on the intersection of the two circular
cylinders. Define
X Y —'X -
At — L)
2 6)

The ellipse, being a 45 degree section of a circular cylinder (as we assume), has major axis
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47 times the diameter of the cylinder; so the radius is ANZ; the cente‘; of the ellipse is at X;
50 the equation of the ellipse is (x—¥)* + 2z%=A% In particular,

x2=A 2 -2 -2 and  x} = A4 2%, - X -22%

0

x2 4+ x} =2A% 4+ 48% - 2% ~ 427 = 2A + ¥ - 22%) ;
while

2x_x,= (Jc,.+.1c+)2 - (x2 +x2) = 4%° (x2 +x2y,
which, using the relation above it, yields

x_x.,,=fz-nA2 + 222

Hence, using ¥° - A = X_ X, we have, again using MACSYMA for integration,

a2 ara 2
1= | jjfﬁ:zg [—1- [x_:x}] 2 ]dz

R )
o5 ply X 3] x2 x? 53

xszi 122 4A -2 2 |,
13 P -AT+22 3]

S0,

22 |4 + & tan™! 4 N
¥ JX_X, XX, 0

It remains to find the value of the parameter ¢ in (2) which makes the two cylinders
circular.

3. Scaling for circular cylinders.

First we maximize the z component of T («,0,w) on the ellipse E that is the section
in the u—w plane of either cone. For this we assume E has unknown height 43 so we next
determine h. The appropriate value of ¢ is then found. And, finally, we combine every-
thing to determine the required volume V. (1).

So, let E be the ellipse comprising the section in the u~w plane of either cone (Fig-
ure 6).
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E has horizontal axis
U_U, where U, :=cosB tan(Bro);
its half-length and center, respectively, are
Su=(U,~-UN2 and T:=U,+UN2.

We take h to be the height of E (i.e., half its vertical axis), to be computed explicitly later.
Then the equation for £ is

(@ — D + wlhR? = 1.
On T(E) we have (from (2)) z=cw/u. z is a maximum, then, when dz/du=0; ie,
when O=c (¢ dw/du — w)lu®; or when
dw/du = wlu. (8)
On E, however, |

u-i | w dw
--g-z— + T =0. 9)

Combining (8) and (9), we want (#,w) on E such that

w?  u(u-@)  @-u)u-i) - G- @-BF  _(u-@)
wSTTE & B
Buton E, w¥h?= 1-(u-#)*8" also. So
o (T-u)
1= — ,
5 &
or
i-u ) : s — 9, e
— = e implying u=u -~ &1,
S T
also w¥h? = 1 - [(u~TW8P = 1 - 8¥u® implying w = AV1-8%a% Thus
w_ N-8YE _ NaS _ h
u ot -8 s
But (as was true for ¥ and A) &> - & = U, U... So
wiw = hiNU, U-. (10)

Now, on T(E) (from (2)), zmax = cw/u. But, as below (6), 2y = A2, So, we conclude
that T maps the cones onto circular cylinders if

Au
c=F (1

To use this with (10) we need the height, &, of this ellipse E that comprises the sec-
tion of either cone with the u—w plane (Figure 6, above). For this we need, first, an equa-
tion for the surface of one of the cones. The geometry is as in Figure 7.
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The extreme values of u on the cones’ intersection is, as before, U = cosP tan(Bto).
Let I be the unit vector along the lower cone’s axis, and 7(t) be a unit vector perpendicu-
lar to & and rotating around it:

U= ( sinB, cosB, 0)  and 7)== ( —cosB cost, sinB cost, sin¢).
Then points C(s,t) lie on the lower cone if (and only if)
C(s,t )= (0, —cosB, 0) + s U + s tana V(¢); (12)

here s = 0 and, say, 0 £t < 2n. Now on the ellipse E the v-coordinate on this cone is &:
i.e., E is the image of the set of (s,¢) such that

s = 1/(1 + tanot tanB cos ¢).
' On E, then, from (12),
w =5 tanc sin ¢ = tana sin ¢/(1 + tano. tanf cos £) . ek}
At the maximum of w on E, dw/dt=0, i.e.,
(1+ tang. tanf cos ¢) tanc cos ¢ — tanat sin ¢( —tanct tanf sin £) =0,
or
cos ¢ + tanc tanf = 0 . (14
For this value of ¢, using (13) and then (14),
h = Wpae = tangs sin ¢/(1 + tanc tan cos ¢) = tanat sin ¢/(1~ cos?t) = tanot / sin ¢,
or
h = tana / VI-tan’. tan’p .
From (10}, then,

tano
fi = kiU, U_ =~ e sz )
e * V(1-tan0. tan’B) tan(B+a) tan(B-o) cosf

or
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wo_ tangg, 1 '
vVian?B-tan’c. cosp
so that the parameter ¢ yielding circular cylinders is given from (11) by

A \itanzﬁ-«tanza cosh (15)
V2 tano )

o =

2=

Sl>

We now combine all we have done to find, from V,,,,, =d°V, from (4), and from
(15) and (7), that

d3 SIN2P —mai e A A+ Lt |21
Veones= \ftaniﬁw o X X |F VXX X X

Now, from (2), X = sinfil/; = tanB/tan(Bxo), so that with b= tanf and a:=tanq,
{hence, e.g., then 1/coszﬁ = 1+b%) we may verify the following relations:

Ao XezX- _ b|ltab  1-ab
- 2 2ib-a b+a
- ab

cos*B (b2 ~ a?)
X,+X
- 2
bz

a
XL X costV(bT—a ) 1-aZb?) '
A _a (bzwaz) cos’ar
b cos?B 6>

and
A - a
X, X b cos’p (1-a’pD
We conclude that

Viones = md3sm _—

P Vb i Z bcoszﬂ(l—azbz)
a(b*acos'a . bi—g? ! _a_ B

cos’B b bV1-a?b? cos*pV (b —a)(1-a%?) ||’

which reduces to (1).



