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ON THE HAUSDORFF DIMENSION OF SOME GRAPHS

R. DANIEL MAULDIN AND 8. C. WILLIAMS

ABSTRACT. Consider the functions

Wp(z) = i b~ [®(b"z + 6n) — D(0r)],

n=—oo

where b > 1, 0 < a < 1, each 0y, is an arbitrary number, and ® has period one.
We show that there is a constant C' > 0 such that if b is large enough, then the
Hausdorff dimension of the graph of W}, is bounded below by 2 —a — (C/Inb).
We also show that if a function f is convex Lipschitz of order o, then the graph
of f has o-finite measure with respect to Hausdorff’'s measure in dimension
2 — a. The convex Lipschitz functions of order a include Zygmund’s class
Aa. Our analysis shows that the graph of the classical van der Waerden-
Tagaki nowhere differentiable function has o-finite measure with respect to

h(t) = t/In(1/t).

We consider the Hausdorff dimension of the graphs of various continuous func-
tions. We introduce a new geometric property of a function: convex Lipschitz of
some order, and obtain an upper bound on the dimension of a graph with this
property. In particular, our analysis includes functions of the form '

fo(z) = Z b= ®(b"z + 0,),
n=0
where 0 < 0, <1,b>1,0< a <1, and ® is periodic with period one. For
example, we show that the graphs of the van der Waerden-Takagi functions have

Hausdorff dimension one. We also give lower bounds on the dimension of graphs of
the form

Wi(z) = i b= B (b + 6,) — B(6,)],

where 0 < a<1,b>1,0<6, <1, and ® has period one. We note that this series
converges uniformly on compact sets if ® is Lipschitz and bounded. In particular,
if @' is continuous and « is fixed, then there is a positive constant C such that

2—a—(C/Inb) < dim f, = dimW, <2 — o,
for sufficiently large b.
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794 R. D. MAULDIN AND S. C. WILLIAMS

The functions of the form f;, or W, have a colorful history, and continue to make
an appearance in various fields. In 1872, Weierstrass introduced the functions

o0
K(z) = Z b~ *™(cos 2mb™x)

n=0
and showed that they were nowhere differentiable in certain cases. G. H. Hardy
not only showed that K(z) is nowhere differentiable for all b > 1 and 0 < a < 1,
but, in addition, obtained some exact results concerning the local Lipschitz order
of these functions [5]. Besicovitch and Ursell obtained lower estimates, somewhat
similar to ours, on the dimension of graphs of functions which were required to
have a large amount of lacunarity [2]. The functions W, and f, treated here do not
meet their requirement. Mandelbrot proposed a study of the functions W} with a
view to applications and for its intrinsic properties. It has been conjectured that
dim(Ws) = 2 — @, for all b > 1, in case ®(z) = cos2rz [1,4,8]. The computer
studies of Berry and Lewis indicate the complicated behavior of these functions [1].
If each 0, = 0, then W, satisfies the functional equation g(z) = b=%g(bz), and fp
satisfies the functional equation g(z) = b=*g(bz)+®(z). The addition of the phases
eliminates such scaling behavior. Our techniques show that one can nevertheless
recover enough scaling to obtain our estimates on the dimension.

Graphs of functions of the form f, also appear as attractors in dynamical sys-
tems (7, 9]. Kaplan, Mallet-Paret, and Yorke have obtained exact results on the
Lyapunov dimension of some higher dimensional analogues of these functions and
have shown the capacity dimension of K(z)is2—aforb>1,0<a < 1.

Throughout the paper, we will consider functions as graphs. By dim(E), we
mean the Hausdorff dimension of E. Our notation mostly follows that of Rogers
[10]. Thus, if h is a generalized dimension function, A — m(E) denotes the measure
of E with respect to the measure induced by h. In particular, if o is a positive
number, then a — m(E) denotes the measure of E with respect to h(z) = z*. Our
first theorem which we offer without proof is useful in reducing the calculation of
the dimension of a graph to the complicated part of the function.

THEOREM 1. If g s Lipschitz, then
(1) dim(f + g) = dim f.

In particular, dim W, = dim f,, where

(2) fo:= i b= ®(b"z + 0,),

n=0
whenever ® is bounded and Lipschitz.

Let us mention that without some restriction on f and g, dim(f + g) may be
greater than dim f. This may be seen as follows:

THEOREM 2. B = {f | dim f = 1} is a dense Gs subset of C[0,1]. Moreover,
if f €C[0,1], then f = g1 — g2, where g1 and go have dimension 1.

PROOF. For each o > 1, let L, = {f € C[0,1] | a — m(f) = 0}. It is easy to
check that L, is a Gs subset of C[0,1] and, of course, every polynomial is in L.
Finally, ﬂ;o_:l L1+1/n = B.
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Now, suppose f € C[0,1]. Since B and B + f are dense G subsets of C[0, 1],
BN (B + f) # 3. Therefore, f = g1 — g2, where g1,92 € B. Q.E.D.

REMARK. Theorem 2 shows that almost every function has Hausdorff dimension
one. However, we note that almost every function does not have o-finite linear
measure. This follows from the facts that for almost every f, f~1(y) is uncountable
unless y is the maximum or minimum value of f [3] and, on the other hand, if f
has o-finite measure, then for almost all y, f~!(y) is countable [4, p. 74].

Our next theorem is useful for obtaining upper bounds on the Hausdorff dimen-
sion of a graph. Let # map R* into R*.

DEFINITION. A function f is said to be convex Lipschitz of order 8 on an interval
[a, b] provided there is a constant M such thatif a <z <z+y<band0<§< 1,
then

(3) |A(z,y,6)] == |f(e+ 6y) — (6f(z +y) + (1 - 8)f(x))| < MO(y).

We note that if f is in the class A, described by Zygmund [11], then f is convex
Lipschitz of order . However, the converse is not necessarily true.

THEOREM 3. Let 0 be a continuous map of R* into itself such that (1) ift > 0,
0(t) > 0, (2) limy_,0t/0(t) < oo, and (3) 3B > 0 such that lim;_,q 0(ct)/0(t) = ¢
for all ¢ > 0. If f is a continuous map on [0, 1] which 1s convez Lipschitz of order
0, then f has o-finite h — m measure, where h(y) = y2/0(y).

We first set some notation. We will consider the dyadic expansion of numbers
in [0,1]: £ = .e1€2e3- -, and the nth approximation: z,(r) = .e163---€p.

PROOF. For each My > M, set

A(My) = {z € [0,1]] for infinitely many n,

W |f(zn(2)) = fzn(z) +277)] < Mob(27")}.

CLAM 1. h —m(f|a(mp)) < +o00.

To prove this claim, temporarily fix m € N. For each z € A(Mp), let n(z) be
the first n > m such that

(5) |f (@n(2)) = f(zn(e) +277) < MoB(27").

For each z € A(My), let I(z) = [Tpn(z)(T), Tn(z) () + 27™(*)]. Note that if z,y €
A(My) and z # y, then either I(z) = I(y) or else I{x) and I(y) are nonoverlapping.
Consider C,, = {I(z)|z € A(Mo)}. Then C,, is a cover of A(Mp) by nonoverlapping
intervals. Thus,

(8) U I() x f(I(z)) > Graph(f|aca))-

IEA(MQ)

Now,

(7) diam f(I(z)) < 2M0(2~"®)) + Mpf(2~"(®) < 3Mph(2~ ).
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Therefore, the rectangle I(z)x f(I(z)) can be covered by (3Mp(2-"(*))/2-(#)) 41
squares each with edge length 2~"(%). Thus, we have

(8)
2—2n(z) 0(2—n(z))
(h—m)[flamey] £ lim Z 22— <3M0 Eryery s uadi 1)
M= N [(2)ECm 6(v22-"() 27nie)
. _ 9(2— (=) V22-n(2)
< n(z) 9—n(z)
_mh?moo [GMO [22 (/22" } Z0(\/_2 "(1) ’
But, if ¢ is small enough, we have
9) t/6(t) < Q < +oo,
and
(10) C10(t) < 8(V2t) < Coo(2),

for some positive constants C; and Cs. Therefore,
(h=m)(fave) < lim [[6Mo/C1 + Qv Y 27"®]
m—00

(11) < QV2+6My/Cy < +00.

This completes the proof of Claim 1.

Assume My > 2M. Ifz = .€1---€p--- ¢ A(Mp), then Im(z) € N such that for
n > m(z),
(12) |f(zn(2)) = f(zn(z) +277)] > Mob(277).

Claim 2. sgn(f(zn(z)) — f(zn(z) + 27™)) is constant for n > m(z). Otherwise,
we have, for example, setting z,, = z,(z)

(13) M00(2_") < f(zn) _ f(mn + 2—n)
and
(14) —M09(2—(n+1)) > f(@ns1) — f(@nt +2—(n+1)).

If .41 =0, then 2,1 = 2, and

f(an+327") = 3(f(zn +27") + f(2n)
= f(zn + 2 ) = f(zn) — %(f(mn +27") - f(zn))
= (f@ns1 +27Y) = f(€n41)) — 3(f(@n +277) = f(2n))
> M2~ (1) 4+ (My/2)0(27") > MO(2™™),
a contradiction. The other cases are similar. In other words, if My > 2M and
|f((+1)/2") = £(5/2")] > Mob(277"),

then f((25 +1)/2"*1!) is between f((5 + 1)/2") and f(j/2"). This completes the
argument for Claim 2.
Set

(16) B(Mo,m) = {z € [0, 1][Vn > m, f(za(z) +2°™) - f(zn(z)) > MoB2~)}

(15)
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and

(17) C(Mo,m) = {z € [0,1]|Vn > m, f(zn(z)+27") - f(zn(z)) < —Mof(2™™)}.
We have B(My,m) C B(Mp,m + 1) and C(My, m) C C(Mp,m + 1). Since My >
2M, Claim 2 implies

(18) [0, I\A(Mo) = U B(Mo,m) UC(Mo,m)]| .

Fix m. We will show that each f | B(Mo,m) has finite h-measure. For ¢ = (ey,
g;) € {0,1}7 and k < j, define

(19) I(e):==[.e1 €5, €1+ € +277]
and
(20) Acif=f(er1ex+27F) = f(.er---ex).
For each n > m, set
(21) Cn={e€{0,1}"|Ackf > Mof(27F), for m < k < n}.
Now,
(22) Z As,'n+lf S Z Ae,nf-
€€ECn+1 e€Cn

This follows from the facts that if (€1,...,€4,6) € Cnt1, then (€1,...,€,) € Cy;
Acsont1f + Aexins1f = Aenf; and, by the argument given for Claim 2, all of
these differences are positive.

For each n > m,

(23) Graph(flB(ao,m) € | I(e) x f(I(e)).
e€Cn

For each ¢ € C,, we need no more than (diam f(I(¢))/2™") + 1 squares with
diameter /22" to cover the rectangle I(g) x f(I(¢)).

Let
T, = Y (diam f(I(€))/27" + 1)h(v22™")
€€Cn
(24)
[Z dlamf(I(z-:))h(\/_2 )} + \/—Q < 00.
eE€ECn

Obviously, the h-measure of f|p(ar,,m) is dominated by lim, ,, T,. Since,
diam f(I(e)) < Aenf +2M0O(277),

(25) T, ‘/_2 [ZAsnf”MZ“"" +v2Q.
e€Cn e€Cn
So, for each n > m,
h(\/— 2-") 4M0( n)
(26) [; Acnf| + V2T +v2Q.

Since lim h(v/2t)/t < 0o as t — 0 and lim(27")/0(v/22™") = 27P/2, the T,’s are
uniformly bounded. Therefore, f|g(ar,,m) has finite h-measure.
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THEOREM 4. Let ®(x) = cos2rz. If0 < o < 1, then Wy, is Lipschitz of order
o and consequently dim(Wy) < 2 — o and W, has finite (2 — a)-measure. If oo = 1,
then fy 1s not necessarily Lipschitz, but it is always convex Lipschitz of order 1.
Consequently, if o = 1, dim f, = 1 and fy has o-finite measure with respect to
linear Hausdorff measure in R2.

If 0 < a < 1, it is easy to see that W) is Lipschitz of order . The first statement
follows from [2]. The last two statements of this theorem follow from Theorem
3 and Hardy’s result that if & = 1 and each 6, = 0, f; is nowhere differentiable
(5], and therefore cannot be Lipschitz of order 1. We will generalize the results of
Theorem 4 in Theorems 6 and 7. We also note that if f is convex Lipschitz of order
1, then f is in Zygmund’s class A..

THEOREM 5. Let f be continuous on an open interval J. Then f is convez
Lipschitz of order 1 on J if and only if f is in Zygmund’s class A, on J.

PROOF. It is easy to check that if f is convex Lipschitz on J, then f is in A,.

For the converse, let M be such that |A%(z,h)| < Mh, where A%(z,h) :=
f(x+h)+ f(z —h) —2f(z). Fixz, z+y € J, <  +y. Define an auxiliary
function g on [0, 1] by g(é) := A(z,y,6). To prove f is convex Lipschitz it suffices
to show |g(6)| < My for all § in [0,1]. Now, |g(1/2)| < A%(z+y/2,y/2)/2 < My/4.
For each n, set D, = {(25 + 1)/2"|0 < 7 < 2"~! — 1}. Since f € A, we have

2 +1 1| /5 1| (5+1 My
~ )<z ~ Z
(5|3 ()] 3 (5

5 gnl’
27+1
g ( on+l )
By induction, we obtain
sup{|g(d)||d € Dy} < My(1/2% +--- + 1/27*1),
Since g is continuous, [g(8)] < My for all § € [0,1]. Q.E.D.

THEOREM 6. Suppose ®: R — R 1s bounded and convex Lipschitz of order 1.
Ifb>1,0<a<1, and

+

< sup {lo(@)| |d € J(Dulk <y} + ML

@) flo) = 3 e + ),

n=0

then fy 18 convex Lipschitz of order .. Consequently,
dim(fy) <2-oa.
PROOF. Fix b > 1 and set a = b~* and f = f,. We have

|A(2,y,8)] < |Y aP[@(bPx + 8bPy + 6,) — B(bPz + 0,

p=0

(28) — 6(®(bPz + bPy + 0,) — (VPz + 6))))]

e o]
+3e) > a”.

p=n+1
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So, letting M be a convex Lipschitz constant for ®,

(29) |A(z,y,6)| < My > (ab)? + 3[|@[a™*! /(1 - a).

p=0
Thus,
(30) |A(2,y,6)] < My(ab)™ ™ /(ab — 1) + 3||®[la™ " /(1 - a).
Choose n such that b~(*+1) <y < b=", Then a™*! = (b~ (»+1)e <y Qo
(31) |A(z,y,0)| < (Mb/(ab—1) + 3[12]|/(1 — a))y™.

Thus, f is convex Lipschitz of order a. Q.E.D.

REMARK. If each 6,, = 0 in equation (27), then fj, is the unique bounded solution
of the functional equation f(z) = b~* f(bz)+ ®(z). Moreover, there are 2¢ solutions
of this functional equation, and the dimension of a solution can be any number in
2-a,2]

The functions considered in the next theorem include the van der Waerden-
Tagaki functions. (Set ®(z) = dist(z, Z).)

THEOREM 7. Consider

folz) = f: b D(b"z + 6,,),

n=0

where b > 1. If ® is a bounded Lipschitz continuous function on R, then f, has
o-finite h-measure where h(y) = y/In(1/y) and each f, has Hausdorff dimension
one. If ®: R — R 1s bounded, absolutely continuous and ® is Lipschitz, then f,
has o-finite linear measure.

PROOF. Set a = b~1. If ® is bounded and Lipschitz, it follows from inequality
(28) that
|A(z,y,6)| < 2(|®'|ndy + 3| ®[a™+!/(1 - a)
for all n.
If b-("*t1) <y < b~™, then n < In(1/y)/Inbd. So,

|A(z,y,6)| < (2(|®]|/Inb)yIn(1/y) + (3b]|@]|/(b — 1))y.
Thus, there is a constant D such that
|A(z,y,6)| < Dyln(1/y).

Therefore, by Theorem 3, f, has o-finite measure with respect to h(y) = y/In(1/y).
This implies that the graph of f has Hausdorff dimension one.

Now, if ® is bounded, absolutely continuous and &’ is Lipschitz, it follows from
(28) that

n 1
> ar [6bpy / @ (bPz + 6bPyt + 6,) — &' (bPx + bPyt + 6,,) dt]
0

p=0
+3||®[la™*1/(1 - a).

|A(z,y,6) <
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Choose B such that |®'(u) — ®'(v)| < Blu — v|. Thus,

|A(z,y,6)| < Béy Z(ab)”/o (1= §)bPytdt + 3|l /(1 — a)

p=0
< 8(1-6)(By®)(ab®)"*!/2(ab® — 1) + 3| @[|a"** /(1 — a).

Choose n such that b~ (®*+1) <y < b=". Then y2b%" < 1, and a1 = b=("+1) <y,
So

|A(z,y,6)| < (b*B/8(ab® — 1) + 3||®[|/(1 - a))y.
Thus, f is convex Lipschitz of order 1. Q.E.D.

REMARK. We do not know whether the van der Waerden-Tagaki function has
o-finite linear measure.

THEOREM 8. Suppose ®: R — R (1) is nonconstant and continuous, (2) has
a piecewise continuous derivative, (3) ®(z + 1) = ®(z), and (4) |®|| = 1. Fiz
0 < o< 1. LetI be a subinterval of [0,1] with length | > 0 such that (i) ®' s
continuous on I and (ii) inf ® > € > 0 on I. There s a constant C > 0 such that
if b>3/1, then
dim(fy) >2—a—C/Inb,

where -
fo(x) =) bRtz + 6,),

n=0

and 09,601,604, .. are arbitrary phases.

Theorem 8 follows from Theorem 9.

THEOREM 9. Assume the hypothesis of Theorem 8. Then there is a constant
C > 0 and a function G: [3/l,00) — R* such that if b > 3/l, then there 13 a Cantor
subset K of R and a probability measure v supported on fr N (K X R) such that if
X 15 a square of side z < b~ with sides parallel to the coordinate azes, then

I/(X) < G(b)z(2—a)—C/ lnb‘

PROOF. For convenience, we assume 6y = 0. Set f = f, and set r = [bl] — 1.
Note that the integer r > 2. We define a system of intervals {J,|o € r*}, where
r =Upe{1,...,7}", as follows. For each ¢, 1 <1 <, let g; be the largest integer
in the interval b[I + (¢ — 1)] + 6. Since this interval has length b/, the integer ¢; —r
is also in it. Set

_|gi—b1—1 g—6
(32) J,—[ o s ]

So,JicI+(t—1),¢=1,...,r,and ¥ (z) > cifz € J;.
Suppose J, has been chosen of the form

_[96 =0 =7 g5 —O)g
(33) g [t te 2t fel

where ¢, is a positive integer, and |o| denotes the length of the sequence ¢. For
each 1 € {1,...,7}, let g,+; be the largest integer in the interval

Hoei =b(I+qo —7+%—1—=015)) + 0541
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Set

_[90%i = Oo)41 =7 Gori — B0 41
(34) Ja‘i - [ blo.H_]_ ) b|o.|+1
We note the following facts:
(J1) For each n, {Jy|o € {1,...,r}"} is a collection of pairwise disjoint intervals
of length rb— ™.
(J2) Foreachog andi=1,...,r,

Jori COTIN I+ g —r+i—1-6)
Go—T+1—1-04 go—1+1i—10
< [ o] T CJa
(J3) If z € J,, then &' (b1~ 4+ 0)5_1) > .
Of course, (J1) follows immediately from the construction. The first inclusion
of (J2) follows from the fact that since the interval H,.; has length bl > r + 1,
go+i — T € Hye;. The second inclusion follows from I C [0, 1]. The last inclusion is

obvious. Fact (J3) follows from the construction of J,.
Let

(35) K=ﬁ[UL}

=1 ||o|=n

let ¥ be the unique probability measure supported on K defined by the condition
7(J,) = r~1l, and let v be the probability measure supported on Graph(f|x)
defined by

(36) | s dviay) = [ oo @) o),
R? R
for g € Co(R?). It can be checked that v also satisfies
) 1
(37) [ e v = lim 2 3 ofee flan)),
|lo|=n

where z, = inf(J,).
Let X be a square [z, %o + 2] X [yo, Yo + 2] with z < b~1. Let n be the positive
integer such that

(38) b= (D) <z < p

and let k be the positive integer such that

(39) bmontk) < 5 < palntk-1)

For each s € {0,1,...,k — 1}, let

(40) #s=card{o | |o|=n+sand f|;, N X # J}.
We have

(41) v(X) = [ Lx(t, S0 d50) < (k= )r .

Our next task is to obtain some bounds on the size of #s.
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Suppose p=n+s, |[o| =p, and f|;, N X # D. Let

p—1
(42) g(x) = > b™"R(b"x + O,y,).
m=0
We have
(43) If=gll <D bom=b"P/(1-b"%).
m=p

If (z, f(z)) € X, then

(44)  [g(z) =b7P/(1 = b"%),9(z) + b7 /(1 = b~%)| N [yo,y0 + 2] # &.
If z € J,, then from (J3), we get

p—1 B
—a)m m b(l a)p -1
(45) g'(z)= > b=ImY (b7 +4,,) 26<W>'

m=0

In particular, g is increasing on J,. Let /

E ={z € J, | eq. (44) holds}.
Thus, E is an interval and if f|;.. N X # @, then Jye; N £ # @. But Joe; C
(g —7+i—1—0,)/bP, (g — 7 +1i—0,)/bP] for i = 1,...,r. Since these last
intervals are nonoverlapping, E can meet at most 2 + b?A\(E) of them, where ) is
Lebesgue measure. So,

(46) card{i € {1,...,r}| fls,., N X #T} <2+ PA(E).
Consequently,
(47) #(s+1) < [2+4 " (m(n + 5))]#s,

where m(n+s) is the maximum possible length of E on level n+s. Now, m(n+s) <
c¢/d, where c is the height of the box that g must be in if f is in X on J, and
d = min{¢'(z) | = € J,}. Now, if (z, f(z)) € X, then (z,g(z)) is in a box of
height z + 2b=2P/(1 — b=2). Since z < b—*("tk=1) and p < n 4+ k — 1, we have
2<b P <b /(1 —-b"%). So,

3 bov pl-e — 1
(48) m(n+s)<g<1_b_a> (b(la)l’—l)'

Consider

,3 boP  ploe 1
el—b—apl-ap _1

2 3 1 1—bp(1=a)
_ pl-«a Z
vl (o) () b

Consider the factor in { } as a function, hy,(b). Note that for all p > 1, h,(b) <
hq(b) for b > 3/l. Now, hy(b) is continuous and lim h;(b) = 3/c as b — oco. Let
6 = max{h;(b)|b > 3/l}; 3/e < § < oo. Therefore, from (47), we obtain

(51) #(s+1) < 8b~>4s.

2+0b

(50)
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Since #0 < 2, we find by recursion on (51)

(52) #(k — 1) < 261Uk 1,
Therefore, from (41)

(53) V(X) < 265 1p(1-@)(k=1) —(ntk=1)
From (38) and (39),

(54) n(l-a)ja<k<n(l-a)/a+tl+1/a.
Also, r~! < 2/1b. Thus,

(55) (X) < 261/@gn(i=e)/ap—alk=1)(/yntk—1p=n
or, .
(56) y(X) < 26V /5n(1=e)/e(g/p)(ntD)/ep—a(n(l-a)/a=1)p=n
(57) < 2(26 /D) e[ (261~ /1) 2 rp(2—e),

Set A =2(26/1)"/* and B = (26'~*/1)!/*. Since bz > b~",

(58) v(X) < ABBrz2e.

Finally, since n < —Inz/Inb, B® = e""B < »~InB/Inb  GQet ¢ = InB. Let
G(b) = Ab%. We have

(59) v(X) < G(b)z*~2=C/nb,

To see that C > 0, it suffices to show that 261 =%/l > 1. Since |®| =1, el < 2.
Since § > 3/¢, we have 261~%/l > 31=%(2/1)*. Thus, 26'=%/l > 1,for0 < a < 1.
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