Coalition Convex Preference Orders Are Almost Surely Convex

R. Daniel Mauldin*

Department of Mathematics, North Texas State University, Denton, Texas 76203

Submitted by M. J. P. Magill

Let E be a separable linear topological space, which admits a complete metric compatible with the topology, and $(\Omega, \mathcal{A}, \mu)$ a complete probability space. Let $\geq \in \mathcal{A} \otimes \mathcal{B}(E) \otimes \mathcal{B}(E)$. Then \geq is coalition convex if and only if for almost all ω , $\geq \omega$ is convex. © 1986 Academic Press, Inc.

Let E be a linear topological space which admits a complete metric compatible with the topology. Let $(\Omega, \mathcal{A}, \mu)$ be a complete probability space. Let $\mathscr{B}(E)$ be the Borel field on E. Let \geqslant be an $\mathscr{A} \otimes \mathscr{B}(E) \otimes \mathscr{B}(E)$ measurable subset of $\Omega \times E \times E$. For each $\omega \in \Omega$, regard the ω -section of \geqslant , $\geqslant_{\omega} = \{(e_1, e_2) | (\omega, e_1, e_2) \in \geqslant \}$ as a relation on $B_{\omega} = \{e | (\omega, e, e) \in \geqslant \}$. This model of individual preferences with a measurable space Ω of individuals and E, the commodity space was initially described by Aumann [3]. For $A \in \mathcal{A}$ and f and g measurable maps of A into E, f is said to dominate g on A (symbolized by $f \ge A g$) if and only if $f(\omega) \ge A g g(\omega)$ for μ almost all $\omega \in A$. Thus, $f \geqslant A$ means the coalition A prefers the selection (or coalition A preference) f to the selection g. Vind [9] pursued the idea that coalitional preferences were central. This was followed by studies of Cornwall [4, 5] and Richter [8]. Debreu [6] showed that the coalitional preferences of Vind arose from individual preferences. Recently, Armstrong and Richter [1] have put Debreu's work in a more general setting. They have shown that there is a 1-1 correspondence between properties of individual preferences and properties of coalitional preferences, at least in case $E = \mathbb{R}^n$. In particular they demonstrated that almost every individual preference is monotone if and only if for each $A \in \mathcal{A}$, the set of coalition A preferences is monotone. Similar assertions hold for transitivity, asym-

^{*} This research was partially supported by the Institute for Mathematics and Its Applications, Minneapolis, Minn.; the National Science Foundation through MCS 81-01581 and a Faculty Research Grant from NTSU.

metry, and other properties. Since the fact that \mathbb{R}^n is locally compact is used in these arguments, whether similar statements hold in a more general infinite dimensional setting was left open.

We say that the relation \geqslant is coalition convex provided that for each $A \in \mathcal{A}$ and for each measurable map $g: A \to E$ such that for each $\omega \in A$, $g(\omega) \in B_{\omega}$, the set D(g, A) is convex, where

$$D(g, A) = \{ f \mid f : A \to E \text{ and } f \geqslant Ag \}.$$

Armstrong raised the following question at the Institute for Mathematics and Its Applications in January 1984 during the sessions concentrating on mathematical economics and discusses it in his survey [2]:

If \geqslant is coalition convex, then is it true that for almost all ω , \leqslant_{ω} is convex? We recall that a relation \leqslant_{ω} is convex means for each $x \in B_x$, $\{y \mid x \leqslant_{\omega} y\}$ is a convex subset of E.

We will give an affirmative answer to this question under the assumption that E is separable. The technique of proof can be used to settle the equivalence of possession, between individuals and coalitions, of a number of other properties.

THEOREM. Let E be a separable linear topological space, which admits a complete metric compatible with the topology, and $(\Omega, \mathcal{A}, \mu)$ a complete probability space. Let $\geq \in \mathcal{A} \otimes \mathcal{B}(E) \otimes \mathcal{B}(E)$. Then \geq is coalition convex if and only if for almost all ω, \geq_{ω} is convex.

Proof. Let

$$\Gamma = \{ (\omega, e_1, e_2, e_3, e_4, \alpha) \in \Omega \times E \times E \times E \times E \times E \times [0, 1] :$$

$$e_1 \geqslant_{\omega} e_4, e_2 \geqslant_{\omega} e_4, \alpha e_1 + (1 - \alpha) e_2 = e_3$$

and $e_3 \not\geq_{\omega} e_4$.

It can be checked $\Gamma \in \mathcal{A} \otimes \mathcal{B}(E) \otimes \mathcal{B}(E) \otimes \mathcal{B}(E) \otimes \mathcal{B}(E) \otimes \mathcal{B}([0, 1])$. Let $S = \pi_{\Omega}(\Gamma)$. The claim of the theorem is that $\mu(S) = 0$. Let $G = \pi_{\Omega} \times_{[0,1]}(\Gamma)$.

We note that it follows from known theorems that $S \in \mathcal{A}$ and G is $\mu \times \lambda$ -measurable, where λ is Lebesgue measure on [0, 1] [7, p. 44]. Also, note that $\Pi_O(G) = S$.

LEMMA . If $\omega \in S$, then $\lambda(G_{\omega}) > 0$.

Proof. Suppose $\omega \in S$ and $\lambda(G_{\omega}) = 0$. Choose e_1, e_2, e_3, e_4 , and α such that

$$(\omega, e_1, e_2, e_3, e_4, \alpha) \in \Gamma$$
.

This means

$$e_1 \geqslant_{\omega} e_4, \qquad e_2 \geqslant_{\omega} e_4$$

and

$$\alpha e_1 + (1 - \alpha)e_2 = e_3 \not\geq_{\omega} e_4$$

But, since $\lambda(G_{\omega}) = 0$, there are numbers β , γ , and τ in $[0, 1] \setminus G_{\omega}$ such that

$$e_3 = \tau(\beta e_1 + (1 - \beta)e_2) + (1 - \tau)(\gamma e_1 + (1 - \gamma)e_2).$$

Now, $\beta \notin G_{\omega}$ and, again, $e_1 \geqslant_{\omega} e_4$, $e_2 \geqslant_{\omega} e_4$. So, if $\beta e_1 + (1 - \beta) e_2 \not \geqslant_{\omega} e_4$, then β would be in G_{ω} . Thus,

$$e'_1 = \beta e_1 + (1 - \beta)e_2 \geqslant _{\omega} e_4$$

Similarly, $e'_2 = \gamma e_1 + (1 - \gamma)e_2 \geqslant \omega e_4$.

Now, for the same reason, $\tau e_1' + (1 - \tau)e_2' \geqslant_{\omega} e_4$. But $\tau e_1' + (1 - \tau)e_2' = e_3$. This is a contradiction. Therefore, if $\omega \in S$, then $\lambda(D_{\omega}) > 0$. Since G is $(\mu \times \lambda)$ -measurable, $(\mu \times \lambda)(G) = \int_S \lambda(G_{\omega}) d\mu(\omega) > 0$. On the other hand, by Fubini's theorem,

$$(\mu \times \lambda)(G) = \int_{[0,1]} \mu(G^{\alpha}) d\lambda(\alpha),$$

where $G^{\alpha} = \{ \omega \mid (\omega, \alpha) \in G \}$. This means there is some α such that $G^{\alpha} \in \mathscr{A}$ and $\mu(G^{\alpha}) > 0$.

Let $A = G^{\alpha}$. Let $M = \Gamma \cap (A \times E \times E \times E \times E \times \{\alpha\})$. Let ϕ be a map of A into $E \times E \times E \times E \times \{\alpha\}$ which is a $(\Sigma, \mathcal{B}(E) \otimes \mathcal{B}(E) \otimes$

REFERENCES

- 1. T. Armstrong and M. K. Richter, The core-Walras equivalence, J. Econom. Theory, in press.
- T. Armstrong, Remarks related to finitely additive exchange economics, Advances in Equilibrium Theory, (C. D. Aliprantis, O. Burkinshaw, and N. J. Rothblum, Eds.), Lecture Notes in Economics and Math. Systems, Springer-Verlag, New York/Berlin, 1985, 185-204.
- 3. R. J. Aumann, Markets with a continuum of traders, Econometrica 32 (1964), 39-50.

- 4. R. R. CORNWALL, The use of prices to characterize the core of an economy, *J. Econom. Theory* 1 (1969), 353-373.
- R. R. Cornwall, Convexity and continuity properties of preference functions, Z. Nationalökono. 30 (1970), 35-52.
- 6. G. Debreu, Preference functions on measure spaces of economic agents, *Econometrica* 35 (1967), 111-122.
- 7. W. HILDENBRAND, "Core and Equilibria of a Large Economy," Princeton Univ. Press, Princeton, N.J., 1974.
- 8. M. K. RICHTER, Coalitions, core and competition, J. Econom. Theory 3 (1971), 323-334.
- 9. K. VIND, Edgeworth allocations in an exchange economy with many traders, *Internat. Econom. Rev.* 5 (1964), 165–177.