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The following result, and a closely related one, is proved: If u : X + Y is an open, perfect 

surjection, with X metrizable and with dim X = 0 or dim Y = 0, then there exists a perfect surjection 

h : Y x S + X such that u 0 h = riTy (where S in the Cantor set and rTTy : Y x S + Y is the projection). 
If moreover, u-‘(y) is homeomorphic to S for all YE Y, then h can be chosen to be a homeo- 

morphism. 
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1. Introduction 

The principal purpose of this paper is to prove the following two closely related 

results. All maps are continuous, and no separation properties are assumed unless 

indicated. We denote the Cantor set by S. 

Theorem 1.1. Suppose that u : X -+ Y is an open, perfect surjection, and that: (*) X is 

metrizable, and dim X = 0 or dim Y = 0. 7’hen: 

(a) There exists a perfect surjection h : Y xS+ X such that u 0 h = rTTy. 

(b) IJ moreover, each fiber u-‘(y). is homeomorphic to S, then h can be chosen to 

be a homeomorphism. 

Theorem 1.2. Theorem 1.1 remains true if assumption (*) is replaced by: (**) X c Y x 

M with M metrizable, with u the projection from X onto Y, and with dim M = 0 or 

dim Y = 0. 

* Supported in part by NSF Grant MCS 81.01581 and a Faculty Research Grant from North Texas 

State University. 
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In the above theorems, a map u : X + Y is called perfect if it is closed and every 

fiber u-‘(y) is compact, 7r ,, : Y xS+ Y denotes the projection, and dim is the 

covering dimension.’ 

Let us briefly comment on the significance of the various hypotheses in Theorems 

1.1 and 1.2. The assumption that u is open and perfect is clearly necessary, since 

rutty: Y x S + Y is open and perfect (because S is compact) and we want u 0 h = ry. 

The importance of our dimensional assumptions will be illustrated by Example 7.1. 

Finally, the special role played by the Cantor set S will be illustrated by Examples 

7.2 and 7.3, which show that our results become false if S is replaced by a convergent 

sequence or by a closed interval.2 

Theorem 1.1(b) may be regarded as a O-dimensional analogue of some results of 

M.E. Hamstrom and E. Dyer in [3], and our Lemma 2.2(b) shows, in effect, that 

the map u : X + Y in Theorem 1.1(b) must be completely regular in the sense of 

[3]. Some other related topological results are obtained in [9] and [2], while related 

results on Bore1 and measurable functions can be found in [5] and [4] as well as 

in papers by Wesley, Cenzer and Mauldin, Bourgain, Ioffe and others which are 

cited in D.H. Wagner’s survey article [lo]. 

Section 2 establishes some notation and lemmas for function spaces, while Sections 

3 and 4, which may be of independent interest, prove a general selection theorem 

for maps with O-dimensional domain and a result on O-dimensional hyperspaces. 

These results are then applied in Section 5 to prove a very special selection theorem 

from which our Theorems 1.1 and 1.2 then follow easily in Section 6. Section 7, 

finally, is devoted to examples. 

The first author would like to thank S. Graf for several helpful discussions. 

2. Some notation and results on function spaces 

Throughout this section, X will denote a metric space with metric d, and (as 

elsewhere in this paper) S denotes the Cantor set. 

Let C(S, X) be the space all of continuous f: S + X, topologized by the sup 

metric a, and let H(S, X) be the set of all f E C(S, X) which are homeomorphisms 

into. Let K(X) be the space of non-empty, compact AC X with the Hausdorff 

metric p,3 and let r’s(X) be the set of all A E .7{(X) which are homeomorphic to S. 

For AE 7t(X), let C,(S, X) (resp. H,(S, X)) be the set of all f E C(S, X) (resp. 

f E H(S, X)) such that f(S) = A. (Observe that C,(S, X) is closed in C(S, X), that 

HA(S, X) is closed in H(S, X), and that C,(S, X) is non-empty (see Footnote 2).) 

Finally, 2E will denote the collection of non-empty, closed subsets of a space E. 

’ Observe that, in Theorem 1.1, dim X =0 actually implies dim Y = 0 because Y is the image of X 

under an open and closed map. 
’ The properties of S which are relevant to us, and which will be used in the proof of Lemma 2.2, 

are that it is a O-dimensional compact metric space which is homeomorphic to each of its non-empty 

open-closed subsets, and that every non-empty compact metric space is a continuous image of it. 

3 p(A,B)=inf{~>O: EC V,(A) and A c V,(B)}, where V, denotes the F-neighborhood. 
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Lemma 2.1. Zf X is complete, then: 

(a) C( S, X) is complete with the sup metric cr. 

(b) H(S, X) is completely metrizable.4 

Proof. (a) Clear. 

(b) Since C(S, X) is complete with a, we need only check that H(S, X) is a Gs 

in C(S, X). Let 

U,,={f~C(S,X):f(s)#f(~‘)ifs,s’~Sand~s-s’l~l/n}. 

It is easy to check that U, is open in C(S, X) for all n, and that H(S, X) = n,, U,,. q 

Lemma2.2. Lete>O,letA,BEYt(X) withp(A,B)<i~,andletfEC,(S,X). 73en: 

(a) 7kere exists a g E C,(S, X) such that c(J; g) < E. 

(b) If BE 7C,(X), then this g can be chosen so that gc HB(S, X). 

Proof. Choose a finite, disjoint open cover {S,, . . , S,} of S such that Si # 0 and 

diamf(S,)<$a for i=l,..., n. Let 

V, = {x E B: d(x,f(S,)) <$e}. 

Clearly {V,, . . . , V,,} is a cover of B by non-empty, relatively open subsets. For (a), 

we now pick surjective maps g, : S, + v, (i = 1, . . . , n); for (b), we first choose a 

disjoint, relatively open cover {U,, . . . , U,} of B such that 0 # U, c V, for all i, and 

then pick homeomorphisms g; : S, --f U,. (Here we use the properties of S listed in 

Footnote 2.) Now the map g : S+ X, defined by g(s) = g,(s) for s E S,, satisfies all 

our requirements. 0 

Corollary 2.3. (a) 7’he map 0 : 7l(X) + 2c“s7x’, defined by B(A) = C,(S, X), is Z.S.C.~ 

(b) The map 0’: KS(X)+ 2H(S,X), dejned by W(A) = H,(S, X), is 1.s.c. 

Proof. This follows immediately from Lemma 2.2. 0 

3. A general selection theorem 

In order to obtain Theorem 5.1 in Section 5 with no superfluous hypothesis on 

Y, we need the following generalization of [6, Theorem 21. 

Theorem 3.1. Suppose g : Z + X is continuous, with dim Z = 0 and X paracompact, 

and suppose 8:X+2 y is 1.s.c. with Y complete metric. Then 0 0 g : Z + 2 y has a 

continuous selection J:” 

4 Le., there is a complete metric on H(S, X) which generates the same topology as the sup metric. 
’ A function fl : E + 2’ is Ls.c. (= lower semi-continuous) if {x E E: O(x) n V # (4) is open in E for every 

open V in F. 
’ Recall that f: Z+ Y is a selection for 9 : Z + 2” if f(z) t IL(z) for every z t Z. 
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Proof. When 2 = X and g is the identity map, this theorem reduces to [6, Theorem 

21. The proof of that result in [6] begins by showing that, if X is normal and 

dim X = 0, then every locally finite open cover of X has a disjoint open refinement. 

Analogously, and with essentially the same proof, one can show that, if g : Z + X 

is continuous with dim Z = 0 and X normal, and if Zr is a locally finite open cover 

of X, then g-‘( 7”) has a disjoint open refinement. Once that has been established, 

the proof of our theorem proceeds just like the proof of [6, Theorem 21. q 

4. A result on O-dimensional spaces 

The following result, which may be of independent interest and which was also 

proved by Eric van Douwen (private communication), will be used in the proof of 

Theorem 5.1. 

Proposition 4.1. I_X is a metric space, and if dim X = 0, then dim K(X) = 0.’ 

Proof. Recall that, if X is metrizable and non-empty, then dim X = 0 if and only 

if X has a base 011= IJ:=:=, Q,, with each %, a disjoint open cover of X. Clearly we 

can choose these %, so that 011,+, is a refinement of Ou, for all n. 

Recall next that the Hausdorff metric on x(X) generates the Vietoris topology, a 

base for which consists of all collections of the form 

(U,,..., U,)= AEK(X):A~& Ui,AnUi#@fori<k 
1 

, 

i=l I 

with Ur,..., U, open subsets of X and k = 1,2,. . . . 

Now let Q = lJz=p=, 021, be a base for X as in the first paragraph of this proof. For 

all n, let 

V”={(U ,,..., U,): U ,,..., U,~%,,,k=l,2 ,... }. 

and let w^ = I_):=, V,,. It is easy to check that each z’, is a disjoint open cover of 

x(X) and that ‘P” is a base for K(X), so dim x(X) = 0 by the first paragraph of 

this proof. 0 

5. A special selection theorem 

The essence of Theorems 1.1 and 1.2 is contained in the following result. 

Theorem 5.1. Let g: Y+ x(X) be continuous, with X a metric space, and suppose 

dim Y=O or dimX=O. Then: 

’ For the small inductive dimension ind, this result is well known and easy to prove. It may also be 
known for dim, but we have been unable to find it in the literature. 
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(a) There exists a continuousf: Y+ C(S, X) such that [f(y)](S) = g(y) for every 

YE Y. 

(b) Zfg: Y+.?‘C,(X), thenfcan bechosen so thatf: Y+H(S,X). 

Proof. Without loss of generality, we may assume that X is complete (since it can 

always be replaced by its completion). 

(a) Suppose first that dim Y = 0. Let 8:ZK(X)+2c’s,x’ be as in Corollary 2.3 

(a). Now 0 is 1.s.c. by Corollary 2.3(a), C(S, X) is complete by Lemma 2.1(a), and 

ZK(X) is metrizable and thus paracompact. Hence Theorem 3.1 implies that 

0og: Y+2 c(s,x) has a continuous selection f, and this f satisfies our requirements. 

Now suppose dim X = 0. Then dim .K(X) = 0 by Proposition 4.1. We can therefore 

apply [6, Theorem 21’ to obtain a continuous selectionf* for the map 0 in Corollary 

2.3(a). Letting f=f* 0 g, we see that f satisfies our requirements. 

(b) The proof is almost the same as for (a), except that the map 0 of Corollary 

2.3(a) is replaced by the map 0’ of Corollary 2.3(b), and we invoke Lemma 2.1(b) 

instead of Lemma 2.1 (a). 0 

6. Proofs of Theorems 1.1 and 1.2 

Proof of Theorem 1.1. (a) Since u : X + Y is open and closed, U-’ : Y -+ FK(X) is 

1.s.c. and u.s.c.~ by [l, 1.7.171, and hence u -’ is continuous by [l, 2.7.20(d) and 

4.5.22(a)]. Let g = u-l, and choose f: Y + C(S, X) as in Theorem 5.1(a). Define 

h : Y x S+ X by h(y, s) = [f(y)](s). Then h is also continuous, and clearly h is onto 

with u 0 h = 7~~. Hence u 0 h is perfect (because S is compact), so h must also be 

perfect by [8, Corollary 1.41. 

(b) If each K’(y) is homeomorphic to S, we can choose the above f as in 

Theorem 5.1(b), which makes h one-to-one and thus (being perfect) a homeo- 

morphism. 0 

Proof of Theorem 1.2. (a) As in the proof of Theorem 1.1, u-’ : Y+ K(X) is 

1.s.c. and U.S.C. Let u: X+ M be the projection, and define g: Y+ 3!(M) by 

g(y) = v(u-‘(y)). Then g is also 1.s.c. and u.s.c., and hence g is continuous. By 

Theorem 5.1(a) (with X replaced by M), there is a continuousf: Y+ C(S, M) with 

[f(y)](S)=g(y)foreveryy~ YDefineh: Y~S-+Xbyh(y,s)=(y,[f(y)](s)).Then 

h is continuous and onto, and u 0 h = rry. Hence u 0 h is perfect, so, since h = 

(u 0 h, u 0 h), it follows from [8, Theorem 1.11 that h is also perfect. 

(b) If each u-‘(y) is homeomorphic to S, we can choose the above f as in 

Theorem 5.1(b), which makes h one-to-one and thus (being perfect) a homeo- 

morphism. 0 

’ Here we do not need the generalization of that result given in Theorem 3.1. 

9 Recall that a function (I : Y + 2x IS U.S.C. (= upper semi-continuous) if {y E Y: CL(y) c U} is open in 

Y for every open U in X. 
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Remark. We have derived Theorem 1.2 from Theorem 5.1. Conversely, it is not hard 

to derive Theorem 5.1 from Theorem 1.2. Thus Theorem 1.1 also follows from 

Theorem 1.2, which is not hard to verify directly. There seems to be no way, however, 

to derive Theorem 1.2 from Theorem 1.1. 

Remark. Let h be as in the conclusion of Theorem 1.1(a), let (s,) be dense in S, 

and letf, : Y + X be defined byfn(Y) = h(y, s,). Then (fn) is a sequence of continuous 

selections for up1 such that {fn(y): n = 1,2,. . . } is dense in K’(v) for every y E Y. 

(The existence of such a sequence (fn) also follows from [7, Theorem 5.1 and 

Example 5.4 (for n = -l)], where it is only assumed that u : X + Y is open with X 

and Y metrizable, with dim Y = 0, and with each u-‘(y) separable.) 

7. Examples 

Each of the following examples shows that Theorem 1.1(a) and (b) both become 

false if some of the hypotheses are omitted or modified. In Example 7.1, we do this 

by showing that U-’ : Y + Z(X) does not even have a continuous selection; in 

Examples 7.2 and 7.3, where dim Y = 0 and where z.-’ must therefore have a 

continuous selection by [6, Theorem 21, we have to use a different approach. 

All spaces in our examples are compact metric, and thus all maps are perfect. As 

elsewhere in this paper, S denotes the Cantor set. 

Our first example shows that the assumption that dim Y = 0 or dim X = 0 cannot 

be omitted from Theorem 1.1. 

Example 7.1. There exists an open, surjective map u : X + Y, with X and Y compact 

metric and each jiber u-‘(y) homeomorphic to S, such that u-l does not have a 

continuous selection.” 

Proof. Let I = [0, 11, and consider S as a subset of I in the usual way. Let X be 

the space obtained from I XS by identifying (0, s) with (1, 1 -s) for all s E S. (In 

effect, X is a modified Mobius band.) Let Y be the circle obtained by identifying 

0 and 1 in I, and let u : X + Y be the obvious map. If u-’ had a continuous selection 

f: Y + X, then f( Y) would be a circle in X which is mapped one-to-one onto Y 

by u. But clearly u maps every circle in X onto Y in a two-to-one fashion, and 

hence no such selection f exists. 0 

Our next example shows that S cannot be replaced in Theorem 1.1 by the 

convergent sequence H = (0) u {l/n: n E N}. 

lo This implies that Theorem 1.1(a) is not satisfied (for if h is as in Theorem 1.1(a) and if SE S, then 

y+ h(y, s) is a continuous selection for u-‘). It follows, of course, that Theorem 1.1(b) is also not 

satisfied. Nevertheless, as kindly pointed out by I. Namioka, Y XS and X are homeomorphic in this 
example. 



G. Miigerl et al. / A parametrization theorem 93 

Example 7.2. There exists an open, surjective map u: X + Y, with X and Y both 

O-dimensional compact metric spaces and with each jiber u-‘(y) homeomorphic to H, 

such that there is no surjective map h : Y x H + X. 

Proof. Let Y = H. Let 

1 
-:mEN,m<n 

1 
l--:mEN,man u{l] (nEN), 

m m 

Define u : X + Y by u(s, t) = s. 

Let us show that there is no surjective map h : Y x H + X. Recall that the derived 

set Z’ of a space 2 is the set of all non-isolated points of 2. Now it is easy to see 

that the second derived set (Y x H)” of Y x H is the singleton ((0, 0)), whereas X” 

consists of the two points (0,O) and (0, 1). If there were a surjective map h: Y x H + 

X, then h(( Y x H)“) 2 X” (because Y x H is compact and hence h is closed), and 

that is clearly impossible. 0 

Our last example shows that S cannot be replaced in Theorem 1.1 by the interval 

I = [0, 11. As in Example 7.2, H denotes {O}u {l/n: n E N}. 

Example 7.3. There exists an open, surjective map u : X + Y, with X and Y compact 

metric, dim Y = 0, and each Jiber u-‘(y) homeomorphic to I, with the following two 

properties: 

(a) Y x I is not homeomorphic to X. 

(b) There is no surjective map h : Y x I + X with u 0 h = TV” 

Proof. Let Y = H. Let 

X,=(O) x[-1, 11. 

Let X = (lJz=, X,) u X,, and define u : X + Y by u(X,,) = {l/n} and u(X,J = (0). 

(a) To verify (a), we need only observe that every point in Y x I has a base of 

neighborhoods U such that U n E is connected for every component E of Y x I, 

while X lacks the corresponding property at each point of X,. 

(b) To verify (b), consider the following property of a collection 9 of subsets 

of a space E: 

(t) For every x E E and neighborhood V of x in E, there exists a (not necessarily 

open) neighborhood lJ c V of x in E and an integer n such that Un D is the 

union of G n connected sets for every DE 9. 

‘I However, there does exist a surjective map h : Y x I + X 
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It is easy to check that, if h : E + F is a perfect map, and if 9 satisfies (t) in E, 

then h( 53) satisfies (t) in F. 

Suppose there were a surjective map h: Y x I -+ X with u 0 h = 7ry. Let $3 = 

{{l/n} Xl: RE N}. Then 5% clearly satisfies (t) in Y xl, while h(9) ={Xn: no N} 

does not satisfy (t) in X. By the previous paragraph, that is impossible. 0 

Added in Proof. In Lemma 2.2 the hypothesis p(A, B) < ;E can be weakened to 

p(A, B) < E. For (a), see Math. Ann. 162 (1965) 87-88, Lemma 2.1. 
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