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ABSTRACT The exact Hausdorff dimension function is
determined for sets in R™ constructed by uwsing a recursion
that is governed by some given law of randomness.

We present a method of determining the exact Hausdorff di-
mension function for a wide class of random recursive con-
structions. Let us recall the setting. Fix the compact subset J
of R™ with J = cl{int(J)) and a positive integer #. An n-ary
random recursion modeled on J is a probability space ({2, 3,
P} and a family of random subsets of B™;

o

g {J’alo’@{l,...,n}*= U {1,...,!7}"}

v=0

satisfying three properties.

) Jplew) = Jforalmost all w € Q. Forevery o€ {1, . . .,
ay* and, for almost all w, if J,(w) is nonempty, then Jo(w) is
geometrically similar to J and the map w— J,(w) is measur-
able with respect to the Hausdorff metric on the space of
compact subsets of R™.

{if) For almost every w € £l and forevery o€ {1, . . ., n)*,
S, doen o oL g, are nonoverlapping subsets of J{w).

{iii) The random vectors 7, = (Toey, . . -, Tou)s ¢ € {1,
.« ., n}* are independent and identically distributed, where
To+i{w) equals the ratio of the diameter of J,+{w) to the di-
ameter of J,(w} {for convenience Tylw) = diam(J)].

The system J is calied an »-ary random recursive con-
struction. We now define the random set K by

®

Kwy= M L y J{w).

k=1 geli. . .,

Our interest centers on the Hausdorff dimension function
of K. We will consider those constructions such that £(T +
...+ T9 > 1. These are really the only interesting con-
structions as is well known from the theory of branching pro-
cesses {for discussion, see ref. 1). The Hausdorff dimension
was determined by Mauldin and Williams,

THEOREM 1. Assume B(TS + . .. + T% > 1. Let & be the
unique number such that

E(T¢ + ...+ T9 = 1.
Then P(K # &) > 0 and for P-a.e. w, #(K(w)} < =, More-
over, if K{wY # ¢, then the Hausdorff dimension of K(w) is
o,
The fact that #¥K{w)) < %, for almost all w, was proved
by considering the natural estimates

Ska = 2 (iam/)”

oE{l..
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and noticing that {5, ,}.=; forms a martingale. Therefore,
there is a finite random variable X such that for almost all

Xw) = Eirzt Sk alw).

Since, for almost all w,

£ cfltP o) = 0,
it follows that #%(K) = X(w) < +%. The proof that « is the
dimension of K(w) was completed by constructing an appro-
priate family of random measures,

The formula determining « generalizes the formula given
by Moran (2} in the deterministic case and, in that case, re-
duces to his formula. Moran alse showed, in the determinis-
tic case, that #*(K) > 0, where ¥~ is Hausdorfl"s measure in
dimension . Graf {3} showed that this remains true for the
random case, provided P(3L;T¢ = 1} = 1 and there is some
dsuch that § < § < min e, T#-a.5. Actually, for most con-
structions P(ZLTF # 1) > 0. Graf showed HYK) = 0 a.s.
under this assumption. S. I. Taylor conjectured the general
form of the exact dimension in a letter.

Our main theorems give upper and lower estimates on the
exact Hausdorff dimension function associated with con-
structions such that P, TF # 1) > 0. These estimates de-
pend on (i} rg, the radius of convergence of the moment gen-
erating function of X¥, (/i) the probabilistic behavior of the
construction, and (/i7) the geometric properties of the model-
ing set, J.

UpPER-BOUND THEOREM. Assume that E(T] + . . + T
= 1. Suppose B > 0 is such that rg < =, Let hg() = (*(log
(log(L/ONYP. Then there is a constant ¢ such that

H(K(w)) = cX(w) < +w

for P-a.e. w.

Thus, an analysis of ry is essential for obtaining upper
bounds on the exact dimension function.

Rapius THEOREM. Assume that E(TI + ... + T > 1
and PELTE # 1) > 0. Ser

Bo = Sap(B > 1| QTN < 1 Pva.s.].
i=l

Then, 1 < By < +x gnd

+ 0=8 < B
F5= >0, B='80
0, ,BQ(B.

Since Ly TP = 1, P-a.s. (1), it follows that

Bo = 1/(1 — (afm)).
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Although it is not always true that rg < =, there are several
general conditions that ensure that ,80 = 1/(1 ~ {ae/m)) and
g, < %

"The harder problem of obtaining good lower bounds on the
dimension function leads us to a combination of restrictions
on the construction. However, it 15 still true that almost all
commonly occurring constructions satisfy these restrictions.
A geometric condition s given in the following definition.

Definition. A compact subset J of R™ has the neighbor-
hood boundedness property means that there is a positive
integer ny such that, if diam(J) < gand Jy, . . ., Ji are non-
overlapping sets, each similar 10 J with dist(J, J,) < ¢ =
diam(.f,-), i=1,..., k, then & = hg.

For example it can be shown that, if J is the union of finite-
ly many nonempty convex sets and J = cl(int(J}), then J has
this property.

LOWER-BOUND THEOREM. Assume that E(TY + .. . + TY
> 1. Suppose ] = cl{int{]}} has the neighborhood bounded—
ness property and there is some £ > 0 such that E[1/min-
{THT; = 0}} < . For P-a.e. w, if K{w} # &, then

HMK(w)) > 0,
where

hit) = t%(og(log(1/t) =™,

QOur main theorem shows how to calculate the exact Haus~
dorff dimension fenction in the generai case. More specifi-
cally, we have the following.

Exact-DIMENSION THEOREM, Assume that (T + . . . +
T > 1. Let J = clint(N)) # ¢ have the neighborhood bound—
edness property. Let a > 0 be defined by E{(Z].,T{) = 1.
Suppose that P(ELTF # 1) > 0 and that E[l/mm{Téi'l >0}
< @, for some £ > 0. Suppose, in addition, that one of the
fo!!bwing three conditions is satisfied.:

(i) The distribution of (T, . . ., TE) has a derivative f = 0
with respect to Lebesgue measure on {¥ € [0, 15, y; < 1}
and thereisapoint 2 = (x1, . . ., %) € [0, 1]“ with x; > 0 fori

=1 ...,nand Zyx5= 1, a ner’ghborhood U of %, and a
constant ¢ > Osuch that i) = cforell§ = (yy, .. .,y EU
N, 1Pwithil, yi<landvisxfori=1,...,n

(it} There exists §€ (0, 1) and q € N, such that, for [ar:ge t,

1} ] n
E[(Z} Tfﬂ) i—% 1{@51-—5}} = 1/t%

(it} There exists some a € (1/n, IN{/ev=1,. . ,n~1}

such that
I (E[(Z TS‘) U} 1(T¥.nr(z;g,T,;nma}D > 0.

=0 P
Then, for P-a.e. w, if K{w) is nonempty, then
0 < HK(w)) < o,
where
h(t) = t*(logllogtht™ =™,

Remarks. The assumption that E[1/min{T§T, > 0}] < wis
a probabilistic condition needed to obtain the lower bound.
The assumption that PR T # 1) > 0 ensures that g < oo,
Any one of conditions /, i, and {ii of the Exact-Dimension
Theorem ensure that the radius of convergence of the mo-
ment generating function of X% is positive and finite where
1/8 =1 ~ {a/m). We apply our results to two examples.
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Example 1 (The zero-set of the Brownian bridge). Let
{B),=0 be the one-dimensional Brownian motion on 10, ¥.»
Let B) = B, — tBy. Then {BNg<«; is called the Brownian
bridge. Define # = sup{t = 1/2[B? = 0} and ~, = inf{t =
1721BY = 0} Set J, = [0, 1], J; = [0, ], and J, = [ny, 1]
Continue this process by rescaling to each of the intervals
already obtained. Because of the scaling and invariance
properties of the Brownian bridge, the random set K ob-
tained by this recursive construction is the zero set of the
Brownian bridge. Our results can be used to determine the
exact Hausdorff dimension of this zero set. Thereby we re-
prove a result due to Taylor and Wendel (4). Note that we
have T, = rnand T, = 1 — . We calculate the density func-
tion of the distribution of (T, T3) with respect to two-dimen-
sional Lebesgue measure. Since the distribution of By, is
the same as that of B,, we deduce that =, has the same distri-
bution as inf{y = 1/2iBy, — tBy = 0} = inf{t = 1/2|By, — By =
0} = 1/sup{s € {1, 2}|B, — B, = 0}. Since B, — B, has the
same distribution as B;.;, we obtain that =, has the same
distribution as 1/sup{s & [1, 2}|B,-1 = 0}, which, in turn, is
distributed as 1/(1 + sup{s € [0, 1]|B, = O}). Similarly, we
obtain that = is distributed as 1/(1 + infls & {1, o}B, = 0}).
Following Chung (5), we define y(r) = suplsls = ¢, B, = 0}
and B(t) = inf{s|s = 1, B; = 0}. Then T, is distributed as 1/{1
+ By while Ty is distributed as v(1)/(1 + y{(1)). For f: [0,
1> = R. measurable we, therefore, obtain

EG(T, T) = ELFA/Q + pan. DA + y(l [AS)

Folowing Chung (5), we obtain
‘: £
BT, T = /2w |
FA/Q + ), s/ + SN Hstu ~ SHdu ds.
By a change of variables, we find that
E(f(T, Toh = (1/27)

1/2 1/2
L L fv, v ~ v — YNy dr.

Thus the distribution of (T, T3} has the density function
p(v, 1} = (1/ 2% ganpaeuzy, DL/vKL — v — )Y,
To determine the main dimension «, we solve
1/ 1/2
1= E(TF+ TS = (1/2m) j f
il 0

e 4 (L~ v = 0HY)dv dr,

It can be checked that o = 1/2 is the solution. We obviously
have P(Tf+ TS 1) > 0. For ¢ € (0, 1/2),

Vo
EQ/min(T], T = (1/21‘1‘)J J

GAVEN UL/l — v — YDy dr < <.

Since m = 1 and limg. poanam plv, 1) = = condition / is
satisfied at (xy, x2) = (1/2, 1/2). Thus it follows from the
Exact-Dimension Theorem that

0 < HK(w)) < o for a.e. w,
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where A(1) = r*(logllogs)' "™ = M{logllogd])?.

Example 2 (Mandelbrot's percolation process). In 1974,
Mandelbrot introduced a process in [0, 1] that he called “ca-
nonical curdling” (for discussion, see ref. 6). Fix a positive
integer n and a positive number p < 1, Partition the unit
square into n° congruent subsquares: B ;= [{—1)/n,i/n}x
(j—Wn j/n, 1 =i j=n

Each subsquare B;; “survives” independent of the others
with probability p. For each subsquare that survives, rescale
and apply the same procedure. This is an n-ary random con-
struction. Clearly, E(TY + . . . + T%) = n% so K(w) is non-
empty with positive probability if and only if p > 1/#%.
Chayes er al, (7) have investigated this model in detail and in
particular demonstrate that there is a critical probability p. <
1 such that, if p = p,, then opposing sides of the unit square
are connected with positive probability. Since this process is
a random construction, we know that if K{w) # ¢, then the
Hausdorff dimension is the solutionof 1 = E(If+ ..., +
T&) = pn*~% Thus, a = 2 + logp/logn. Chayes et al. also
calculate this number.

We now show that this construction is cozvered by our
main theorem. First of all, itis trivial that P T4 1) > 0.
Second, for all £ > 0,

1/min{T¥|T; > 0} = n’
So, forall §> 0,
EEl/min{TfIT,- > 0] = nf
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Finally, condition i is satisfied. To see this set § = 1 —
(1/r7%. Then

. P
E[(Z T?) Ul 1(r;m»~5}il =p" = 1/19,

{1

for large 7 and any given g. Thus, if K{w) # ¢, then 0 <
K (w)) < =, where

R = r*(logllogyt '8,
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